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ABSTRACT

Theoretical predictions of specific strength and specific stiffness of
nanocomposites make them attractive replacements for alloys and fiber reinforced
composites in future generations of numerous structures. The reliable and safe utilization
of nanocomposites will require their periodic characterization with nondestructive
evaluation. When subjected to ultrasonic waves, nanocomposites often exhibit
attenuation that is an order of magnitude higher than that of carbon fiber reinforced
polymeric composites. Thus, an accurate model of ultrasonic wave propagation in
nanocomposites as well as several other modem composites must include attenuation.

Lattice modeling is a heuristic approach that consists of the discretization of
solids into regularly spaced particles interconnected via nearest-neighbor interactions.
For example, the mass-spring-lattice model (MSLM), a lattice model for the simulation
and visualization of elastic wave propagation, has been used in favor of other finite-
difference and finite-element methods due to its straightforward implementation of
boundary conditions and relatively inexpensive explicit numerical integration.

Its utility notwithstanding, MSLM discretization produces documented, yet
previously unresolved and uncharacterized, numerical errors. In addressing errors
associated with numerical anisotropy and surface wave propagation, two main points are
revealed. (1) For isotropic materials having a Poisson's ratio less than 0.4, 20 grid spaces
per shear wavelength are required to ensure phase speed errors of less than 1%. (2) For
precise implementation of MSLM traction boundaries, correction terms are formulated.

Further, the MSLM is not capable of modeling ultrasonic wave propagation in
nanocomposites and many thick composites, polymers, and nanocrystalline metals, in
part, because of the associated losses due to attenuation. The mass-spring-dashpot lattice
model (MSDLM) is therefore formulated to simulate and visualize wave phenomena in
attenuating, viscoelastic media. Via the dispersion relations for a standard linear solid,
the MSDLM spring and dashpot constants are set to match the corresponding wave
propagation phase speeds and attenuation. The convergence, stability, and accuracy
criteria for the MSDLM are presented for one and two-dimensional models. Additional
verification is provided through numerical examples and comparisons with known
solutions.

The homogenization of the elastic and viscoelastic mechanical properties of the
nanocomposite constituents is implied in the use of the MSDLM. Assuming the
characteristic wavelength is much larger than the characteristic length scale of the
interrogated nanocomposite phases, interaction of ultrasonic waves with nanometer
constituents is captured by the inherent, frequency-dependent attenuation.
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To illustrate a practical application of lattice modeling, mass-spring-dashpot
lattice models for the ultrasonic nondestructive evaluation of an attenuating
nanocomposite containing subsurface cracks are developed. Full-field wave propagation
simulations of these models as well as the corresponding model of a pristine
nanocomposite are conducted, and their relative surface displacements are presented.
These relative surface displacements of the cracked and pristine models reveal guidelines
for the identification of subsurface cracks in nanocomposites and other attenuating
materials.

Thesis Committee:

Professor James H. Williams, Jr.: Committee Chairman, Department of Mechanical
Engineering and Program in Writing and Humanistic Studies, MIT

Professor Kenneth R. Manning: Program in Writing and Humanistic Studies, MIT

Professor Hyunjune Yim: Department of Mechanical & System Design Engineering,
Hongik University, Korea
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Chapter 1: Thesis Introduction

1-1 INTRODUCTION

Modem composites consist of a matrix (generally polymer, metal, or ceramic) and

reinforcement (generally fibers, platelets, or spheroids) that are combined to produce

materials having mechanical properties tailored for specific applications. Substandard

fabrication procedures, environmental exposure, and handling or service deterioration can

affect their mechanical properties without effect on their visual appearance.

Because composite components are subjected to increasingly demanding

structural requirements, their periodic characterization by various nondestructive

evaluation (NDE) techniques is an important aspect of ensuring their reliable

performance. In ultrasonic NDE, prescribed time-dependent waves are propagated

through the interrogated structure. Due to reflections, scattering, and absorption of these

waves, output surface tractions and/or displacements can be detected, and ideally related

to deterioration or inherent characteristics of the component.

Theoretical predications for the specific strength and specific stiffness of

nanocomposites make this novel class of materials attractive replacements for alloys and

modem fiber reinforced composites in a variety of future structures. When subjected to

ultrasonic waves, nanocomposites often exhibit attenuation that is an order of magnitude

higher than that of modem carbon fiber reinforced composites. Thus, an accurate model

of ultrasonic wave propagation in nanocomposites must include attenuation.

Numerical methods can provide a powerful tool for simulating ultrasonic waves.

The mass-spring lattice model (MSLM), for instance, has been used for modeling,

simulating and visualizing elastic wave phenomena by discretizing a material into an

assemblage of particles interconnected with springs [1-1 through 1-4]. However, there

are unresolved and uncharacterized errors associated with MSLM discretization [1-5,

1-6].

Furthermore, the MSLM is not capable of modeling ultrasonics in

nanocomposites, largely, because of the associated losses due to attenuation [1-7,1-8].

The objectives of this thesis are summarized in the following four steps.

1. The investigation of the numerical convergence of phase speed and the

consistency of traction boundaries in the MSLM.
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2. The development of a computational model for simulating broadband ultrasonic

wave propagation in highly attenuating media.

3. The presentation of visual simulations of the propagation, scattering and

reflection of waves in nanocomposite materials and structures, having both

reflecting and absorbing boundaries.

4. The generation of parametric input-output ultrasonic wave spectra due to the

presence of overt flaws in nanocomposites and attenuating materials.

1-2 THESIS ORGANIZATION

The thesis is organized into five chapters.

Chapter 1 describes the motivation, outlines the objectives, and describes the

organization of the thesis.

Chapter 2 begins by reviewing the historical evolution of the MSLM and

describes numerical errors associated with MSLM discretization. It explores the

numerical phase speed error for plane waves and offers discretization guidelines on the

required number of grid spaces per wavelength. Futhermore, correction terms to

precisely implement traction-boundary conditions are formulated and verified.

Chapter 3 formulates the mass-spring-dashpot lattice model (MSDLM) for the

simulation and visualization wave phenomena in attenuating viscoelastic media. The

exact dispersion relations of a standard linear solid model are presented and rigorous

convergence analyses on the corresponding discretization is investigated. Several

numerical examples are presented as verification.

In Chapter 4, the MSDLM is applied to the modeling of ultrasonic NDE of an

attenuating nanocomposite containing subsurface cracks. The full-field displacement

field of scattering in the vicinity of horizontal and vertical cracks in an attenuating

nanocomposite half-space is explored. Relative surface displacements of the cracked and

pristine models reveal guidelines for the identification of subsurface cracks.

Chapter 5 outlines the contributions of the thesis.
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ABSTRACT: The mass-spring-lattice model (MSLM), a numerical model for the
simulation of elastic wave propagation, discretizes an elastic solid into an assemblage of
particles interconnected with extensional and rotational springs. The MSLM has been
used in favor of other finite-element and finite-difference based methods because of its
straight-forward application of boundary conditions and relatively inexpensive explicit
numerical integration. However, various MSLM numerical errors have not been fully
investigated. A convergence analysis reveals that, for isotropic materials having
Poisson's ratio less than 0.4, 20 MSLM grid spaces per shear wavelength are required to
ensure phase speed errors of less than 1%. As Poisson's ratio approaches the
incompressible limit, the computational expense increases dramatically. Additionally,
correction terms necessary for the precise implementation of MSLM traction boundaries
are formulated and verified through a numerical example.
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NOMENCLATURE

Symbols
A unit area
C Courant number
c phase speed

D unit depth

u'v

U,V
displacement
Fourier transform of displacement

At numerical time step

force
amplification matrix
extensional spring constant
numerical grid spacing
imaginary number
indicial notation for grid position
wavenumber
number of grid spaces per
wavelength
relating to longitudinal waves
peak force per unit depth

applied force
relating to shear waves

Subscripts
center

min
P
S

std.dev.

relating to
relating to
relating to
relating to
relating to

6'

7

0

V
Ir

p
1]

0)

phase speed error
Gaussian offset
rotational spring constant
angle with respect to horizontal
wavelength
Lame constants
Poisson's ratio
ratio of circle's circumference to
diameter
density
stress tensor

eigenvalue of amplification matrix
circular frequency

center
minimum
longitudinal waves
shear waves
standard deviation
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G
g
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Chapter 2: Numerical Accuracy of Mass-Spring Lattice Model

2-1 INTRODUCTION

Numerical methods can provide powerful tools for simulating ultrasonic waves. The

mass-spring lattice model (MSLM), for instance, has been used for modeling, simulating

and visualizing elastic wave phenomena by discretizing a material into an assemblage of

particles interconnected with springs. This idea can be traced to Cauchy and Poisson in

the 1840s though their models were incomplete [2-1]. The MSLM reemerged in the

1970s, and later extended in the 1980s, through the wave propagation work of Harumi [2-

2 through 2-9], in Williams's NDE investigations during the 1980s [2-10], in Ayyadurai's

computation and visualization studies in the late 1980s [2-11,2-12], in Yim's

formulations for transversely isotropic and dissimilar materials during the 1990s [2-13,2-

14], and in Sohn's modeling of the scanning laser source technique in the early 2000s [2-

15, 2-16]. A closely related spring model, the local interaction simulation approach

(LISA), was developed in the 1990s by Delsanto [2-17, 2-18, 2-19] in order to exploit

parallel computing.

In addition to the straightforward implementation of boundary conditions such as

free surfaces and material interfaces, relatively inexpensive, explicit integration schemes

make the MSLM and LISA attractive alternatives to other finite-difference and finite-

element methods for simulating wave propagation.

However, there are computational errors involved in the MSLM discretization that

have not been thoroughly studied. For example, Yim and Sohn [2-13] investigated the

numerical phase speed error for waves traveling parallel to the MSLM grid, but the

numerical phase errors for a wave traveling at an arbitrary angle have not been

investigated.

Furthermore, it is known that the heuristic treatment of traction-free boundary

conditions in the MSLM leads to errors in wave phenomena such as the reflection of

body waves at free surfaces [2-20] and the propagation of surface waves [2-16]. To

precisely impose traction-free boundary conditions, Sohn and Krishnaswamy [2-16] used

a hybrid higher-order finite difference method [2-21] along the boundaries and MSLM

discretization in the interior; however, the stability characteristics of those systems

resulted in a less efficient numerical implementation compared to the standard MSLM.
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In order to address and characterize the MSLM accuracy, the remainder of this

chapter is divided into two main sections: (1) the convergence analysis of the MSLM

numerical phase speed error at oblique angles of incidence and (2) the investigation into

the precise imposition of traction boundaries.

2-2 MSLM PHASE SPEED ERROR

2-2.1 Continuum

The equations of motion for a plane strain isotropic elastic medium expressed in

Cartesian coordinates are

±24 2 2 2u(-
p---=(A+2p) 2 +(A+p) + (2-1)

aVaxV axay ayV

p--=(v +2p) +(A+p) + (2-2)Ct2axay aVT

where p is the density, u is displacement in the x direction, v is displacement in the

y direction, and A and p are the Lame elastic constants.

Consider a plane wave oriented at angle 9 with respect to the horizontal that is

expressed as

u(x,y,t) = fUk exp [(xk cos 0+ yk sin0 - cokt)jk (2-3)

v(x,y,t) = fVk exp[i (xk cos 9 + yk sin0-cqkt) k (2-4)

where Uk and V are the Fourier transforms of u and v, respectively, corresponding to

the wavenumber k, I= V- , and cok is the circular frequency corresponding to k.

