
A-Posteriori Bounds on Linear Functionals of Coercive

2 d Order PDEs Using Discontinuous Galerkin Methods

by

Joseph S.H. Wong

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Febuary 2006

© Massachusetts Institute of Technology 2006. All rights reserved.

A uthor ................ . ..... .. . --. --
' ''Departmr tf Mechanical Engineering

January 13, 2006

C ertified by .......... ........ ... --. --
Jaime Peraire

Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by ............. Anthony T. Patera

/PrQfessor of Mechanical Engineering

C ertified by .......... ..............-

A J David L. Darmofal
Profes o Aeronautics And Astronautics

Accepted by.................. -------------
Lallit Anand

Professor of Mechanical Engineering
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 1 42006 bAKKER

LIBRARIES



A-Posteriori Bounds on Linear Functionals of Coercive 2"d Order

PDEs Using Discontinuous Galerkin Methods

by

Joseph S.H. Wong

Submitted to the Department of Mechanical Engineering
on January 13, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

In this thesis, we extend current capabilities in producing error bounds on the exact linear
functionals of linear partial differential equations in a number of ways. Unlike previous
approaches, we base our method on the Discontinuous Galerkin finite element method. For
equations such as the convection-diffusion equation, the convection term is handled by the
standard DG method for hyperbolic problems while the diffusion operator is discretized
by the LDG scheme. This choice allows for the effective bounding of outputs associated
with high Peclect number problems without resolving all of the details of the solution. In
addition to the ability to manage convection dominated problems, we expand the scope of
our error bounding algorithm beyond present capabilities to include saddle problems such
as the incompressible Stokes equations. Apart from the aforementioned advantages, the
DG discretization employed here also produces associated numerical fluxes, which make
the complicated "equilibration" procedure that is often necessary in implicit a-posteriori
algorithms, unnecessary.

Thesis Supervisor: Jaime Peraire
Title: Professor of Aeronautics and Astronautics

2



Acknowledgments

First and formost, I would like to thank my father for his many years of support and en-

couragement throughout my academic career, without which this work would not have been

possible. In close connection, I wish to convey my gratitude to my former gaurdian, Eugene

Wang, who guided my way through my early years in the United States. Obviously, the op-

portunities afforded me by my advisor, Professor Peraire, was instrumental to the successes

I enjoyed in my doctoral studies. I would especially like to thank members of my doctoral

committee, Professors Patera and Darmofal, for their time and guidance. Also critical to

the successful completion of this undertaking were the help that Doctors Bethany R. Block,

Michelle Massi and Elizabeth Loder provided, whose benefits go far beyond the confines of

academic persuit. Finally, I thank all my friends for simply doing what friends do.

3



Contents

1 Introduction

1.1 Explicit Methods . . . . . . . . . . . . . . . . . . . . . . .

1.2 Implicit Methods . . . . . . . . . . . . . . . . . . . . . . .

1.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . .

2 Preliminaries and Discontinuous Galerkin Discretization

2.1 Model Problems . . . . . . . . . . . . . . . .

2.1.1 Linear Hyperbolic Equation . . . . .

2.1.2 Poisson Equation . . . . . . . . . . .

2.1.3 Convection-Diffusion Equation . . . .

2.2 Domain Decomposition and Function Spaces

2.3 Notation and Operators . . . . . . . . . . .

2.4 DG for Linear Hyperbolic Equations . . . .

2.4.1 Discrete Problem . . . . . . . . . . .

2.4.2 Convergence . . . . . . . . . . . . . .

2.5 DG Discretization for Elliptic Problems: The

2.5.1 Discrete Problem . . . . . . . . . . .

2.5.2 A-priori Error Estimate . . . . . . .

2.5.3 Example: Convergence in 2-D . . . .

LDG Algorithm

2.6 DG Implementation for the Convection-Diffusion Equation

2.6.1 Discrete Problem . . . . . . . . . . . . . . . . . . .

4

11

12

14

15

17

19

19

20

20

21

22

23

24

25

27

30

30

31

31

34



3 Bounds for Linear Functional Outputs: Scalar Symmetric Case

. . . . . . . . . . . . 36

. . . . . . . . . . . . 36

. . . . . . . . . . . . 38

. . . . . . . . . . . . 39

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . .

3.2 Lower Bound Formulation: The Lagrangian . . . . . .

3.2.1 Lower Bound Evaluation: A Simple Example. .

3.2.2 Lower Bound Evaluation: S . . . . . . . . . .

3.3 Calculation of Lagrange Multipliers: Infinite-

Dimensional Case . . . . . . . . . . . . . . . . . . . . .

3.3.1 Alternative Derivation . . . . . . . . . . . . . .

3.4 Calculation of Qu: Finite-Dimensional Case . . . . . .

3.4.1 Elemental Reconstruction of OpP. . . . . . . . .

3.5 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . .

3.6 Bound Optimization . . . . . . . . . . . . . . . . . . .

3.7 Error Bound Algorithm Example: Volumetric Outputs

. . . 41

. . . 43

. . . 45

. . . 46

. . . 47

. . . 48

. . . 50

53

54

54

4 Bounds for Linear Functional Outputs: Nonsymmetric Case

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Lower Bound: the Lagrangian . . . . . . . . . . . . . . . . . .

4.3 Calculation of Lagrange Multipliers: Infinite-

Dim ensional Case . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Computation of T': Finite-Dimensional Case . . . . . . . . .

4.4.1 Elemental Reconstruction . . . . . . . . . . . . . . . .

4.5 Computation of S+, AS and r . . . . . . . . . . . . . . . . . ..

4.6 Error Bound Algorithm Example: Convection-

Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . .

4.7 High Peclet Number Problems . . . . . . . . . . . . . . . . . .

4.7.1 High Peclet Number Algorithm: 1-D Analysis . . . . .

4.7.2 High Peclet Number Algorithm Example: 1-D Case

4.7.3 High Peclet Number Algorithm Example: 2-D Case

4.7.4 High Peclet Number Algorithm Example: 2-D Numerical Example . .

. . . . . . . . 57

. . . . . . . . 60

. . . . . . . . 60

. . . . . . . . 62

. . . . . . . . 63

. . . . . . . . 65

. . . . . . . . 65

. . . . . . . . 68

. . . . . . . . 70

71

5

35



5 Bounds for Linear Functional Outputs: Symmetric Positive- Definite Sys-

tems

5.1 LDG Discretization: Plane-Stress Model . . . . . . . . . .

5.2 Energy Balance . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Lower Bound: the Lagrangian . . . . . . . . . . . . . . . .

5.4 Computation of Lagrange Multipliers: Infinite-

Dim ensional Case . . . . . . . . . . . . . . . . . . . . . . .

5.5 Computation of +: Finite-Dimensional Case . . . . . . . .

5.5.1 Elemental Reconstruction of ,5y: P1 Case . . . . . .

5.5.2 Elemental Reconstruction of -: P 2 Case . . . . . .

5.6 Bound Optimization . . . . . . . . . . . . . . . . . . . . .

5.7 Error Bound Algorithm Example: Plane-Stress

Convergence . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8 Error Bound Algorithm Example: Uniformly Loaded Plate

6 Bounds for Linear Functional Outputs: Symm

6.1 LDG Discretization . . . . . . . . . . . . . . .

6.2 Lower Bound: the Lagrangian . . . . . . . . .

6.3 Initial Approach . . . . . . . . . . . . . . . . .

6.3.1 Energy Balance . . . . . . . . . . . . .

6.4 Proposed Approach . . . . . . . . . . . . . . .

6.4.1 Energy Balance: Alternative Approach

6.5 Computation of IF: Infinite-Dimensional Case

6.6 Computation of IF: Finite-Dimensional Case

6.6.1 Elemental Reconstruction of -y . . ...

6.6.2 Bound Optimization . . . . . . . . . .

6.7 Stokes Error Bound Example: Channel Flow .

etric Indefinite Systems 99

. . . . . . . . . . . . . . . . . 100

. . . . . . . . . . . . . . . . . 104

. . . . . . . . . . . . . . . . . 105

. . . . . . . . . . . . . . . . . 105

. . . . . . . . . . . . . . . . . 107

. . . . . . . . . . . . . . . . . 107

. . . . . . . . . . . . . . . . . 111

. . . . . . . . . . . . . . . . . 114

. . . . . . . . . . . . . . . . . 114

. . . . . . . . . . . . . . . . . 115

. . . . . . . . . . . . . . . . . 116

6.8 Stokes Error Bound Example: Drag on Square Cylinder . . . . . . . . . . . .

7 Conclusion

7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

75

. . . . . . . . . . 76

. . . . . . . . . . 79

. . . . . . . . . . 8 1

. . . . . . . . . . 84

. . . . . . . . . . 87

. . . . . . . . . . 88

. . . . . . . . . . 89

. . . . . . . . . . 9 1

. . . . . . . . . . 92

. . . . . . . . . . 95

119

123

123



7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7



List of Figures

2-1 h = 1/32 Computational Mesh

2-2 h = 1/32 LDG solution . . . . .

h = 1/64 Computational Mesh . . . . . .

h = 1/64 LDG solution . . . . . . . . . .

Problem Setup: Poisson . . . . . . . . .

h = 1/32 Computational Mesh: Poisson .

Primal solution: Poisson, h. . . . . . . .

Dual solution: Poisson, Uh . . . . . . . .

Problem Setup: CD1 . . . . . . . . . . .

Primal solution: CD1, Uh . . . . . . . . .

Dual solution: CD1, Uh . . . . . . . . . .

h = 1/16 primal solution: CD2, Pe=100

h = 1/16 dual solution: CD2, Pe=100 .

2-3

2-4

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

8

26

. . . . . . . . . . . . . . 2 6

. . . . . . . . . . . . . . 3 2

. . . . . . . . . . . . . . 3 2

P1 Subelement Layout . . . .

P2 Subelement Layout . . . .

h = 1/16 u1 Contour: PSI .

h = 1/16 u 2 Contour: PSi .

h = 1/16 (1 Contour: PSI .

h = 1/16 (2 Contour: PSi .

Problem Setup: PS2 . . . . .

Computational Domain: PS2

51

51

52

52

63

64

64

73

73

. . . . . . . . . . . . . . . . . . .. . . 8 9

. . . . . . . . . . . . . . . . . . . . .. 9 0

. . . . . . . . . . . . . . . . . . . . . . 9 3

.. . . . . . . . . . . . . . . . . . . . . 9 3

.. . . . . . . . . . . . . . . . . . . . . 9 4

. . . . . . . . . . . . . . . . . . . . . . 9 4

. . . .. . . . .. . . . . . . . . . . . . 9 6

. . . . . .. . . .. . . . . . . . . . . . 9 6



5-9 Deformed Geometry: PS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-10 T1, Contour: PS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-11 7 12  Contour: PS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5-12 T2 2  Contour: PS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6-1 Velocity Vector: Stokesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6-2 Pressure Contour: Stokesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6-3 Problem Setup: Stokes2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-4 Velocity Vector: Stokes2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6-5 Pressure Contour: Stokes2 ...... .. ............................ 121

9



List of Tables

2.1

2.2

L 2 Errors and Orders of Convergence

L 2 Errors and Orders of Convergence

3.1 AS Grid Convergence: Poisson

4.1 AS Grid Convergence: CD1 .

4.2 AS vs. Pe . . . . . . . . . . . . .

4.3 AS vs. Pk, Pe=100 . . . . . . . .

4.4 AS vs. Pk, Pe=500 . . . . . . . .

4.5 AS vs. le: CD2, Pe=100 . . . . .

4.6 AS vs. le: CD2, Pe=1000 . . . .

5.1 AS Grid Convergence: PSI

5.2 AS Grid Convergence: PS2

6.1

6.2

6.3

Uh, Ph Grid Convergence: Stokesi

AS Grid Convergence: Stokes .

AS Grid Convergence: Stokes2

27

31

50

65

66

69

69

72

72

95

96

117

117

120

10

......................

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 1

Introduction

Numerical analysis has by now become a standard tool of engineering design. Given a phys-

ical problem of interest, an appropriate mathematical model is formulated and solved by

numerical approximation. Indeed, with ever increasing computational resources, the numer-

ical solution of mathematical problems that were once considered beyond reach are becoming

routine. Better algorithms coupled with greater computational capabilities allow the designer

to rely ever more heavily on numerical approximations to the solution of detailed mathemat-

ical models in engineering analysis. To fully exploit this tool, however, one must be confident

that the numerical approximations are delivering solutions of sufficient accuracy. Assuming

that the mathematical model describes the physical phenomena of interest adequately, we

must ensure that the model is solved with the necessary resolution. A-priori error estimates

provide insights concerning the asymptotic convergence behavior of the numerical solution

but no guidance as to whether the requisite level of precision has been met by the numerical

solution. The analyst is thus left with two choices; to either resort to "overkill" by employing

a very fine discretization, which for many problems would result in prohibitive computational

costs, or make critical decisions based on unreliable solutions. Clearly, the ability to assess

the fidelity of the approximate solution is highly desirable. To this end, various a-posteriori

error estimation techniques have been developed to quantify the error in the numerical ap-

proximation. Such algorithms fall under two primary categories: 1) explicit error estimators

and 2) implicit error estimators. Both approaches can offer important insight concerning the

fidelity of the approximate solution.

11



In general, there are two distinct objectives in a-posteriori error analysis: 1) to obtain

local error indicators for use in mesh adaptation and/or increase the asymptotic rate of

convergence and 2) to actually produce error bounds on the numerical solution. Explicit

methods can fulfill the first objective while the second, more difficult goal usually requires

the computationally more expensive implicit algorithms and can only be attained for much

more restrictive classes of problems. In addition to differing approaches, a-posteriori error

estimation algorithms also differ in the types of error estimates they provide. These algo-

rithms produce error estimates for two distinct quantities; the error in some energy or L2

norm of the solution and the error in certain functional outputs that are derived from the

solution. We thus have a 2 x 2 matrix of a-posteriori error estimators, from explicit methods

for the energy norm to implicit methods for functional outputs.

1.1 Explicit Methods

Given an approximate solution, we would like to extract adaptation and refinement indica-

tors that can guide us in converging the numerical solution to the desired level of precision

with the least amount of computational effort. Explicit error estimation algorithms can pro-

vide precisely that. Finite element analysis has, in fact, long involved explicit a-posteriori

error estimation. Inexpensive estimators requiring only local computations were first pro-

posed in [7, 6, 8] in the context of continuous Galerkin finite element discretization of elliptic

problems. The method provides important insight regarding the quality of the finite ele-

ment approximation by attempting to quantify the size of the numerical error in the energy

norm. An estimate of the local contribution to the error in the energy norm is produced

throughout the computational domain, from which mesh adaptation or refinement strategy

may be based. A summary and review of this type of a-posteriori error estimators is given

in [2]. The development of similar error estimators for hyperbolic problems has been slower.

Nevertheless, the increase in popularity of discontinuous Galerkin methods in recent years

has prompted significant research in this area. Work dealing with a-posteriori error analy-

sis for nonlinear, hyperbolic conservation laws discretized with discontinuous finite element

methods can be found, for example, in [46, 32, 29]. In [16], a-posteriori local L 2 error esti-

12



mates were derived for the Local Discontinuous Galerkin method applied to one-dimensional

elliptic problems and in [14] local L 2 error estimates were derived for two-dimensional linear

and nonlinear diffusion problems.

In many applications, however, we are less concerned with the size of the numerical error

in the energy or L 2 norm at a given point in the computational domain than with the error in

certain output functionals derived from the approximate solution. A simple example of this

situation is given by airfoil computations; the practitioner is far more likely to be concerned

with the error in the calculated values of lift and drag than the error in the L 2 norm of any

quantity. An adaptation strategy based on minimizing the error in the energy or L 2 norm is

not likely to produce the most efficient means of achieving a given level of precision in the

output functionals of interest. This shortcoming has lead to the development of algorithms

that produce error estimates on the target functionals of the solution, quantities on which

actual engineering decisions will be based. Here, too, the first approaches were devised for

elliptic problems solved with continuous Galerkin finite element methods. The first algorithm

with such capabilities was proposed in [12], bringing the concept of dual problems and dual

solutions into a-posteriori error analysis, which has since become standard in both explicit

and implicit error estimation. Algorithms based on the same principle include those in

[11, 40, 41]. In [28], an algorithm was proposed for producing a-posteriori error estimates

on target functionals of the solution of nonlinear hyperbolic conservation laws discretized by

discontinuous Galerkin finite element methods. The method also makes use of dual solutions

and leads to a significantly more efficient mesh adaptation strategy than one based solely on

the local L 2 error estimates. More recently, the methodology has been extended to finite-

volume methods in the context of multi-dimensional compressible Euler and Navier-Stokes

simulations with turbulence modeling [48, 49, 39]. The primary drawback of explicit error

estimators is that while they are very useful tools for mesh adaptation and optimization

and applicable to a wide range of problems, these algorithms can provide no guarantees of

precision. All explicit error estimates contain generic unknown constants that cannot be

evaluated and thus making any guarantee of absolute precision impossible.

13



1.2 Implicit Methods

To actually obtain absolute error bounds on the numerical solution, one would have to resort

to the computationally more complex, implicit methods [1, 33, 9], to which the proposed

algorithm also belongs. These methods produce error estimates that do not contain any

unknown constants that render them useless as a certification tool, but instead relies on the

idea of a "reference" solution. The user first chooses a conservatively refined mesh whose

solution is accepted on faith as "exact". These implicit error estimators are then capable

of guaranteeing that the energy norm of the discretization error as measured against the

reference solution falls within the computed bounds. They are, however, much less generally

applicable than the explicit methods cited earlier as they were all developed for linear, self-

adjoint problems and provide bounds on only the energy norm. As pointed out earlier, we

are rarely interested in the error in the energy norm but rather the error in certain output

functionals upon which practical decisions will be based. We also frequently encounter

nonlinear problems in practice, which these implicit algorithms cannot treat. Improvements

to the cited implicit methods were first introduced in [35, 34, 37] that would allow for the

bounding of general linear functional outputs derived from the numerical solution of linear

coercive partial differential equations by the traditional Co Galerkin finite element method.

The algorithm produces uniform error bounds on linear functional outputs with respect

to that of which one would obtain from a reference mesh solution. Treatment of nonlinear

and/or non-coercive problems are also possible within this new framework, although in these

cases the method produces only asymptotic error bounds on output. It is important to stress

that the uniform bounding property of the aforementioned implicit algorithms depends on

the selection of a finite-dimensional "reference" solution and that error bounds are only

guaranteed with respect to the outputs produced by this finite-dimensional solution and not

the infinite-dimensional, exact solution. True certainty thus remains undelivered. Exploiting

the complementary energy principle first proposed in the context of error estimation in [26], a

further improvement to the implicit approach was made in [30, 43] by removing the need for

a finite-dimensional reference solution. The new algorithm is capable of providing uniform

error bounds on the linear functional outputs of linear coercive problems with respect to the

14



exact weak solution of the governing equations. Originally developed for scalar problems

such as the Poisson equations and the advection-diffusion-reaction equation, the algorithm

has since been extended to bound the linear functional outputs of multi-dimensional systems

such as the governing equations of linear elasticity [36].

