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Abstract

VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically
difficult task for both land, marine, and urban operations. This thesis describes
one possible control approach to enable landing of unmanned aircraft systems at all
attitudes, including against walls and ceilings as a way to considerably enhance the
operational capability of these vehicles. The features of the research include a novel
approach to trajectory tracking, whereby the primary system outputs to be tracked
are smoothly scheduled according to the state of the vehicle relative to its landing
area. The proposed approach is illustrated with several experiments using a low-cost
three-degree-of-freedom helicopter. We also include the design details of a testbed for
the demonstration of the application of our research endeavor. The testbed is a model
helicopter UAV platform that has indoor and outdoor aggressive flight capability.
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Chapter 1

Introduction

Vertical Take-Off and Landing vehicles represent a fundamental component of Naval,

Air and Ground support operations, because they are able to take-off and land in

confined spaces and can therefore be deployed quite rapidly in unequipped or hostile

areas. These characteristics also yield multiple uses in civilian operations, including

police, firefighting, search and rescue, newscasting and other operations. Among the

tasks associated with VTOL vehicle operations, take-off and landing certainly stand

among the most critical ones, since the vehicles must operate and establish physical

contact with the platform upon which they land. Unlike their fixed-wing counter-

parts, which must rely on a paved or unpaved runway system and therefore require

a nontrivial infrastructure, the freedom and flexibility offered by VTOL operations

are often leveraged together with the pilot expertise to perform landing operations

in a wide variety of environments. However, the recent advent of Unmanned Aerial

Vehicles has removed the pilot from the immediate controls of the vehicle, revealing

many of the difficulties associated with VTOL landing operations. During landing,

several problems must be considered, including those of (i) properly sensing the en-

vironment at or near the landing platform as addressed in [14] and (ii) maneuvering

the vehicle in that environment in such a way that landing is possible and safe. In

this thesis, we assume the environment to be known and available to the vehicle in

real-time, and we concentrate on the task of landing the vehicle. In an attempt to

push the state-of-the-art, our effort deliberately emphasizes all-attitude landing, i.e,

13



landing of vehicles on flat, inclined or vertical surfaces and possibly inverted landings

as well. Following an argument adopted in prior research on aerobatic flight [101, our

motivation for such an effort is twofold:

" Demonstrate that landings are possible at unusual attitudes, thereby extending

the range of conditions over which hover-capable vehicles, small and big, might

be able to stop and resume flight.

" Indirectly demonstrate the safety and robustness of more traditional landings,

by displaying a much larger range of landing capabilities for the machine.

When concerned with landing operations, several factors need to be accounted for,

including the fact that many VTOL vehicles are underactuated, that is, the number

of control variables available to them (pitch/roll cyclics, collective and tail rotor in

the case of helicopters) is smaller than the number of possible outputs of interest,

which includes all six degrees of freedom of the vehicle (which evolves in SE(3) if

the vehicle is seen as a rigid body). When the vehicle is limited to three degrees of

freedom (such as the system described and used later in this thesis), the number of

actuation mechanisms is often limited to two, enough to manage the vehicle attitude

or its position, but not both at the same time. However, it is often possible to

"focus" attention onto subsets of these outputs: For example, while vehicle position

(e.g deviations from the glideslope) might be of primary interest during approach,

vehicle attitude (or relative attitude with respect to the landing site) may become

more important when the vehicle is about to land. Similar statements hold true about

many other vehicles, with car driving and maneuvering a familiar everyday example.

In this thesis, based on an aggressive landing scenario, we describe a possible con-

trol approach towards managing system outputs and corresponding control strategies

for underactuated systems. Our approach provides smooth control law transition

strategies when the "critical outputs" of the system vary as a function of state-

dependent constraints, such as vehicle proximity to obstacles. The basic principle of

our approach is, for a desired nominal (and feasible) trajectory to be followed by the

vehicle, given a number n of inputs and m > n of outputs, to first design separate

14



compensators for a given family of subsets of n outputs. We then apply a weighted

least-squares scheme to come up with a control action that properly trades off the

relative importance of these outputs, by correspondingly weighting the corresponding

control actions.

Finally we conclude with the design details of a testbed for the demonstration

of the application of the research endeavor. The testbed is a model helicopter UAV

platform and has indoor and outdoor aggressive flight capability.
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Chapter 2

Method

2.1 Overview of the Proposed Approach

We assume that we are given a trajectory pair (x(t), u(t)) which is compatible with

the vehicle dynamics, which fall within the broad form of control affine systems:

± = f(x) + g(x)u where x E R', u(t) E {Actuation Set} C R' (2.1)

Together with the trajectory, we also assume the existence of a penalty function

on the system's most important outputs. We assume this penalty function to be a

function of the states of the system. The penalty function could be interpreted either

as a measure of convergence priority or tracking tolerance of the selected outputs in

different regions of interest.

Consider the following example: Assume we would like to land our helicopter UAV

vertically on a wall or conventionally (horizontally) on a ship deck. In both cases we

achieve this by a sequence maneuvers: Sloped descent followed by a flare maneuver in

the case of ship deck landing, or followed by a pull up maneuver in the case of landing

on a vertical wall. In both cases the term "maneuver" refers to a trajectory which

is not a trivial element of the equilibrium manifold of the equations of motion with

respect to spatial position or spatial velocity. Thus in a conventional ship landing case,

approaching the ship with a configuration very close to hover and then descending

17



vertically and slowly would not be referred to as a "maneuver" since the vehicle

would almost be always close to trimmed conditions. Landing procedures based on

keeping the vehicle in the state of "quasi-equilibrium" are standard practice and are

not the object of our research. To motivate the necessity of the penalty function

or, equivalently, a tracking tolerance function, consider the longitudinal dynamics

of a vehicle when performing vertical and horizontal landings. During the approach

phase, we do not care about the vehicle's attitude, but rather focus on altitude and

forward position deviations from the nominal trajectory. During final flare or pull-up

maneuver however, we require tighter tracking on the pitch angle.

The change of "important outputs" is unavoidable when landing on a vertical

wall, since then vertical vehicle position is uncontrollable when the vehicle is close to

landing. So in that sense and in the case of an underactuated and aerobatic vehicle,

changing weight on the relative importance of outputs becomes necessary. We now

detail our approach.

2.1.1 Generic Vehicle longitudinal dynamics

In the rest of this thesis, we consider only planar, longitudinal dynamics of the heli-

copter and fixed wing UAVs derived in the coordinate frame shown in figure 2-1, and

the equations of motion given by 2.2 are essentially equivalent for our purposes.

J= ui sin O + n(x)

S u cosO - g + n(x) (2.2)

6 = 1u 2 + no(x)

In these equations, the boldface x E R' is the state vector x = (x i z i 6 #)T and m

and J are the mass and the inertia of the UAV. The terms given by n,(x), nz(x), no(x)

represent forces that we will neglect in the rest of the thesis. We will extend our work

to a broader class of vehicle dynamics as our research progresses.