Substituting eqns. (2-3) and (2-4) into eqns. (2-1) and (2-2) for a generic value of k

yields the matrix equation

axac, bexact Uk] = 0~ (2-5)
Cexact dexact L _ 0_

where

axact = -PCO2+ (A+ 2p)k2 cos 2 0+ 2 sin 2 9 (2-6)

bexct = (A + pk 2 sin 0 cos 0 (2-7)
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Cexact =(A + p)k 2 sin 0 cos 0 (2-8)

dexact = -pcO 2 + (A + 2P)k2 sin 2 0+ pk 2 cos 2 0 (2-9)

In order for solutions to eqn. (2-5) to exist, the determinant must vanish, or

ad -bc =(- p2O2 + k2(A + 2p)X- 2pO2 + k2p)= 0 (2-10)

Solving eqn. (2-10) leads to the dispersion relations for the two fundamental types of

wave propagation in an unbounded isotropic linear elastic solid as

CO = Cpk, (2-11)

O = Csks (2-12)

where

C = + 2p (2-13)pp

Cs =- (2-14)
p

Here c is the phase speed, subscript P refers to a longitundinal wave in which the

continuum particle displaces parallel to the direction of wave propagation, and subscript

S refers to a shear wave in which the continuum particle displaces orthogonal to the

direction of wave propagation. (Refer to [2-22] or [2-23] for a detailed discussion of the

wave propagation in elastic solids.)

2-2.2 MSLM Dicretization

The MSLM discretization of eqns. (2-1) and (2-2), is shown in Fig. 2-1, yielding

the following equations written in component form for a particle at position (i, j) and

time t [2-13]

P +tuj -2'ui,j+'t-^'t, U + p -1-' t
p (At)2 = 2 1 -2 u-+-u

+ 2 u + ' u , _ '4 ) ( 2 -1 5 )

+ 4h'U t +t
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777
i-1,j+1 i+1, j+1

92 9
h

91

_ -M , i~ji+,

91

h
93 92

-1,j-1i~j-1i+Ij-1

h h
Fig. 2-1-Mass-spring-lattice model at interior plane-strain particle located at position (ij). [2-13]

t+At v 1 -2t v 1 t-AtvI.j + (

(At)2 = 2 v i'v_,

+ ' 2 (fvi+ij+l ±t vi +v1 +1'j_ +v 1 Viij~4tvi) (2-16)

+ U +U -u - u

where h is the grid space and At is the numerical time step. Via consistency, the

extensional and rotational spring constants are given by

g 1 =g 2 = D(A + p) (2-17)

D(A + 3p) (2-18)
4

= - (2-19)
4

where D is the unit depth.

Through von Nuemann analysis [2-13], the stability requirement for the Courant

number C is

C = c 1 (2-20)
h
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The value C =1 has been shown to be optimal in the sense that it minimizes the error in

numerical phase speed error for P waves aligned with the x or y-axis and yields the most

efficient computation time [2-13].

Consider a discrete plane wave oriented at angle 9 with respect to the horizontal

and given by

'uiI = 'U Ukexp['(ihk cos 9+ jhk sin0 - cokt)] (2-21)
k

tvii = 1 'Vexp[(ihk cos0 + jhk sin 9 - okt)] (2-22)
k

where tUk and 'Vk are the discrete Fourier transforms of 'ui,, and 'v,,j, respectively,

corresponding to the wavenumber k. Substituting eqns. (2-21) and (2-22) into eqns. (2-

15) and (2-16) yields a matrix equation having the form

I+AIu =G'u (2-23)

where

'U =tU 'V '-^'U 't-VF (2-24)

aMSLM bmsL -1 0

G = CMSLM dMsLM 0 ~1 (2-25)
1 0 0 0

[0 1 0 0

and where

2(At)2
aMSLM - ( + j)(cos kh -1) + xh(cos k.h cos kyh -1))+ 2 (2-26)

ph2

bMSLM 2- p 2  sin kh sin kyh (2-27)

pOh(2+ u)(At) 2

CMSLM = - ph2  sin k,,h sin kyh (2-28)

dMSLM = ph2 ((2 xh)(coskyh-1)+ ,(cosk hcoskyh -1))+ 2 (2-29)
pOh

In eqns. (2-26) through (2-29)

k, = kcosO (2-30)
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k, = ksinO (2-31)

The four eigenvalues of the amplification matrix G are ,,, ,s, -p and -s, where the

subscipts + or - refer to the positive and negative phases.

In light of eqns. (2-11) and (2-12), the positive phase change in one time step is

found as

OexactAt = cSkS At

exactAt = cskSAt

and the positive phase change from the numerical approximation is [2-24]

OMSLMAt = +mPln(4+p)}

60 MSLM At=Im1n( +s)}

(2-32)

(2-33)

(2-34)

(2-35)

To quantify the difference in numerical phase change relative to the exact phase

change, the error in phase is defined as

C = OMSLMAt - exacAt I/k cMSLM Cexact

Coexact At 1/k
(2-3 6)

Cexact

which is just the error in phase speed. The nondimensional forms for P and S phase

speed errors are

, = CPMSLM ~ CP = fcn,{N,C,v,O}0

CS = CSMSLM - CS = fcn 2{NS,C,v,9}
CS

where N, and Ns are the number of grid spaces per P and S wavelengths,

respectively, and given by

N = 2;h
kph

Ns = 2;T
kSh

(2-39)

(2-40)

The errors in wave speed for the case when v = 0.377, typical of a bulk metallic

glass nanocomposite [2-25], for 0= 00 and 0=45 are shown in Figs. 2-4 and 2-5,

respectively. A few observations are noted.

24
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First, when Ns >> 1 and N >> 1, all phase speed convergence is of second order

and is manifested in the slope of two (2) on all the logarithmic plots of Figs. 2-4 and 2-5.

Second, as N >> 1 in Fig. 2-4, there is no P phase speed error for waves, which is in

agreement with [2-13]. In Fig. 2-4, when N, = Ns, the P phase speed error is smaller

than the S phase speed error.

Typically in engineering practice, c, = es = e is often specified, and N, and Ns

are adjusted accordingly. According to Figs. 2-4 and 2-5, at 0 = 00, to achieve es <0.01

requires Ns >10; at 0=45', to achieve 6, <0.01 and cs <0.01 requires N, >8 and

Ns >10, respectively.

The nondimensional form for these requirements is given as

N, = fcn3{, C,v,9} (2-41)

Ns = fcn 4{, C,v,9} (2-42)

In Fig. 2-6, the numerical evaluation of eqns. (2-41) and (2-42) is achieved for the

case of C = 1, 0 < 9< 90', and 0 v < 0.5. (v can theoretically approach -1 as a lower

limit, but most engineering materials have positive values of v.)

A few observations can be made about Fig. 2-6. First, N, and Ns are symmetric

about the angle 9= 450, which follows directly from the symmetry of the MSLM for an

interior particle as shown in Fig. 2-1. Second, as discussed in [2-13], when 9 -> 0' and

9 - 90' the phase error decays to zero as Np -+ 0. Third, for a fixed v, as 9 - 45' N,

is maximum. Fourth, holding 9= 45', Ns has a minimum near v =0.30 and increases

dramatically as v -> 0.5. Fifth, holding -+0 or 0=90', Ns is a monotonically

increasing function of v.

Because there is only a single grid space parameter, for a given error requirement

either N, or Ns will limit the accuracy. Using, the relationship between the P and

S phase speeds as

Cs 1-2v

c, 2(- v)

26
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a single parameter Ns is defined as

Ns(c,C,v) = max max{N,(cC, v,0) , max{Ns(6,C,v,9)} (2-44)
0 ~ 1-12 v 0

which represents an equivalent grid spacing per S-wavelength that would result in all

waves at all orientations propagated with phase speed error less than 6.

Figure 2-7 shows Ns as a function of e = 0.05, 6 = 0.01, and e = 0.005. The

more demanding accuracy requirement shift the curves up to higher required grid spaces

per wavelength. In the regions 0 v < 0.12 and v >0.35, the accuracy is limited by

phase error of S-waves propagating at 9 = 45'. The relatively shallow line segment from

0.12 ; v 0.35 is due to accuracy requirements on P-wave propagating at 9 = 45'. To

require c < 0.01 for all P and S plane waves in a material where v < 0.40, a conservative

rule is therefore Ns > 20.

30

- - =0.05

25- c 0.01

s0.005

10

z

0
0 0.1 0.2 0.3 O.4 0.5

Poisson's Ratio, v

Fig. 2-7-Number of grid spaces per S-wavelength, as functions of Poisson's ratio v , required for error in

phase speed for all P and S waves plane waves to be less than 5.0, 1.0 and 0.5 percent.
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2-3 MSLM TRACTION BOUNDARY CONDITIONS

In this section, the consistency of the MSLM traction boundary condition is

evaluated via a comparison with various finite continuum elements. This approach has

been used previously [2-12], but it was incorrectly applied and led to non-physical

results.

2-3.1 One-dimensional MSLM

Before preceding to two-dimensional traction boundaries, a one-dimensional

example is explored. A one-dimensional schematic of the MSLM dicretization in the

vicinity of a boundary is shown in Fig. 2-8a. The corresponding equation of motion is

2g 2R~
PUN (uN-1 UN) + AX (2-45)

Ah A

where g is the spring constant, A is the unit cross-sectional area, and Rx is the surface

force applied to the outer particle.

The Taylor series expansion of the difference equation is

x

g g9

N-1 N R (a)

h h/2
boundary face

r~ c h2)o- + (b)
2 ax

Fig. 2-8--(a) Schematic of one-dimensional MSLM discretization in vicinity of boundary detailing
computational cell boundaries and neighbor interactions. (b) Free-body diagram of forces on continuum
element. Here spring constant g is related to continuum material constants of elastic solid, RX is surface

force, h is grid space, a- is stress and A is unit cross-sectional area.
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UN -UN au

h ax -0

h a2u
2 8x 2 __

+ O(h2 )

Substituting eqn. (2-46) into eqn. (2-45) yields

p.2g cu
A 8xwO

h a2u 2 2R,+ h 2 + O(h ) +
2 ax 2 x=O Ah

A one-dimensional schematic of a continuum model in the vicinity of a boundary is

shown in Fig. 2-8b. The corresponding equation of motion is

.. 2
pu =- ax (0)h

ho- 1a 2R
ha + A +O(h)
2 ax -0 A

(2-48)

(2-49)

where ax is the stress, given by the constitutive equation, as

10" = (A + 2pu) a
ax

where A and u are the Lame constants.

Substituting eqn. (2-49) into eqn. (2-48) yields

2(2+2pa)au a2u 2R,Pu = - +(A+2p)-a2 + x+O(h)
h axx=O x2=O Ah

(2-50)

Comparing eqns. (2-50) and (2-47) yields the consistency requirement on the spring

constant as

h (A + 2p)A (2-51)
Sh

By rewriting eqn. (2-50), the equation of motion contains the traction boundary

condition, the governing wave equation, and the truncation error as

{ F, u lh 2uFx-(A+ 2u)--u +-h (A +2p) a2 -pi(0) + O(h 2) =0.
A 2 x x2 xJ

traction boundary condition governing equation error

(2-52)

2-3.2 Two-Dimensional MSLM

A two-dimensional schematic of the MSLM discretization of a plane strain elastic

solid in the vicinity of a longitudinal traction boundary is shown in Fig. 2-9a.

corresponding equations of motion are

The

30
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boundary face 4

h/92 9 9

h -1 -1 -1

h

(a)

boundary face R

F. F

F,_

(b)

Fig. 2-9--(a) MSLM schematic at traction boundary at position (i,j) and (b) free body diagram of
corresponding finite continuum element.

p 2_i,] = ( - 2u + u, 11,)

+ g + 21)(u,+ 1,j_1 + g, - 2ui,) (2-53)

1 +_ 2R
+ h 2D (93 2h 2

'ijVi g, - v ),j1+ h2D
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.. = 2 _g2)

± hD + 2h , -1 + vi-,_j_ - 2v 1)

+ g3 - -- Ui,,_ -U,-1 2R
h 2D y 2h 2 ilj1h 2D

where ui,, and v are the horizontal and vertical displacements, respectively, of

particle at location (i, j), D is the unit depth, g,, g 2 and g3 are extensional spring

constants, q is a rotational spring constant, and R, and R, are the horizontal and vertical

surface forces, respectively, applied to the outer particle.