1.3 Proposed Algorithm

In the present work, we expand the error bounding capabilities of existing methods in a

variety of ways. First, we extend the method put forth in [30, 43, 36] to cover linear func-

tionals of linear coercive problems discretized by the Local Discontinuous Galerkin (LDG)

algorithm; whose only available a-posteriori error estimates thus far are of the explicit L 2 en-

ergy type. We then exploit the properties of discontinuous Galerkin discretization to tackle

classes of problems that have thus far eluded our grasp; namely, the high Peclet number

convection-diffusion equation and saddle problems such as Stokes flow.

One drawback of the algorithm developed in [30, 43, 36] is that when applied to the high

Peclet number convection-diffusion equation with under-resolved boundary layers, very poor

bounds are produced. This is true even when the output functional of interest is not sensitive

to the presence of boundary layers. The problem traces back to the use of the Cauchy-

Schwarz inequality and the inability of the algorithm to exploit the orthogonality between

error in the primal and dual solutions. By making use of the conservation properties of

discontinuous Galerkin discretization, the proposed method alleviates the difficulty presented

by under-resolved boundary layers through local refinement of the solution space at the post-

processing stage of the algorithm. Effective bounds on linear functionals of the convection-

diffusion equations are produced without having to resolve all the details of the solutions in

either the primal or dual solutions.

Saddle problems such as Stokes flow also poses significant difficulties for existing methods.

Within the framework of the method proposed in [30, 43, 36], the incompressibility constraint

makes it near impossible to produce bounds on linear functionals with respect to those

calculated from the the exact solution. In the present work, we exploit LDG discretization

to define the Lagrangian in such a way so as to not trigger the incompressibility condition in

15



a manner that would cripple the ability to produce strict error bounds on linear functional

outputs. We are thus able to include symmetric-indefinite systems among those whose linear

functional outputs we can bound.

One of the most complicated part of implicit error bounding methods is the "Equilibra-

tion" step in the algorithm. By using discontinuous Galerkin discretization, we can actually

lessen the computational overhead and simplify the error bounding procedure. This is ac-

complished by exploiting the numerical fluxes produced by the discontinuous finite element

approximation to eliminate the complicated equilibration step that is traditionally necessary

in algorithms of this class. The work here may be seen as an extension of the implicit a-

posteriori error bounding algorithm first developed in [35, 34, 37], as the formulation of the

Lagrangian and the expression of the functional of interest as the minimum of a constrained

minimization statement remain the same. The work is also in many ways an extension of

LDG discretization as the a-posteriori error bounds are produced for the LDG scheme.

The thesis proceeds as follows; in chapter 2 we briefly review the local discontinuous

Galerkin method that forms the building block of our algorithm. In chapter 3 we introduce

the basic algorithm and apply it to the Poisson equation. In chapter 4 we apply the algorithm

to the convection-diffusion equation and develop the necessary modifications to effectively

bound outputs associated with high Peclet number problems. Chapter 5 deals with the

application of the proposed method to the equations of linear elasticity. Finally, in chapter

6, we take on saddle problems by applying our method to Stokes flow.

16



Chapter 2

Preliminaries and Discontinuous

Galerkin Discretization

In this chapter, we examine the Discontinuous Galerkin (DG) discretization for both first

order hyperbolic and second order elliptic problems. The discontinuous Galerkin method

is a well established technique for the solution of hyperbolic conservation laws, benefitting

significantly from the knowledge derived from finite volume schemes. On the other hand, the

use of DG methods for the solution of elliptic problems is more recent and several algorithms

have been proposed. For the work here, we employ the Local Discontinuous Galerkin scheme

developed by Cockburn and Shu [22], which has emerged as one of the most popular DG

implementations for elliptic problems (see, for example, [15] for a comparison of various

algorithms).

Since its initial introduction by Reed and Hill [42], the discontinuous Galerkin method

has gained significant popularity in the computational fluid dynamics community for the

numerical solution of hyperbolic conservation laws. The more recent interest in DG methods

is sparked by the demand for an algorithm capable of systematically achieving high-order

accuracy on arbitrary triangulations of complex geometries while maintaining the ability to

handle solution discontinuities.

Traditional finite difference/volume methods enjoy stability and accuracy even in the

presence of solution discontinuities such as shocks. This is accomplished by varying the

degree of the interpolating polynomial employed in the reconstruction step through a pro-

17



cedure known as limiting. Generally speaking, these methods involve three distinct steps.

First, appropriate numerical fluxes are defined such that when the interpolating polynomial

is piecewise constant, the numerical solution is monotonic, guaranteeing stability. Second, a

higher-order reconstruction is defined by using linear and higher degree interpolating poly-

nomials. In the third step, a nonlinear procedure to limit the slope of the interpolating poly-

nomial when in the presence of solution discontinuities is employed to achieve oscillation-free

solutions; see [47, 27, 44, 45], for details. These algorithms have been successfully applied to

nonlinear conservation laws discretized on structured meshes. On truly unstructured meshes

involving complex geometries and boundary conditions, however, high-order reconstruction

cannot be easily achieved.

In the finite element framework, on the other hand, high-order accuracy is achieved by

using high degree polynomials as interpolating functions within each element and arbitrary

triangulations over complicated geometries pose no difficulties in obtaining the desired accu-

racy. Unfortunately, traditional Co continuous Galerkin finite element methods lack a natural

mechanism to introduce upwinding into the numerical algorithm and thus additional artifi-

cial dissipation must be explicitly applied to the numerical scheme. While such algorithms

have been developed, they are significantly less robust than finite volume algorithms when

applied to nonlinear hyperbolic problems whose solutions contain strong discontinuities.

The discontinuous Galerkin discretization combines the stability of finite volume algo-

rithms and the accuracy of classical C' finite element methods, thereby obtaining both

accuracy and stability. In addition to exhibiting the same accuracy of classical finite ele-

ment discretizations, the DG method also inherits its compact stencil; in direct contrast to

high-order finite-volume schemes whose stencil grows with increasing order of approxima-

tion. The DG method for hyperbolic problems is uniquely defined once the numerical flux,

which introduces upwinding into the algorithm, is chosen. Significant work in the area of

DG research has actually evolved around the selection of a suitable interface flux; see for

example, [10].

The necessity of treating convection-dominated problems with non-negligible diffusive

effects has prompted renewed interest in the extension of the DG concept to elliptic problems

in recent years. In the 1970s, a number of interior penalty methods were developed for

18



discretizing purely elliptic problems with discontinuous or nonconforming elements [3, 4].

Independent of the earlier developments, there are some recent methods designed specifically

for treating the elliptic operator in convection-dominated problems which draw on the idea

of numerical fluxes traditionally associated with purely hyperbolic equations. A popular

method in this class of DG discretizations for elliptic problems is the Local Discontinuous

Galerkin (LDG) method introduced in [22] and further studied in [25, 50] and [15]. A review

of the available discontinuous Galerkin algorithms for elliptic problems is given in [5].

2.1 Model Problems

In this chapter, we will review the DG discretization for several model problems; namely,

the linear hyperbolic equation, the Poisson equation and the convection-diffusion equation.

2.1.1 Linear Hyperbolic Equation

For the linear hyperbolic problem, we look at

n

V - (au) - f =0 in Q,

a-u = a-g on aQ (2.1)

where u is the solution, g E L 2 (&Q) is boundary data imposed at inflow, a E !R2 is the

velocity vector, a± (a - n ± a -nI) and n the outward unit normal; for simplicity, we also

assume V - a = 0, which eliminates any coercivity issues that may arise in the underlying

PDE.

19



2.1.2 Poisson Equation

The Poisson equation is written as

n

anD

-V 2 u- f =0 in Q,

U = gD on 09D,

Vu n = 9N On aQN (2.2)

where Q= OQD U aQN, f E L2 (Q) is the given forcing and 9D,9N E L 2 (aQ) are the

imposed Dirichlet and Neumann boundary data, respectively. For discontinuous Galerkin

discretization, it is convenient to re-write (2.2) as a system of first order equations

-Vp - f = 0 in Q,

p-Vu=O in Q,

u = gD on aQD,

p - n = gN on aQN. (2.3)

where the solution is now u = [u, p]T.

2.1.3 Convection-Diffusion Equation

The convection-diffusion equation is written as

20



V. (au - Vu) - f =0

U = D

Vu- n=N

in ,

on aQD,

on &9QN (2.4)

with the assumptions that

V a = 0 and a =0

which serves to eliminate any coercivity issues that may arise with the model equation. As

is the case with the Poisson equation, we can re-write ( 2.4) as

V (au - p) - f = 0

p - Vu = 0

in Q,

in Q,

u = 9D on aQD,

Vu . n = 9N on DQN. (2.5)

and look for the solution u = [u, p]T.

2.2 Domain Decomposition and Function Spaces

We consider a partition T of the domain, Q, into Ne non-overlapping subdomains such that

Ne

r = ZOQ, \ aQ
j=1

21

Ne

Q = Qj,
j=1

(2.6)



where F is the set of all internal subdomain interfaces. We define the space V and Q and a

generic function v = Iv, q]T = [v, q1, q2 , q3 ]T E X, where

V {vE L2 (Q), V I E H1(Qj),VQ E T}

Q = {q E L2(Q)d,QIQ, E H(div, Qj),VQj E T} (2.7)

and X = V x Q. We also introduce the finite-dimensional counterpart, Xh Vh x Qh, where

Vh = {v E L2 (Q), V IQ E Pk(Qj),VQj E T}

Qh {q E L2(Q)dQ Q I E Pk(Qj) VQj E T} (2.8)

and Pk denotes the space of polynomials of degree k.

2.3 Notation and Operators

Given two adjacent subdomains Q+ and Q- sharing an interface OQ± we define the following

interface quantities for an arbitrary scalar valued function v

{ V + [v] = v+n++ vn- (2.9)
2

where n± are the respective outward unit normals to )Ql at an arbitrary point x on ffl.

Here v± are the traces of v on (Q'. from the interiors of Q.. For arbitrary vector valued

functions q, we define

{q} = + [q - n] = q+ -n+ + q- - n-, [[q]] = q+ 0 n+ + q~ 0 n-. (2.10)
2

As before, q± are the traces q on 9Q'. from the interiors of Q1 and q on denotes the matrix

whose ijth entry is qinj. Note that in our definition, [v] is a vector while [q - n] is a scalar.

22



2.4 DG for Linear Hyperbolic Equations

A description of the discontinuous Galerkin discretization for first-order hyperbolic problems

can be found in many references, see for example, [21, 20, 17, 23]. Here, we briefly review

it for completeness. After multiplying (2.1) with a test function v E V, integrating by parts

over each subdomain Qj and replacing the multi-valued subdomain interface flux with a

single valued numerical flux we write

Ne

j f(-Vv - au - vf)dx + vds
j=1 nj Oja \an

+ j v(a+u + a-g)ds = 0, Vv E V. (2.11)

The numerical interface flux, h, is given by

= a{u} + Ia -n|[u] }n (2.12)

where n is the outward unit normal from Qj. We point out that with this definition, full

upwind is achieved in the numerical interface flux. In compact notation, we can then write:

Find u E V such that

a(v, u) = l(v), Vv E V (2.13)

where a : X x X - R and 1 : X - R are given by

a(v, w) - Vv - awdx + [v] - (a{w} + Ia - n|[w])ds + va+wds (2.14)
in r 2 fa Q

1(v) j vf dx - j va-gds. (2.15)

Note that this is a variational formulation of the infinite-dimensional continuous problem.

We point out that in this formulation, boundary conditions are naturally incorporated into

the subdomain interface fluxes; the boundary interface is treated no differently than internal

subdomain interfaces with relevant boundary data incorporated into the righthand side of

23



the equation. From (2.14), we can set w = v to obtain the following expression for a(v, v)

a(v, v) - Vv -avdx + [v - (a{v} + Ja -nI[v])ds + J (a+V2 _ --1a - n~v2)ds(2.16)
Sr2 an 2

which after some simplification results in

a(v,v) = Ia-n|[v] 2ds + ja -nv2ds (2.17)

It is clear that for stability we require the a(v, v) to be strictly positive (a(v, v) > 0, Vv),

which ensures coercivity. We point out that if we substitute test function v in equation

(2.13) by the exact solution u, we obtain the following energy equality

a(u,u)-l(u) = -jufdx+ 1a -n[u]2ds

+ ( a -nlu 2 + uarg)ds = 0. (2.18)
",n 2

This expression contains linear and quadratic terms in u, with the latter being strictly

positive, a property that we will exploit later on. We note that for the exact solution, u, the

interface jump, [u] would be zero.

2.4.1 Discrete Problem

Statement (2.13) together with (2.14) and (2.15) is the point of departure for DG discretiza-

tion. We formulate the following discrete problem: Find uh E Vh such that

a(v, uh) = l(v), VV E V (2.19)

or

Ne

1 ~(- v - alUh - vf)dx + vhds

j=1 a } 0 V V2

+ J v(a+Uh + a-g)ds =0, VV E Vh. (2.20)
JanjnaQ

24



2.4.2 Convergence

We now examine the convergence behavior of the DG algorithm for linear first-order equa-

tions. The order of convergence for the discontinuous Galerkin method for scalar hyperbolic

equations for general triangulations was shown in [31] to be of order k + 1/2 in the L 2 norm

when polynomials of degree k are used in the numerical approximation. The corresponding

a-priori result is given by

|jejjL2(Q) : C k+ 2jjUHk+1 (Q) (2.21)

for e = u - Uhand constant C1 depending on k but independent of u. This result was proven

to be sharp in [38]; however, (2.21) must be seen as a conservative estimate since in practice,

one routinely obtains order k + 1 convergence in most applications. Indeed, for sufficiently

smooth solutions, Cockburn proved in [24] that one obtains order k + 1 convergence with

the following error estimate

||eIIL2() C2h k+1 lal UIHk+2(Q) (2.22)

where again, C2 depends on k but is independent of u.

To illustrate this point, we now test the convergence behavior of the DG discretization

for linear hyperbolic equations in two dimensions with a simple example. We solve

V-(au)-f= 0 in Q=[0,1]x[0,1]

using P elements with a, = 1, a2 = 0 and f = -aix 2(X 2 - 1) such that the exact solution

is u = (1 - Xi)X 2 (x 2 - 1). The inflow boundary condition is handled weakly through the

boundary flux. The computational mesh and solution contours for the h = 1/32 computation

are shown in figures (2-1) and (2-2). Table (2.1) shows the L 2 grid convergence results for

this test problem, verifying that the optimal rate of hk+1 is indeed obtained.

25



11I

0.8

0.6

0.4

n 1)

0'IV NjiNIJ?'INNJXIXI N
0 0.2 0.4 0.6 0.8 1

Figure 2-1: h = 1/32 Computational Mesh

1

0.8

0.6

0.4

0.2

0*M U.2 U.4 U.0 U.6

Figure 2-2: h = 1/32 LDG solution

26



h flu - UhI 2 Order
1/8 3.472-3 -

1/16 8.631-4 2.00
1/32 2.151-4 2.00
1/64 5.369-5 2.00

Table 2.1: L 2 Errors and Orders of Convergence

2.5 DG Discretization for Elliptic Problems: The LDG

Algorithm

We now review the implementation of discontinuous Galerkin discretization for second-order,

elliptic problems. As pointed out earlier, there is a plethora of proposed algorithms for the

DG discretization of elliptic equations. For the work here, we have selected the LDG scheme

based on its favorable stability and accuracy properties [15, 25]. We consider discretizing

the Poisson equation, given by (2.2). The LDG discretization involves first introducing

auxiliary variables for the solution gradient and re-writing (2.2) as a system of first-order

equations such that we arrive at (2.3). We then multiply (2.3) by arbitrary test functions

v E X = V x Q and integrate by parts over each subdomain Q3 . Replacing the multi-valued

inter-subdomain fluxes with appropriate numerical interface fluxes we obtain

N,

Vv - p - vfdx - vpds 0
j=1 fq

Ne

L(q -p + V -qu)dx - Q q nds =0, Vv E X (2.23)
j=1

Here v = [v, q]T, q = [qi, q2 , q 3]T, u = [u pT, p = [p 1, p2 , p 3]T. The numerical fluxes ft and j

are given by

=({P} + C11 - [U + C12 - [[p]]) n

S= {u} -C 21-[u+lC 22 [p- n]. (2.24)

27



For stability [22], it is desirable for the matrix

C = C1 C1 (2.25)
C21 C22

to be symmetric and positive definite. This would require C22 to be nonzero and we would

lose the ability to eliminate the auxiliary variables p at the elemental level in the resulting

dicretized scheme which results in a much more costly algorithm. We therefore only demand

C to be positive semi-definite with C22 set to zero and take it to be

C = C1 C12 (2.26)
-C12 0

with C1 > 0. For interior interfaces, we follow the choice given in [22] and take

0 0 niCT(.7
C11 , C12 = 0 , C 21 =C2 (2.27)

0 0 n2

where

1
=-sign(b- n). (2.28)

2

Here b is a fixed arbitrary non-zero vector. This choice for / is motivated by the desire to

avoid selecting all interface fluxes associated with a given subdomain from the interior trace

(see [25]).

The above choices of numerical fluxes are not always compatible with the imposed bound-

ary data at boundary interfaces. To properly account for the imposed boundary conditions,

we use

3 = {p-a(u - gD)n}. n

U =D (2.29)

for Dirichlet boundaries, where a is a penalization parameter for the enforcement of Dirichlet

28



boundary conditions. For Neumann boundaries, we use

P = 9N

f = u. (2.30)

In compact notation, we write the following problem statement: Find u E X such that

a(v, u) = 1(v), Vv E X (2.31)

where a: X x X F-+ R and I : X -+ R are given by

a(v, w) =j V -+ q r+V.-qww dx

- [v] -({r} + C12 ir]) + [q n]({w} - C21 [w[) ds

D v(r - awn) . n ds - q = (2.32)

1(v) j= jdx + ( ow + I-)gDds + j v9N ds. (2.33)

Here v = [v, q]T and w = [w, r]T E X. In the above expression, the boxed quantities are

associated with the conservation law while the double boxed quantities are connected with

the definition of the auxiliary variables. Equation (2.31) together with (2.32) and (2.33)

defines the variational formulation of the infinite-dimensional problem given in (2.2). From

(2.32), setting w = v results in the following expression for a(v, v)

a(v, v) j Vv. q q V-qvIdx +j av 2 ds

[v] - ({q} + C 12 [jq]]) + {q- n]({v} -- C 21 [v]) ds (2.34)

which after some simplification may be written as

a(v, v) = j q -qdx +j av2 ds. (2.35)

29



We see that (a(v, v) ;> 0, Vv E X), a result which proves coercivity. We point out for later

use that the exact solution satisfies the global energy equality, a(u, u) - I(u) = 0 (obtained

form setting v = u in (2.31)). In expanded form, this is given by

j p -pdx + j au2 ds = iuf dx + j (au + p n)gDds + j ugNds (2.36)

which again involves linear and quadratic terms in u, with the latter being strictly positive.