The justification for our choice of the resulting simplified planar dynamics is as

follows: For many miniature UAVs that our application is concerned with the thrust
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Figure 2-1: Planar UAV model: helicopter and fixed wing configuration.

to weight and the torque to inertia ratio are easily on the orders of a 2 : 1 for

weight, and ~ 5 : 1 for inertia if not more. Henceforth, given the high bandwidth

actuator authority on the one hand and our specific region of interest in the flight en-

velope being "aggressive region" for our particular application on the other hand, the

aerodynamics effects like drag and lift on the vehicle nacelle are somewhat negligible.

2.1.2 Nonlinear Controller Design

We use the feedback linearization technique to derive our controllers . This is by

now a standard technique to design tracking controllers. One very important and

fundamental limitation of this and all other control design techniques is the fact that

the number of outputs must be equal to the number of inputs, i.e the system must

be "square" [18] to achieve perfect tracking. This is a significant limitation if the

outputs of interest need to change during a trajectory execution. Let us motivate the

problem and our devised method by designing the controllers for our application at

hand : Land vertically on a wall.

We first derive the feedback linearizing controller using the dynamic extension

algorithm mentioned in [19]. Choosing our outputs of interest to be (x, y) as in the

beginning of landing we need to approach the landing pad. We differentiate our out-

puts until we get a locally smooth diffeomorphism back to our inputs. Applying the

dynamic extension algorithm, we get the equation 2.3 and checking the singularity

19



of the mapping Tm in equation 2.4 we see that the we can only achieve feedback

linearization with a dynamic compensator - specifically we must have a double inte-

grator to get back to our input so our dynamics are augmented with the compensator

dynamics [12].

(4) sinG u1 cos i 1 F 2bcos oi,-6
2

U, sin 1] m Jm + . m (2.3)
Z(4) cos 0 u sinO u2  [-62u, cos -2#u. sin0

m Jm U

Det(Tm) = 2  Rank(Tm) = 2 Vu 1 , ui 4 0 assuming J, m > 0 (2.4)

Since Tm is invertible as long as ui # 0, we can proceed to define a new input

pair (v2, vz) through (2.5)

u = T- 1 (v - b) where V = [v2 vz]T, (2.5)

that decouples the (x, y) dynamics into two subsytems and puts them in the control-

lable canonical form as given by the equation (2.6). This also leaves the internal 0

dynamics to be as shown in (2.7).

5(4) = v (2.6)

z (4) = oz

6(2) = (1/ui)(mv2 cos 9 - 2i 1 - mvz sin 9) (2.7)

Having designed our (x, y) controller with our linearizing inputs (v2, vz) we can

easily design a trajectory tracker by essentially placing the poles of error dynamics

wherever desired since the resulting two subsystems are decoupled, and both are

controllable. One easy choice for a tracker would be as given in (2.8) below:

20



VX= X()- 4Ax ((x 3
) X(3) 6A2 ( 2

) X (2)) 4A3 - X )- A -(X )

v2 = z4 - 4Az(z( 3) - z - 6A 2 (Z2) - z - 4A3(z(1) - z(1)) - A4(z - zd)(2.8)

where Ax, Az > 0

So the total relative degree of this system is 8, whereas the total dimension of

the original system was 6. Since the dynamic extension procedure augmented the

system with the compensator dynamics, namely the double integrator on input ui,

our total system dimension is 6 + 2 = 8. Since this is equal to the total relative degree

of the system, there is no observable internal dynamics with this choice of outputs

as suggested by [19]. So with the aid of this controller (2.8), we are guaranteed

asymptotic and exponential convergence to any sufficiently smooth trajectory in our

output space x(t), y(t) E C4, assuming also that the desired trajectory does not

violate our actuation constraints. Once the system reaches the feasible trajectory, and

if the system dynamics are exact, the system is guaranteed to stay on the trajectory

(in the absence of perturbations). (if 3 tc s.t. e(tc) = 0 => e(t) = 0 Vt > tc).

However, if we drift away from the reference trajectory, we have no control over the 9-

pitch axes convergence to the nominal trajectory. All we know a priori is exponential

convergence in the error dynamics of (x, y) output pair.

In order to explain the significance of controlling the convergence behaviour, con-

sider the following scenario: Imagine we have a feasible reference trajectory for land-

ing on a vertical wall. Assume we begin on the reference trajectory using our (x, y)

feedback linearization controller. At the final phase of the landing, assume that the

vehicle drifts along the z axis (altitude), due to wind disturbance . Since the vehicle

is almost vertical, the controller will try to generate large torque inputs to pitch the

vehicle (9 axis) in order to generate the necessary exponential convergence in both

cases. This can be seen by looking at the mapping from (v., vz) to input pair (ui, U2 ).

We can also see this intuitively from the equations of motion that there is no way of

instantenously generating forces in the directions we require in such configurations.

21



Such pitching motion is undesirable since the vehicle is very close to the landing pad

it could easily result the vehicle to hit its tail or its skids and crash.

One way around this problem would be to design other controllers with different

outputs of interest and switch controllers whenever the tracking or the convergence

behaviour in the specific outputs became more important. The natural choice of

output pairs other than (x, y) would be the (x, 6) and (z, 9) pairs. So proceeding as

before we can easily generate the input-output linearizing controllers as before. Please

note that this procedure will render the internal dynamics unobservable in both cases.

Namely the behavior of the states (z z(1))T in the former and (x x(1))T in the latter

case will totally be disregarded by the controller in favor of achieving perfect tracking

in the outputs of interest. Following a simple analysis, one can easily see that even

for trivial constant trajectories the internal dynamics might easily become unstable.

2.1.3 Penalty Based Controller

In our quest to achieve tracking and convergence to reference trajectory without

totally sacrificing one of the outputs we propose the following approach. We define our

output to be (x z 6)T. Proceeding as before with the dynamic extension algorithm for

the output pair (x, y) and augmenting this with the 0 pitch dynamics, our equations

now have the form:

X(4 Tm - - b

E-- + (2.9)

0(2) oi LU

~~ U

TM b

We see that we could invert the dynamics or achieve desired convergence in all

outputs with a controller, only when (v - >) is in the column space of im where

v = (v2 V vO)T. Since this is not necessarily the case, we construct the following

quadratic form or loosely an inner product and also define again loosely its induced
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semi-norm as follows:

d1 0 0

< a,b >= aTWb and |a|112 =aTWa, W= 0 d2 0 (2.10)

0 0 d3

where a, b E R3 and d1 , d2 , d3 E R U+ 0} only one of d1 , d2 , d3 can be 0

We then take the weighted least squares solution to the problem at hand with

respect to the semi-norm just defined to get the control input:

U = (TWT .)- TW(v-) where u = (i61 u 2 )T and v, b as defined before. (2.11)

Figure 2-2 shows the available range of weight parameter selections for di, d2 and

d3 values. The vertices represent extreme cases where one of the outputs is not effec-

tively weighted. Therefore only the remaining two outputs are weighted for matching

the desired value of the left hand side, in which case we get perfect linearization for

those outputs. By varying the weight parameter selection in the convex hull of the 3

vertices, which represent (x, z) (x, 0) (z, 0) controllers respectively, we get the possi-

ble range of different weight penalties which lets us control the specific convergence

of our outputs back on to the desired trajectory whenever the system is drifted off

the trajectory.