By taking Taylor series expansions of the difference equations', eqns. (2-53) and

(2-54) are reformulated as

2g, g3  a 2u

h (D D 2h 2D)ax2

D + 2h D

+ 0(h2)

g3
D 2 h2D Dy

D2g D 1 2v

S3

D 2 h2D ax}

2 +D3 +
D D 2h2 D

a2v 2 9
)ay2 D h2D )axay

(2-56)
+ 93+ 72

(D 2h 2D )X a 2 PoV1,

+ O(h 2)

The useful equations are Pi+ij-l -2pi + p 1 _ h p+a2  P +O(h2),
2h 2 ax 2 ay2)a

Pi- uJ-1 - Pi+1,j-I =h + 2), Pi+uJ - 2pij+ p,.u _l a2p + h2),P1 +±1i- - t+ 0(h2) 2~1 -X 2 P+i- 0 P
2h axay ax h2 2

P-p 1 -P _ h a ,2P_ + O(h2 ) and Pi-I - Pi+, - + O(h2h 2 0y2 0y 2h x

32

(2-54)

a

D3 2 h D
D 2h 2 D)8y

g3 ) &V
D 2h 2D)axJ

(2-55)

0= R xhD

0= R,
hD

h

2
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A two-dimensional schematic of a continuum model in the vicinity of a longitudinal

traction boundary is shown in Fig. 2-9b. The corresponding equations of motion are

h2= (F., -F -F, (2-57)
i h2 DFx -Rj (

p 2' = (F - F - F,(2-58)

where expressions for the forces are given in Appendix 2A. Simplifying eqns. (2-57) and

(2-58) yields

(Rx - u _P vl

hD ay ax
traction boundary condition

h 92u P) 2V a2U
+- (A +2pu) aX2+ p +p 2 pui, (2-59)

2 axy '

governing equation

+ O(h 2 )
truncation error

0= -! (A+2p) a -ahD ay ax
traction boundary condition

h ' 2v ) 2 u a2v
+- (A +2p) ay2+ -p +p" 2 P i,j (2-60)

2 axy TxT
governing equation

+ O(h2 )
truncation error

Comparing eqns. (2-55) and (2-56) with eqns. (2-59) and (2-60), requires for consistency

9+ 7 = p (2-61)
D 2h2DI'

9 2 + + 7 =A+2p (2-62)
D D 2h 2 D

2g, g 7 =2+2p (2-63)
D D 2h 2D

2g3 7 =A + p (2-64)
D h2D
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93 7 - =P (2-65)
D 2h2Df

9 3  7q - A (2-66)
D 2h 2 D

Equations (2-6 1) through (2-66) are over constrained: they contain four unknowns in six

equations. Upon further observation, eqns. (2-61), (2-62) and (2-63) are dependent. It can

be shown that the solutions

D(A + p)
g1  2 (2-67)2

g2 =D(A + p) (2-68)

= D(A2+3p) (2-69)
4

hzD(pu-2)
2 (2-70)

2

are satisfied only for the case when A= p or Poission's ratio v =1. (It is noted that the
4

spring constants in eqns. (2-67) through (2-70) are the result of shifting an MSLM

interior unit cell to the surface and halving the mass and the longitudinal springs [2-13].)

1
If eqns. (2-67) through (2-70) are used when v , the traction boundary condition will

4

not be satisfied 2.

To precisely impose the traction boundary conditions, correction terms based on

finite-difference considerations are added to each of the horizontal and vertical equations

of motion. The modified MSLM equations of motion at a longitudinal traction-free

boundary are

2 In fact, the erroneous stresses evaluated at the surface are - = (A + 2p) C+' + Pu and
"y 2 ax

= + p
= 2 &y ax
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2 gu ( - 2u +U

+ 3+ + -2u.)
+ hD 2h 

(2-71)

+ h -v 93 )(-1 iI - 1+1 , -)

2h2 h2D

. 2g2 )

+i D ++)(2-72)
1g ( i ~ _ V ' V

+ g - +it1  -u 2

21 (3p -(liijl-U 2R ,j
h D 2hi2

2h h-D

where the correction terms in eqns. (2-71) and (2-72) are circled. By taking a Taylor

series expansion of eqns. (2-71) and (2-72), it can be shown that the spring constants are

given by eqns. (2-67) through (2-70) for a precise implementation of traction boundary

conditions for all Poisson's ratios. The physical significance of the extra terms, however,

is not as straightforward as adding extensional or torsional springs along the surface. A

related numerical spring model, LISA [2-19], introduces "tensorial" springs to account

for the correction terms.

2-3.3 Numerical Example

Consider a line force, having peak magnitude Q and temporal variation q(t),

acting in the negative y-direction at the origin of a half-space (y <0). The resulting

transient surface displacements are detailed in a classical paper by Lamb [2-26].

For the case where the temporal variation is a Gaussian-modulated cosinusoidal

function

q(t) = exp(-±(, t - 7)2)cos(6cen,et - e,,- (2-73)
2 td dev. 7 centerotd dev.

where wv, is the standard deviation frequency, y is the nondimensional offset, and

centeris the center frequency. Figure 2-10 shows snapshots of the surface displacements
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of the exact solution and the MSLM solution in the vicinity of the force application when

the normalized bandwidth Cstd.dev. center=0.2, offset y =3, N corresponding

minimum effective wavelength, Kmn = 2 TcR is equal to 20, and v=0.377
C

0 center + YCstd.dev.

(Appendix 2B).

2-3.4 Interface of Dissimilar Materials

Consider a perfect interface between dissimilar materials-Material I (y<O) and

Material H (y>)-as shown in Fig. 2-11. Via MSLM discretization the uncorrected

equations of motion are

(P'+p" ij
2 + g

h D

1- +Uii
± 2 D 3 + h 2 Iu+1j 1  +l~.

h2 D, q, 2h)

+
+h 2D 9

+ 2
2h 2

- 2ui,j)

) (2-74)

3 h 2 1,j-1 +,-+ (g, - 2, I\V~i - Vill

1 H,
+h 2D ( 9

+" 
V

g 712 )(V1 +1,1 +1 - V-~~

- 29

+ 1g3 +

+ I i+

+h 2D g
1h 2D

1 (9 -

+ ig 3

+h 2D ( 9

I +vq '2 I(Vi+' + iji
4h,

77'1
4h 2

277
4h 2

-j

uj+ -u

Assuming the spring constants are determined from the discretization of an interior

particle, the spring constants are

37

to

(pI

- 2vi,,)

+ vi-~ - 2v,,j) (2-75)

- 2ui + ui+

-v,,,)

)(Vi+lj+l

(ui-lj-1- ui+' )

)(Ui+lj+l + Ui-1'j+1 - 2uij
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771

-1,j -1 ,1 - -i i 177 77'

Material II

Material I

h

(a)

F"

F"

F'F

xy- FX~

F'

(b)

Fig. 2-1 1-(a) MSLM schematic in vicinity of perfect
(b) Free body diagram of corresponding elastic element.

F"
Material 11

FII+ Material I

interface of dissimilar materials at position (i, j).
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gI = (2-76)
2

g = D(A' + p') (2-77)

D(A' +31') (2-78)
4

h2D(pi' -2')
= (2-79)

2

+At") 
(2-80)

91  2

D(+A"+p) (2-81)

g= D(="+3p") (2-82)
4

,, h2D(pu" -2")
q 2 (2-83)

2

Consider the continuum element in the vicinity of an interface of dissimilar

materials as shown in Fig. 2-1 lb. The equations of motion are

(p'+puji=h (F;+F",F- -F" +F" -F' + F±) (2-84)

(p1 2v (F+ F"' - F - F" + F" -F +F) (2-85)
h D

where the expressions for the various forces are given in Appendix 2C. Simplifying eqns.

(2-84) and (2-85) yields

Oy ax Oy V
traction boundary at perfect interface

h ((, (,u + I 2V +P a2upi+ +2p') ('p') +p 2 -pu2 axc, y

governing equation in MaterialI (2 86)

+ ("+ 2p") + "+",~ 2~ + 1

2 axv v
governing equation in Material II

+ O(h 2)
truncation error
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+2p,') 0-A'
ay 8x

traction boundary at perfect interface

a 2 2v
±2') ,(+2

ay-
x +

axay

governing equation in Material I

h (A 2 p" aV( 2 "+p") a2 U

2 ay axay

a2v

x2

(2-87)

ax2

governing equation in Material II

+ O(h2 )
truncation error

Substituting eqns. (2-76) through (2-83) into eqns. (2-74) and (2-75) and taking the

Taylor series expansions 3 of the difference terms and comparing the results with eqns. (2-

86) and (2-87), it can be shown that in order to satisfy the traction boundary conditions,

the MSLM equations must be modified to

+u= 12 + g)(u - 2u

+ h 3 + ,j-1 i+.i-l 2u1 1 )

1 3 1+ h 2d(93

+ h 2 d(93

+ e i+l, j+ -- Uu

(2-88)
'7'

2h 2 -lj-l V+,j 1)

+3 ,~ jq H1,j
+ -

2 d 3 2 -

2 (V 2 1 (i h, IJ)........ 2h2

3 The useful equations are -1.-1 - 2p + p,.1 h (a2 a2 P p+ O(h2),
2h 2 x 2 ay 2)ay

pi.1,y -2p + Pi- h (2p
2h 2 ax2

2h. - = h + +O(h ), Pi+t. 2 p,1 + p a- +O(h2
2h axay ax ha2 x

2

Pij-l - P, _ h a2p

h 2ay 2
+O(h)and + 1  h a p +O(h

ay h 2 Y
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ay &

(1 + p"H I

a2p ap + O(h ,-h- P+t +O(h),
y 2 ) O9y 2h axay ax

.. ..............



Chapter 2: Numerical Accuracy of Mass-Spring Lattice Model

'g (, 
1i, 

)24'(+

(P '" h 2 d "_ ,) h d (V,' v,

+ I +v--V - 2vi1)

+ 1g + q v +2 v>k -2v 1 )h2d 3 4h 2 
(2-89)

+ hdg 3 -u-

+1 rI " 2

h2d 3 4h -

are given in eqns. (2-76) through (2-83).

2-4 CONCLUSIONS

A mass-spring lattice model (MSLM) converegence analysis reveals that, for

materials having Poisson's ratio less than 0.4, 20 grid spaces per S-wavelength are

required for the phase speed errors to be less than 1%. As Poisson's ratio approaches the

incompressible limit, the computational expense increases dramatically. Additionally,

correction terms necessary for the precise implementation of MSLM traction boundaries

are formulated and verified through a numerical example.
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APPENDIX 2A-Force and Constitutive Expressions for Traction Boundary

Condition

Consider a finite continuum element in the vicinity of a traction boundary as shown

in Fig. 2A- 1. The various forces on the element are

2 4 Ox 8 8y iho h2 o h ±+(h 3 ) (2A-1)

"*2 4 8x y 8 8y

ho=D - h2 "o~_h + O-h (2A-2)
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boundary face R,

F
F, < F,,_

Fig. 2A-1-Free body diagram of element in vicinity of traction boundary.