2.5.1 Discrete Problem

Statement (2.31) together with (2.32) and (2.33) is the point of departure for LDG dis-

cretization. We look for a discrete solution Uh E Xh such that

a(v, Uh) = 1(v), Vv E Xh (2.37)

or

N,

E j (VV -Ph - f)dx - vpds =0
j=1 Jj

N,

E (q -Ph + V -quh)dx - jq -ntds} 0, Vv E Xh. (2.38)
j=1

This forms a system of equations whose unknowns are Uh and Ph. As pointed out earlier,

it is possible with our choice of numerical fluxes, to eliminate Ph locally, at elemental level.

This results in a set of equations for Uh whose coefficient matrix is symmetric and positive

definite.

2.5.2 A-priori Error Estimate

The LDG algorithm can be shown to converge at order k + 1 for the solution in the L 2 norm

and order k for the solution gradient when polynomials of degree k are used in the numerical

approximation for general triangulations [22], provided of course, the solution is sufficiently

smooth. On cartesian meshes, however, Cockburn proved in [25] that the solution gradient

30



super-converges at order k + 1/2 in the L 2 norm.

2.5.3 Example: Convergence in 2-D

We now examine the convergence behavior of LDG discretization for the 2-dimensional Pois-

son equation using piecewise linear elements. For this test case, we solve

-V 2 u - f = 0, f = 0 on Q = [0, 1] x [0, 1]

u (0, y) = u.(1, y) = uY(x, 0) = 0, u(x, 1) = cos(7rX) (2.39)

for which the exact solution is u co"h(7ry) cos(7rx). The computational mesh and the nu-

merical solution are shown in figures (2-3) and (2-4) while the grid convergence results are

displayed in table (2.2).

h IJu - UhJI2 Order IIP - Ph1I2 Order

1/8 3.370-3 - 9.993--2 -

1/16 8.717-i 1.95 4.918-2 1.02
1/32 2.214-4 1.98 2.445-2 1.01
1/64 5.5775 1.99 1.220-2 1.00

Table 2.2: L 2 Errors and Orders of Convergence

The grid convergence results are in line with the a-priori estimates of order k + 1 and k

convergence rate for the L 2 norm of the error in the solution and the solution gradient,

respectively.

2.6 DG Implementation for the Convection-Diffusion

Equation

In this section, we review the discontinuous Galerkin method for the convection-diffusion

equation. The model problem is given by (2.4). This equation is different from that of the

pure diffusion case only in the presence of the convection term, which is easily discretized

by the discontinuous Galerkin algorithm. We treat the convection-diffusion equation by

31



1

0

0.6 00000000000000000000000s

0.4 0000000000000000000000,

0.2 0000020000000000000000s

0.2 0.4 0.6 0.8

Figure 2-3: h = 1/64 Computational Mesh

0.8

0.

0.4

0.2

Figure 2-4: h = 1/64 LDG solution

32

I00

0



applying the DG algorithm for first-order, hyperbolic problems to the convection term and

the LDG discretization to the diffusion operator. After re-writing the governing equation

as a system of first-order equations as shown in (2.5), we multiply (2.5) with arbitrary test

functions v and q and integrate by parts over each subdomain Qj. Replacing the multi-valued

inter-subdomain fluxes by appropriate numerical interface fluxes leads to

Ne

(V - (-au + p) - vf)dx + v(h - P)ds 0
j=1 O 9
Ne

(q - p + V - qu)dx - q - nds =0, Vv E X.
j=1 O 9

(2.40)

The variational continuous problem is then formulated as: Find u E X such that

a(v, u) - l(v) = 0, Vv E X

where a : X x X -* R and 1: XF- R are given by

a(v, w) = V - (-aw + r)I + rV-qw Idx

+ [v] - (a{w} + ja -n[w] - {r} - C12* [[r]]) - [q- n]({w} - C21 w) ds

- v(r-n-aw-a+w) S j q-nwds (2.41)
faOD I SJQN I 1

1(v) = dx ( a -va- + qn)Dds + fNUs- (2.42)
foI faQD a J".N S

As before, boxed quantities are associated with the conservation law while the double

boxed quantities are connected with the definition of the auxiliary variables. For the

convection-diffusion equation, a(v, v) is given by

a(v, v) = q - qdx + ja - n[v]2ds + (a+V2 - a - nv2 + av2)ds.

33

(2.43)



We see again, that (a(v, v) > 0, Vv E X); the coercivity condition we need. Globally, we

have the following energy equality a(u, u) = 1(u), which becomes

p - pdx + 1la - n[u]ds + (a+ 2 _ a - nu2 + au2)ds uf dx +
r 2 a QD 2

JQD (au + p - n)gDds + JaQN ugNds. (2.44)

2.6.1 Discrete Problem

Statement (2.41) together with (2.41) and (2.42) is the point of departure for LDG dis-

cretization. Consider the solution Uh E Xh such that

a(v,uh) = 1(v), Vv E Xh (2.45)

or

Ne

1 {f(Vv -(-auh -P) - vf)dx + v(h - P)ds = 0

N,

E (q -Ph + V -quh)dx - j q -nftds} 0, Vv EXh. (2.46)
=1

As is the case with the Poisson equation, the auxiliary variables, Ph, can be eliminated

at elemental level. The presence of the convection term, however, means that the set of

resulting equations has a non-symmetric coefficient matrix.

34



Chapter 3

Bounds for Linear Functional

Outputs: Scalar Symmetric Case

In this chapter, we develop the basic framework for the algorithm that produces upper and

lower bounds for linear functional outputs of coercive 2nd-order elliptic partial differential

equations with respect to the outputs obtained from the exact solution. Unlike [30, 43],

however, we base our method on the Local Discontinuous Galerkin scheme, which has the

advantage of not requiring the complicated "equilibration" procedure that is necessary in

existing implicit a-posteriori error bounding algorithms. The numerical fluxes that are nat-

urally produced by the Discontinuous Galerkin discretization to ensure inter-subdomain

coupling also serve as "equilibrated" fluxes in the context of implicit error-bounding. The

algorithm is in some ways an extension of those presented in [35, 34, 37] as they are both

based on formulating the output as the solution to a constrained minimization problem with

an augmented Lagrangian. The objective function involves a "quadratic" energy term that

derives from the coercivity of the underlying governing partial differential equations plus the

linear functional output of interest. The equilibrium governing equations enter as constraints

to the minimization. The algorithm may also be seen as an error bounding algorithm for

Discontinuous Galerkin methods as it is specifically built for and based on the properties of

these schemes.

35



3.1 Problem Definition

We take as model problem the Poisson equation, given by (2.2). We are interested in ob-

taining upper and lower bounds for linear functional outputs of the form

S j ufovdx + Vu - ngods + j ufosds, fov E L 2 (Q) (3.1)
J9 JaQD .9nN

which are functionals of the solution to (2.2). Here, fev E L2 (Q) and go, fo E L 2 (&Q) are

given functions.

We recall from (2.32) and (2.33) that with the definitions v = [v, q]T, q = [qi, q2, q3 ]T, u

[u, P1T, P = [p, p2 , P 3 ]T, (2.3) may be written in variational form as: Find u E X such that

a(v, u) = 1(v), Vv C X. (3.2)

The output may then be written as S = 10(u) with

10 (v) = vfovdx + / q -ngods + vff ds. (3.3)
Jf2 JaE2D I8

3.2 Lower Bound Formulation: The Lagrangian

We now proceed to develop the algorithm for the computation of lower bounds for S. As

we shall see later on, upper bounds may be obtained in an analogous manner with only a

slight modification of the algorithm. Following the methodology of Patera et al. [35, 34], we

introduce the Lagrangian, L : X x X -* !R, as

L(v, xL' ) = ,(a(v, v) - l(v)) + 10(v) + a(4', v) - 1(xpv), Vv, xL' C X (3.4)

where xJ' = [V), 4 j]T and K > 0 is an optimization parameter. We recall from chapter 2

that for the Poisson equation, a(v, v) - l(v) is given by

36



a(v, v) -1(v) = j (q -q - vf)dx + (av(v- gD)- q - ng)ds

- Q VgNds. 
(3.5)

where a is a penalization parameter to enforce Dirichlet boundary conditions and that

a(u, u) - 1(u) = 0. To refresh our memory, the expression for a(v, w) - (v) is given

by

Ne 
da(v,w) - l(v) = Vv- rdX - j vds

j=1 jf~

+ (q -r + V -qw)dx - q -nilds}.

The output, S = l0(u), may then be expressed in terms of the following constrained mini-

mization statement

S = l(u) = inf sup C(v, 'V). (3.6)
vEX IvEX

We see this since

sup £(v, 41V) f 10(u) if a(xv, v) - 1(Tv) = 0, VWv (3.7)
ovEX 00 if a(*v, v) - l(Iv) $ 0, VIv.

The maximization over '', forces the minimization over X to select the v that satisfies the

governing equation; the minimizer u. Since a(u, u) - 1(u) = 0 and a(xp', u) - l(xpv) = 0, we

obtain C = 10(u). Furthermore, from duality (see, for example [13]), we can claim that

S = l0(u) = inf sup C(v, 'Pv) = sup inf L(v, 'J)'. (3.8)
vEX *vEX 'I'EX vEX

37



The last equality requires L(v, 'I') to be sufficiently regular, a condition which is satisfied

in our case. From the above relations it follows that

S = sup inf L(v, TV) ;> inf L(v, I'), V'' E X.
,vEXVEX vEX

(3.9)

We point out that the boxed quantity in equation (3.9) is, in fact, and expression for a lower

bound for the output, S. We note that this is true for any ''.

3.2.1 Lower Bound Evaluation: A Simple Example

Before we proceed to derive an expression for the lower bound for S, we digress momentarily

to look at the following example. We define a function, Z = Z(y1 , y2), given by

Z(yi, y2) = Ay2 + A2y1 + Biy2 + B 2
(3.10)

for y = [Y1 , Y2 1T E R and where A = [A,, A2 ]T, B = [Bi, B 2IT E R are arbitrary constants.

We then perform the following minimization

Z*= min Z(yi, y 2 )
y1,Y2ER

(3.11)

and obtain the result

4A,case I - Al +1B2 if A1 >0, B 1 =, (312Z* = (3.12)
case II - oo otherwise.

From (3.12), we see that when a function is linear and quadratic in its arguments, the

unconstrained minimum is either a constant or unbounded from below, depending on the

coefficients of its polynomials. This simple problem is, in fact, an analog of (3.9) in that

38



both Z and C are polynomial functions of their arguments. Here y plays the same role as v

in (3.9) while coefficients A, B are the counterparts to x,. The strategy for the remainder

of this chapter and in the chapters is then given as follows

1. Define the Lagrangian in a form analogous to (3.12)

2. Choose ''v to ensure that we obtain case I in (3.12)

3.2.2 Lower Bound Evaluation: S-

To evaluate a lower bound for S, we attempt to minimize L over all v = [v, q]T. First,

setting the variation of L with respect to q equal to zero results in

/2 + bq + VVv) - 6qdx - jv]t64ds - j (V + sgD - go)gq nds = 0 (3.13)

which implies the following constraints

[V1|r = 0, g)VjOaD '= -69D + go. (3.14)

and produces the minimizer q = -y;(Vq + V7Pv). Second, setting the variation of L with

respect to v equal to zero results in

f (V - - ± f+ )6vdx - [ * n]ifds

- fj (Oq -n+gN fos)Jvds + ( (2av- 9D) + oz'v )6vds = 0. (3.15)

which requires

39

V - Vq - rf + foV = 0, [q - n]lr = 0

VaIDo= 9D + 90, (q ' nlanN= -rI9N +fO (3.16)
2ar,



We point out that in (3.16), the essential boundary condition on aQD is satisfied in the limit

of the penalization parameter, a -- oo. Defining X' as the following subset of X satisfying

the following conditions

XC = {IF, E X s.t.

[Ov]|r = , [@q -n]|r = 0

V)v IaQD ~K- D + 90, (4 'q n) IaN ~KgN + f0

V q- f-f +g=0} (3.17)

we have

E*W)if 'I,. E XC,
S~(xW) = inf L(v, 'Ls,) (3.18)

vEX -00 otherwise.

where

We note that in general, the minimization of L in (3.9) over v is unbounded. For %Fv E Xc,

however, we do obtain a bounded minimum whose expression is given by (3.19). Here, we

make the decision to set a -- oc, as the term contributes negatively to the lower bound,

S. It is then a simple matter to evaluate (3.19) to obtain a lower bound for S. We note

that any ?v, 7q satisfying the conditions stated in (3.17) would produce a lower bound for

the output. Even so, the choice of Ov and 'q plays a critical role in the accuracy of the

computed bounds.

40

()= - (---( + V/) (4q + V~) + f)dx
4K +

- (V#q - ngD + go)ds ~- V),Nds- (3.19)
QnD 4a, aNI



3.3 Calculation of Lagrange Multipliers: Infinite-

Dimensional Case

In this section, we develop an algorithm for the computation of the Lagrange multipliers $

and ?/q that will lead to accurate bounds. We will look for Lagrange multipliers V, and V$q

in a finite-dimensional subspace of X' C XC c X and we should expect that as X - XC

one obtains S-(Tuh) = L(Xu') -> S. The procedure for achieving this involves deriving

optimal values for '', @,u = N)', V)P]T in the infinite-dimensional case; where the bound

would be the exact output, and then approximating the resulting expressions discretely.

To this end, we formulate the following constrained maximization problem. We maximize

(3.19) with respect to ''. subject to the constraint that xI' E XC

sup inf L*(xv) + Av(V -V@g- rf + fj)dx - (Aq -n[V/v) + Av[/)q n])ds
4vEX AveX J Jir

- Aq . n(4v + gD - go)ds - Av(V q ' n + K9N - f) ds}
JaD aQN

(3.20)

where A = [A,, Aq]T. We point out that the same Lagrange multiplier, Av, is used to enforce

the interface condition of [Vq -n] = 0 and the elemental equilibrium condition. Note that if

we choose different multipliers for the boundary and interior conditions, the maximization

over @q will force the two multipliers to be the same. Maximizing over 4 q leads to

(- (Op + V/u) - 6 0q + Au6V - V)dx - Au[ 6
4q - n]ds -

i/D 60q - ngDds - j nAds 0, V&V0q E X (3.21)

and after some rearrangement we obtain,

41



6V{q - (p + VV)) + VAu }dx + 6 b - n(Au - 9D)ds = 0,

Maximizing over Ov results in

- i(-(Vou + p) -

- a p , n6 Sv ds

63VV + f6/)e)dx -

0, V6V)V E X

Ap,- n[&6b ]ds - JON

which may be written as

-6V) (V 2 V2 + V . bp - 2rf)dx +

-+ 2,Ap) - nds +
JaQNJOnD 6 + V

=0, V6v E X.

+ V4u + 2A&p) -nds +

60v/Cp + Vbu)- n + 2KgN}ds

After substitution of the constraint V - bq -f + fo' = 0 E Q into (3.24) we arrive at

40 - fo)dx + j[60v](bp + Vou + 2Ap)

6 p + V$u + 2KAp) -nds
J OD

+
-nds +

6*v{(ip + VVu) - n + 2rIgN}ds

(3.25)= 0, V6,v E X.

From (3.22) we have

AujaQD = 9D

- V6Vq E X. (3.22)

gN6/),ds

(3.23)

n

(3.24)

1
V A =I2 (Op + vou),

42

Jr[6OV](OP

-60V(7V)U - Kf



and we also observe that (3.25) requires

1
VAu - n = (Vp + VoP) - nlaN = 9N

2 r

which, when combined with (3.24) results in

2t j, L6V(V2 Au + f)dx + ±[](Op + V~u) -nds + 2 Ap -n[60,]ds

-2n j o J4'(VAu -n - gN)ds 0, V6? E XC. (3.26)

Note that (3.26) is identical to the primal problem and therefore A, = u, VA, = Vu and

therefore Ap = p. From equations (3.22) and (3.25) we arrive at

V2u + f = 0, UlaD = 9D, (Vu - )IaN = 9N (primal problem)

V2@Vu - (rf + fcV) = 0, OUI180 - -- KgD + 90,

(vu - n)|aQN = -9N + fo0 ("lifted" dual problem)

Also, Op = -2nAp - Vou, Ap = VA, = Vu. (3.27)

The set of equations above produces 4u and 4p that, in the infinite-dimensional case, satisfy

(3.18) and result in the exact bounds for S. In practice, however, we would of course be

working with finite-dimensional discretizations and the approximations to u and tFu, ob-

tained will satisfy the conditions in (3.18) in only a weak sense and do not satisfy all the

constraints required by Xc. However, a simple postprocessing of the computed approxima-

tions is sufficient to obtain valid multipliers that will guarantee a lower bound in (3.19).

3.3.1 Alternative Derivation

Here, we present an alternative derivation for the optimal *I' in the infinite-dimensional

limit. To do so, we first define the primal and dual problems as

43



-V 2u - f = 0

U = 9D

VU = 9N

-u=90
V(U =go

in Q

on (9D

On aQN (Primal Problem)

in Q

On aQD

on DQN (Dual Problem)

where ( [(U, (P]T is the dual solution. We then postulate that %Iu takes the form

-) = aU + /3&U

= app + op(p

and show why this must be the case. To satisfy the condition

V . Qp - f + f' = 0

(3.28)

(3.29)

in Q

given the definitions of the primal and dual problems implies that Op is necessarily a linear

combination of p, (p. We have

since

-Vp - f =0

-V(p + fV = 0

in Q (Primal Problem)

in Q (Dual Problem).

We also have the minimizer

1
P = -I(V)P + VV)

44

(3.30)

ap = -K, ) p = -I



which we now re-write as

p=- (- - () + V(auU + /U() (3.31)

To obtain a formulation free of bound gap in the infinite-dimensional limit, (3.31) must be

self-consistent. Since p = Vu and (p = V(, this requires au -r, /3 = 1; at which point

(3.31) would be given by

P=- (-rp - (p) + V(-ru + (u)

=- -rp - Vu - (p + V(u

= p. (3.32)

This means the minimizer, (3.30), is self-consistent. We have thus shown that the optimal

TIu is a linear combination of the primal and dual solutions.