Using the method outlined above and evaluating the value of u symbolically by

plugging it back into the equations of motion (2.9), we get the equivalent dynamics

of our system to be:

(4[) d1 vx (d3 m
2

+2d 2U2 -d 3 m
2 cos (26))+4d 2dam cos Oil+2d2 d3 cos 0(ulve+mvz sin 0)I D

Z d 2 vz (d 3 m
2
+2dlu2+dsm

2 cos (20))+2d1 dam(-ulvo+mVx cos 0-26i1) sin0I DI
g(2) m(2d1d2u1vx cos +d 3 mve(d1+d 2 +(d 2 -di) cos (20)))-2d1d 2u1 (26iti+mvz sinG)

(2.12)

where

D = (di + d2)d3m2 + 2did 2Un + (d2 - di)d 3m2 cos (26)
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[x z] Controller

[d1 d2 d3] = [11 0]

[d, d2 d3] = [2/3 213 2/3]

[z E] Controller [x e] Controller

[d1 d2 d3 ] = [0 1 1] [d1 d2 d3 ] = [1 0 1]

Figure 2-2: Range of parameters (di d 2 d3 )

Also evaluating the same procedure again for the values of (di d2 d3 ) at vertices of the

triangle given in the figure 2-2 we get the equivalent linearized dynamics in equations

(2.13) (2.14) (2.15) for the outputs (x, y), (x, 0) , and (z, 0) respectively.

x (4) vx

z (4) = o (2.13)

0(2) (1/ui)(mv cos 0 - 26it1 - mvz sin (

Xv(4) v

Z(4) (1/m) csc 0(-uivo + mvx cos 0 - 2#it1) (2.14)

0(2) VO

X(4) sec (1/m)(uivo + 24t 1 + mv sin 0

Z(4) voz (2.15)

0(2) I,
One more important point to note here is that there are some intrinsic singularities

of our controllers for some regions of the system state space. They are mainly due

to singularities of the affine mapping Tm , b to the output space. They represent

the regions of the state space where Tm loses its full rank, specifically corresponding

to the regions where the actuation space has no projection over the output space.
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They are given in (2.16) - (2.19) for the general values of the weights. (di d2 d3) and

specifically for the values of the weights at vertices of the triangle.

Det(TiW Tm) = (di+d 2 ) d3 m
2 +2 did 2 ul+(-d1+d 2 ) d3 m

2 cos 29) =0 (2.16)
2

Det(TmWTm) - U =0 (2.17)j2m4

Det(TmTWTm) - ( ) 0 (2.18)

Det(TZWTm) - (cos)2 0 (2.19)J2m2

2.1.4 Stability Verification and Tracking Performance

We have not formally verified the stability and performance of the proposed controller

so far. Instead we extensively tested the controller with the planar model, including

realistic actuator saturations in our simulations. We tried different combinations of

the (di, d2, d3 ) in the convex hull of the triangle given by the figure. We also tested

cases where the parameters were varying with time. The results were as expected:

We obtained appropriate trade offs between the tracking error bounds (i.e in the

interior of the triangle) versus perfect convergence on the chosen outputs (i.e at the

vertices) depending on the weight parameters. Errors on all variables remain bounded

if the weighting function keeps the "controller trade-off" sufficiently far away from

the vertices.
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Chapter 3

Experimental Setup and

Experiments

3.1 Experimental Setup

3.1.1 3DOF Helicopter

Figure 3-1 shows our test setup which essentially emulates the flight of a reduced

degrees of freedom (DOF) helicopter. Instead of the usual six DOF of a free-flying

helicopter, the Quanser [17] only exhibits three: the pitch motion 0, the roll motion

# and the travel motion 0. The 3DOF helicopter is mounted on a table top and

its primary components are the main beam (mounted on a slip-ring), the twin rotor

assembly and the counterweight. The system is actuated by two rotors driven each

by an electric motor. The DC motors can provide either collective or cyclic voltage.

System Description

In order to derive the dynamic equations of the system, a coordinate system is used

with its origin at the bearing and slip-ring assembly, with travel (40) being the circular

motion of the main beam, (0) being the vertical motion of the beam, and pitch (#)

being the motion of the rotor assembly. The collective (Tc01 = TL + TR) and cyclic

(TcY = TL - TR) thrust serve as system inputs. The vertical motion is controlled

27



Figure 3-1: An illustration of the 3DOF helicopter.[13]

Left

L Right

Figure 3-2: Schematic of the 3DOF helicopter.[13] Figure 3-3: Top view. [13]

by collective thrust and is defined to be positive up from the horizontal position.

The cyclic thrust produces a positive change in the pitch angle. If the pitch angle is

non-zero, then the components of thrust will produce a torque around the travel axis.

Positive roll results in positive change of travel angle. The schematics of helicopter

are shown in Figures 3-2 and 3-3.

The equations of motion of 3DOF helicopter model are given in (3.2) as derived in

[13] using Newton's second law to the rate of change of angular momentum. Let J2,

J~Y and Jzz denote the corresponding principle moments of inertia. The moment of

inertia matrix was calculated by disassembling the plant, measuring the dimensions

and mass of each component and then drawing the system in CAD software. The

inertia terms and other model parameters are shown in Table 3.1. As can be seen in

the table the product of inertia terms are small and hence are neglected in the further
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model derivation.

The equations of motion are as follows:

Jzz y = (TL + TR)L cos(O) sin(#) - (TL - TR)lh sin(9) sin(q) - Drag

Jyy# = -MglO sin(9 + 00 ) + (TL + TR)L cos(#) (3.1)

J..5 = -mgl, sin($) + (TL - TR)lh

" M is the total mass of the helicopter assembly

" m is the mass of the rotor assembly

e L is the length of the main beam from the slip-ring pivot to the rotor assembly

" lh is the distance from the rotor pivot to each of the propellers

" Drag = i p( L)2 (So + SO sin(p))L

" So and SO are the effective drag coefficients times the reference area and p is

the density of air

Since the actual system inputs are motor voltages, a thrust to voltage relationship

has been empirically determined and implemented using a lookup table. Figure 3-4

shows a relationship between the input voltage and the thrust for one of the motors.

The thrust values determined empirically and the steady state thrust values were

used in generating the graph. The dynamics of the DC motors were ignored as they

are much faster compared to the rest of system dynamics.

Tracking Controllers

In order to apply te same procedure of Section 2.1.3 to the dynamics at hand, we

used a simplified version of the dynamics in favor of removing the weak coupling of

the Tcy input to the travel O dynamics. The model with dominant terms is given as

in (3.3).
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-5 -

Figure 3-4: Motor Volt to Thrust Relationship.