F ( =D Th + h2 h 2 ta O(h3) (2A-3)
*L 2 4 ax 8 ay + )2

ha h2a h2  XY}+O(h3) (2A-4)
2 4 ax 8 ay

F_= D h-, "C + O(h 3) (2A-5)
2 ay

F,_ D hax - +O(h3 ) (2A-6)
2 &y

where D is the unit depth, h is the grid space of the finite continuum element (which is

significant in numerical modeling but here is arbitrary), and the constitutive equations are

au &v
O-x = (A+2pu)-au+ AO (2A-7)

ax ay

av au
UY = (A+ 2pu)p-+ Aa (2A-8)

"y ax

o a ={-+- (2A-9)

APPENDIX 2B-Lamb's Problem

As shown in Fig. 2B- 1, consider a normal point line source, having peak magnitude

Q and temporal variation q(t), acting at the origin of a half-space (y < 0) having
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y

Qq(t)

Fig. 2B-1-Point force per unit depth having maximum intensity Q and temporal variation q(t) acting at

origin of elastic half-space having Lam6 constants A and pu, and density p.

Lame constants A and pu, and density p . This appendix summarizes Lamb's solution

for the resulting surface displacements [2B- 1].

Solution [2B-1]

For x > 0 , the horizontal and vertical surface displacements, u and v, respectively,

are

QT Q 2 s 9 _ 2 2 s 92 _2 - si ds -22
u = Hq(t - sRx)Q - ST9(29 T 9 T q q(t

IU JU L 202- s +1694(02 -sXs-02)1

ST

V f ( 92 T - TJ - L qQt-& )d9l,UT --Ss 4(2_-s-Xs2-92)SL TY q16t-& S

_ S2

' 22_s -49 0 2_s 92-s

(2B-2)

q(t -9x)d

where sT is the transverse wave slowness (inverse wave velocity) given by

SL is the longitudinal wave slowness given by

sL =e S+ 2pu

SR is the Rayleigh wave slowness, which is given by the real root of the equation

(2B-3)

(2B-4)
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(2sj -s|| -4si sR-s s -s =0 (2B-5)

Also,

H= sR(2 R T ~ (2B-6)
F

where

4(-2s s sR-4s' +4 J L SR 2 2F = rR L TR R R8S2 sR (2B-7)
2 2 2 S2 8s B7

si -sL s-s

It is noted that P in eqn. (2B-2) denotes the principal value of the integral, which is

defined as [2B-2]

b 'C-6 b

P f( )d = li4 Jf()d + f( )d (2B-8)
a e K> a c+6

where a < c < b and a non-integrable singularity exists at f(c). (In the second integral of

eqn. (2B-2) the non-integrable singularity occurs at 9 = SR.) All the integrals in eqns.

(2B-1) and (2B-2) can be evaluated numerically, for example, via adaptive Simpson

quadrature as implemented in MATLAB's "quad" function [2B-3].

The surface displacements for x < 0 are given by replacing (t - 4x) with (t + 43) in

eqns. (2B-1) and (2B-2) and reversing the sign of the horizontal displacements in eqn.

(2B-1).

Far Field [2B-I]

In the far field, the surface displacements reduce to

u = -- Hq(t - sRx) (2B-9)
P

v = -- 2 Kq'(t - sRx) (2B-10)

where

2s\s 2s 2

K =- T R L (2B-11)
F

and the complementary temporal function q'(t) satisfies
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q(t) = ITdco q(co)cos co(t - r)dr (2B-12)
0 -00

q'(t)= Jdco qi(w) sin co(t - r)dv (2B-13)

Example

Consider, for example, q(t) as a gaussian-modulated cosinusoidal function given

by

q(t) = exp(- (co~t - /)2)cos(co)t - qcojo) (2B-14)

where 7 is a nondimensional offset, o, is the frequency standard deviation, and Cn' is

the center frequency. The complementary temporal function q'(t) is

q'(t) = exp(- ±(owt - rq))sin(owt - qcoqjo)) (2B-15)

Snapshots of the normalized surface displacements in the vicinity of the line load for the

case where Poisson's ratio equals 0.377, q = 3.0, and the normalized bandwidth

parameter cocco, = 5.0 are shown in Fig 2B-2.
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APPENDIX 2C-Force and Constitutive Expressions for Interface of Dissimilar
Materials

Consider a finite heterogeneous continuum element in the vicinity of a perfect

interface of dissimilar materials as shown in Fig. 2C-1. The various forces on the element

are

F D =D " + " I-
"* 2 4 8x ..

h 29I
" + O(h)

8 ay .

h_ h2aC9 2 ha a
F' D 4 }+(h3)

2 4 ax .. 8 ay

h 0', h 2 a '
F11v =D - +

2 4 x

Dh 'v h 2 a'

2 4 ax

F =D h TI

F = D ha ,

h2 a-'*
8 ay

au + 0(h3 )
2 ay

h2 a J
2 *y, + O(h')

h2 C,F =D "+ " ,
"2 4 Ox ..

h2 aH
+ LX + 0(h-)

8 ay ..

h" h 2 " h 2 a "
F" =D 2 4 " + - "1 +O(h')

-x . 8 ay . 0hFJ =D~hLX~a',X IaO= ,

h" h~ ag{ h2 a{2 + } 071" = D 8 + " + h + O(h')
2 4 ax ij8 ay v

F" =D h 0 a
2 4 ax

h 2a"
+ Y" }+0 (h )

8 ay
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F"

'V
V F"|

Material II

t
FI+ Material I

FT

F'

Fig. 2C-1-Free body diagram of heterogeneous continuum element in vicinity of perfect interface of
Materials I and II.

I h 2 ga
F", D ha + " + O(h3

YY + YY 2 O-y j

h 2 3o~
F"=D ha + }+O(h3)F"2 ay iO

(2C-11)

(2C-12)

where D is the unit depth, h is the grid space of the finite continuum element (which is

significant in numerical modeling but here is arbitrary), and the constitutive equations are

u' = +2,)' -+X- (2C-13)
ax y

I , +2' (u
o~y =k2l + 2, - +2A. (2C- 14)

I Ia
L1u-

+-"={A"+2 u +a"v
S/ax ay

o" =(" + 21p")-+
"y

c-" = pu
-v (y G + IJ

11 u2"
ax

(2C-15)

(2C-16)

(2C-17)

(2C-18)
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In all the preceding equations, superscripts I and II denote parameters related to Materials

I and II, respectively.
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CHAPTER 3:
FORMULATION OF
MASS-SPRING-DASHPOT LATTICE
MODEL

ABSTRACT: The mass-spring-dashpot lattice model (MSDLM), a numerical model of
a viscolelastic standard linear solid, is presented. As an extension of the mass-spring-
lattice model (MSLM), the MSDLM discretizes a viscoelastic continuum into an
assemblage of particles interconnected with springs and dashpots. Via the dispersion
relations of a standard linear solid, the MSDLM spring and dashpot constants are set to
match the corresponding wave propagation phase speed and attenuation. The
convergence, stability, and accuracy criteria for the MSDLM are presented for one and
two-dimensional models. Further verification is provided through numerical examples.
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NOMENCLATURE

Symbols
A unit area
b extensional dashpot coefficient
C Courant number

c phase speed

a
At

9i

6'.
#
07
7

K

A, p

A~p'

base of natural logarithm

unit depth
force per unit volume
extensional spring constant
numerical grid space
imaginary number
indicial notation for grid position
wavenumber

M instantaneous modulus governing
shear wave

n ratio of grid space per wavelength or
time step per period

P relating to longitudinal waves
r dispersion ratio
S relating to shear waves

,V displacement

Subscripts
h relating to
P relating to
S relating to

max, peak relating to
At relating to

C

attenuation (Np/unit length)
numerical time step
Kronecker delta, 3gi =1 if i= j

and 15 =0 otherwise

small strain tensor

generic elastic constant
rotational dashpot coefficient
rotational spring constant
wavelength
Lame constants
viscous constants
relaxation functions

v Poisson's ratio
[1 instantaneous modulus governing

longitudinal waves
ir ratio of circle's circumference to

diameter
P density

stress tensor

o
relaxation time
circular frequency

numerical grid space
longitudinal waves
shear waves
greatest magnitude in time or frequency
numerical time step
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3-1 INTRODUCTION

The historical evolution of the mass-spring-lattice model (MSLM) [3-1,3-2] as well

as an investigation into its numerical accuracy was covered in Chapter 2. Most elastic

wave models, including the MSLM and elastic implementations of the local interaction

simulation approach (LISA) [3-3,3-4], are not capable of modeling material attenuation

during wave propagation. Noncausal attenuation was introduced in a one-dimensional

implementation of LISA [3-3]. A two-dimensional viscoelastic implementation of LISA

was introduced [3-5], but lacked significant detail. In this chapter, a mass-spring-dashpot

lattice model, or MSDLM, is formulated to incorporate viscous losses, thereby being

capable of simulating wave phenomena in attenuating and viscoelastic materials,

including media containing complex internal interfaces and discontinuities.

3-2 ANALYTICAL MODEL

3-2.1 Stress-Dynamic Equations

For an isotropic, linearly viscoelastic continuum, the constitutive and differential

stress-dynamic equations are [3-6]

0, - A() * mm3,1 + 2p~(t) *,k (3-1)

k~,l + fk = Pik (3-2)

where -ckl are the components of the Cauchy stress tensor, and 6 ,k are the components of

small strain given by

6
k1 -( ukI +ul,) (3-3)2

3
k, is the Kronecker delta, * denotes a convolution integral, 2(t) and p(t) are

independent stress relaxation functions defined below, fb are the components of the

body force per unit volume, p is density, and uk are the components of displacement.

Of the simple spring and dashpot mechanical analogs describing basic viscoelastic

behavior-Maxwell, Kelvin-Voigt and the standard linear solid-only the standard linear

solid has non-zero bounded phase speeds at extreme frequencies. (A detailed discussion

of material behavior based on such mechanical models is given by Kolsky [3-7].) For a
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standard linear solid described by a single stress relaxation time T, the stress relaxation

functions have the following form:

A(t)= A + -- expl{- (3-4)

g(t)= P + expr j (3-5)

Here, 2 and p are the Lame constants and 2' and p' are the analogous viscoelastic

constants.

By substituting eqns. (3-3), (3-4) and (3-5) into eqn. (3-1), and applying the Laplace

transform, the constitutive and differential stress-dynamic equations can be reformulated

as (Appendix 3A)

rH -rsM u,,k + rsM uk,11

+ fkb)

provided the initial condition

fk (0) = (H - M)ul k (0) + MukI (0)

is satisfied and where

fk = k,,1

2(co)+2(x) + 1 A'+22p'

2(0) + 2,i(0) A 2+2p

rs = ~ = 1+
)()2) = 1+ 2I

Hl = (0) + 2g (O) =2± +2pi + -2 + 2/i'

M = g(0) = P + P

Solving eqns. (3-10) through (3-13) for the Lame and viscous contants yields

A = rH -2rsM

54
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k ppi f

+ (H - M) ,llk+ d,11 (3-6)

(3-7)

(3-8)

(3-9)

and
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(3-12)
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p =rsM (3-15)

2'=(1- r,)-I - 2(1- rs)M] (3-16)

'= (l-rs)M (3-17)

Via the uniqueness and thermodynamic conditions listed in [3-6], the following

constraints on the standard linear solid parameters must be met:

r > 0 (3-18)

i(O) > 0 or M > 0 (3-19)

3A(0)+2g(0) > 0 or 31 > 4M (3-20)

1 r, 0 (3-21)

1 rs > 0 (3-22)

3-2.2 Dispersion Relations

Consider a steady-state longitudinal plane wave attenuated in the direction of wave

propagation and having the form

uk(XlX 2 ,X3 ,t)= nkuo exp[- apnmxm + 1(kpnx,, - wt)] (3-23)

and a similar steady-state shear plane wave having the form

uk(Xl,x 2 ,x 3,t)= n'uO exp - asnmxm + I(ksnxm - t)] (3-24)

where nk are the components of the unit wave vector, n' are the components of a unit

vector orthogonal to the wave vector (that is, n n' = 0), u0 is the wave amplitude at the

phase plane containing the origin, a is the attenuation, i is equal to v'ET, k is the

wavenumber, subscripts P and S denote the respective properties of longitudinal and

shear waves, and co is the circular frequency.