3.4 Calculation of Lu: Finite-Dimensional Case

We now proceed to compute 4!,Uh such that the conditions put forth in (3.18) are met. We

first solve (3.28) by LDG as described in chapter 2 and obtain Uh, Ph and (Uh, IPh. From the

solution we also obtain interface fluxes P, p. Next, we average, by taking the mean of all

nodal values of uh, ("U at all elemental vertices and interfaces to obtain iih, uh. To satisfy

the necessary condition of continuous V), we set

V)Uh = - + ( .Uh (.33

Finally, we modify the boundary values of 4
Uh thus obtained such that essential boundary

conditions are satisfied point-wise. Note that 'uh is an approximation to the "lifted" dual

function in (3.27) and meets all the constraints in (3.17).

45



3.4.1 Elemental Reconstruction of bPh

We recall that 4'p must satisfy

V .bp - Kf + fv =0, [Op - n]r =0, (Vp - n)aQN = -K9N + J -

Since Ph and (P only satisfy these conditions in a weak sense, their values must be appro-

priately post-processed prior to insertion into (3.19). To obtain 4p, we start by making the

following observations regarding LDG solutions

SPh, ph are unique across elemental interfaces

" fa2, Phds - fa f dx (seen by setting test function to one on Qj and zero elsewhere)

" faQ, (Phs f fo'dx (seen by setting test function to one on Qj and zero elsewhere)

We can therefore satisfy all the necessary conditions by solving locally, in each element for

V-Ph-f =0, V - (ph + fo = 0 (3.34)

with the boundary condition

1 h * n = -, n, ' E - p- (3.35)

Equations (3.34) and (3.35) can be shown in general to possess a solution [30], we can

therefore solve the aforementioned equations and set

Ph = -'Ph - (3.36)

In particular, for P elements in two dimensions, we obtain six equations for Ph and (ph with

a non-singular coefficient matrix-implying a unique solution. The resulting ?/uh, '0Ph satisfy

(3.18) in a point-wise manner as long as f and ff are constant on Qj. General polynomial

forms of f and fg may also be considered provided a higher degree polynomial is used in

46



the discretization. This property allows us to bound the output of the exact solution. In

general, the algorithm as given is applicable to the Poisson equation defined over a polygonal

domain with piecewise polynomial forcing.

Finally, we summarize the steps for the computation of X1 h as follows

1. Solve (3.28) by LDG for uh, Ph and (UhIph

2. Average Uh and (,, at all elemental vertices and interfaces to obtain iih and (Uh

3. Solve (3.34) locally, in each element and impose (3.35) at all elemental boundaries and
obtain Ph and Ph

4. Set 'l -- -- 6h + u,

5. Set V)Ph = -Ph - Ph

Algorithm 1: Computation of 'IUh

Note that (1) involves only two global solutions (for the primal and dual problems) and that

all other computations involve local operations.

3.5 Upper Bounds

We now proceed to the computation of upper bounds. The procedure outlined in the pre-

vious section can be easily extended to the calculation of upper bounds for our output of

interest. From (3.6), it is seen that the lower bound of the output is given by the constrained

minimization statement

S = inf sup L(v, *v) > inf L(v, 'v) = S-(').
vEX *vEX vEX

(3.37)

and the the upper bound may be acquired in an analogous manner by calculating a lower

bound for -S [35]. That is, we introduce C

£(v, L'F) = i(a(v, v) - l(v)) - 1'(v) + a(%Pv, v) - 1('F). (3.38)

47



A lower bound for -1(u) is given by

-1(u) = -S = inf sup L(v, I,) ;> inf L(v, Qv) (3.39)
vEX 'PEX vEX

and therefore

1(u) = S < - inf £(v, x',). (3.40)
vEX

Note that a meaningful bound can only be obtained for IQ E Xc We point out that the

computation of upper bounds requires the solution of the primal problem-which we have

already obtained for the computation of lower bounds, as well as the negative of the dual

solution-which we also possess from lower bound computations.

3.6 Bound Optimization

The bound gap, AS = S+ - S-, is given by

S+ 5 S- (Ph - Viih) - (Pi - Viah) + -(2h - VUh) - ( Ph - V'Uh)}dx (3.41)

To see this, we go back to the expression for S'. Denoting the solutions to the adjoint

equation corresponding to the lower bound computation (u-h,( P and (,+, (P, for the upper

bound, we have the following expression for the upper and lower bounds

±+ g J r[(P + Viah) -(Ph + Vfh) + K(Ph- + Viih) ( h VUh)
S4r,

-+ ~ ((P ~ It-(h V~) + (-Iftih + h)f dx

LD('Ph + +) - 9DdS F- (rCUh + _')gNdS. (3.42)
aQD faN

48



Noting that C = -- and p+ = I, we can write the bound gap as

ASK= (P + Vfth) - (Ph + Vfth) + I - V Uh) ' (Gh - V(Uh)

-2K fthf dx - IaD2KP - ngDdS - 2K6fhgNds
f9QN

which can be written as

AS= {(Ph + Vh) - (PhA + Vh) +

- 2KfPh- VhI dx

1 
P - V7 uh) - ( Ph - V7 Uh)

i Vfth -P - Uhfdx - SPh ngDds -JaQD IaQN

which confirms (3.41). To obtain K, we minimize (3.41) with respect to K by setting

a
-AS = 0

which leads to

- Vfth) - (Ph - Vinh) -
1-(P

and

49

- Vuh) - ( Ph - V'u h) dx = 0

since

UhgNdS = 0,

02(P h

1_f 3 (dP_ - V4uh) ' Ph - V'uh)dx
K = =If 3( .V ) (3.43)

ENi f,(Ph - Viih) - (Ph - Vfah)dx



3.7 Error Bound Algorithm Example: Volumetric Out-

puts

For this test case, we solve

-Vu 2
- f = 0, f 1

u 0

on Q = [0,1] x [0,1]

on (9Q

with LDG discretization and choose as output

10(u) = j fotudx

with f'' taken to be

with ff = 1 if X1 1

1
or X>

and x2 2'
1

and x 2 <-

= 0 otherwise.

The grid convergence results are shown in the table (3.1). The problem setup, computational

mesh as well as primal and dual solution are shown in figures (3-1)-(3-4). We see that the

optimal convergence rate of order h2k is indeed obtained.

h S S- S+ Order
1/8 1.757213 x 10-2 1.666820 x 10-2 1.782455 x 10-2 -

1/16 1.757213 x 10-2 1.734121 x 10-2 1.763837 x 10-2 1.96
1/32 1.757213 x 10-2 1.751415 x 10-2 1.758905 x 10-2 1.99

Table 3.1: AS Grid Convergence: Poisson

50

(3.44)

I fo'udx



1

Fi

x2

Figure 3-1: Problem Setup: Poisson

0.8\\

0.6

0.4 \

0.2

0 0 0.2 0.4 0.6 0.8 1

Figure 3-2: h = 1/32 Computational Mesh: Poisson

51



0.8

0.6

0.2

0 0.2 0.4 0.6 0.8

Figure 3-3: Primal solution: Poisson, Uh

0.8

0.6

0.4

0.2

Figure 3-4: Dual solution: Poisson, Uh

52



Chapter 4

Bounds for Linear Functional

Outputs: Nonsymmetric Case

In this chapter, we turn our attention to the development of the error bounding algorithm for

linear functional outputs of second order scalar nonsymmetric coercive PDEs; in particular,

the convection-diffusion equation. In most respects, the error bounding algorithm for the

nonsymmetric case proceeds in much the same manner as in the symmetric case considered in

the previous chapter. However, there are some subtleties associated with the nonsymmetric

terms that needs to be addressed in order to produce an effective algorithm.

In the convective limit, however, we face additional challenges. The basic method devel-

oped thus far produces bounds which deteriorate significantly in the convective limit when

the solution is not well-resolved. This is in agreement with the results reported in [43]. This

issue is of particular importance here since a primary motivation for using discontinuous finite

elements both in constructing an error bounding algorithm and in the numerical solution of

PDEs is to exploit the algorithm's ability to handle convection-dominated problems. In this

chapter, we also propose an approach to recover accurate bounds for convection-dominated

problems.

53



4.1 Problem Definition

We take as model problem the convection-diffusion equation, given by (2.4). As before, we

are interested in obtaining upper and lower bounds on linear functional outputs derived from

the solution to (2.4) of the form

S= ufovdx+j Vu ngods + j ufods. (4.1)

Here, fgv c L 2 (Q) and go, fo E L 2 (OQ) are given functions. We recall from (2.41) and (2.42)

that with the definitions v = [V, q]T, q =[q, q2, q 3]T, u - [u, p]1'p = [Pl, P 2 , P3]T, (2.4) may

be expressed in weak form as

a(v, u) 1 (v), Vv E X. (4.2)

The output may then expressed as S - 10(u) with

l0(v) = vfovgdx + j q -ngods + j vfosds. (4.3)

4.2 Lower Bound: the Lagrangian

The strategy for producing upper and lower bounds on linear functional outputs of the

convection-diffusion equation is much the same as that for the Poisson equation; we want to

express the output as the solution to a constrained minimization problem whose lower bound

may be expressed in a form analogous to (3.12). We then choose the Lagrange multipliers

such that we obtain the analog of case I in (3.12). The Lagrangian, L : X x X -+ I, is now

defined as

L(v, xF,) = r(a(v, v) - 1(v)) + 10(v) + a(%'v, v) - 1('Ji) + 8(4j', v), Vv, '', E X.

54



where F, = [V,, Oq]' and r > 0. E(*,, v) is given by

, = ia~ aL n[v]2ds +Z ] (a -q + VVc -av)dx
j=1

S va - nvds I. (4.4)

We also recall that a(v, w) - l(v) is given by

Ne

a(v,w)-l(v) = (Vv - (-aw + r) - vf)dx + v(h - )ds
j=1 Ja Oj

+ j(q -r+V.qw)dx-j qntbds (4.5)

for w = [w, r]T. Here ar is a positive penalizing parameter. We now make a few comments

concerning E('Fv, v). First, for v = u, one obtains E('v, u) = 0. The penalization param-

eter, ar in E(*v, v) plays an analogous role to that of a in a(v, w) (see (2.41)); namely, to

restrict the space over which we minimize C*. In the limit of a, ar -+ o, essential boundary

conditions and continuity of solution across elemental interfaces, [v] = 0, will be satisfied

exactly. This obviously reduces the space over which we minimize 12 and produces better

bounds. Second, the second and third terms in (4.4), when added to a(4I', v) results in the

non-integrated by parts form of the operator such that we have

Ne

d(v, w) - I(v) = (va -r + Vv - r - vf)dx + v( - a -nw - )ds
j=1 q

+ (q - r + V -qw)dx - q -nbds}. (4.6)

We have chosen this form for the definition of the Lagrangian for the ease of post-processing

later; as with the purely elliptic case, we will need to modify our finite dimensional solution

to satisfy all of the necessary conditions for the computation of exact bounds. This form

55



allows us to compute bounds without having to perform additional global problem solutions

beyond the solution of the primal and dual problems.

From (3.6), we see that the output may be expressed in terms of the following constrained

minimization statement

S = 10 (u) = inf sup L(v, TV), V'kv E X (4.7)
vEX %PvEX

and from the same argument as the one used to obtain (3.8), we can write the following

inequality

S > l0(u) = inf L(v, TV). (4.8)
vEX

To obtain a lower bound for S, we follow the algorithm developed in the previous chapter

and attempt to minimize L(v, TV) over all v = [v, q]T. We start by setting a, ar -+ 00,

resulting in the following consequences

VIaQD = 9D, [V] 0.

(Comment: leaving the penalization parameters in results in significantly longer algebra,

which I thought distracts from the main point of the presentation, but can be done if nec-

essary.) First, setting the variation of L with respect to q equal to zero results in

( q + @4Vq + a4e +V v) - 6qdx - jr LP] ds - j (' v + gD - g0 )6q nds -0 (4.9)

which necessitates

a [pv 0, iz q a +,, = 9D + 90 o s n v nf

and produces the minimizer q = -- L(@Oq+ a~v + Vov). Second, setting the variation of L

56



with respect to v equal to zero results in

rf + fg)6vdx - j[q -n]tSHds - iN (q * n + r9N -fo)Jvds 0 (4.11)
wi (V -qu -

which requires

V - q -f + fV = 0

[/qf - n] =0, (qf- n)a =,N =S9N + (4.1

Defining XC as a subset of X satisfying (4.10) and (4.12), we have

{ .* if4' E X0 ,inf L(v, *v) = * i F C (4.13)
vEX

-oo otherwise.

where C* = S- is given by

I* = (Oq + ao,, + VV),) - (V@g + a~V) + VO,) + OJfdx

(1q - ngD - af' D ~gNds, VIP, E Xc. (4.14)- Q 2(~ fg -a* g)d N

We need only to evaluate (4.14) to obtain a lower bound for S. Just as before, any ''

satisfying (4.13) would, just as in the Poisson case, produce a lower bound for the output.

The choice of '1k, however, is critical in obtaining bounds of acceptable quality.

4.3 Calculation of Lagrange Multipliers: Infinite-

Dimensional Case

As pointed out in the previous section, the choice of x1' is critical to the quality of the

computed bounds. With the same approach we had employed earlier, we setup the following

constrained maximization problem and maximize over x', subject to necessary constraints

57



+ j v(V - rf + fcf)dx - j(Aq - n4v] + Av[Vq - n])ds

- D
Aq * n(@bv+ rgD- go)dsj Av(q -n +9N - fOS)ds

(4.15)

where A, = [Av, AqIT. Maximizing (4.15) over /q leads to

{ (~p + au + VVU) + VAu dx + IQ q - n(Au- gD)ds 0,

V60q E X. (4.16)

Maximizing over 4% results in

-I (-/ + ayu + Vu) -

6 V4gNds - Ap
JBQN QOD

(a6% + 6V4%) + 6Vvf dx -

6 vds = 0,

which may be written as

- {(Vp + V4% + au) -a - (V -p + a - VO% + V24%) + 2rf}6dx -

- Vv](p + ao + V + 20&p)- nds - j, sv{Vp + aEpu V)

an D 6t r piaOn adubstti warvEX

and after further simplification and substitution we arrive at

58

- L 6bq -*

O v E X

+2KgNjds

(4.17)

sup inf L*(41,)
41,vEX A, EX



- j 6~(a -0, + a2 Pu _ V24' + rf + fj")dx -

[60v](Op .+a/u + V/u + 2 Ap) -nds - LQN 6bv{ Vp + aV'u + Vou) -n + 2gNjds

j Jo/v(4p + aou + VV~u + 2rAp) - nds = 0, o~v E X. (4.18)
aBQD

From (4.16) and (4.18) we have

1
VAu = -2 (Op + aou + VV)), AUlaD = 9D, (VAun N 9N (4.19)

which, when combined with (4.17) results in

j/ 6u(a -VAP - V2Au - f)dx + &aN b(Ap n- 9N)ds =0, 6ou E X. (4.20)

From (4.16), (4.18) and (4.20) we see that Av = u which obviously implies VAu = Vu from

which we infer Ap = p. We arrive at the following set of equations for 0, and Vip

a -Vu - V 2 U - f 0, U1QD = 9D (Vu ' n)IaN =9N (primal problem)

- VOU + V2 -( fo) + 2ra -Vu = 0, @uIa&u= -9D + 90,

(V'v -n) I aN ='r9N + fS ("lifted" dual problem)

also, Op = -2rp - aVu - Vou, p = Vu. (4.21)

As in the Poisson implementation we saw in the previous chapter, the set of equations given

above would, in the limit of infinite-dimensional discretization, produce solutions u and Tu

which fulfill all the necessary conditions put forth in (4.10) and (4.12) and result in the

exact bound for S. When working with finite-dimensional approximations, however, one

must modify numerical solutions uh and xFUh before they can be used to evaluate (4.14) as

the aforementioned conditions are no longer automatically satisfied.

59



4.4 Computation of TJu: Finite-Dimensional Case

We now proceed to compute '
1
'Uh such that the conditions in (4.13) are met.

to first define (, = [(", (PIT, where

( su -- + Vh, (pE -rp - V/p (dual solution).

It is convenient

(4.22)

We then solve

V - (au) - V 2u - f =0

VU =gN

-V - (a(u) - V2(U + fL= 0

(~U go

V(u = f0

in Q

on aQD

on aQN (Primal Problem)

in Q

on &QD

on &QN (Dual Problem)

with LDG and obtain uh, phh(Uh), and ,Pl, h(Uh). We average Uh,(u,,

(4.23)

tal vertices and interfaces, as outlined in section 3.4, to obtain ii,(u,; and to satisfy the

necessary condition of continuous 4
'sh, we set

- ih + Uh (424

4.4.1 Elemental Reconstruction

We recall that V'p must satisfy

[bp * nflr = 0, (V)P' nI aQN = ~-KgN + 0 -

To obtain 4p, we start by making the following observations regarding LDG solutions

SPh + h(uh), (p, + h(h) are unique across elemental interfaces

60

at all elemen-

V - op - rf + ffv = 0,



* faj (j(Ph + h(uh))ds =- fa fdx (seen by setting test function to one on Qj and zero

elsewhere)

* fan, ( P + h(())ds fj fg dx (seen by setting test function to one on Qj and zero

elsewhere)

We can therefore satisfy all the necessary conditions by solving locally, in each element

V- h-f =0, V ph + fo = 0 (4.25)

and by imposing

Ph n=P h(Uh), ph p + (h- (4.26)

Finally, we set

-I)Ph - (Ph' (4.27

The resulting /Uh, P, given by equations (4.24) and (4.27) satisfy the conditions in (4.10)

and (4.12) in a point-wise manner as long as f and fg are of polynomial form on Q2 and a

sufficiently high degree polynomial is used in the the discretization. This property allows us

to bound the output of the exact solution. We then summarize the steps for the computation

of X"Uh as follows

We point out here that the entire algorithm requires only two global solutions; to obtain

approximations for the primal and dual problems. The postprocessing steps involve only

local calculations. Had the definition of the Lagrangian not included E, we would have to

perform two additional global solves to satisfy all the necessary conditions to produce bounds

for S.