Table 3.1: Parameter Values
Parameter Value Unit Description

m 1.15 kg mass of the rotor assembly
M 3.57 kg mass of the whole setup
mo 0.031 kg effective mass at hover
L 0.66 m length from pivot point to the heli body
lh 0.177 m length from pivot point to the rotor
Jxx 0.0344 kgm 2  moment of inertia about x-axis

Jyy 1.0197 kgm2  moment of inertia about y-axis
Jzz 1.0349 kgm2  moment of inertia about z-axis

J___ -0.0018 kgm2  product of inertia
JZY -0.0018 kgm 2  product of inertia
R 0.1 m radius of the rotor

g 9.8 m/s2 gravitational constant
14 0.004 m length of pendulum for roll axis
10 0.014 m length of pendulum for pitch axis

)= co cos(9) sin(#)To0

= C1sin(6 + 00) + C2 cos(#)Tco

= C3Tcc + c4 sin(#)

L -Mgle L
CO ~~ C1 = C2

zz -Zjyy iy

(3.2)

C 3 = Ch 4 = g 1-

xx iz

Applying the procedure of Section 2.1.3 we get the equivalent equations of the

form given by (3.3).
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[ 1 co cos 0 sin # coc 3Te0 i cos cos 0 - 1

(4) = C2 cos# -c 2c 3 Teo1 sin # + b2 (3.3)
I (2) L 0 C3 J I

L L 0 C3 . L b3 J
U

Tm b

where

b1 = - (co (ui(2 + 62 - C4 cos(#)) cos(9) sin(#) + u1(2 O cos(#)

+Osin(#)) sin(9) + it,(-2 cos(#) cos(9) + 2#sin(#) sin()))

-2 = (c 2 ?2U cos(#)) + c15 cos(9 + 9o) - c2 sin(#)(2i + c4ui sin(#))

-c 1 52 sin(6 + Oo)

= c4 sin(#)

3.2 Experiments

A series of aggressive vertical landing experiments with a set of different trajectories

were performed with the 3DOF setup to test the validity of our approach. The tra-

jectories used were feasible for the dynamics and they were experimentally obtained.

approach. Figures 3-5 through 3-8 show one of the experimental results. In figure

3-5 the dashed lines represents the desired trajectory. In both figures 3-5 and 3-6

the solid line represents the actual trajectory. And the two bounding lines, upper

and lower, represent equal penalty boundaries for the specific output. As can be seen

from the figures as we increase the penalty on a specific output (which corresponds

to narrowing of the equi-penalty boundary), the tracking error decreases as desired.
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Figure 3-5: Vertical landing experiment, actual and desired trajectory plot.
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Figure 3-6: Vertical landing experiment, actual and desired trajectory error plot.
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Figure 3-7: Weight parameter plot for the experiment.
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Figure 3-8: Snapshots of the vertical landing maneuver.
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Chapter 4

Testbed Development

4.1 Overall Testbed Description

In order to demonstrate autonomous aggressive flight capabilities both indoors and

outdoors we designed a helicopter UAV platform. As the engineering of the total

system is still in the development phase, some of the subsystems like the active stereo

positioning have been completed. Details of this system are given in the next section.

We have also successfully conducted manual flight experiments with the helicopter.

In some of the flight tests, dummy weights equaling the weight of the avionics suite

was also added to the airframe.

The airframe of the UAV is the commercially available Eolo Pro model helicopter

(80 cm rotor) shown in figure 4-1. The choice of this model was based on its agility

and being able to carry our minimum required payload for the autopilot without

compromising either of the indoor or outdoor flight capability.

Our autopilot is based on the CloudCap Technology's Piccolo II [3]. Weighing

only around 220 grams , Piccolo II is a generic sensor suite for small UAVs and

also has built in capability to fly fixed-wing aircraft autonomously and also waypoint

navigation capability. However Piccolo II lacks the capability to track aggressive

trajectories to perform agile maneuvers. Integrating it with our custom software and

additional sensors, we hope to be able to develop an aggressive helicopter autopilot

system capable of indoor and outdoor flight. Also due to our modular software
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Figure 4-1: Eolo Pro model helicopter

Figure 4-2: Piccolo II avionics box

development effort, only small modifications will be needed to control code in the

software for the system to be also used as an agile fixed-wing aircraft autopilot.

Representative block diagrams of the hardware components of the designed heli-

copter and the ground systems are given in the following figures 4-3 and 4-4 .Dashed

blocks represent optional components of the system. As can be understood from the

figures, with all the optional blocks removed the system will still have the necessary

hardware to perform autonomous functions such as waypoint navigation outdoors

only. With the aid of the "active stereo tracking system" the UAV will be localized

precisely in close proximity of the ground station (~50 meters) both indoors and

outdoors. This will enable precise tracking of aggressive trajectories and also will be

used to aid in accurate landing of the UAV. Furthermore a third system which is a
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Figure 4-3: Helicopter UAV hardware block diagram

novel relative position and orientation [7] aiding system will be utilized once the UAV

is in even closer around 10 meter proximity to the landing pad. A typical application

of the two redundant aiding systems would be all weather robust landing on moving

platforms. A more exotic application would be "all attitude landings" i.e landing on

ceilings and vertical walls. An example scenario would be a ship deck landing. The

helicopter is navigates to close proximity of the ship via GPS. Then the active stereo

system starts tracking the UAV and brings it closer and finally with the aid of the

"moire fringe landing sensor system" the automated landing is performed robustly

nearly in all-weather conditions. One might naturally ask the question that why a

very primitive and a fundamental function such as landing or takeoff has to rely on

so many systems working in harmony. The answer is all of the systems mentioned

will be utilized on their availability without failure basis. Meaning they will only be

used in improving the solution as long as they supply valuable information to the

solution of the problem. Since the information they provide is redundant in nature

with different characteristics, this architecture will improve the robustness of the total

system.
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4.2 Active Stereo Tracking System

4.2.1 Overall System Design

In our pursuit for a positioning system, we started looking for solutions preferably for

COTS (Commercial Off The Shelf). The system had to meet our specific requirements

which are:

o Able to work both indoors and outdoors also be able to work together with

GPS (Global Positioning System).

o Needs to be have a range of at least 50m. It should be able to localize our

helicopter UAV.

o Has the necessary update rate around 20 Hz and positioning accuracy of roughly

20 cm.

o Needs to be able track for our experimental research platform which is a mini

helicopter UAV as it performs aggressive maneuvers in the specified range,

o Needs to be relatively cheap.

After searching for products, we concluded that we had to engineer such a system

for our application. The active stereo solution with active beacons, seemed to be an

attractive choice. Since it matches up with the criteria mentioned above relatively

well compared to other options like, "RF tagging", and ultrasonic beacons.

The system consist of two cameras mounted on two pan tilt units and IR beacons

(infrared LEDs) to be mounted on the helicopter. A picture of the system is given in

4-5. The cameras are IEEE-1394 DragonFly Cameras from PointGrey [161. The pan

tilt unit is PTU-D46-17 from Directed Perception [4]. The cameras were modified with

IR (infrared) bandpass filters in order to ease the detection of the active beacons. For

the remaining part of this section, we assume our camera model and the corresponding

projection model to be of a pinhole camera's. So all the expressions, equations in the

following sections are based on this assumption.
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Figure 4-5: Pan-Tilt unit with mounted cameras .