In the absence of body forces, substituting eqns. (3-23) and (3-24) into eqns. (3-6)

and (3-7), and eliminating fk, give expressions for attenuation and wavenumber of P and

S waves as (Appendix A)

2 pW2 1+0)212 _1+-IC021-2
a = (3-25)

2rI 1+r,-2 2 2  1+rh 2 r22

2 pW2 1+0)2,2 1 +rA C02,2

S= I + 1±C92V 2  1+ - 2 2 2  (3-26)
2rsM 1+r 2w 2z 2 1+rs2C 2 r
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k2 P 2 1+w 2 2  1+rfiw 2z 2  (3-27)
P2rHI 1+r- 2w 2 2 ± 2w2Z2

k 2 2 + 02r 2  1+ rjco2 z 2  (3-28)
I -2 + -2 22

2rsM l+rs2w 2r 2  l+rO Z r

Parameters r, and rs represent the extent of dispersion in the standard linear solid;

each is equal to the squared ratio of the minimum P or S phase speed (at low

frequencies) to the maximum P or S phase speed (at high frequencies). As r, and

rs approach zero, the minimum phase speed approaches zero (Maxwell model). As r,

and rs approach one, the phase speed is constant (elastic model).

Table 3-1 gives the wave propagation properties of the standard linear solid in the

low frequency limit (OT <<r, ,rs), an intermediate frequency limit

f' - r, ,r sa the high frequency limit (o- >>1). At the extreme
C0 - + 1 + 3r, 1 s + 3rs )

limits, there is a similarity to elastic wave propagation; the phase speed of the wave is

constant and the wave is non-dispersive. The attenuation, on the other hand, is

proportional to the square of the frequency at low frequencies and constant at high

frequencies. As the frequency approaches the intermediate limit, the attenuation is

directly proportional to frequency for a relatively narrow frequency band. The phase

speed reveals significant dispersion at the intermediate limit. As a summary, a

logarithmic plot of attenuation as a function of frequency and a semi-logarithmic plot of

phase speed as a function of frequency are shown in Figs. 3-1 and 3-2, respectively.

The parameters T, r, rs , TI, and M can be calculated from a numerical fit of

frequency-dependent ultrasonic phase speed and attenuation data to approximate the

material behavior over a limited frequency range.
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Table 3-1-Standard linear solid wave propagation properties at limiting frequencies.

57

Low Frequency Limit Intermediate Frequency Limit High Frequency Limit

Longitudinal Longitudinal Wave, P Shear Wave, S Longitudinal
Prope Wave, P Shear Wave, S 3+ r, 3 + rs Wave, P Shear Wave, S

or << r, F<< rsa r +3 3r, FTrrs1+ 3rs or >>I

Phase Speed, Cminp = cmi C = rc, ,(c,,) + (a - co ' )' (CO,O) cS = cS (Cso) + (w - o), )c' (O) CmP = cm, =
Cr p pM __ _ __ _ _ ___ ___ __ p ppO+(j-CPO)

Attenuation, a 2 rG- r,) a= 2r(- rs) p l+2r,_ 5+rs p l2rs 5+r a = 1-r as rs

a(Np/unit length) 2rpcminP 
2 rscminFs H 8r, 8(1+r) M 8r 8(1+rs) 2rc 2 cmas

where

2(5+r,) 2(3+2r,) 12 2(5+rs) 2(3+2rs)
( 1/2 H(+ rp) + 9p )-1/2 I, + r5+r, 3+2rp -M(+r, _ _ r, ) 5+rs 3+2rs 1 /2+rs) rs )

)+ C (I 0)=r(O-rp) - r 3/ s + 8rs - + (3 2' 8(1+r,) 8r, p (+3r,) 2 (3+r, C(( 5 =) + 8(1 +Crs)( p (1+3rs) 2(3+rs
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0)

10-1 10 10 102

ar l+3r
Normalized Frequency, 7 (rad)

r 3+r

Fig. 3-1-Attenuation of standard linear solid model as function of circular frequency co, relaxation time
r , dispersion coefficient r, and maximum phase speed c max which shows three distinct dependences on
frequency: quadratic at low frequencies, proportional at intermediate frequencies, and constant at high
frequencies.

pp

-c c -

C~aX r pc

10-1 100 10 102

an l+3r
Normalized Frequency, 7 3+ V (rad)

r 3+r

Fig. 3-2-Phase speed of standard linear solid model as function of elastic constant #, which can represent
either H or M for P or S waves, respectively, density p, dispersion coefficient r, circular frequency o,
and relaxation time r, which reveals a minimum phase speed at low frequencies and a maximum phase
speed at high frequencies.
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3-3 NUMERICAL DISCRETIZATION

Wave phenomena in standard linear solids can be simulated and visualized via the

mass-spring-dashpot lattice model (MSDLM). In this section, the numerics of the

MSDLM discretization are explored before proceeding to numerical examples.

3-3.1 One-dimensional MSDLM

The numerical discretization via the MSDLM begins with the definition of a unit

cell. The MSDLM unit cell specifies the particle positions, particle mass, and all particle

neighbor interactions within the cell. Each one-dimensional unit cell contains two half-

particles separated by one grid space h. For a MSLM unit cell, the neighbor interaction is

simply an extensional linear spring. In the MSDLM, however, the neighbor interaction is

physically represented by an extensional standard linear element-an extensional spring

in parallel with an extensional dashpot and extensional spring in series.

Schematics and stress-dynamic equations for various interaction and boundary

conditions can be realized through the connection of unit cells to form particle-centered

computational cells as given in Table 3-2. In the one-dimensional case, a connection is a

rigid fusing of adjacent half-particles, where the inertial quantitities are averaged

according to LISA [3-4] rather than the averaging of neighbor interactions used in

MSLM [3-2]*. To discretize an interior particle, identical unit cells are connected around

a central particle. At a free surface, no connection is neccesary; the stress-dynamic

equations are simply formed by updating and summing the forces acting on the particle

of interest. Prescribed motion boundaries and the perfect interface of dissimilar materials

are also given in Table 3-2. (Imperfect interfaces are incorporated into the MSDLM in [3-

8] using a contact quality factor introduced in [3-4].)

The interior discretized stress-dynamic equations must be consistent with the

continuum stress-dynamic equations. Reformulating eqns. (3-6) and (3-7) for wave

propagation in the x-direction yields

f 1 r# 5 2u a 2t-=-f +r X +#0aX (3-29)
t T 2

-U 
(3-30)

at

* This choice allows for a precise imposition of continuity of traction and displacement at longitudinal
interfaces.
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Table 3-2-One-dimensional MSDLM schematics and stress-dynamic equations for various boundary and
interaction configurations.

Schematics Stress-dynamic equations
Interior df g, 2u +u

dt z hA (T2.1)

91 ~~~~+ g,+g 2 (1a~ ti i-
hA '

dub 92 ( + (T2.2)
dt

h h d, 1f + A) (T2.3)
dt p

where, r = b2 /g 2  (T2.4)

Prescribed Motion Boundary 4fN A I -2U +U
(for a fixed boundary, u.+,, (t) = 0) d - + LA (T2.5)

d hAJ25u ,(t) + 91+2 ++ N -

dt UN (T2.6)
92 b2  92  

d
d t = v + f '( T 2 .7 )

J dt p
h h where, r = b2 /g 2  (T2.8)

Free Surface df Y (
+1 (uNV NU-1)dt r rhA (T2.9)

91 9~ ~ 1  +g+ 2 (,. - N-

Nr-2 Ar)N dN .

2 dt 2 - (T2 .10)
dt

'4h P_'V h dz 1 (-JN- + fSN) (T2.1 1)
h dt p 2

where, r = b2 /g 2  (T2.12)

Perfect Interface of Dissimilar Materials d fA g
+ g[ (UN ~ N-dt T r'hA (T2.13)

+ + g-hA

- _____d__ ( uN+,- N

duN.

_N v N (T.+

Material N -- Material II dt 2.1)
bN ~'b, 9 11 + N-1b

hzi -, 2 du =f~ -f. Jf) 2.15)

dt p +p
where
r' =b2/g' (T2.17), and r' = b2" /2" (T2.18)

Notes: A is unit area orthogonal to direction of force. Each f, and f,, are body force per particle volume and surface
traction per particle volume acting on particle i, respectively.
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ai (f +f) (3-31)
at P

where u, r and 0 can respectively represent either u, r, and 1-I (longitudinal wave) ; or v,

rs and M (vertically polarized shear wave); or w, rs and M (horizontally polarized

shear wave). Expanding eqn. (T2.1), located in Table 3-2, via the Taylor series in the

limit as h--O and comparing the result with eqn. (3-29), the one-dimenisonal MSDLM is

spatially consistent with the governing PDEs if

r = A (3-32)
g'=h

92 = (1-- )eA (3-33)
h

and

r = -2- (3-34)
92

where A is a unit area.

Equations (T2. 1) through (T2.3) can be numerically integrated via the classical

fourth-order Runge-Kutta explicit algorithm ([3-9] and Appendix 3B). Von Neumann

analysis (Appendix 3C) has shown that for stability, the integration numerical time step

At must satisfy

At
-< < 2.78 (3-35)

and the Courant number C corresponding to the highest phase velocity cm must satisfy

C = 1.30 (3-36)
h

where

Cm= P/P (3-37)

In accordance with the Lax equivalence theorem [3-10], the demonstrated

consistency and stability ensure the MSDLM's convergence.

Convergence implies the numerical solution approaches the continuum solution as

h-+0 and At--0. To reduce the numerical phase and dissipation error to less than 1%

of the corresponding continuum values in low dispersion materials (0.25 r 1), given
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the maximum effective circular frequency needed to be accurately propagated through

the model comax, accuracy requires the number of grid spaces per smallest wavelength

nh, or

nh 2 (3-38)
k(comax)h

be at least 20 (Appendix C). Given nh, eqns. (3-35) and (3-36) represent two (2)

conditions on the number of time steps per smallest period nA,, or

nAt = 2 (3-39)
ComaxAt

By solving eqns. (3-38) and (3-39) for h and At, respectively, and substituting the

results into eqn. (3-39), the first condition is found to be

n' > (3-40)
At 1.30

and substituting the result for At into eqn. (3-35), the second condition is found to be

2ffN > 2 ; (3-41)At 2.78comax r

For high frequencies (omx >> 1), nAt is approximately equal to nh , which is

numerically satisfactory. However, for low frequencies (Omax-r << 1) nAt is much greater

than nh; that is, the integration becomes numerically stiff and much more expensive to

evaluate.