61



1. Solve (4.23) by LDG forUh,Ph, h(uh) andUhI (4Ph,h(Uh)

2. Average Uh and (Uh at all elemental vertices and interfaces to obtain f1h and (uh

3. Solve (4.25) locally, in each element and impose (4.26) at all elemental boundaries and
obtain Ph and (Ph

4. Set u,= - Uh + Uh

5. Set 4'p,= -lPh - Ph

Algorithm 2: Computation of x'FUh

4.5 Computation of S+, AS and r

The upper bound, S+, is acquired by minimizing Z, the Lagrangian defined with the negative

output, just as shown in section 3.5 for the purely elliptic case. The ingredients required for

the computation of upper bounds are the postprocessed primal solution and the negative of

the postprocessed dual solution, both of which we have from lower bound calculations. The

upper bounds are thus obtained with no additional cost. And like before, the bound gap

can be decomposed into contributions from individual elements. For the convection-diffusion

case, the bound gap is given by

Ne

AS = (ah - Vh - )(ah-Vf -- h)
j=1 3

+ -(aUh + V(Uh - Ph) (a(Uh + V(Uh - (Ph)dx. (4.28)
2 r

Finally, K is obtained by minimizing AS and is given by

(1 aUh + V(uh -Ph) (Uh + VUh - (Ph)dx (4.29)

N, 1 f 2j (a fth - V ii - Ph) (aii -- h- p )dX

62



4.6 Error Bound Algorithm Example: Convection-

Diffusion Equation

In this example, we solve the following one-dimensional problem using the two-dimensional

algorithm.

V - (au) - Vu2 = 0, a= [1 0 , 0 ]T on Q = [0, 1] x [0, 1]

uX 2(x1,x2)=0 on OQ,

u(0,x 2) = 1, u(1,x 2) = 0 (4.30)

with LDG discretization and choose as output 10(u) = fo udx. The problem setup, primal

solution and the dual solution are shown in figures (4-1)-(4-3) while the grid convergence

results are shown in table (4.1). We see that the optimal convergence rate of h 2 is indeed

obtained for linear elements.

1

U=1

tX2

Figure 4-1: Problem Setup: CD1

63

a=1

U =0
X2

U=0

x, _x=0

I ,



0.8

0.6

0.4

0.2

00

Figure 4-2: Primal solution: CD1, uh

1

0.8

0.6

0.4

0.2

(

Figure 4-3: Dual solution: CD1, Uh

64

I



h S S- S+ Order r

1/8 0.90 0.863085 0.937002 - 0.0930
1/16 0.90 0.890797 0.909282 2.00 0.0947
1/32 0.90 0.897770 0.902317 2.02 0.0967

Table 4.1: AS Grid Convergence: CD1

4.7 High Peclet Number Problems

In the previous sections, we have seen the error bounding algorithm applied to the Poisson

and convection-diffusion equations. For outputs of the form 10 (u) =f fogudx, the algo-

rithm preformed well and produced upper and lower bounds with a bound gap within a

few percent of the exact value even when fairly coarse meshes were used in the numerical

computation. We now examine the performance of the error bounding algorithm as applied

to the more challenging problem of high Peclet number flows. Such problems are of consid-

erable interest in engineering and computational physics and it would be highly desirable

to have an algorithm capable of handling them. We return to the seemingly innocuous 1-D

convection-diffusion equation problem

V - (au) - Vu2 = 0, a = [Pe, 0]T on Q = [0, 1] x [0, 1]

U(X1, X2) = 0 on

u(0, x 2 ) = 1, u(1, x 2 ) = 0 (4.31)

for various Pe using LDG with h = 1/8. The analytical solution is given by 1 - exl and

the results obtained using the previously described algorithm are shown in table (4.2). We

see a sharp deterioration in bound quality with increasing Peclet number, to the point where

the bounds are essentially meaningless.

4.7.1 High Peclet Number Algorithm: 1-D Analysis

To better understand this behavior, we discretize the same one-dimensional problem in one

dimension and carry out the bounding algorithm. In other words, we look at

65



Pe
10

100
1000
IL

S
0.900
0.990
0.999

IL
S+

0.932837
2.465348
21.08058

S-
0.867206
-0.485347
-19.08258

Table 4.2: AS vs. Pe

-(au) on Q = [0, 1], u(0) = 1, u(1) = 0

which we re-write as

OFT

ax
Fu

FT -- au - -.
09x

We can show that the solution is given by

e'ex - 1
U ePe - 1

We note from (4.13) that Op must satisfy

-[Op - n] = 0,

FT = 1.

V b - tf + f = 0

which in 1-D simply implies continuous Op satisfying the above differential equation. We

can again write bp as a weighted sum of primal and adjoint solutions such that

p = IFT +GT

corresponding to the conservation equations

66

n ,

a2U
- = 0

1922



-T f = 0, G +g = 0.Ox Ox

We also recall that V/, needs to be continuous and satisfy all essential boundary conditions,

but is otherwise free to take on any value. We further note that for this test problem, where

f = 0, the analytical solution for FT is a constant. This constant is determined by the

boundary conditions imposed. Following the steps outlined earlier, we solve

a 092U a 192 (-u(au) - =0, _(a(u) - +fo (4.32)Ox1X x Ox2

and define

FT-= au - p, GT= -a(u - (p. (4.33)

Recalling that the bound gap, AS, is given by

Ne,

AS j (aii - V~h - F) + (a uh+ Viu, + GTh) 2 dx (4.34)
j=1 3

we can split the bound gap into contributions from the primal and adjoint solutions. Focusing

on the primal contribution for the moment, we see that bound gap is minimized whenever

we have

auh - Vfi - FTh= 0. (4.35)

Since FT is constant and equal to the total flux, the bound gap would be minimized if

afuh + Vfth is also constant and equal to the total flux. This is indeed the case in the limit

of infinite-dimensional discretization and closely approximated when the solution details are

67



well resolved in finite-dimensional discretizations. When the mesh employed fails to resolve

the solution details, however (from the analytical solution it is seen that for large values of

Pe a sharp boundary layer develops at x = 1), atth + Vf~h can deviate significantly from the

total flux and thus resulting in significant contributions to the bound gap.

We further observe that while Viih can be rather inaccurate in under-resolved boundary

layers, the local flux conservation property of LDG discretization ensures that FT,, is not

sensitive to the presence of boundary layers. This is especially true here since FT is constant.

We can therefore expect to obtain accurate Frh even when very coarse discretizations are

employed; an expectation that is confirmed by numerical results. This suggests a simple

remedy for the high Peclet number problem; we locally refine the solution space for ith and

minimize the quantity

j(ah - Viih - FTh) 2dx (4.36)

for each element in Q using the FT, from the coarse mesh computation. Like FTh, GT, is

also insensitive to the presence of boundary layers and the same strategy may be applied to

minimize

/(alh + V uh + GTh) 2 dx. (4.37)

We then have the following steps for the 1-D error bounding algorithm for high Peclet number

problems

4.7.2 High Peclet Number Algorithm Example: 1-D Case

We now return to the same 1-D test problem analyzed earlier. We solve (4.32) with boundary

conditions u(O) = 1 and u(1) = 0 for various Pe using LDG with h = 1/8 and P elements

using the proposed algorithm for high Peclet number problems. The only decision remaining

is the manner in which the V), solution space is locally enriched. For this test problem, we

68



1. Solve primal problem by LDG and obtain FTh

2. Solve dual problem by LDG and obtain GTh

3. For each element, Qj, locally refine the solution space for ith and minimize (4.36)

subject to the constraint that the degrees of freedom corresponding to the unrefined

solution space be frozen at their original values

4. For each element, Qj, locally refine the solution space for Uh and minimize (4.37)

subject to the constraint that the degrees of freedom corresponding to the unrefined

solution space be frozen at their original values

5. Average Uh and (Uh at elemental interfaces and set u = -rfth + Uh

Algorithm 3: 1-D High Peclet Number Problem

employ local p-refinement in the solution space of vh and (vh with Gauss-Legendre-Lobatto

nodal basis points. The algorithm is tested using various degrees of local refinement at

different Peclet numbers, the results of which are displayed in tables (4.3) and (4.4).

modes S S- S+
2 0.99 -0.405652 2.385652
4 0.99 0.880536 1.099464
8 0.99 0.989849 0.990151

Table 4.3: AS vs. Pk, Pe=100

modes S S- S+

2 0.995 -7.632294 9.628293
4 0.995 -0.573043 2.569043
8 0.995 0.842074 1.153926

Table 4.4: AS vs. Pk, Pe=500

In the results above, two modes represents no local refinement while eight modes involve

a local P7 solution space for Vh and (,,. We see that for sufficiently high k, we do indeed

recover the ability to obtain meaningful bounds with a coarse global working mesh.

69



4.7.3 High Peclet Number Algorithm Example: 2-D Case

In the two-dimensional implementation of the high Peclet number algorithm we consider

triangular elements. As no simple tensor product basis exists for local p-refinement, we

consider local h-refinement instead. Furthermore, unlike the 1-D test case, FT is not constant

for multi-dimensional problems; these factors making local h-refinement more attractive,

which we therefore employ for triangular elements. As in the 1-D case, we minimize over

each element, QJ, the quantity

I' 1--(aft - Vi - F Th) 2 + - (a + Vluh + GTh) 2 dx (4.38)
n, 2 2r

subject to all necessary constraints in (4.13). Dividing each element, Qj, into ne elements,

Wk such that

ne

k=1

we minimize (4.38) over Qj subject to the conditions that

[Op - n] J, = , (V - P - rf + Iole = I (4k9

where -y is the set of all internal elemental interfaces in Qj. In addition, we require that

(FT, - n)Iawna,= Ph n, (GTh - n)awnao = (Ph - n. (4.40)

Unlike the 1-D implementation, here we allow FTh, GTh to vary in the interior of Qj instead

of being frozen at the coarse mesh values.

70



1. Step through Algorithm 2 to obtain Ph and (p,

2. Locally refine the solution space for f6h, FTh and dUh, GTh such that Qj = el Wk

3. Locally, over each element Qj, minimize (4.38) subject to the constraints in (4.39) and

(4.40). As in the 1-D implementation, degrees of freedom for Uh, (11 corresponding to

the unrefined solution space are frozen at their original values

4. Average Uh and (Uh over all elemental vertices and interfaces to obtain iih and Uh

5. Set Ou = -$Uh + (Uh and OPh = -KFTh + GTh

Algorithm 4: 2-D High Peclet Number Problem

4.7.4 High Peclet Number Algorithm Example:

Example

For the 2-D high Peclet number test case we solve

2-D Numerical

a - Vu - Vu 2 = 0,

u(0, y) = 1,

a = [Pe, O]T

u(l, y) = 1,

on Q = [0, 1] x [0, 1]

u(x, 1) = 0

and for x = 0

u(0, y) 1

y

1 y

for e = 6.25 x 10-2.

if Ey y -

if y < e

if y > -

Using LDG discretization with a global mesh size of h = 1/16, the

algorithm is tested for Pe = 100 and Pe = 1000. The output selected here is

l0(u) = U(0, y) (1, y)dy,
10 ax

the results of which are shown in tables (4.5) and (4.6), as well as in figures (4-4) and (4-5).

Here le refers to the local h-refinement of Qj, so that le = 4 implies a local mesh size 1/4

71

(4.41)

(4.42)



that of the global working mesh. We see that with the benefit of local h-refinement, we can

treat significantly higher Peclet number problems without resolving the global solution. We

also point out that for this test case, Sh is seen to be very inaccurate. This is caused by

the lack of resolution of the boundary layer at x 1 = 1 and the fact that the output of choice

depends on the gradient of the boundary layer. Our local optimization strategy produces

bounds which are actually significantly closer to the true value of S than Sh.

S
-76.2584
-76.2584
-76.2584

Sh
-41.6761
-41.6761
-41.6761

5-
-108.524
-80.0124
-77.7969

-43.0567
-72.4304
-74.4304

Table 4.5: AS vs. le: CD2, Pe=100

le S Sh S- S+
1 -890.804 -79.9276 -9247.23 7553.74

16 -890.804 -79.9276 -1112.81 -662.954
32 -890.804 -79.9276 -957.879 -819.954

Table 4.6: AS vs. le: CD2, Pe=1000

72



1

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1

Figure 4-4: h = 1/16 primal solution: CD2, Pe=100

1

0.8

0.6

0.4

0.2

U.2 U.4 U.6 U.S
0"0

Figure 4-5: h = 1/16 dual solution: CD2, Pe=100

73



74



Chapter 5

Bounds for Linear Functional

Outputs: Symmetric Positive-

Definite Systems

In this chapter, we focus on the implementation of our error bound algorithm for symmetric,

positive-definite, systems. For simplicity, we select as our test problem the plane stress/strain

model of linear elasticity, even though the methodology is not restricted to two-dimensional

problems. The LDG discretization of the governing equations, as we shall see, extends

directly from that of its implementation on scalar problems such as the Poisson equation.

On the error bounding side of the algorithm, much of what was developed for the Poisson test

case applies here, with only minor modifications required to accommodate the fact that we

now have a system of governing equations. In the numerical solution of the equations of linear

elasticity, the continuous Galerkin finite element method has long been established as the

method of choice, as is the case with the numerical solution of all symmetric, positive-definite,

problems. In the context of implicit a-posteriori error analysis, however, methods based on

discontinuous Galerkin schemes offer certain advantages such as avoiding the complicated

"equilibration" step, which can be tedious for scalar problems such as the Poisson equation

[30] and even more complicated when systems of equations are involved [36], in the error

bounding algorithm. It is this reason, what makes exploring DG discretizations for the

equations of linear elasticity, worthwhile.

75



5.1 LDG Discretization: Plane-Stress Model

We start with the strong form of the governing equations

-V.7--f =0

u = gD

in Q,

On 09D,

r - n = 9N on aQN

in domain Q with boundary &Q = &QD U &QN, as shown below

with u = [ui, u2 1T, f -[i f 2]T, gD the imposed Dirichlet data, 9N

traction and

7T11

721

712

T22

the imposed surface

= C : E (5.2)

with E = (Vu + (Vu)T)/2. Here we use the notation (V -r)i = 1 j _rij, (C : E)kI

Z, Tij CijkI and v 0 n the matrix whose jth components is vin3 . C is a fourth-order

2 x 2 x 2 x 2 material properties tensor given by

76

(5.1)

n

aQD



0 1-v

0 0
- - -- .k=1,1=2 .

V 0

. - k=2,1=2 /

(5.3)

Here, each quadrant represents a separate k, I block for k, 1 = 1 ... 2. E is the Young's

modulus normalized to one and v the Poisson ratio. Note that 621 = 612 and T2 1 = T12. The

system of equations to be solved is then

-V.-r- f = 0

-r- C : = 0. (5.4)

We consider partition T, of the domain Q, into Ne non-overlapping subdomains such that

Q = ZQ Qj and introduce space X = V x E

V ={v E L2(Q) 2 ,Vjnj E H1(Qj) 2 ,VQj E T}

E = { E L2 (Q) 4 , Ejnj E H(div,Qj) 2 ,VQj E T}. (5.5)

We then multiply (5.4) with arbitrary test functions 0 = Iv, a]T and integrate by parts

over each subdomain Qj and replace all multi-valued subdomain interface fluxes with unique

numerical interface fluxes to obtain

j (Vv : r - v - f)dx -j (v 9 n) : i-ds = 0

j(a : r + (Vo- -C) -u)dx - j((o : C) -i) -nds, VV E X (5.6)

where (V-)ijk = rij,k and (Vo- - C), = 0j,kCklij. Here 1 and i are the now familiar

77

1 0

C = V2''1
1-v20 0

\ . .. k=2,1=1



subdomain interface fluxes. For the definition of these fluxes, we use the direct extension

from the scalar, Poisson equation implementation and take

1
1 (r+ + r-) - C(u+ - u-) + C 12 (-+ _ -- )
2
1

f = -(U+ + U-) - C12(u+ - u-)
2 (5.7)

where superscript (-) refers to function values to the

and (+) refers to function values to the interior of the

Qj. Here we set C11 = 0 and choose

1
C12 = -sign(b -n).

2

For boundary interfaces, we employ

[:1[r+-a(U+ - gD)

gD

exterior of the subdomain interface

subdomain interface for subdomain

0n+
(5.8)

for Dirichlet boundaries where a is a positive penalization parameter and

[m.n [N
G U+

for Neumann boundaries.

Defining u = [u, 1r]T, we write (5.1) in weak form as

a(eeu) = X(o), VX E X

where a : X x X 1 ,l: X " R are given by

78

(5.9)

(5.10)



a(to,u) = a(tU)eq.+a(Vu)f.
Ne

+ JajIQ

v- fdx + Ja23 flQD ((v on): C11Dg 0 n+)ds

((o : C) - YD) -n+ds + fajnlaQNV. -gNds}

where a(t, U)eq. and a(t, u)fj. are the equilibrium and flux components of a(o, u), respec-

tively. We have

Ne

a (1, U)eg. = Vv : -rdx - (v (2 n) : - ds
j=1 Jj

- la D(v O n): (T - C11u+ 0 n+)ds

Ne

= I: (o: -r + (Vo, -C) -u)dx -
j=1

I ((o : C) -fi) -nds

((o: C) u +)
-n+ds (5.12)

- JZnlnaN

5.2 Energy Balance

Before we proceed to the derivation of the expression for energy balance, the algebra is

significantly simplified if (5.4) is first written in "symmetric" form

-Tii,x - T12,x 2 - fi 0

~T12,11 - 722,x 2 - 0

(11 - VT22) - U1,xi

(VT 22 - T1 1 ) - UsX2

2(1 + 1)T12 - (U2,xi + u1,X2 )

_=0

= 0. (5.13)

79

(5.11)

a(o, u) 1.



We then multiply the governing equations, by u and -r and integrate by parts over each

subdomain Qj to arrive at

j (Uiiirn + U1,X2 T12 - uifi)dx - j

J(n2,xi 21 + U2,X2 722 - U2 f2)dx - j

J(Ti (TI - V 2 2 ) + Tn,xUin)dx - j

(22(22- VTn ) + T2 2 ,X2U2 )dx - j

J(2(1 + v)r2 + T12,xiU2 + Ti2 ,X2 ui)dx

which may be written as

ui( llni + hi2n 2 )ds = 0

u 2 (t 2 ini + t 22n2 )ds = 0

T11tuinids = 0

T22 f 2n2 d s = 0

- j T 12 (Uf2nl + fizn 2 )ds = 0 (5.14)
Jan,

/3 ((Uil),xi + (u1 71 2 ),X2 + (u2T12),x, + (U27 22 ),X2)dx -

/j (ui( lni+ i2 n 2 ) + f 1 (Tilni + T12n 2))ds +

j (u2(i 2 nil + T2 2n2 ) + f 2 (Ti 2 n1 + T22 n2 ))ds +

/L (Ti + F2 + 2(1 + v)Tf - 2vTr 1 T2 2 - Uifi - U2 f 2 )dx = 0.