Figure 4-6: Calibration Rig

4.2.2 Camera Calibration

In order to reconstruct 3D position of the target using active stereo camera setup,

the camera positions and orientations need to be known with respect to a reference

coordinate frame. Camera calibration is the procedure to determine these positions

and orientations of the cameras. It is generally achieved using images taken from

cameras of a "calibration rig" which has a known position and orientation [8). There

are readily available tools to achieve calibration conveniently. We used the Caltech

Camera Toolbox [2] along with a checkerboard pattern calibration rig. One such

sample image of the checkerboard taken from our cameras is given in figure 4-6.

We devised the following camera calibration procedure for the pan-tilt unit camera
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combination we have. First a local reference coordinate frame is chosen, and the

calibration rig is aligned and positioned at the origin of this frame. Then the cameras

are placed with a sufficient baseline (distance between camera optical centers) that is

determined a priori. This is an important parameter since it determines the disparity

in the images and hence affects the uncertainty of the reconstruction. The field

of view of the cameras at their initial orientation must contain the calibration rig.

Then, several of the rig images are taken with the cameras to extract intrinsic and

extrinsic parameters of the cameras. For more detail regarding camera calibration

the interested reader can see the reference [8].

4.2.3 Forward Kinematics Map for the Pan-Tilt Unit

Since our cameras are not stationary, the camera calibration matrices change, as the

system tracks the target by actively panning and tilting the cameras. We need to

compensate for this motion of the cameras to achieve stereo reconstruction of the

3D world point of the target. In other words we need to know position and the

orientation of the frames which are attached to the centers of the cameras. We will

use the notation used in [15].

We will explain the forward kinematics map associated with the panning and

tilting angles of the pan-tilt units with the use of the figure 4-7. Let W denote an

absolute world frame aligned with our calibration rig. The origins of both W and

the rig are coincident as well. Let gs E SE(3) be our initial configuration at the

time of our initial calibration and we will also define our panning and tilting angles

61,62 respectively to be equal to 0. As our pan-tilt angles change we will define

gt : S x S - SE(3) to be the current configuration of our camera center with

respect to the world frame. S1 denotes the unit circle since we are dealing with

angles. From here, we need to determine, gwt(1,02) E SE(3) where 01,02 E S'. We

can easily see that:

9wt(01, 62) = 9ws g.t( 6 1, 0 2) (4.1)

Then we must determine gst(61,62). This may be achieved by using the product of
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Figure 4-7: Pan-tilt unit coordinate frames and revolute joint diagrams

exponentials formula given in [15]. But we first need to define 1, 2 E se(3) as the

corresponding twist motions for the revolute joints of the pan-tilt unit represented

in frame S. To clarify the notation before proceeding any further, we give the def-

initions of (, by the expressions in 4.2 where they represent the vector and the

skew-symmetric forms of the same twist, respectively. We can evaluate the expres-

sions for these twist motions as given in 4.4.

= where v, w E R3 E so(3) (4.2)
w 0 0
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0 0

q,1= I 01

-l1, 0

-wi x qi

Wi

I
I

q2=

Now we can proceed to evaluate gt (1, 02)

mula given by 4.4.

-121

01

-1l

W2= 0

0

(4.3)

-W 2 X 2

2

with the products of exponentials for-

gst(61, 02) = exp ( 101) exp ( 2 2 )gst(0) where got(0) = 14x4 (4.4)

Using equation 4.1 we can easily evaluate gt(01,02) with the aid of a symbolic

mathematics package to be as given in 4.5.

gwt(1, 
6
2) =

cos(01)

0

- sin(6 1)

0

sin(O1) sin(62)

cos(6 2)

cos(01) sin(62)

0

cos(92) sin(0 1)

- sin(02 )

cos(61) cos(62)

0

di

d2

da3I
where [d1 d2 d3 ]T is given by:

sin( 1)1i + sin(01) ((-1 + cos(02)) 11 + sin(02 )12 )

= -(sin( 2 )l1 ) - (1 - cos(62)) 12 (4.5)

(-1 + cos(0 1)) l1 + cos(6 1) ((-1 + cos(92)) 1i + sin(0 2)12)

4.2.4 Detection

Once the cameras are calibrated, we can determine the 3D position of our target.

Our target as mentioned before was an IR beacon (infrared LEDs). With the help

of our bandpass infrared filters, under most lighting conditions, if the aperture and
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exposure parameters of the cameras are properly setup, the target shows up as the

brightest region in the image. So the detection problem breaks down simply into

thresholding and the connected region detection problem. Both thresholding region

detection can be done extremely efficiently on relatively fast computer. Once the

region which represents the target is detected in both images, we use the "center of

mass" of the region as the corresponding image point.

4.2.5 3D Localization

Since we have detected the corresponding projection of the target in both images from

the two cameras, we can proceed to reconstructing the actual location of the target

in the world frame W that we defined before. We use the simple linear triangulation

method given in [11]. Let X = [X. Y" z, 1 T E R4 be the homogeneous coordinate

representation of target's position in the world frame W. Furthermore define, Xj =

[Xi yi s] E R3 for i = 1,2 be the homogeneous coordinate representations of the

image coordinates in the cameras 1 and 2 respectively. We have the following set of

projection equations 4.6 from both cameras:

xi = PiX.

X2 = P2X. (4.6)

= , E 3,4 -T i1 n
where Pi = [Ki 1 03x1]gt( 6 1,02) , Pi E R gt, - g, for i 1, 2. And

Ki E R3 x3 are the intrinsic camera calibration matrices as given in [8]. We have six

equations and three unknowns, though two of the equations provide no information

since they are scale factors. Following the same procedure as in [11] to eliminate

the scale factors, we operate on both sides of the equations with the cross product

xj x xi = xi x (PiX,) to get the equivalent set of homogeneous equations xi x (PiXW) =

0. Eliminating the linearly dependent equation from both sets we end up with four

equations and three unknowns. Writing these equations in matrix form as AX, = b

where A E R4
x

3 , b E R. The explicit form of A, and b are given in 4.7.
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(zip 1 - P11) (XiP32 - P12) (XiP 3a - P13)

A = (Y1P3i - P21 ) (YiP32 - P22 ) (Y1PMa - P23 )

(x 2p31 - P11) (x 2P32 - P12) (x 2Pis - P13 )

(y2P$1 - P2i) (Y2P32 - P22) (Y2P33 - P23)

1 1
P14 - Xip 3 4

b =b = P24 - Y1P34
2 P2

P14 - X 2 J3 4

p2 _ 2
p24 - y2P34

where p, are the corresponding elements of Pk (4.7)

We are left with overdetermined sets of equations,and then we proceed to take the

minimum least squares given by 4.8.