3-3.2 Two-Dimensional MSDLM

The unit cell for a two-dimensional discretization via the MSDLM is given by

horizontal and vertical neighbor interactions through an extensional standard linear

element acting collinearly and diagonal neighbor interactions through an extensional and

rotational standard linear element. As in the one-dimensional case, various boundary and

interaction conditions are formed through the joining of adjacent unit cells to form

particle-centered computational cells. In the two-dimensional case, the forces from

neighbor interactions add in parallel. For example, the schematics and stress-dynamic

equations for an interior particle are formed by joining four (4) identical unit cells around

a central particle as shown in Table 3-3. To precisely impose traction boundary
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conditions at a surface of a lattice model discretization, correction terms are necessary

(refer to Chapter 2). The schematics and stress-dynamic equations in the vicinity of a

particle located on the surface are shown in Table 3-4. (The schematics and stress-

dynamic equations in the vicinity of a particle along a logitudinal interface of dissimilar

materials are given in Appendix 3D.)

Fig. 3-3 shows a two-dimensional lattice model discretization for interior particles

as well as particles having various boundary conditions such as traction free surfaces and

interfaces of dissimilar materials.

The interior discretized stress-dynamic equations must be consistent with the

continuum stress-dynamic equations. Reformulating eqns. (3-6) and (3-7) for plane strain

conditions in the x-y plane yields

afX 1 rF1 a2u rJI - rsM a 2v rsM a 2u

at - -X y (3-42)

±I-± ~ (-M) M01
x 2 *ax y ay2

af, 1 rpH a 2v rpJ7 -rsM 8 2u rsM a 2v
--- -- ++ . aa+ rx

(3-43)
+H +(l-M) +M

nO2 aXy a2

au 
(3-44)

at

av = (3-45)at
a= + fx) (3-46)
at p

and

= f + fy) (3-47)
at p
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Table 3-3-Schematic and stress-dynamic equations for MSDLM in vicinity of interior particle located at position (ij).

Schematic

x

x

h

-L j+1i~i+i+l j+1

17,72 4 92 9 17 2

g3 b2
b,

91 b2 92

b4
9 1 b 2 g.b4 9

92, 
,4. q1 272

E i-L -

h h

Notes: D is unit depth. f and f are respective x and y-

direction body forces per unit particle volume.

Stress-dynamic Eauatios

i +_ g, (gq" u+ U U+
dj, *I h g - ~ 2u , j 2D( L2 4h2 )Ui+I,+lI u -, 1 i+ u, -,~ - 4u,)

(T3.1)+ +v - + - 171+ g+g 2  - -2, + _
rhD', 2 4h 2 )(il.~ iIj1 iIj1-v-,~ h 2D }~ ~ i ~-~

+ 1 g3 +g 4  q1 +q. !. - ~ '
+hD 2 4h

2
)v +I.+ -

4 +- /

=- + vg (v, -2v. , ,j -1 +- + 7 '1(V, 1  +v 1 + - +Vigdi r rh 2D rh 2 D ( 2 4h )' +

+( - (u,J + uiL- uj-u - ui + -29y -+ 1 92
_ _2 +4 g, +Dg-

+ 2D 2 43 + 4 h+71 i + +- +1 -42+ hh 2I W+.J+f + VI-ij-I + i+Ilj-l + -~- 4i 1j

+ 9 + 4 11+12 )(Ii+14+ + d -d,j I -di
12D( 2 3g 4h 2

) ' ' uI i-. 1 4- 1

du,
dt

dv,,,
- = Vl

dt
di
d=-(f +f )

di p- -= - (f, + -fi )dt p
dt p " i'i, Q

where
b 2 b 4  2

9 2 9 4 172

(T3.2)

(T3.3)

(T3.4)

(T3.5)

(T3.6)

(T3.7)
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Table 3-4-Schematic and stress-dynamic equations for MSDLM in vicinity of particle located on free surface at position (i, j).

Schematic Stress-Dynamic Equations

_ - +2 2ug1  +u + (j - + 7Ut +u ..- 2u,dt T 2h 2 D 1r-uh~I'~ 2 ~j

+ 2 2 4 - (T4.1)
Y thzD 2 4h )4h ~

+ + ( 2z ,1 +u ,+ + ++4 + 7+1 u+2 2  +
2h2 D T hD l 2 4h' v+dIII/IJ

x ' +g -9 +hM h (~ .

Free Sur face di+ 2J - v, +v 1  - 2v,)

g,1 2 h2/2 g2/2 Material C) rM rr p+, ,(42
1 (3+ 94 1+g71+ .,+2 +2 -2 

h _2h
2  

, ' hD 2 4h iji i+

1 g +g+ 91+ 2 -M -T d
g,,. 2+ h2D 2 4h2  4h2-h --

-f4- d-u1-1 - (T4.3)

= (T4.4)
Fe S c dt D

d(93 2 ( + )(U (T4.6)

di p J-

where,
Notes: D is unit depth. f37 and fare respective x and y-direction b2 b4 r2  (T4.7)
surface tractions per unit particle volume. Correction terms necessary g2  g4  '12
|to precisely impose traction conditions are boxed.
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Free Surface

Material II
Crack

Material I

* -..... -.... ... ..... ... .....

h
y

Fig. 3-3-Schematic of two-dimensional lattice model discretization with various boundary and interaction
conditions.

Expanding eqns. (T3. 1) and (T3.2) via a Taylor series in the limit as h--O and

comparing the result with eqns. (3-42) and (3-43), the two-dimensional MSDLM is

spatially consistent with the governing PDEs if

g1 = D(rFI - rsM) (3-48)

g2 = D[(1 - r,)I- - (1- rs)M] (3-49)

D
g3 = -(rH + rsM) (3-50)

4

D4 =-[(I- r,)n +(1- rs)M] (3-51)
4

71 = hD (3rsM - rH) (3-52)
4

772 = hD[3(l - rs)M - (I- r,)rll (3-53)
4

and

S= b 2 = 4 = 2  (3-54)
g 2  9 4  772

where D is the unit depth.
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As in the one-dimensional case, eqns. (T3. 1) through (T3.6) can be numerically

integrated via the classical fourth-order Runge-Kutta explicit algorithm [3-9]. Von

Neumann analysis (Appendix 3C) has shown that for stability, the numerical time step At

must satisfy

At
-< < 2.78 (3-55)

and the Courant number C corresponding to the maximum P phase velocity must satisfy

c At
C max,P <1.30 (3-56)

h

where

c -ax= (3-57)
p

To this point, it has been assumed the wavevector and attenuation vector were

collinear (refer to eqns. (3-23) and (3-24)), a state in which the wave propagation is

denoted as being of "simple type". However, it has been shown that in an isotropic

viscoelastic continuum, an obliquely incident P or S wave of simple type on a fixed or

traction-free boundary produces reflected waves where the attenuation vector, in general,

is in a different direction than the reflected wavevector [3-11,3-12]. In this investigation,

only waves of simple type are considered. The requirement that only simple waves are

produced at boundaries is given as

= - or rp = rs = r (3-58)
2 pu

Two consequences of this special case are that Poisson's ratio v becomes

frequency independent and can be expressed in terms of the elastic constants of the

standard linear solid

M
1-2--

V = 71 (3-59)
2 1-

and the attenuation of S-waves must satisfy

2 - 2v
as =a (3-60)

P1 -2v
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To reduce the numerical phase and dissipation error to less than 1% of the

corresponding continuum values in low dispersion materials (r > 0.25) with v 0.40,

accuracy requires the number of grid spacings per wavelength must be at least 20

(Appendix 3C). As v -> 0.50, however, the number of grid spacings per wavelength

required to maintain a desired level of accuracy increases dramatically due to numerical

anistropy (refer to Chapter 2).

3-4 NUMERICAL EXAMPLES

3-4.1 Material Properties

To validate the MSDLM through numerical examples, wave propagation is studied

in a nanocomposite composed of a Zirconium-based bulk metallic glass (Zr-based BMG)

reinforced by 3.0% volume of carbon nanotubes (CNTs), having a density of p =

6.61 x 103 kg/M3. An experimental investigation [3-13] of this nanocomposite at an

interrogation frequency of w, =6.28x107 rad/s (10 MHz) measured the P and S waves

velocities as 5.13x 103 m/s and 2.28x 103 m/s, respectively, and the P and S attenuations

as a,=42.6 Np/m (3.7 dB/cm) and as =73.7 Np/m (6.4 dB/cm). The standard linear solid

model parameters are calculated by assuming:

* the nanocomposite is isotropic and homogeneous (the wavelengths at this

frequency are much larger than the size of a typical CNT),

* the dispersion coefficients for P and S waves are identical r, = rs = r,

yielding a frequency-independent Poisson's ratio v, and

* the frequency is sufficiently high, say cor = 50, such that the frequency

independent wave velocity and attenuation asymptotically approach the

measured values.

The resulting standard linear solid parameters for the Zr-based BMG

nanocomposite, henceforth called "nanocomposite," are summarized in Table 3-5.

3-4.2 One-dimensional Examples

Steady-State Response

First consider a nanocomposite of finite length subjected to a prescribed harmonic

displacement of magnitude up and frequency co. Figure 3-4 shows the agreement of the
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Table 3-5--Standard linear solid model of Zirconium-based bulk metallic glass reinforced by 3% volume
carbon nanotubes composite [3-13].

Property Value

Elastic constant, L-I (N-m-2 ) 1.74x10"

Poisson's ratio, v 0.377

Dispersion coefficient, r 0.652

Relaxation time, r (s) 7.96x 10-

Density, p (kg-m-3) 6.61x103

10 1.5

- 5 - - - - - - -

III

I 30.5 ........ 3.4 .
0..5

(x-Coordinate)/(Wavelength) (x-Coordinate)/(Wavelength)
(a) (b)

Fig. 3-4-One-dimensional steady state implementation of MSDLM (solid lines) and corresponding
steady-state analytical envelopes (dashed lines, Appendix 3E) for prescribed harmonic motion of frequency
co at x =0 and (a) fixed boundary at x = 5r and (a) free boundary at x=51c, where at ic is the

wavelength corresponding to co . Here r = 0.652, cor = 50, .- 80 for (a) and =20 for (b).
h h

one-dimensional steady-state implementation of the MSDLM and the corresponding

analytical envelope (Appendix 3E) when there is a fixed and free boundary at x/ K = 5,

where ic is the wavenumber corresponding to frequency co. Note that the number of

required wavelengths per grid spacing to achieve an accuracy of less than 1% is four

times larger for the case with a fixed boundary compared to the case with a free

boundary, because the former case is near a natural frequency.

Transient Response

Next, consider a one-dimensional nanocomposite having quiescent initial conditions

for t < 0. At time t = 0, the following Gaussian-modulated cosinusoidal displacement
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function u(t), primarily chosen due to its smoothness and well-defined bandwidth, is

prescribed at x = 0:

u(t) = Uek exp[-I(ct -3) ]cos(cot -3wco-) (3-61)

as shown in Fig. 3-5a, where upeak is the peak magnitude of displacement, co, is the

frequency standard deviation, and ocn is the central frequency. The function inputs
Oa

periods of displacements having an envelope greater than u, exp(-!)

rapidly decays to a rigid boundary condition.

and thereafter

The absolute value of the Fourier transform

of eqn. (3-61) shows that the frequency content is

(O + )2 ( - c0)2
JU(o)j ~ exp - 2 + xp - 2

2co22
(3-62)

and the positive frequency content is shown in Fig. 3-5b. The effective maximum excited

frequency can therefore (arbitrarily) be chosen as com.x = e + 3w,, since all higher

frequencies excite less than a factor exp(-1) or approximately 1.1% of the amplitude of

the central frequency. Thus, according to the accuracy condition, the wavelength

corresponding to this maximum frequency should be discretized into at least 20 grid

spaces.