After summing over all subdomains, we end up with

80

(5.15)

=(,F1 + T222 + j((1+v)2(1 v)T2- 2vnll7 22 - u - f)dx

- (( :C)- g ) nds - (u 0 n): rods. (5.16)
JaQD aQN

'' u, U) - I (U)



5.3 Lower Bound: the Lagrangian

The strategy for the development of our algorithm for the governing equations of linear

elasticity is much the same as that laid out for the Poisson equation; we first define a

Lagrangian such that the output functional of interest may be expressed as the solution to a

minimization problem analogous to (3.12), we then proceed to choose Lagrange multipliers

such that a bounded minimum results. As we develop our error bounding algorithm for

plane-stress problem, we start with a few definitions that would simplify algebra. Given a

subdomain interface OQK between subdomains QKi, we define

[ut] = (utn+ + u-n-), [r - n] (r+ - n+ + r- - n-)

where n+ are the outward unit normals on &QK belonging to QKi. We consider outputs of

the form

l0(u) = f . udx + go - (r - n)ds + fS. uds
jo~ll 0 fD faQN0

Vf E L 2 (Q), Vg 0, f E L2 (OW). (5.17)

Following the methodology developed for the Poisson equation, we define the Lagrangian,

£C:Xx X-+ Ras

,C(*, v) = ,("E(v, v) - 1(o)) + 1'(to) + a(xP, v) - 1(41) (5.18)

with AF = [4, -y]T and r > 0. The output is then expressed as

S = inf sup C2('I, v) (5.19)
v,aEX 0'YEX

and the inequality

S > inf EL(, o) (5.20)
V'aEX

81



can be shown to hold. The adjoint contribution to the Lagrangian is given by

(4'iX a- + /1,X2012 - V'f)dx -

+ j(2,xliU21 + 02,x2 622 - 0 2 f 2)dx -

+ (- 1&-1 - vO-2 2 ) ±j y,xvi)dx - J

+ (2 2(cT 22 - v- 11 ) + 7y22,X2 v2 )dx -
Qja Jan,

I 1(&lln + &12n 2 )ds

0 2 (&21in + &22n 2 )ds

7y1 1sinids

+ 4 (2(1 + v)7h20-12 + 7Y12,xIV2 + 712 ,X2 v 1)dx - 7h12(V2nl + f1n2)ds.

(5.21)

Before we proceed with the minimization, we set a -- oc, which has the effect of imposing

the condition

VIa8D 9D

and producing better bounds for S as we are now minimizing over a smaller space. Setting

the variation of L with respect to or equal to zero leads to the minimizer

2K(U-l - vU 2 2 ) + ('Y11 - v7 2 2 ) + 4
1,xj = 0

2'(U-22 - vU-) + (7Y22 - v'y11 ) + 02,X2 = 0

4(1 + v)s-1 2 + 2(1 + v)71 2 + '2,xi + V)1,X 2 = 0 (5.22)

which results in

82

=a(IQ, u)j - I(IO),



The minimization also requires the constrains

[i]I =O, 0 OW = -r9D + O (5.24)

to be satisfied.

constraints

We then have

Setting the variation of C with respect to v equal to zero results in the

where £* is given by

83

I 1)1xi + Vi2,x 2
o~n= x 1- 2 + 711

022 = - 1 1,xY + 2,X2 +2}

-22 = 1 { )2,xi + 01.,x2 + 'Y12 . (5.23)
2 r 2(1 + v)I

Yii,xi + 712,x 2 - Kfi + f1 = 0

712,x 1 + %22,X2 - 4/ 2 + fO2 = o
[y - n]r = 0, [f - n] OQN -- 9N + f . (5.25)

* if 7,xi + 712,X2 -fi + 1 =0,

712,xi + Y22,x 2 - 'f2 + fO= 0,

[y - n] = 0,

inf C(v, 01) = =[] 0, (5.26)
VEX

|O4D = -r 9 D + 9o

(y - n)|aQN =-gN +

-00 otherwise.



with Xc given by the subset of X satisfying (5.26) and

*, + V*,2,:r2

1 -
Vgq~ 1,x, ± V$2,X2

1- V2

C= /2(1 +v)
2

+ Yii}

( +22

1~ + 01,X2

(1I + )
+ -12 . (5.28)

5.4 Computation of Lagrange Multipliers: Infinite-

Dimensional Case

Just as in the scalar Poisson test case, we maximize (5.27) with respect to 0 and y to obtain

guidance for the appropriate choices of 4 and -y. We perform the following constrained

maximization

+ A - rdx -

- anD

- N

fr

A (-y -n + 9N -~ f )}ds

where A = [A, 0]T. r = [ri, r 2 ]T is given by

r1 = y,x + '712,42 - fi + fo}

r2= 12,xi + ^/22,X2 - f 2 + fo .

(5.29)

(5.30)

84

* = (A( ,i + yn1 - V722) + B()2,X2 + Y22 - v Yii) + C2) + V . f dx

- ( - nD - ' 'Nds, VI E XC (5.27)
JaQD afN

sup inf E*(, )
*EX AEX

A =

B =



Maximizing L* over -y leads to

7&Y: - vr2l - j Aix 1 &y7dx

+ J (Z - gi)n16-ds = 0,

67 2 2  j(722 - VT1)6Oq 2dx - j A 2 ,X2 6y 2 2 dx

+ j (A2 - gi)n 2672 2ds = 0,

&12 j(I + v)F 126712dx - (Ai,x2 + A2 ,x 1)6-Y 2 dx

+ ((A, - gi)n + (A2 - 92)ni)6712ds = 0, V6Y E X (5.31)

from which it follows that

i,x1 = (7 11 - vT2 2 ), iljaQ, = 91

A2,x, = (T22 - VT 11), A2IaQD = 92

and

(1 + V)T12 + (A2,x1 + A1,X2) = 0.

Maximizing L* over 4' leads to

85



6V),: j 1 ~~ V220 1l,x ± j T 1 2V)1,X 2 dX - j fididx +

T22 -- V541 'b ix, dx - j( 1 1 r 1 + $1 2 r 2 ) 1]ds -

/ 9Nn 1f60 ds - f 2 1n + 12n2)40 1ds = 0,

602 T22 -- V71 102 ,x 2 dx + jTi2 602,x1dX - f 26 2dx +
TI 1 -U VT22

j 1 1 - VT22 dx - j(012n, + 2 2 n 2) [V 2 ]ds -

JnN gN2 n2602ds -- (/ 21 + 2 2 n2 ) 60 2ds = 0,

which may be written as

V' E X

cS1 : - j(ixi + T12,X2 + fi)6 idX + j (Tiilni + T12n 2 )&iL/ds

+ j (Tijnji -- qjnj)[&V1]ds - nj- 9N1nl>5 lds

+ (Tijnj - kijnj)60ids = 0,
JaQD

602 : - (712,xi + T2 2,4 2 - f 2 )60 2 dx + f( 12 n1 + 72 2 n2 ) V0) 2ds

+ (T2 2jnj - 2jnj) - [602 ]ds - J gN 2 n2)6V)2ds

+ (T2nD - n2jrnj)k 2 ds = 0, Vb E X

from equations (5.31)-(5.32) we arrive at

1j 1 fl 0

_ V2 (Ai xl + V 2 ,X2 ),X (1 + V) G\ 1,4 2 + A2,x1),X2 f 0,

1 1a)D , ljnJa=N 9N1, q Tij
1 -1

1 __ v2 (A2 , 2 + VA1,X 1),X 2 ~ 1,4 2 + A 2 ,xi),X2 - f2 0,

A2ID =2, 2jfnjlaQN - 9N2 . (primal problem) (5.33)

86

(5.32)



We recognize from (5.33) that A = U. Furthermore, by combining the equilibrium require-

ments imposed by equations (5.26) with (5.23) we can write

2{ 1 ,x"' + V42,X2) + i}2( l)( L1X2 + b2,xj ) + Y12}-~ v I= + I,2 M 2(1 + v) IX

+2nfi= 0

2{ ( 2X2 + VVl'?,xi ) + ;522} (1v (42 + 'V2,xj ) + I}12}I 1 -X2 , 42 2(1 + v)X
+2nf 2 = 0 (5.34)

which after some simplifications and the application of boundary conditions results in the

following familiar set of equations

1-v - - 21 + v)1 (V)' 1 + vV'2 X2 ),Xl 2( 1 +I ii) (04,2 )2 42,xl ),X2 + "rfi + foV = o,
i/)I = - i, 1j la(9QN r -KgNl + fS

- 1-

- 1 2 (42, 4'i) 2 - 2(1 +V) (01,X2 + 42,xi),xi + hf + fO2 0,

21aD -r-92, Y2jnjaN = ~K9N2 + f0. ("lifted" dual problem) (5.35)

It is convenient to define

C = su + , = ,ir + ;yj (dual solution).

In the limit of infinite-dimensional discretization Equations (5.33), (5.35) and (5.23) produce

4, i that satisfy the sufficient and necessary conditions of (5.26) and produce the exact

bound for S. When working with finite-dimensional spaces, however, Uh, Th and Ch, Xh

satisfy (5.26) in only a weak sense and post-processing of the numerical solution is required

to produce bounds for the exact solution.

5.5 Computation of T: Finite-Dimensional Case

We now proceed to the computation of +h, such that all the conditions in (5.26) are met.

Much of the methodology developed for the Poisson test case is also applicable here. The

87



fact that we are now dealing with a system rather than a scalar equation, however, requires

us to modify the earlier algorithm to accommodate the additional challenges posed. We start

by solving the following pair of global problems

-V - rh - f = 0 (primal)

-V X + fO = 0 (dual) (5.36)

to obtain Uh, f and Ch, i. We then average Uh and (h at all elemental vertices and interfaces

to obtain ih and Ch in order to satisfy the condition of continuous 0. We set

-- 1'U Ch . (5.37)

5.5.1 Elemental Reconstruction of i: P Case

We recall that in the error bound algorithm for the Poisson equation, we post-process bph

by setting the solution value equal to that of the numerical flux such that

j Oh 
- nds = Ihds, VQ, E T,

anj JQj

to satisfy the equilibrium and continuous normal stress conditions. For P elements, this

results in six equations and six unknowns per element that we can then solve for bp. For

plane stress problems, a straight-forward extension of this strategy results in 12 equations

and nine unknowns for the same P element. The set of equations produces a singular matrix

that has, in general, no solution. Additional steps, must therefore, be employed to generate

lh such that the requisite conditions are met. In general, we need to satisfy

'Iixi + -12,x2 - Kih + fi = 0

'Y712,x, + '22,x 2 - Kf 2 + fO =0 in Qj (5.38)

88



and

iyjin + 'Y122 =jnj

-12n, + -Y222 = 2j nj on 1 (5.39)

over each individual element, Qj. When working with P elements, however, satisfying (5.39)

insures that (5.38) is also satisfied when f and f are constant. Unfortunately, as pointed out

earlier, (5.39) results in 12 conditions when there are only nine degrees of freedom available

in each element to satisfy those conditions. To overcome this difficulty, we subdivide each

element into three subelements, as shown in figure (5-1). The requirements imposed by (5.26)

must now be satisfied in each subelement and across each subelemental interface. Together

with (5.39), we now have 30 equations and 27 unknowns. A quick examination of the set

of equations reveals that we have some redundancy in the equation set, and that only 27 of

those equations are linearly independent; giving us a system of equations that can readily

be solved.

7
1 0

T, T3
8

30 0
0
4

2 o T20
0

5 6

Figure 5-1: P Subelement Layout

5.5.2 Elemental Reconstruction of 7: P2 Case

When working with P 2 elements, we are confronted with the same difficulty as the Pi case,

with insufficient degrees of freedom to satisfy the necessary constraints. We therefore resort

89



to the same strategy of dividing each element into three subelements to gain the extra

degrees of freedom required to satisfy all the constrains, as shown in figure (5-2). The

flux constraints in (5.39) impose 18 conditions while satisfying (5.26) in each of the three

subelements and across subelemental interfaces results in an additional 36 conditions for a

total of 54 conditions to be satisfied. The three subelements contain 18 nodes and 54 degrees

of freedom, exactly equal to the number of constraints. As in the linear case, however, three

of the conditions are redundant and we end up with more unknowns than equations. The

system of equations have no unique solution and we might try to solve the system by singular

value decomposition. Since Oh is given by (5.37), the bound gap can be optimized locally

with respect to %' through local constrained minimization, and this is the approach we

recommend and implement in all numerical test cases. Over each element Qi, 5
' is given by

min AS(;rh, ih) subject to -V.h - f =0

and -V - ih + f = 0

and h- naQ -= - n

and ih nlan, = i n. (5.40)

13
1 oO

614
0 18

2 OTI T3
15

50 0
0 16

4 11 1
0 17

3 o 12 T2  10 0
0 0 0
7 8 9

Figure 5-2: P2 Subelement Layout

90



We then have the following steps for the computation of Th

1. Solve (5.36) by LDG for Uh, Ch and f, i

2. Average Uh, (h at all elemental vertices and interfaces to obtain fih, h

3. Subdivide each element, Qj,VQj E Q into three subelements

4. Perform local constrained optimization as given in (5.40)

5. Set ')h = -nUh + h and Yh = -n.r - ih

Algorithm 5: Computation of 41: Plane Stress

5.6 Bound Optimization

From the choice of "h outlined in the previous sections, the bound gap is given by

NeASrS(SZ{ +(B(2 -B2vApBp+C2

AS =- S+ _ S~ = P P( AP y v y+C)
j=1

+ 2(A + B2 - 2v AdBd + Cd))dx (5.41)

where

AP =

B,={

flti. + VU2,X2

1- V2 - Ti}

Vuf1jx + - T22
1-l 222

Cp 2(1+ v) j 2(1

Ad = 2

Bd { 1,Xl +242

Cd = 2(1+ v){
2(1

+ 1,X2
+ Vu)

- X11

- X22

+ (1,X2

+ V)

I 1Z}

X12}.

91



With the expression for bound gap in hand, it is a simple matter of setting ' = 0 to

optimize the bound with respect to r,, and we arrive at

EN fja A2 + B2 - 2vA AB, + C2dx
J = = .- - C (5.42)
j=1f Ad + Bj - 2v/AdBd+ Cddx

5.7 Error Bound Algorithm Example: Plane-Stress

Convergence

We now turn our attention to the performance of the error bound algorithm we have devel-

oped for the plane-stress model. For this test case we employ P2 elements and examine the

following setup

-V.-r-f =0 on Q = [0, 1] x [0, 1]

with fi 0, f 2 = x 2 -1

and u1 =12 0I1=0,1

and U2 =12 O X 2 =1

and 712 = 0X2=0, 722 = 2 I20
2

for which the analytical solution is given by

12 123
U1 = vri( x 2 - x 2) + V X1 + C

1 1.
U2 = -6 ( -3x + 2) - (x 2 - 1) (5.43)

where C is an arbitrary constant taken to be zero here. We also note that Ti= T12 0 and

7-22 = -(I2 - X2) - IuX2. The output is taken to be the average X2-deflection, f2 u2 dx. The

primal and dual solutions are shown in figures (5-3)-(5-6) and the bound gap grid convergence

results shown in table (5.1), from which we see that AS exhibits the optimal convergence

rate of h2k is obtained.

92



I

0.8-

0.6-

0.4-

0.2-

0 0 0.2 0.4 0.6 0.8

Figure 5-3: h = 1/16 ul Contour: PSi

ii

0.8

0.6

0.4

0.2

Figure 5-4: h = 1/16 u2 Contour: PSI

93



0.8

0.6

0.4

0.2

'-I

Figure 5-5: h = 1/16 (1 Contour: PSI

1

0.8

0.6

0.4

0.2

Figure 5-6: h = 1/16 (2 Contour: PS1

94



h S S- S+ Order K
1/4 -3/16 -0.187509843 -0.187491020 - 1.561
1/8 -3/16 -0.187500656 -0.187499312 3.81 1.755

1/16 -3/16 -0.187500043 -0.187499951 3.87 1.927

Table 5.1: AS Grid Convergence: PSI

5.8 Error Bound Algorithm Example: Uniformly Loaded

Plate

We now turn to the more challenging problem of uniformly loaded plate with symmetric

cut-outs, as shown in figure (5-7). Given the symmetry of the problem, we need to analyze

only one-quarter of the domain. Here we use again P2 element discretization and choose

to discretize the positive x1 - x 2 plane, the setup of which is illustrated in figure (5-8).

Conditions of zero normal displacement, u - n = 0 and zero shear stress, T1 2 = 0 are imposed

along the symmetry boundaries along the x1 and x2 axis. On all other boundaries we impose

-r - n = 0 with the exception of the loading at x 1 = 1. We take the loading P = 1 and choose

as output the average x2 -deflection on the upper surface of the plate

10 (u) = Jo u 2 (Xi, 1)dxi.

The presence of corner-singularities prevents the optimal rate of convergence in AS from

being obtained, even though effective bounds were still acquired; the results of which are

shown in table (5.2) and figures (5-9)-(5-12). Here S* is the output computed from the

solution obtained on the finest mesh, containing 15360 elements.

95



2 *1

Figure 5-7: Problem Setup: PS2

F+
1 ~1

P

Figure 5-8: Computational Domain: PS2

S*
-0.443167
-0.443167
-0.443167

IF
S- S+

-0.456544 -0.431764
-0.445922 -0.440745
-0.443760 -0.442652

Order

2.26
2.22

Table 5.2: AS Grid Convergence: PS2

96

P

I.
4-

4--

4-

4--

4-

4-

4--

4-

4-

4--

4-

P

0.2

0.3

0.5

Elements
240
960
3840

'IT

"" '
I

li Ili



1-

0.8

0.6

0.4

0.2

00

Figure 5-9: Deformed Geometry: PS2

0.2 0.4 0.6 0.8

Figure 5-10: Til Contour: PS2

97

0.2 0.4 0.6 0.8 1

0.8

0.6-

0.4

0.2

00

I



lj I

Figure 5-11: Tl2 Contour: PS2

0.4

0.2

00 0.2 0.4 0.6 0.8

Figure 5-12: T22 Contour: PS2

98

0.8

0.6 F

0.4

0.2

(

0.8

0.6-



Chapter 6

Bounds for Linear Functional

Outputs: Symmetric Indefinite

Systems

In addition to receiving much attention from the compressible computational fluid dynam-

ics community in the past decade and a half, the discontinuous Galerkin method has, in

the last several years, commanded increasing interest from the community of incompressible

computational fluid dynamics. In the numerical solution of the equations of incompressible

fluid flow, such as the Stokes or Navier-Stokes equations, the treatment of the incompress-

ibility constraint is an issue that has occupied significant research effort. Within the classical

C0, continuous, Galerkin finite element community, the incompressibility constraint and the

resulting stability issues are resolved either through the use of mixed finite element interpo-

lations or the explicit addition of numerical viscosity. The first option is considered to be the

more elegant of the two in that mixed interpolation preserves the discretization as a projec-

tion method. In either instance, modifications are made to the basic continuous equal-order

Galerkin discretization to achieve a numerical scheme satisfying the inf-sup condition. Nu-

merous elements based on mixed interpolation have been developed and applied successfully

in incompressible linear elasticity, Stokes flow and the Navier-Stokes equations. With the

local discontinuous Gakerkin alorithm, however, it is possible to employ simple, equal-order

interpolations and stabilize incompressibility through proper definition of numerical interface

99



fluxes while preserving the property of projection method. This was done in [19, 18], where

LDG discretization was extended to the Stokes and Oseen equations.