Xw= (AT A)- AT b (4.8)

Please note that only under perfect measurements will the vector b be in the col-

umn space of the matrix A. In other words, the rays that are back-projected from the

corresponding image plane points (through the respective camera centers), will only

intersect in the three dimensional world frame when we have noiseless measurements.

For this to happen is practically almost impossible, since even due finite camera res-

olution will the measurements be noisy. Thus, we are forced to such a "error norm"

minimizing solution.

4.2.6 Error Covariance Calculation

As mentioned in the prior section, the measurements will be noisy due many sources

error. Some of these are, errors due to imperfect calibration, which can arise from

mechanical precision tolerances, detection errors in the image plane, quantization

errors, etc. Nevertheless, since the world position estimates will be fed into an EKF

(Extended Kalman Filter) estimator, we would like to determine the uncertainties of
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our position estimates. A reasonable model for our measurement noise would be the

white Gaussian noise assumption. We assume that our image plane measurements

given by xj = xi + vi are corrupted with vi ~ N(0, Aj) where Ai E R 2
x

2 are

the associated covariance matrices for the noise in the images. Since the mapping

Xw = ff(x)1, x 2 ) given in 4.8 is nonlinear. The probability distribution of the error

of f(-, -) will not necessarily be Gaussian. This would violate the requirement of

our estimator and also the math involved would be too complicated to be practical.

Instead, we use the Taylor expansion of f(-,-) given in 4.9 up to the first order as

suggested by [6]:

f(x 1 + v 1 , x 2 + v 2 ) f(x1, x 2 ) + J(x1, x 2 ) v1 (4.9)
V2

where J(x 1 ,x 2) = (Vx1 ,x 2 f)T(xi,x 2 ). So the covariance of Vx in , = XW + Vx

could be approximated as given below in 4.10.

Aw = J(x1, x 2 ) A1  02x2 1 (x1, x 2 ) (4.10)
02x2 A 2

AV

which follows from:

Vx J(x1,x 2)vc where vc = [vi vi]T (4.11)

E [VxVx] E [JvevTJT] = JE [vevT] jT = JAV JT (4.12)
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Chapter 5

Conclusions and Future Directions

In this thesis, we have presented a novel approach. to nonlinear vehicle trajectory

tracking, when the important vehicle outputs change as a function of its state rel-

ative to some external environment. Considering the scenario of aggressive vehicle

landing in demanding conditions, we have illustrated our method, which consists of

generating control inputs that properly "interpolate" the system output of interest,

with initial emphasis on position, but later emphasis on attitude as the vehicle comes

close to landing. While the theoretical foundation of our work remains to be estab-

lished, several simulations and laboratory experiments already indicate the potential

usefulness of our approach. Natural extensions to this approach would be the:

" Incorporation of the full vehicle dynamics, including the lateral dynamics along

with the longitudinal dynamics.

" A systematic analysis and inclusion of actuator constraints in the given frame-

work could potentially be very useful for practical implementations.

" Much also remains to be done in terms of both the modeling environment and

obstacles, either of which could be static or dynamic.

" Exploitation of the symmetries and invariants suggested by [9), in the state

space with regards to the dynamics, could potentially generalize the use of

many stored maneuvers to land at different locations and configurations.
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Appendix A

Extended Kalman Filter

A.1 Filter Description

There has been a wealth of literature published over the last decades regarding the use

of Kalman filters for the purposes of GPS aided inertial navigation. In this section, we

will explain the details of our implementation of an Extended Kalman Filter, which

will be used to estimate the states necessary for our controllers. We will explain

the details of our implementation without going too much into the theory as it is

well known and well documented in the literature. Interested reader may look at the

references listed [1].

Our model implementation is based on real sensors available on a typical UAV

avionics sensor suite (Piccolo II by CloudCap Tech.) [3]. Specifically, our sensors

consist of three strapdown gyros, three accelerometers in conventional orthogonal

placement and a GPS sensor. The gyros and the accelerometers were sampled at

a rate of 20 Hz, the GPS gives positional and velocity information at 4 Hz. Data

from the IMU (inertial sensors, gyros, accelerometers) were collected in the lab for

characterizing the spectral properties of the noise of the sensors. GPS noise model

was assumed to be Gaussian white with typical covariance levels documented from the

literature and based on prior experience with this sensor. Please note that all noise

sources from the sensors were assumed to be white Gaussian as this is a necessary

assumption for filter optimality.
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Figure A-1: EKF Filter block diagram "tightly coupled" EKF filter

A schematic of the filter implementation is given in the figure A-1. This is a

typical example of a GPS aided INS ( Inertial Navigation System) implementation

with an Extended Kalman Filter. This specific block diagram resembles the "tightly

coupled EKE" as it is referred to in the literature. [20].

A.1.1 Dynamic Model

Our model dynamics are based on kinematic equations of motion as given in [10]. This

property makes the filter independent of the specifics of the vehicle dynamics. Thus

the filter could be as used as well with any other system having similar sensors i.e

helicopters, fixed-wing aircraft, land based vehicles, etc. For attitude representation

quaternions were used due to significant advantages they have in terms of being

singularity free and numerical error behaviour [5]. Our equations of motion are given

below in A.1.

i= Rtb(a,-ab) -g+Rtbua

q = ( m- b)q-+igq

ab = 0

S= 0 (A.1)
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The system has sixteen states and they are as follows.

States and Relevant Terms

" x: Position in the local inertial NED (North East Down) frame. [x y z]

" v: Inertial velocity in the NED frame [vx vy ,]

e q: Quaternion representation of attitude [qo qi q2 q3]

" ab: Accelerometer biases on 3 accelerometers [abx aby abz]

" WIb: Gyros biases on 3 gyros ['bx gby 4z]

Note: hat over Tb, T,, and Ug as given in A.1 denotes

matrix form used for quaternions as given below A.2.

1

0

-@2

@y
-O2

0z

0

-OX

-0y

-0y

0

-Oz

02

0

in 4x4 skew symmetric

(A.2)

* Rtb: 3x3 Rotation matrix element of the group SO(3) . It is a function of the

quaternions in this case and is used to transform body accelerations in to NED

inertial frame. The matrix in terms of quaternion attitude representation is

given below A.3.

F2 2 2 2qO + q3 - q, - q2

Rtb = 2(qoq1 + q2q 3 )

2(qoq2 - q1q3)

Inputs

2(qoq 1 - q2q3)

2 2 _ 2 - 2

q1 + q3  q 3 2

2(qlq2 + qOq 3)

2(qoq2 + q1q3)

2(q1 q2 - qoq 3 )
2 2 _ 2 2 gq2 + q3 -O q1

* am: Measured acceleration vector in vehicle body frame [am, amy amz]

* 'm: Measured angular rate vector in vehicle body frame [?/mx?/)my 4mz]

* g: Local gravity vector assumed to be [0 0 g]
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* Ua: Accelerometer noise input vector in vehicle body frame (Gaussian white)

[Uax Uay Uaz|

* ug: Gyro noise input vector (Gaussian white) [ugx Ugy u9,]

Outputs

" z.: GPS position in the local inertial NED (North East Down) frame. [x y z|

" z,: GPS velocity in the NED frame [vx v, vz]

* uX: Gaussian white GPS position noise

e un: Gaussian white GPS velocity noise

A.1.2 Linearization around Estimated state

We need to linearize our nonlinear equations around the estimated state in order

to propagate Gaussian process noise covariance with the 1st order approximation

of the nonlinear equations of motion. Linearized continuous time state propagation

equations will be of the form A.4.