1

0

z

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

(Time)/(Period at Center Frequency)
(a)

0 0.5 1 1.5 2
(Frequency)/(Center Frequency)

(b)

Fig. 3-5-(a) Normalized prescribed displacement of Gaussian-modulated cosinusiodal temporal function
having peak amplitude up center frequency co (period at center frequency I), standard deviation CO, and
(b) normalized positive frequency content when o, / co, = 0.2.
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Figure 3-6 shows snapshots of the displacement field at various times in a semi-

infinite nanocomposite subjected to the prescribed displacement function. To effectively

eliminate spurious reflections, an absorbing boundary is placed at x / icc = 20.

(Essentially the absorbing boundary is a layer in which the magnitudes of the auxiliary

springs and dashpot coefficients are modified to increase the wave attenuation with

increasing position. Details are given in Appendix 3F.) The magnitude of the peak wave

packet is within 0.5% error of the analytical envelope (dashed line) at a few sampled

times (Appendix 3E).

Figure 3-7 shows snapshots of the displacement field at various times near the

boundaries of two dissimilar standard linear solids when subjected to the prescribed

displacement function. Material I (0 x/Kc <10) is the nanocomposite and Material II

(10 x / Kc) has the same properties as the nanocomposite except its relaxation time is

five times smaller, and thus, the Material II attenuation is five times larger than that of

Material L For clarity, an absorbing boundary condition exists at x / Ic =20. The peak

magnitudes of the incident and transmitted wave packets are within 0.5% accuracy of the

composite analytical envelope (dashed) at a few sampled times (Appendix 3E).

3-4.3 Two-dimensional Examples

Internal Point Loading

Consider a two-dimensional, semi-infinite plane-strain nanocomposite having

quiescent initial conditions. At time t = 0, the nanocomposite is subjected to a Gaussian-

modulated cosinusoidal time-varying radial stress , (t) acting at the origin, having peak

magnitude (o-,.)p,, central frequency o, and standard deviation frequency o . The

spatial distribution of forces required to approximate such a stress in the MSDLM is

shown in Fig. 3-8a. To effectively eliminate numerical reflections, an absorbing boundary

is placed at x/Kpc = ±2.5 and y/Kp, = 2.5, where Kp, is the P-wavelength at the

center frequency. Figure 3-9 shows snapshots of the resulting displacement field,

revealing the circular wave fronts of the P waves. Figure 3-10 shows an analogous case

for a prescribed circular shear stress o0r9(t) acting at the origin (with the MSDLM spatial

distribution as shown in Fig.3-8b).
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Fig. 3-6-Snapshots of displacement field in one-dimensional standard linear solid numerically simulated via MSDLM, subjected to prescribed Gaussian-
modulated cosinusiodal displacement at x=O {peak displacement u,, central frequency wj (period at center frequency Ta), standard deviation o, } and absorbing

At At
boundary at x /K, = 20. Here K, is wavelength corresponding to C9w, r =0.652, COr = 50, )"- = 0.20, c"At =1.30, and -=5.lxlO
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Fig. 3-7-Snapshots of displacement field near interface of dissimilar one dimensional standard linear solids numerically simulated via MSDLM, subjected to
prescribed Gaussian-modulated cosinusiodal displacement at x=0 (peak displacement u,, central frequency co, standard deviation co,). Dashed line represents

analytical envelope of wave propagation. Nondimensional parameters of Material I, 0 < x / K, <10, and of Material II, 10 < x / Kc, where c, is wavelength

Te I' H' Atcorresponding to ao, are 5, r' = r" =0.652, cor' = 50, co = 0.20, .1, 'ma =1.30, and - = 5.1x10- 3 -
ScH h T
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Fig. 3-8-Schematic of spatial distribution of volumetric forces in lattice model to approximate (a) radial
pressure point load -, and (b) radial shear point load ro,, where h is grid space.
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Fig. 3-9-Snapshots of displacement field in two-dimensional, plane strain standard linear solid numerically simulated via MSDLM. Absorbing boundary
conditions are at x / K , , = ±2.5 and y / K ,, = ±2.5, and solid is subjected to Gaussian-modulated cosinusoidal time-varying point normal stress o-,. (t) (center

frequency co,, standard deviation o,) acting at origin. Here K1 , is P-wavelength at center frequency, r, =rs = 0.652, v=0.377, Ca ,At=.30,
h

At= 2.3 x10-3, r = 50, and Co = 0.2.
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Fig. 3-10-Snapshots of displacement field in two-dimensional, plane strain standard linear solid numerically simulated via MSDLM. Absorbing boundary
conditions are at x /K, = ±2.5 and y / Kp =±2.5, and solid is subjected to Gaussian-modulated cosinusoidal time-varying point shear stress O,, (t) (center

frequency co,, standard deviation co) acting at origin. Here K is P-wavelength at center frequency, r,= rs=0.652, v=0.377, cmPAt=1.30,
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Planar Bounday Reflection and Transmission
Consider a nanocomposite half-space (y < 0) with a rigid boundary at y = 0

containing a 450 obliquely incident P wave comprised of one sinusoidal wavelength at

frequency co, emanating from the lower left as shown in Fig. 3-1 la. Figure 3-12 shows a

snapshot of the displacement field when the incident P wave interacts with the rigid

boundary. The magnitude of the reflected P and S waves are within 3% of the analytical

steady-state analysis; the orientations of the P and S waves agree well with the predicted

angles of 45' and 180, respectively (Appendix 3E).

Consider the wave propagation near the interface of two material half-spaces at

y = 0. Material I (y < 0) is the nanocomposite and Material II (y > 0) has the same

material properties as the nanocomposite except 21I" = HI' and v" = 0.300. In this

case, Material I contains a 45' obliquely incident P wave comprised of one wavelength at

frequency coc, emanating from the lower left as shown in Fig. 3-1lb. Figure 3-13 shows

the resulting S wave reflection into Material I and P wave transmission into Material II.

The orientations with respect to the vertical axis of the reflected P wave, reflected S

wave, transmitted P wave and transmitted S wave agree well with the analytical values of

450 180, 300, and 16*, respectively (Appendix 3E).

Rigid

OLBoundary

Material 11

Incident P-wave

Material I
Incident P-wave

(a) (b)

Fig. 3-1 1-Schematics of 45' longitudinal plane wave propagating in vicinity of (a) rigid boundary and (b)
interface of dissimilar materials.
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Fig. 3-12-Snapshot of displacement field in two-dimensional, plane strain standard linear solid
numerically simulated via MSDLM in vicinity of rigid boundary at y =0. One sinusoidal wave length of

incident P wave (frequency o, ) acting at 450 angle of incidence relative to longitudinal boundary produces

c At Atreflected P and S waves. Here r, = rs = 0.652, v = 0.377, " 1.30, -= 2.3x10-3, or=50.
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Fig. 3-13-Snapshot of displacement field simulated via MSDLM in vicinity of dissimilar material
interface at y = 0. In Material I, a sinusoidal wave length of incident P wave (frequency co, ) acting at 450

angle of incidence relative to longitudinal boundary produces reflected P and S waves in Material I and

transmitted P and S waves in Material II. Here, r' = r" =0.652, v' = 0.377, v" = 0.300, -1,

c cj At = ,At =1.9 X 10 3, or' =50.
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Surface Loading
Consider the case of a vertical force, having a Gaussian-modulated cosinusoidal

time-variation, concentrated downward at the origin of a two-dimensional plane strain

nanocomposite. The loading produces P and S waves radiating into the solid and

Rayleigh waves propagating along the surface. Figure 3-14 shows snapshots of the

displacement field in the vicinity of the surface loading for the first five periods

corresponding to the center frequency. The elastic-like retrograde motion of particles near

the surface and exponential decay can be readily verified from the figure and are in good

qualitative agreement with analytical steady-state results [3-14]. Because the quality

factor of the nanocomposite at the central frequency is 144 (that is, a plane wave must

propagate 144 wavelengths to attenuate by a factor exp(-r), or approximately 4.3%),

the transient surface displacements on the nanocomposite are within a 10% amplitude of

the exact solution for an elastic material [3-15] for the windowed region of interest.

3-5 CONCLUSIONS

The MSDLM was formulated for both one and two dimensions, and the

convergence and accuracy criteria were presented. Numerical examples provided further

verification of the efficacy of the MSDLM to simulate and visualize wave phenomena in

attenuating materials. It is anticipated that the MSDLM can be a useful tool in wave

propagation disciplines such as seismology and nondestructive evaluation of materials.

In its present form the MSDLM uses standard linear solid elements, consisting of

ideal dashpots and springs, to simulate interactions between particles. In the future, a

generalized standard linear solid, containing a fractional derivative dashpot or the so-

called spring-pot, can be incorporated into the MSDLM to more realistically model wave

phenomena over a broader range of frequencies, albeit with increased numerical

complexity. Material nonlinearity can also be incorporated by employing nonlinear

springs and power-law dashpots.
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Fig. 3-14-Snapshots of displacement field in two-dimensional, plain strain standard linear solid numerically simulated via MSDLM in vicinity of vertical force
concentrated at origin. The Gaussian-modulated time-varying force (center frequency co, standard deviation o,) produces P and S waves radiating into solid

and Rayleigh waves propagating along surface. Here r, = rs = 0.652, v =0.377, cmAt 1.30,A = 2.1 x 10-3, cT = 50, and - 0.2.
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APPENDIX 3A-Derivation of Stress-Dynamic Equations and Dispersion Relations
for Standard Linear Solid Having Single Relaxation Time

In this appendix, the stress-dynamic equations are derived for a standard linear solid
having a single stress relaxation time. From the stress-dynamic equations, the
attenuation and wavenumber are derivedfor steady-state harmonic waves and limiting
cases are explored.

Derivation of Stress-Dynamic Equations

For a general homogeneous continuum, the equations of motion expressed in

Cartesian indicial notation are

-kl,l + fkb = )k (3A-1)

where -akl are the components of the Cauchy stress tensor, fkf are the components of the

body force per unit volume, p is the density, uk are the components of displacement, and
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the overdot denotes a partial derivative with respect to time. For an isotropic viscoelastic

continuum, the constitutive equations are [3A-1]

C1 = 2(t) * emm, + 2g(t) * ,6k (3A-2)

where 2(t) and P(t) are independent stress relaxation functions, *

convolution integral, se, are the components of small strain given by

6 k1 = 12
+uk)

and 8 k, is the Kronecker delta. Equation (3A-2) can be rewritten as [3A-l]

f-l - 2(t - t* ) "'--dt + 2 f(t -t*) ' dt*
- 0 at 0 a t

Substituting eqn. (3A-3) into eqn. (3A-4) yields

0 ~ * u *
k-I = k f X(t - t ) '"'' t* +

a
-t* ) t* (Uk +UIk k t

Taking the partial derivative of eqn. (3A-5) with respect to coordinate / yields

C- = 'r f'a(t - mt ) ;t*

Using the properties

at *

(3A-6)+ Jg(t -t*) (uk, + Ujkl jt*
-at*

ummk au,lk

at * t*
and

UkI = U iIk

eqn. (3A-5) can be reformulated to yield

+ P(t au

at*

(3A-7)

(3A-8)

(3A-9)

For a standard linear solid described by a single stress relaxation time r, the stress

relaxation functions have the following form:

(3A-10)

(3A-11)
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Here, A and p are the Lame constants and A' and p' are the analogous viscoelastic

constants.