The incompressibility constraint has also been a source of significant difficulty for those

seeking to provide error bounds on outputs derived from the solutions to saddle problems

such as Stokes flow and the Oseen equations with respect to the exact outputs [30]. Just as

we have exploited the capabilities of LDG to produce meaningful error bounds with reference

to the exact solution for high Peclet number problems in the previous chapter, so too, do we

appeal to the properties of LDG discretization once again to come up with an algorithm to

bound the linear functional outputs of saddle problems with respect to those produced by

the exact solutions here.

6.1 LDG Discretization

We start with the strong form of the Stokes equation

-V r'+Vp - f =0 in Q,

V - u 0 in ,

u =gD on OQD,

T- n=gN on &QN (6-1)

for Q in R2 with u = [u1, u2]I, f = [fi, f 2 ]IT, gD the imposed Dirichlet data and gN the

imposed surface traction and

[t ___ x axi 8X2 (6.2)
a2+ alll 2 au2

T21 T22 _x1 aX2 ax2

Here we use the standard notation V - r' = Ed BrT! and v 0 n the matrix whose ijth

components is vin. Note that 21 = T12 . We introduce space X = V x Q x E, where

100



V = {v E L2(Q)2, VQ E H1 (Q) dVQ E T}

Q ={q E L2(Q),QlQji E H1 (Qj),VQj E T}

E= {a' E L2 (Q) 4 , Eln E H(div, Qj) 2,VQj E T} (6.3)

and multiply (6.1) with arbitrary test functions v = [v, q, o']T and integrate by parts over

each subdomain Qj. After replacing all multi-valued inter-subdomain fluxes with unique

numerical interface fluxes to obtain

j (Vv : r' - V - vp - v - f)dx - j ((v ( n) : T' - v - np)ds = 0

- Vq - udx + j qni, nds = 0

(o'± r + 2pu - (V - o'))dx - j 2p(o-' - ni) - nds = 0, VD E X. (6.4)

Here, 7', jP, n and ii,- are the numerical subdomain interface fluxes. We also note that even

though fi and fi are both associated with the velocity u, they are defined differently as

they belong to different conservation laws.

We now proceed with the introduction of the notations required to define these interface

fluxes. Given two adjacent subdomains Q+ and Q- sharing an interface OQ%, let n+ and

n- be the corresponding outward unit normals at an arbitrary point x on OK' and let u+

be the trace of u = [u, p, r]T on (9Q from the interior of Q1, we define interface average

{-} and interface jump [-] values at x E aQ-' as

{u} = (u+ + u~)/2, {p} = (p + p-)/2, {i'} = (r'+ + r')/2,

[u]=u+-n++u--n-, [p]=p+n+±p-n-, [r,r' '+n+ +r'--n-.

We also define a matrix interface jump, [[u]] as

101



[[u]] = u+ 9 n+ + u- 0 n-.

We are now ready to define subdoamin interface fluxes. For interior interfaces, we take

{/'} C [[ul[

n u} 0

] - 0 . (6.5)
6, {u} Du[p]

The role of C11 and D11 is to ensure stability of the method, and thus are known as stability

coefficients. In addition to their impact on stability, they can also affect the accuracy of the

method; for the implementation here we follow the choice in [19] and set C1 = 1/h and

D11 = h. For Dirichlet boundary interfaces, we use the numerical flux

+ a(U+ - gD) (9 n+

9D

P+ (6.6)

where superscript (+) refers to function values to the interior of the boundary interface

and a is a positive penalization parameter for the purpose of enforcing essential boundary

conditions. For Neumann boundary interfaces, we employ

( +(6.7)

We note that for Neumann boundaries, the total stress is prescribed. We can now write (6.1)

102



in weak form as

a(t, u) = l(to), Vo E X

where a: X x X - , 1 : X - R are given by

a(to, u) = a(v, U)eq. + a(to, u); f.

Ne

= E f- vfdx + fjnQ

j=1 nj nl D
((v 0 n) : (agD 0 n) - qgD - n+)ds

+ f l6n D

a(v,u)eq. and

We have

2p ( a Dg ) . + + V gNds} (6.9)

a(t), u)fl. are the equilibrium and flux components of a(t), u), respec-

a(t, U)eq.

a(t, u)fl.

Ne

= : (Vv: -r'- V - vp)dx - ((v ( n) : T' - v -np)ds
j=1 n n

- jVq-udx+ j qfi-nds + j qu+ -n+ds

-((v 0 n) : (r'+ - au+ 9 n+) - v - np+)ds

= (0' : I'+ 2-u - (V - o-'))dx - 2p( ' -4i) -nds
E faata \'M

2p(o-' - u+) - n+ds } (6.10)
- JfannOnN

The LDG algorithm for the Stokes system, with the aforementioned choices of interface

fluxes, has been shown in [19] to converge at order hk+1 for u and at order hk for r' and p

in the L 2 norm.

103

(6.8)

where

tively.



6.2 Lower Bound: the Lagrangian

The objective is to produce upper and lower bounds on linear functional outputs of the form

10 (u) j fv - udx + go - (-r - n)ds + fN - uds
L 0 fanD JaQN0

Vf V E L2 (Q), Vgo, f E L 2 (aQ) (6.11)

where ftv, f and go are given functions. The overall strategy is the same as that employed

in the Poisson equation and given by the simple example in section (3.2.1). We want to

express the output of interest as the solution to a minimization problem analogous to (3.12),

relying on the appropriate choices of Lagrange multipliers to ensure that we obtain the

analog of case I. Unlike the problems we have thus far encountered, however, the "obvious"

formulation of the Lagrangian fails to produce the desired results. We will therefore consider

two different formulations of the Lagrangian; starting with the more intuitive approach. The

basic components of the Lagrangian remains the same and are given by

L(AF, to) = r,(a(13, t3) - 1(ti)) + 10(to) + a(IF, to) -- 1(%P) (6.12)

with F = [4,, , y]T and K > 0. The output is then given by the following constrained

minimization statement

S = inf sup L(T, f) (6.13)
v,q,6

and the inequality

S > inf L('', ti) (6.14)

can be shown to hold. To obtain a lower bound for S, then, one needs to minimize L over

all t). As with test cases covered in previous chapters, however, only for very specific choices

104



of xF can we actually evaluate L and produce meaningful lower bounds for S.

6.3 Initial Approach

In our first attempt at producing an error bounding algorithm for the Stokes system, we take

a straight-forward extension from the method as developed for the Poisson equation as well

as the governing equations of linear elasticity. This approach produces results with which

we are, for the most part, familiar with. The fact that we are now dealing with a saddle

problem, however, will have significant implications for our algorithm.

6.3.1 Energy Balance

To see what would happen when we apply our error bounding algorithm to the Stokes

problem, we start by deriving the expression for energy equality. Setting U = u, we have

Ne

SL j (UXi(T11 - P) + Ul,x2 T12 - uf1 1)dx -] ui((hi - P)r 1 + 12n 2)ds = 0
j=1
Ne

E j (U2,xi_21 + U2,X2 (T22 - P) - U2 f 2 )dx -] U2 (# 2 1 m1 + (#22 - p)r 2)ds = 0
j=1 fQ

Ne

E - j (P'xiU1 +P,X2U2 )dx + p(Uini + ft2 n2 )ds - 0
j=1
Ne

>31 -F,1 + 2T11,x1[tu1)dx 2T2 1 uiln1ids 0

Ne

22 +T22,x2U2dX - 2T22 kt222d 0

N,

if 2  T12 ,xiu 2  T12 , 2 , dX - 22)ds = 0 (6.15)
j=1

which after some simplification result in

105



a(u, u) - 1(u) - -(T 2 +-2, + 2r 2)-u-f dx
ju 2p 1

+ (Ci[[u]: [[u]] + Dil [p]2 )ds - J -gNds

+ liD ( n+) : (u+ - D) 9 n+ - (r' 9D) n)ds. (6.16)

The adjoint contribution to the Lagrangian is given by

= j('ii (o - q) + V)l,x,2 12 - - j i((&u - &)i 1 i2n 2)ds

+ (V2, +21+02,X(022 - q) - 42f 2)dx - 2 (&21ni + (&22 - n2))ds

- ( vi + ,x2 v2 )dx + j (Wini + i 2 n2 )ds

+ - j'icJi + 27n,x,/fvi)dx - 27yiipi1nids

+ j Y22U22 + 2y 22 ,X2/uv2)dx - 272 2 Pi2 n2 ds
2p Q aQ

+ ( -+P(Y 1 2 ,xlv 2 + U12,, 2vi))dx - Y12 /(i)2ni + i 1n2)ds}.

(6.17)

We are now ready to minimize the Lagrangian. Setting the variation of L with respect to q

equal to zero requires the constraint

(6.18)-V9,x1 - V2,X = 0

to be satisfied pointwise in the domain, Q in order to produce a bounded minimum for L.

Setting the variation of L with respect to v and a equal to zero produces other constraints

and minimizers which are completely analogous to that of which we have already encountered

and can handle. The incompressibility condition presented by (6.18), however, poses a serious

106

a (x, t3) - 1 (P)



difficulty. Short of actually producing the exact solution, it is impossible to satisfy (6.18)

pointwise for any non-trivial problem.

6.4 Proposed Approach

From what we have seen earlier, one needs to define the Lagrangian in such a manner so as

to not trigger the incompressibility constraint as given in (6.18) when attempting to evaluate

(6.14). This does not imply that the incompressibility constraint cannot appear in any form;

but rather that it is necessary to avoid having the condition appear in its strong form such

as shown in (6.18). Here we present a method to achieve that.

6.4.1 Energy Balance: Alternative Approach

To develop our error bounding algorithm for the Stokes problem, we need to start by deriving

an alternative expression for the energy equality, which lies at the heart of the proposed

algorithm. Setting v = u, q p and - = -r and using the following definition for -r

2p - p p_(IU + au) ,( .9

,(-'- + u) 2y' - p

we have, for each element Qj

j (ui,xirT + Ul,x 2 T12 - uifi)dx - f i23 ul( ljni + i2n 2 )ds 0

J(2,x1T21 + U2,x 2T22 - U2 f 2 )dx - j U2 ( 21r1 + i2 2n2 )ds = 0

-t (r (TI + p) + 2T, 1,xl1pui)dx - j Ti27iifinids = 0

{ (722 (T22 + p) + 2T2 2 ,X2 1 u2 )dx - 2 T2 2 [tIf2n 2ds = 0
2j(y ±aj}

-' j (-r12Tl2 + P(Ti2,xiU2 + T12,22UI)dx - JajP(_r12f2nl + ftin2)ds =0 (6.20)

107



which may be written as

N,

YZ fj((iT),x + (u1712 ),22 + (t2712),x1 + (U2T22 ),X2)dx -

j=1 "i

(ui(- jni+ w 1 2 n 2 )+ ft1 (Trlnli+ T1 2 n 2 ))ds +

J( 2(1-i 2 ni+ i 22n 2) + f12 (r 12 n1 + T22n2 ))ds +

(Ti 2 + 2+ 2 + p(' + T12+ 2p)) -ulf1 - u 2f 2 dx =0. (6.21)

After cancelling contributions from interior integrals with those of boundary integrals, we

end up with

a(u,(u)-(u) =2 + -rT2+ 2r2+ p(r+ T12)) - U - f dx

+ (a(u+ n+): (u+-g)9n+ -'gD n)ds

- j u-gNds+FJC1[u] [[u]]ds. (6.22)

The adjoint contribution to the Lagrangian is given by

= (1,xiill + V)1,X 2 U12 - O1 f 1 )dx - 1j 1(&nni + 6 12n 2)ds

+ (V2, 1U21 + 4 '2,X 2 922 - 0 2 f 2 )dx - j 2 (u21ni + &2 2n 2)ds

- ( Xjv1 + ,x2v 2 )dx + j (v1 n1 + v2 n2 )ds

+ (-y1 1 (u 1 1 + q) -- 27i,xj1 iv1)dx - 2' 1 1 up1 rids

+ ((22(022 q) + 2 22,X2/iv 2 )dx - 27 2211 2 n2 ds

+ 1{f ( 12U 12 + p(712,x1v2 + Ui 2 ,X2 vi))dx - j y12/-#( 2 1 + 1n 2 )ds}.

(6.23)

108

a(xF, b) - I(P)



Before we proceed with the minimization, we add the term

E - ar C [[v]] : [[v]]ds

to the Lagrangian. We then set a, ar -> oo, which has the effect of imposing the conditions

VlaQD = gD, [vijfp 0

and results in more accurate bounds as we now minimize over a smaller space. Setting the

variation of C with respect to v equal to zero results in the constraints

-,x1 + 'Yii,x1 + 712,x 2 -- fi + f = 0

- ,X2 + 'Y12,x1 + 722,x 2 - f2 + f = 0

[p- n]Ir=O, [ -yn]ja.N=-'gN+f. (6.24)

While setting the variation of C with respect to q equal to zero results in the requirement

11 + 0 2 2 ) + Yh + -22 = 0. (6.25)

We point out that the above condition can be readily satisfied; this is in direct contrast to

condition (6.18) in the first approach. Setting the variation of £ with respect to or equal to

zero necessitates the conditions

K(2oii + q) + 'hi + 2p4i,xI = 0

K(20 22 + q)+ Y22 + 2PO2,x2 = 0

2'o 12 + 712 + P(02,xi + V'1,X2) = 0 (6.26)

as well as

[V~i]r = 0, 'paPI = -'gD + g. (6.27)

109



This gives us

We note that the incompressibility constraint has been lifted. In the proposed formulation,

the stringent constraint presented in (6.18) required to achieve a bounded minimum is re-

placed with condition (6.25), allowing us to proceed with the error bounding procedure. To

simplify algebra, we introduce ( and require that

Yi1 + '722 - 2p(i4i,x + '2,x2) - 2( = 0 (6.29)

which results in

The minimization of

1
al = 2 (CT11  + 2pI1,ix + ()

1
U22 =-1 (22 + 2 PV2,x 2 + ()2K'

1
U12 = ( (72 + I(V)2,xi + 01,X2)) (6.30)

(6.14) then leads to the following results

110

1 =- 3 yj+ ± y2 + 2(V1,xj - 72,X2)

022 = - 1y + 3Y2 2 - 2Pi(V41,x1 - )2,x2)

O 2 - -{Y2 + ()2,xi + 01,x2)}. (6.28)

L* if - ,j + 'Yi,xi + 7Yi,x2 - fi + fI= 0,

-,X2 + 'Y12,xj + 'Y22,X2 - Kh 2 + V = 0,

[y - n] = 0,

inf £(v,'J) = [4'] =0, (6.31)
vEX

' larQ-- -"gD + g 0

(7 - n)|9anN ='9N +

-o otherwise.



using the expression for o given in (6.30), we arrive at the following £*

L*= I (-yi + 2p/,x,1)2 + (722 + 2pV2,X2 )2 - 2(2

+2(Y12 + P(b2,x1 + 4'1,x2)) + +i f dx

- J '- gD) nds - j 'g gNds. (6.32)
SanD faQN

Any T satisfying the sufficient and necessary conditions for a bounded minimum given in

(6.31) will produce a lower bound for S when inserted into the above expression. Even so,

only very specific choices would result in bounds of acceptable quality. In the next section

we shall outline the procedure with which to determine the optimal choice of T.

6.5 Computation of T: Infinite-Dimensional Case

We now proceed to the selection of '. We start by defining the dual variables as <4'

t, x]T and the dual problem as

-V.x+Vt+fo =0 in Q,

V = 0 in Q,

g on &QD,

xn =f on ON (6.33)

where

F 2' ~ a2 + 1~
x1 X 1 ax2

Laxi (9X2  8x2  J

We postulate that the optimal value of 4' must be a linear combination of the primal and

dual solutions and then proceed to show that this is in fact the case. We thus look for IF of

111



the form

I@ = au +3<b. (6.34)

From (6.24), we see that it is necessary to satisfy

- ,x, + Y11,x + 7Y12,x 2 - 1fi + fj= 0

- ,X2 + 712,xi + 722,42 - f 2 + f 0 (6.35)

which, given the definition of the primal and dual problems imply that one must be able to

express y as a linear combination of the primal and dual solutions. We have, for the primal

component of equations (6.35)

-&gPxi + aj(T11,x1 + T12,X 2 ) - rfi = 0

-'P,x 2 + a-Y(712,x1 + T22,X 2 ) - = 0 (6.36)

which, given the definition of r requires

-= 0, a- = -K.

The dual component of of equations (6.35) is given by

-/3 t,.1 + 0,(X11,xi + X12,x 2 ) + f = 0

-/ 3 t,-2 + 0,(X12,xi + X22,X2) + f02= 0

which, given the definition of x requires

O =- 1, a, =-1

(6.37)

112



Furthermore, in order to avoid bound gap, V, when inserted into the righthand side of (6.28),

must result in a self-consistent set of equations. We can thus conclude

a.0 = - K, Ogb = 1.

In summary, we have

(6.38)-' = 1,

resulting in the following expressions for [

+ OxOxj + K6ijp - /- +
OXj

We also note that the following relations hold if we set ( = rp

-T1 - T2 2 + 2qp(ui,xi + u2,X2 ) - 2(

Xii + X22 - 2(#1,x1 + 2,X2)

allowing (6.29) to be satisfied. AF is then given by

113

p = -aU+ p

P O=- j + +is =-ri'Yij = lIxj -xi + = J .(.3

dYz~/ ap7 xp Xij - (6.39)

Dxi
(6.40)

0

(6.41)

a,,= -Kagq)= - K, a =0,

O = -1, AY = 1

aui
7ij Ky -

(9xj



6.6 Computation of T: Finite-Dimensional Case

We now proceed to the computation of 'h, such that all the conditions in (6.31) are met.