=Fx + Bu+Gn (A.4)

where E [n(t)nT(T)] = W6(t - r). Note x denotes the full state as given by our

model (16x1). u denotes our inputs and n denotes white Gaussian noise inputs.

Our discrete time measurement equations will be of the form A.5

z[k] = Hx[k] + v[k] (A.5)

where E[v[iJ v T[jll = R when i = j and E[v[iI VT(j) = 0 when i $ j.

We will continue by explicitly constructing the terms of the equation A.4.
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The F Jacobian matrix will be as A.6:

03x3

0 3x3
F(x, am, im) =

0 4x3

06x3

I3x3 0 3x4 0 3x3 0 3x3

0
3x3 3x4 R 3 x 3 

0
3x3

0 4x3 5'4x4 0 4x3 Q4x3

0 6x3 0 6x4 0 6x3 0 6x3

The Ixj and Oixj denote identity and zero matrices of the corresponding size.

The sub block of the matrix marked with the 83x4 symbol is:

9-
-Rb(am - ab)c9

which when evaluated symbolically is too big to fit in here. So it is not given.

The code is included in Appendix B.

The sub block marked with R is:

Rtb

The sub block given by 'I (in skew symmetric form) is

q/m - b

Lastly the sub block marked with Q4x3 is:

q3  -q2

1q2 q3
Q4x3 ~ -- ~q q

2 -q 1  qo

-qo -q 1

-qo

q3

-q2

The B matrix and the G matrix of A.4 are the same and they are given by:
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0 3x3 0 3x3

B=G= Rtb 
0 3x3

0 4x3 Q4x3

0 6x3 0 6x3

Furthermore we need to discretize the linearized continuous state propagation

equations to put them into the form necessary for digital computer implementation.

Our IMU measurements were sampled at a rate 20 Hz. We assume that they are

approximately constant between samples.

The linearized discrete state propagation equations will be of the form given in

A.7.

x[k+1] =4x[k] + F u[k] + Qn[k] (A.7)

where E[n(i)nT(j)] = W when i = j and E[n(i)nT(j)] = 0 when i 5 j. Along with

measurement equations above one more assumption we need to make here is state

noise nfk] is not correlated with u[k] . Formally stating E[n[i]vT[j]] = 0 for all i, j.

The expressions for evaluating the 1 and the Q matrices are as given by the [1].

They are repeated here in A.9 for clarity.

-F GWGT
A 0 FT At (A.8)

M = expA = [ Q (A.9)

Using the two subblocks of the matrix M we can easily evaluate the state transition

matrix (D and the process noise covariance matrix Q. The F and the Q matrices will

be omitted since they are not necessary for the implementation. Measurement update

covariance propagation equations are also omitted since they are standard. Interested

readers can refer to [1].
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A.1.3 Prediction Step: Solutions of the Nonlinear Equations

of Motion

Though generally it not possible to obtain analytical solutions for nonlinear odes

(Ordinary Differential Equations), it was possible in this case.In the implementation

the nonlinear equations were solved numerically. They are not given here interested

reader may contact the author.

A.1.4 Sensor Noise Models

The IMU ( inertial measurement unit) of the Piccolo II was used to collect data from

the 3 gyros and 3 accelerometers. As noted earlier, the Gaussian white noise assump-

tion had to be made on the sensor characteristics. The IMU sensor noises were also

assumed to be statistically independent of each other. The resulting covariance ma-

trices based on 5000 sample data points for accelerometers and gyros were evaluated

to be:

E[uau T] = diag [9.05 x 10-05 , 1.96 x 10-04 , 1.43 x 10~04]

E[u T,u) = diag [2.12-05 , 8.72 x 10~06 , 1.51 x 10-05]

GPS measurement noise were again assumed to be a white noise sequence with

Gaussian distribution and based on crude approximations which are based on previous

experience with this sensor before. They are given below .

E[u,,u1 T] diag [5 , 5 , 25]

E[uvu T] = diag [0.5 , 0.5, 1]

In addition a sample plot of the typical sensor noise is given in figures A-2 and

A-3 based on collected data.

An interesting point worth noting here is that without an absolute heading ref-

erence during steady and level flight with constant velocity, the heading becomes
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-0.7

C0.,1

Figure A-2: Accelerometer sensor sample plot

0.0

Figure A-3: Gyro sensor sample plot

unobservable with the combination of sensors used [4] . A detailed analysis of the

observability of the certain modes of the system along various trajectories is omitted

here for simplicity sake.

A.1.5 Simulink Implementation

Despite the wealth of literature on the subject matter, implementation of the filter

turned out to be a very painful task due to complicated symbolic expressions that

needed to be evaluated and also due to the relatively large dimensions of the filter,

namely sixteen. Simulink codes of the overall EKF implementation are given in the

next section of the appendix. Implementation of the filter is mainly done in the

custom written in an embedded m-function block.
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A.1.6 Analysis of the EKF Performance

As noted before getting the filter to work properly was a very painful task . Also

given the fact that EKF is an ad hoc procedure with no theoretical guarantees of

converges of the state error estimates, a lot of the sources of implementation mistakes

were hard to identify.

The EKF does a reasonable job with respect to keeping the state estimate errors

low. Please note that as predicted for steady level flight the heading error diverges

over long time horizons as it was expected. So some maneuvering in the bank was

added to achieve convergent behavior. Error plots of estimated states for sample run

of 50 seconds are given in figures A-4 and A-5.
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XYZ position error in inertial NED frame

0 5 10 15 20 25 30 35 40 45 50

XYZ velocity error inertial NED frame

0 5 10 15 20 25 30 35 40 45 50

Figure A-4: XYZ position and velocity state estimation error plots
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Bank angle error in degrees

Pitch angle error in degrees

5 10 15 20 25 30 35 40 45

Heading error in degrees

5 10 15 20 25 30 35 40 45

Figure A-5: Attitude state estimation error plots
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Appendix B

EKF Codes

function [Pout,ex,DCM] = EKF3D(PSIm,Am,x,z,t)

X function [Pout,ex] = EKF3D(PSIm,Am,x,z,t)

X Selcuk Bayraktar Dec 2005 - MIT

% EKF 3D update equations

X inputs are as follows

X PSIm: measured body rotations rates in body frame rad/s [p q r]

X Am: measured body accelerations in body frame m/s^2 [ax ay az]

% x: State vector [px py pz vx vy vz qO q1 q2 q3 abx aby abz psibx

psiby psibz]

X px-z are positions vx-z are velocities

X qO - q4 are quaternions for attitude rep.

X abx-z are accelerometer biases psix-z are gyro biases

X z: GPS measurement update [x y z vx vy vz]

X t: is simulation time

X Outputs are as follows:

X Pout: 16x16 State Covariance

X ex: Estimated State error

% Big Time this was a lot of trouble
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XY This block supports an embeddable subset of the MATLAB language.

persistent F;

persistent Pminus;

persistent Q;

persistent R;

persistent exhat;

persistent H;

persistent time_t;

persistent Rtb;

persistent W;

if (isempty(H))

H=[eye(6) zeros(6,10)];

end

if (isempty(F))

F=zeros(16);

end

if (isempty(P-minus))

P_minus=eye(16)*0.001;

P_minus(1:6,1:6)=1*eye(6);

P_minus(11:16,11:16)=0.1*eye(6);

end

if (isempty(Q))

Q=eye(16)*1e-6;

Q(11:13,11:13)=2e-4*eye(3);

Q(14:16,14:16)=2e-5*eye(3);
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W=Q(11:16,11:16);

end

if (isempty(R))

R=0.5*eye(6);

R(1:3,1:3)=diag([5 5 25]);

end

if (isempty(ex-hat))

exhat=zeros(16,1);

end

if (isempty(time-t))

time_t=t;

end

if (isempty(Rtb))

Rtb=eye(3);

end

XXDoImuUpdate T=0.05s (20Hz)

if((mod(round(t*1000),0.05*1000)==0)&&((time_t~=t)))

X init states here as well

XX and everything else that needs to be

P=zeros(16);

X Let me pull some of the states necessary from the state vector x

qO=x(7);

ql=x(8);

q2=x(9);

q3=x(10);
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abx=ex-hat(11);

aby=ex-hat(12);

abz=ex-hat(13);

Pb=ex-hat(14);

Qb=ex-hat(15);

Rb=ex-hat(16);

% Let me pull the IMU measurements

Pm=PSIm(1);

Qm=PSIm(2);

Rm=PSIm(3);

amx=Am(1);

amy=Am(2);

amz=Am(3);

%% Jacobian Matrix

Rtb=[(qO^2)-(q1^2)-(q2^2)+(q3^2) 2*(qO*ql+q2*q3) 2*(qO*q2-q1*q3);...

2*(qO*ql-q2*q3) -(qO^2)+(q1^2)-(q2^2)+(q3^2) 2*(ql*q2+qO*q3); ...

2*(qO*q2+ql*q3) 2*(ql*q2-qO*q3) -(qO^2)-(q1^2)+(q2^2)+(q3^2)];

Rtb=Rtb';

delqORt=[(2*(-abx + amx)*qO+2*(-aby + amy)*ql + 2*(-abz + amz)*q2);...

(-2*(-aby + amy)*qO + 2*(-abx + amx)*ql - 2*(-abz + amz)*q3);...

(-2*(-abz + amz)*qO + 2*(-abx + amx)*q2 + 2*(-aby + amy)*q3)];

delqlRt=[(2*(-aby + amy)*qO - 2*(-abx + amx)*qi + 2*(-abz + amz)*q3);...

(2*(-abx + amx)*qO + 2*(-aby + amy)*ql + 2*(-abz + amz)*q2);...

(-2*(-abz + amz)*ql + 2*(-aby + amy)*q2 - 2*(-abx + amx)*q3)];
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delq2Rt=[(2*(-abz + amz)*qO - 2*(-abx + amx)*q2 - 2*(-aby + amy)*q3);...

(2*(-abz + amz)*ql - 2*(-aby + amy)*q2 + 2*(-abx + amx)*q3);...

(2*(-abx + amx)*qO + 2*(-aby + amy)*ql + 2*(-abz + amz)*q2)];

delq3Rt=[(2*(-abz + amz)*ql - 2*(-aby + amy)*q2 + 2*(-abx + amx)*q3); ...

(-2*(-abz + amz)*qO + 2*(-abx + amx)*q2 + 2*(-aby + amy)*q3);

(2*(-aby + amy)*qO - 2*(-abx + amx)*ql + 2*(-abz + amz)*q3)];

SkewPsiM=[O Rm/2 -Qm/2 Pm/2; ...

-Rm/2 0 Pm/2 Qm/2;...

Qm/2 -Pm/2 0 Rm/2; ...

-Pm/2 -Qm/2 -Rm/2 0];

SkewPsiB=[0 Rb/2 -Qb/2 Pb/2; ...

-Rb/2 0 Pb/2 Qb/2; ...

Qb/2 -Pb/2 0 Rb/2;...

-Pb/2 -Qb/2 -Rb/2 0];

PsiToQuat= 0.5*[q3 -q2 q1;...

q2 q3 -qO;...

-qi qO q3;...

-qO -qi -q2];

XX Let us Start Forming the Jacobian Matrix

F=zeros(16);

F(1:3,4:6)=eye(3);

F(4:6,7:10)=[delqORt delq1Rt delq2Rt delq3Rt];

F(4:6,11:13)=[-Rtb];

F(7:10,7:10)=[SkewPsiM-SkewPsiB];

F(7:10,14:16)=[-PsiToQuat];
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XLet us Form the Transition Matrix Now

tao=0.05; XX Sampling interval for IMU

PHI=eye(16);

PHI=expm(F*tao);

G=[zeros(3,6);...

Rtb zeros(3);...

zeros(4,3) PsiToQuat;...

zeros(6,6)];

A=[-F G*W*G';...

zeros(16) F'];

B=zeros(32);

temp=zeros(16);

B=expm(A*tao);

temp=B(1:16,17:32);

Q=PHI*temp;

XX Add some very small noise for the bias terms

XX So that the P covariance matrix does become singular

Q(11:16,11:16)=le-9*eye(6);

XX Update Covariance here

if(mod(round(t*1000),0.25*1000)==O)

X (DoMeasurementUpdate)%X Do GPS measurent update at T=0.25s (4Hz)

XX Let us Calculate Calculate optimal K

K=Pminus*(H')*(inv(H*P-minus*(H')+R));

I=eye(16);

XX Covariance update due to measurement

P_minus=(I-K*H)*Pminus*((I-K*H)')+K*R*K';
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XXLet us do the update on the state

XX x.hat= xhatminus + K (z-z-hat)

x_hatminus=x;

z_hat=H*xhatminus;

ex-try=K*(z-z-hat);

ex-hat(1:6)=ex-hat(1:6)+ex-try(1:6);

ex-hat(7:16)=ex-try(7:16);

% The following is only one of the many thousand things I tried.

Xq-new=zeros(4,1);

%q-norm=norm([ex-hat(7:10)+x(7:10)]);

Xq_new=[exhat(7:10)+x(7:10)]/q-norm;

Xexhat(7:10)=q-new-x(7:10);

end X GPS measurement update

XX Covariance update for the prediction step

P_minus=PHI*Pminus*(PHI')+Q;

XX In the end Assign the new covariance matrix to the old one to keep

P_minus=Pminus;

end

time_t=t;

XX Now proceed with outputs

ex=exhat;

Pout=trace(P-minus);

DCM=Rtb';
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