We start by solving a pair of global problems; the primal problem given by (6.1) and the dual

problem given by (6.33). rom their solution we obtain Uh, r', P as well as h, i, E. We then

average Uh and 00h over all elemental vertices and interfaces to obtain fih and h in order to

satisfy the constraint of continuous '4. We set

=h -nh + Oh. (6.43)

6.6.1 Elemental Reconstruction of -y

We start the reconstruction of _Yh by solving the local primal problem

V - n= - f -0

_ h- ;T2 2 + 2li,Ix~ + u2h, ) -2( 0

nh n -p

in Qj

in Qj

on a0j (6.44)

and the local dual problem

-V .- i + Vih + f = 0 in

h1 + 2h2 - 2p(5,x + 52,x,) = 0 in

ih - h ' l - E on

Qj

Qj

DQ,. (6.45)

114

ly= tyP +( .2

L (6.42)



The solution of (6.44) and (6.45) involves subdividing each element, Qj into three subele-

ments, as we have done in the linear elasticity implementation. Aside from the fact that we

are dealing with different equations here, the methodology is identical to the linear elasticity

case as regards local post-processing. After solving local problems (6.44) and (6.45), Yh is

given by

'Yh -: Kh- Xh* (6.46

We can then summarize the steps involved in the computation of 'h as follows

1. Solve (6.1) and (6.33) by LDG for obtain Uh, r', P and 4h, i,L

2. Average Uh, (P at all elemental vertices and interfaces to obtain Iih, /h

3. Subdivide each element, Qj,VQj E Q into three subelements

4. Perform local reconstruction of primal and dual solutions as given in (6.44) and (6.45)

5. Set '/h = -ruh + h and 11 = -Ktrh - ih

Algorithm 6: Computation of %Ph: Stokes

6.6.2 Bound Optimization

With the aforementioned choice of "h, the bound gap is given by

AS= LLi 4 (li - 2,i4) 2 + (~r 2pai 2 )2 - 2(2

j=1

+(~rl- (, + fi, ))2 + -[(i +2p )2

+( 2+ 2[ ,x2)2 + 2(22 + piiQ, + hX))2 dx. (6.47)

Note that (6.41) ensures

(~- - 2piii )2 + (7 - 2hpflh,) 2 - 2(2 > 0

115



which implies AS > 0. To obtain the optimal value for K, we set

-AS= 0

which results in

, f{(I - 2ipii ) 2 + (il2 - 2pLfh )2 -2 (2 + 2(~4 - pL(l,x + ft, )) 2 }dx

j \ z f{(X11 + 2# ) + (fl2 + 2pI,2)2 + 2(2 + p(ph + X2,X 2)) 2 }dx

6.7 Stokes Error Bound Example: Channel Flow

For this test case we solve

-V r'+Vp - f = 0 in Q = [0, 1] x [0, 1],

V-u=0 in Q,

u = gD on (6.48)

which, given appropriate gD, produces sufficiently regular analytical solutions such that one

can verify as to whether or not the optimal asymptotic convergence rate is achieved by the

algorithm. For f = 0 and boundary conditions

4(x2 -x)

U1 8(X2 - X2)

10

if

if

if

x1= 0

31 = 1

x 0,1

U2{

if

if

X2 = 0

X2 = 1.

(6.49)

116



The exact solution to the problem is given by u, = 4(1+ X1 ) (x 2 - 2), U2 = 4/3x2 - 2x +1/3

and p = -4(x2 + 2x 1 ) + 4(x - X2 ). We consider the output

10(u)= jfVu2 dx

with

1 if < X, < 3

f0 t if~ -2 (6.50)
0 otherwise.

The velocity vector plot and the pressure contours of the h = 1/16 solution using P2 dis-

cretization are shown in figures (6-1) and (6-2). The grid convergence results for Uh and Ph

are shown in table (6.1), where it is seen that the expected order hk+1 convergence rate for

velocity and order hk for pressure are indeed obtained. The AS grid convergence results are

shown in table (6.2), where it is seen that the optimal asymptotic convergence rate of h2k is

also obtained.

h |leuJIL2 (Q) order IIepIIL 2 () order
1/4 5.227515 x 10-4 - 1.142526 x 10- 3  -

1/8 6.569722 x 10 2.99 1.142526 x 10' -
1/16 8.212365 x 10-6 3.00 2.856415 x 10-4 2.00

Table 6.1: uh,ph Grid Convergence: Stokesi

h S S- S+ order

1/4 0.34375 0.3435539 0.3440859 -
1/8 0.34375 0.3437344 0.3437764 3.66

1/16 0.34375 0.3437489 0.3437519 3.81

Table 6.2: AS Grid Convergence: Stokesi

117



C

C

(

(

0.2 0.4 0.6 0.8

Figure 6-1: Velocity Vector: Stokesi

0.8

0.6

0.4

0.2

v)

Figure 6-2: Pressure Contour: Stokesi

118

8

- - -A A A- - ----

.6 - -------

.4-

. - -- / A A -A- -A A it----- --

I

0



6.8 Stokes Error Bound Example: Drag on Square

Cylinder

For this test case we solve the more interesting problem of

-V r'+V(p + ) - f = 0 in Q,

V-u=O in Q

for f = 0 for the geometry shown in (6-3) with the conditions of

(6.51)

a
xp= -1 in

u=O on

u, p -+ periodic on

0Q8 = Qw U Qcylinder,

OQ \ 08a

where 80, refers to all solid boundary. We are interested in obtaining bounds for the output

10(u) = {CScylinder
(T11ni + T1r2n 2)ds

which is also the total drag on the square cylinder. The velocity vector plot and the pressure

contours of the solution obtained on the h = 1/64 mesh, P2 discretization are shown in

figures (6-4) and (6-5). We point out that while the singularities present in the problem

prevent the optimal fourth-order convergence rate from being realized, effective bounds were

nevertheless obtained; the evidence of which is shown in table (6.3). Here S* is the output

computed from the solution obtained on the h = 1/64 mesh.

119

(6.52)



1
I ~~1

~~~~1

~~~*1

-in
~~~*1

* x
2

-1

1/2

Fb w

Figure 6-3: Problem Setup: Stokes2

Elements S* S- S+ Order

192 -0.484598588 -0.487292 -0.483790 -
768 -0.484598588 -0.485439 -0.484383 1.73

3072 -0.484598588 -0.484883 -0.484553 1.68

Table 6.3: AS Grid Convergence: Stokes2

120

U



0.8

0.6

0.4-

0.4

-I

0.6 0.8 1

Figure 6-4: Velocity Vector: Stokes2

0.2 0.4 0.6 0.8 1

Figure 6-5: Pressure Contour: Stokes2

121

0.8

0.6

0.4-

0.2

0

-

0.2-

0 --
0 0.2

I



122



Chapter 7

Conclusion

Numerical solution of partial differential equations has by now become a standard tool for

engineering design. Given an appropriate mathematical model describing a physical problem

of interest, we have ever greater computational resources at our disposal to implement new

and more powerful numerical algorithms deigned to accurately solve these problems. To

fully exploit this tool, however, we need guarantees of accuracy and reliability. For these

numerical solutions to be truly useful in the engineering decision making process, one must

have confidence that the requisite level of precision has indeed been met. Providing this

guarantee has been the subject of mush research of late.

7.1 Contribution

This thesis proposes a new approach to achieving the stated objective of evaluating the

reliability of numerical solutions to partial differential equations. The proposed method

is capable of providing strict bounds for linear functional outputs derived from the exact

solution of linear coercive partial differential equations; and do so in a cost-effective manner.

The method extends the capabilities of current error bounding algorithms in a variety of

ways.

First, the algorithm is based on and therefore produces error bounds for the Local Dis-

continuous Galerkin (LDG) method, which has emerged as an important numerical method

for both compressible and incompressible computational fluid dynamics. Up to now, only

123



asymptotic a-posteriori error estimates in the energy or L2 norm are available for the LDG

discretization. Asymptotic error estimates, of course, cannot provide guarantees that the

desired level of precision has been met and thus compromises the usefulness of the numerical

solution in the decision making process. In practical applications, we are also much more

likely to be interested in the error in certain output functionals such as total surface stress,

average boundary flux or deflection; quantities which are functions of the field variables but

whose error cannot be bounded based on the error in the energy or L2 norm. The proposed

algorithm addresses these issues by producing uniform error bounds for linear functional

outputs of linear coercive partial differential equations discretized with the LDG method.

The upper and lower bounds on the linear functionals in question are uniform in that they

guarantee the same functionals evaluated with the exact solution are bracketed within.

Secondly, basing the proposed method on the LDG discretization offers numerous ad-

vantages over existing a-posteriori error bounding algorithms. By exploiting the properties

of discontinuous Galerkin discretization, we are able to treat problems that have thus far

eluded our grasp. We can now count the high Peclet number convection-diffusion equation

among those whose outputs we can effectively bound, even when the underlying numerical

solution upon which the method is based fails to resolve the boundary layers that may be

present in the exact solution. Another important contribution of the proposed method is

its ability to handle saddle problems such as Stokes flow. The incompressibility constraint

inherent in this class of partial differential equations has frustrated previous attempts to pro-

duce the type of uniform error bounds in discussion here for the Stokes problem. But here,

with an approach that employs the LDG discretization as building block, we have succeeded

in producing strict upper and lower bounds on the linear functionals of the Stokes problem.

Like most existing error estimation routines, the method presented here requires only local

computations beyond the solution of a global primal and dual problem. But unlike most

implicit methods, a class of a-posteriori error estimation algorithms to which the proposed

method also belongs, the method presented herein does not require the complicated equi-

libration procedure that implicit methods typically need and is thus computationally more

efficient.

124



7.2 Recommendations

Within the framework of the method proposed by this thesis are several possible directions

of future research. As the method is currently formulated, it is only applicable to polygonal

domains. Since many problems involve curved boundaries, one should certainly investigate

extending the algorithm to such cases. Closely related to this issue is the limitation of

the current method that both boundary and interior forcing data be piecewise polynomial.

Non-polynomial forcing is, of course, also frequently encountered in practice. In either case,

the extension of the proposed algorithm would most likely involve non-polynomial basis

functions, a task which the relative flexibility of discontinuous Galerkin discretization makes

simpler.

More ambitious and far more difficult is the extension of the proposed algorithm to

nonlinear problems. One might start with simple quadratic nonlinearity like those present

in the Burger's equation. This would require a different formulation for the Lagrangian as

the current formulation will not suffice. If this is possible, then, with the incompressibility

constraint already resolved, one can reasonably contemplate a path to the incompressible

Navier-Stokes equations; surely to be of interest to many. The feasibility of extending the

type of strict a-posteriomi error bounds presented in this work to nonlinear problems, however,

remains an open question.

125



126



Bibliography

[1] M. Ainsworth and J.T. Oden. A unified approach to a posteriori error estimation based

on element residual methods. Numer. Math., 65:23-50, 1993.

[2] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis.

Comp. Meth. Appl. Mech. Engrg., 142:1-88, 1997.

[3] D. N. Arnold. An Interior Penalty Finite Element Methold with Discontinuous Ele-

ments. PhD thesis, University of Chicago, Chicago, IL, 1978.

[4] D. N. Arnold. An interior penalty finite element methold with discontinuous elements.

SIAM J. Numer. Anal., 19:742-760, 1982.

[5] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous

Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749-1779, 2002.

[6] I. Babuska and W.C. Rheinboldt. A posteriori error estimates for adaptive finite element

computations. Int. J. Numer. Meth. Engrg., 123:1579-1615, 1978.

[7] I. Babuska and W.C. Rheinboldt. Error estimates for adaptive finite element computa-

tions. SIAM J. Numer. Anal., 15:736-754, 1978.

[8] I. Babuska and W.C. Rheinboldt. A-posteriori error analysis of finite-element for one-

dimensional problems. SIAM J. Numer. Anal., 18:565-589, 1981.

[9] R. Bank and A. Weiser. Some a-posteriori error estimates for elliptic partial differential

equations. Math. Comp., 44:283-301, 1985.

127



[10] T. Barth and P. Charrier. Energy stable flux formulas for the discontinuous Galerkin

discretization of first-order nonlinear conservation laws. Technical Report NAS-01-001,

NASA, 2001.

[11] R. Becker, H. Kapp, and R. Rannacher. A-posteriori error estimation and mesh adap-

tation for finite element methods in elasto-plasticity. SIAM J. Contr. Opt., 39:113-132,

2000.

[12] R. Becker and R. Rannacher. Weighted a-posteriori error control in finite element

methods. Technical Report 96-1 (SFB359), IWR, Heidelberg, 1996. preprint.

[13] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Cambridge, Massachusetts,

1999. (2nd Ed.).

[14] R. Bustinza, G. Gatica, and B. Cockburn. An a-posteriori error estimate for the local

discontinuous Galerkin finite element method applied to linear and nonlinear problems.

J. Sci. Comp., 22:147-185, 2005.

[15] P. Castillo. Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM

J. Sci. Comput., 24:524-547, 2002.

[16] P. Castillo. An a-posteriori error estimate for the local discontinuous Galerkin finite

element method. J. Sci. Comp., 22:187-204, 2005.

[17] B. Cockburn, S. Hou, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws IV: The multidimensional case.

Math. Comp., 54:541-581, 1990.

[18] B. Cockburn, G. Kanschat, and D. Schotzau. The local discontinuous Galerkin method

for Oseen equations. Math. Comp., 73:569-593, 2003.

[19] B. Cockburn, G. Kanschat, D. Schotzau, and C. Schwab. Local discontinuous Galerkin

methods for the Stokes system. SIAM J. Numer. Anal., 40:319-343, 2002.

128



[20] B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinu-

ous Galerkin finite element method for conservation laws III: One-dimensional systems.

J. Comput. Phys., 84:90-113, 1989.

[21] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for scalar conservation laws II: General framework. Math. Comp.,

52:411-435, 1989.

[22] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-

dependent convection-diffusion equations systems. SIAM J. Numer. Anal., 28:1282-

1309, 1998.

[23] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws V: Multidimensional systems. J. Comput.

Phys., 141:199-224, 1998.

[24] B. Cockburn and C.-W. Shu. High-order methods for computational physics. In T.J.

Barth and H. Deconinck, editors, Lecture Notes in Computational Science and Engi-

neering, volume 9. Springer, 1999.

[25] B. Cockburn and C.-W. Shu. Superconvergence of the local discontinuous Galerkin

method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal., 39:264-285,

2001.

[26] B.M. Fraeijis de Veubeke. Stress Analysis. John Wiley & Sons, New York, New York,

1965.

[27] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate

essentially non-oscillatory schemes, III. J. Comput. Phys., 131:3-47, 1997.

[28] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods

for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comp., 24:974-1004, 2003.

[29] P. Houston, B. Senior, and E. Suli. hp-discontinuous Galerkin finite element methods

for hyperbolic problems: Error analysis and adaptivity. Internat. J. Numer. Methods

Fluids, 40:153-169, 2002.

129



[30] A.M. Sauer-Budgeand J.Bonet, A.Huerta, and J. Peraire. Computing bounds for linear

functionals of exact weak solutions to Poisson's equation. SIAM J. Numer. Anal., 2003.

Submitted.

[31] C. Johnson and J. Pitkaranta. An analysis of the discontinuous Galerkin method for a

scalar hyperbolic equation. Math. Comp., 46:1-26, 1986.

[32] L. Krivodonova and J.E. Flaherty. Error estimation for discontinuous Galerkin solutions

of two-dimensional hyperbolic problems. Adv. Comp. Math., 19:57-71, 2003.

[33] P. Ladeveze and D. Leguillon. Error estimation procedutre in the finite element method

and applications. SIAM J. Numer. Anal., 20:485-509, 1983.

[34] M. Paraschivoiu and A.T. Patera. A hierarchy duality approach to bounds for the

outputs of partial differential equations. In P. Ladeveze and J.T. Oden, editors, Comp.

Meth. Appl. Mech. Engrg. Elsevier, 1998.

[35] M. Paraschivoiu, J. Peraire, and A.T. Patera. A-posteriori finite element bounds for

linear-functional outputs of elliptic partial differential equations. Comp. Meth. Appl.

Mech. Engrg., 150:289-312, 1997.

[36] N. Pares, J. Bonet, A. Huerta, and J. Peraire. The computation of bounds for linear-

functional outputs of weak solutions to the two-dimensional elasticity equations. Elsevier

Science, 2004. Submitted.

[37] J. Peraire and A.T. Patera. Bounds for linear-functional outputs of coercive partial

differential equations: local indicators and adaptive refinement. In P. Ladeveze and J.T.

Oden, editors, Advances in Adaptive Computational Methods in Mechanics. Elsevier,

1998.

[38] T. Peterson. A note on the convergence of the discontinuous Galerkin method for a

scalar hyperbolic equation. SIAM J. Numer. Anal., 28:133-140, 1991.

[39] N.A. Pierce and M.B. Giles. Adjoint and dfect bounding and correction for functional

estimates. J. Comput. Phys., 200:769-794, 2004.

130



[40] R. Rannacher and F.-T. Surrmeier. A feed-back approach to error control in finite

element methods: applications to linear elasticity. Comp. Mech., 19:434-446, 1997.

[41] R. Rannacher and F.-T. Surrmeier. A-posteriori error estimation and mesh adapta-

tion for finite element methods in elasto-plasticity. Comp. Meth. Appl. Mech. Engrg.,

176:333-361, 1999.

[42] W.H. Reed and T.R. Hill. Triangular Mesh Methods for the Neutron Transport Equa-

tion. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos,

NM, 1973.

[43] A.M. Sauer-Budge and J. Peraire. Computing bounds for linear functionals of exact

weak solutions to the advection-diffusion-reaction equation. SIAM J. Sci. Comput.,

2003. Submitted.

[44] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. J. Comput. Phys., 77:439-471, 1988.

[45] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes II. J. Comput. Phys., 83:32-78, 1989.

[46] E. Suli, C. Schwab, and P. Houston. Discontinuous Galerkin Methods: Theory, Com-

putation and Applications. In Hp-DGFEM for partial differential equations with non-

negative characteristic form, editor, Lecture Notes in Computational Science and Engi-

neering, volume 11. Springer, 2000.

[47] B. van Leer. Towards the ultimate conservation difference scheme, V. J. Comput. Phys.,

32:1-136, 1979.

[48] D.A. Venditti and D.L. Darmofal. Grid adaptation for functional outputs: Application

to two-dimensional inviscid flows. J. Comput. Phys., 176:40-69, 2002.

[49] D.A. Venditti and D.L. Darmofal. Anisotropic grid adaptation for functional outputs:

Application to two-dimensional viscous flows. J. Comput. Phys., 187:22-46, 2003.

131



[50] M. Zhang and C.-W. Shu. An analysis of three different formulations of the discontinu-

ous Galerkin method for diffusion equations. Math. Mod. Meth. Appl. Sci., 13:395-413,

2003.

132