Substituting eqn. (3A-10) and (3A- 11) into eqn. (3A-9) yields

= f + + e-('~'* d4*

-X T ~) at*"

+ p+ ± e-

(3A-12)

a t *

If it is assumed that the continuum is initially at rest [3A- 1]

Uk(t) = Ek1(t) = Uk (t) = 0,

eqn. (3A-12) becomes

7k,= +

-00 <t <0 (3A-13)

_ -(t-t*)/ autk *

at ) t

0

(3A-14)
OUkildt*

jatV

taking the Laplace transform of eqn. (3A- 14) yields

U, s 2 + u-u' +s + 1 -"W
s T s+1/r) s I-s+1/1r

(3A- 15)

where the overbar represents the transformed variable and where the following property

of the Laplace transform is used

L ff(t)g(t - t*)dt*} = f(s)g(s)

Equation (3A- 15) can be reformulated to yield

_k (1(A +)+A'+P's++ _ P
-7 Ulik1,1 I , k

(3A-16)

(3A- 17)+ 7S+1 k,

A differential series is introduced as

(3A-18)

where a, b, c, d and e are constants yet to be determined. Taking the Laplace transform

of eqn. (3A-18) yields
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_a
-UkIJ - a Ck,I (0)=

as+1

ds+b- d
u1,,k - u,1k (0)

as+1 as+ I
es+c e

+ asUk + Uk11(O)
as±+1 as+1I

The differential form of eqn. (3A- 18) is equivalent to the convolution form of eqn. (3A-

14 ) ift

a = zr (3A-20)

b = A + p

C = P

(3A-21)

(3A-22)

(3A-23)

(3A-24)e = rp + p'

and provided that the following initial condition is satisfied

UkI, (0) = A+P+ 2' + /ju (0)+ P + jUkl (0) (3A-25)

Substituting eqns. (3A-20) through (3A-24) into eqn. (3A-18) yields

-, l II+ Uik + Ukl
TV

+ A+P
2' + p'

+ I, +01p
(3A-26)

p'kl

The following constants are defined:

Ak = UkI,!

rp = ( 1 A'+ 2p'
r A+2p

rs +

S=A 2p + A'+ 2p'
r

and

f Simply a term by term comparison of eqns. (3A-17) and (3A-19).
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M=p+l (3A-31)

Finally, eqns. (3A-26), (3A-1) and (3A-25) are rewritten to form the stress-dynamic

equations and initial condition as

fk = If + rU - rsM u,1k + rsM u , , +(n -M)dllk + Mdl,1 (3A-29)

iik =(A + fk) (3A-30)
P

f (0) = (MI - M)ul,1k (0) + Mukl (0) (3A-3 1)

Derivation of Dispersion Relations

In the absence of body forces, eliminating fk from eqns. (3A-29) and (3A-30)

yields an equation expressed in terms of displacement

Tik + Pt k = (rU - rsMu 1jk + (rsM ukl + v(H - M)dIlk+ -MdkI (3A-32)

Consider a steady-state longitudinal plane wave attenuated in the direction of

wave propagation and having the form

uk(Xx 2 ,,-t)= nkue "'"mxme " (kpnmx"'') (3A-33)

and a similar steady-state shear plane wave having the form

uk (X, X 2 , X 3 ,t)=nu e~s" ei(ksmx-ox) (3A-34)

where nk are the components of the unit wave vector n, n' are the components of a unit

vector orthogonal to the wave vector n, (that is, n -n =nin' =0), u0 is the wave

amplitude at the phase plane containing the origin, a is the attenuation coefficient, I is

equal to V , k is the wavenumber, subscripts P and S denote the respective properties

of longitudinal and shear waves, and co is the circular frequency.

Longitudinal Waves

Substituting eqn. (3A-33) into eqn. (3A-32) yields
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TpnUO( -JY + PnkUO (- I hO) = (r - rsM)nnlnku P +P2

+(rSM)nknInIuo(-a, kxP )2 (3A-35)
+ T(H - M)nlnlnkuo(-aP + ik) 2 (-o)
+nMnknInIuO(-aP+ ik,) 2(-io)

where the common exponential terms have been ignored. Using the property that

n -n = nn, =1 (3A-36)

and factoring out the common terms nk and uO, eqn. (3A-35) can be simplified to

rp(- h) 3 + p(- iw)2 = r,(-a,+k + id(-a,+ ik, 2 (-Uo) (3A-37)

Simplifying the real part of eqn. (3A-37) yields

2 PP-Pra +r(a2 - kP) (3A-38)

Simplifying the imaginary part of eqn. (3A-37) yields

-rpw3 = -2rpn apk, - codl(a 2 - kp) (3A-39)

Solving eqns. (3A-38) and (3A-39) for apk, and a2 - kp yields

a k(rJ r,)3 (3A-40)
2 rl(rp2 + C02T2)

and

a2 -k 2  _ p_2(r, +o 2r 2 ) (3A-41)
i(rp + co2 r2 )

Solving for k, in eqn. (3A-40) and substituting the result in eqn. (3A-41) yields

4pw2(r +)
a + (r ao 2 2 _ 22 2 2 = 0 (3A-42)

~r + 21-2) 42(r2 + C~27

Equation (3A-42) is quadratic in a4, thus solving via the quadratic equation yields

2 _p
2 (rp + 0 2T2 ) 1 2 4( + 2 2 

6 (1-
W 2 - 2 ) 2 2  

+ w
2

Z-
2

)
2  

]
2 (r 2 +C -

2
)
2

2 _po 2 (r +cor 2  2 (r,+ao 2 )2 
2r

2 w 2 ( 2  (3A 44)

P 2 22 2 2
2 )2 21-

2 r2 p+w2i2 + m + w2 22 _ (3A-45)2P r+ 2i 2
-- 2 2(P2
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Discarding the negative root of eqn. (3A-45) to avoid a, being an imaginary number

yields

a2 P02
- 2H

(r)+w2- 2)(1+co 2v2) r,+±co v

(r2+ r72 2 r 2 2

a 2 P 0 2  1+ 2 
2

2 r + 2 2

(3A-46)

rP + 2

r2 221
rP +) ij

(3A-47)

Multiplying eqn. (3A-47) by r / r, yields

2 ( 2 2a2 2 P02 2 1+m22
rp r2 22

2rpRH r +co2

2 PCO2 1 + OJ2

P2rp 1 r2,22

2 P 2  1 22

2rn F +rT2co2

iP + (202 

P 2 + 022

r +rC02r 2
2 2 2

P +) C 2

1+ rw 2 vr2

+±r; 20J2-2

Reformulting eqn. (3A-41) yields

kP=o2 +O (1r c 2r) 2

= r ( + i- 2 w2 T 2 ) +

Substituting eqn. (3A-50) into eqn. (3A-5 1) and simplifying yields

2 PCO2 r 1+ co 2,2

2rFJ l+-2, 2

1+-10)21-2
irY z-2 2 N2+ lr- 1 op 2

Shear Waves

Substituting eqn. (3A-34) into eqn. (3A-32) yields

zpnf'UO(- I0c) + pn'uO( l0) =(r, - rsMn'nnuO(-as + )2

+ (rsM)n'n nu (--as ++ k)2

+ (H -M)nnlnkuO(-as +iks) 2 (_

+ zMn'n'nn 0(-a + i /c) 2 (-iw)

where the common exponential terms have been ignored. Using the properties

nI -l = fn =0
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n-n=nn, =1 (3A-55)

and factoring out the common terms n' and u0 , eqn. (3A-53) can be simplified to

Tp(--w)Y + p(-iO = rsM(-as + ks) 2 +zM(-a s +iks)2 (-ico) (3A-56)

The form of eqn. (3A-56) is similar in form to the longitudinal wave case in eqn. (3A-

37). Thus the attenuation and wavenumber of shear waves is similarly found to be

a2rM 1+ c2w 2v_ 1+r'co2 J (3A-57)s 2rM 1+r:2CO2Z-2 1+r-2CO2Z-2

k2 _ p 2 'r 1+2r2 + -1-22 j (3A-58)
s 2rsM +rs2,, t) +rs2,,

Limiting Cases of Attenuation and Wavenumber

The attenuation and wavenumber of both P and S waves have a similar form.

Henceforth, the limiting cases of the general dispersion characteristics for the following

equations will be identified

2 p2 +22 lrto 2 2

k2 CP r +~~v r_____2r# 1+r 22 I r -2(2A2( )

k2 _ p2 + 22 +-12 (3A-60)
2r + r-0, 2+rC02,2

where a, k, r, and # can respectively represent either ap, kp, r,, and 1-I or as, ks,

rs, and M.

In the high frequency limit (or >> 1), eqns. (3A-59) and (3A-60) can be

conveniently expressed as

a 2 
_ pW2  + w 2v- 2 )1/2(l + r2 w -2 

) 1/2 -(1 + r21-2 )(1 + r2-2 T2)1 (3A-61)
2#

k2 PO 2 ((i+C9-2Z-2)/2(i + r 2 W 2 v 2 y)12 + (1 + r-2r-2 )(1 +r 2 - 2 r -2)-1 (3A-62)
2#

Using the approximation

(q+ ) 6~ ca + pli, << (3A-63)

egn. (3A-61) can be simplified to by keeping all terms up to O(r-2 ) as
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a2 PO) 2+( -2,-2

20 2

r2 -2 -2 __ -21-2+r2C

2

a2 P r2

a 2  p(1-r)
2

4r 2b

1-r

(3A-64)

(3A-65)

(3A-66)

(3A-67)2VCmax

where

Cmax = #/P (3A-68)

Equation (3A-62) can be simplified by keeping all terms up to O(C)2) as

2 = (2) (3A-69)

k = O(3A-70)
Cmax

In the low frequency limit (cor << r), eqns. (3A-59) and (3A-60) can be

conveniently expressed as

a2 (1+ 2 2 21/21+r-2C22 Y1 1+r22)1 r-2 2 2)-1

2r$

k2 "b ((1+ 02,2)/2(1±+r-2w22)12 +(1+ r-'w2v2)(1+ r-2w2v2)-1
2r$

Equation (3A-71) can be simplified by keeping all terms up to O(C04v 2 ) as

2 pDW 2 (0)a2
2ro

422(

2 2r 2 r

1-
2 r

+ 2 2

Pt4r2(1-r)2

4r30

Finally,
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Finally

(3A-71)

(3A-72)

r 2
(3A-73)

(3A-74)

(3A-75)
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a = O(-r) (3A-76)2 rcmin

where

cmin = r$/p (3A-77)

Equation (3A-72) can be simplified by keeping all terms up to O(CO2 ) as

k2 =P 2 (2) (3A-78)
2r$

k =-- (3A-79)
Cmin

There is also an intermediate frequency at which the attenuation is approximately

proportional to the frequency. This limit is derived by requiring the attenuation tangent

line in the a - co plane to contain the origin, or

aa - (3A-80)
aco -co 0 W

Equation (3A-80) was solved with Mathematica 5 software [3A-2], to yield the

intermediate frequency

= r (3A-81)T 1+3r

As co -+ coo the attenuation coefficient is

p l+2r 5+r (3A-82)
8r 8(1+r)

The phase speed in the vicinity of coo is approximated by using a Taylor series expansion

truncated after the linear term as

c() ~ )ac (3A-83)
C c()CO +(Ocoo)-

where

COO 5+r +3+2r(3-4c(Ce) = + (3A-84)
8(+r) 8r

and
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1/2C 2(5+r) 2(3+2r)
c = (- r)r (+ r) r (3A-85)

c p (1 + 3r)' (3+r)312

It is clear from the first term in eqn. (3A-85) that slope in the phase speed decreases to

zero as the dispersion coefficient approaches its elastic limit. In general, however, when

co -> coo the wave propagation is dispersive for 0 r < 1.

References:

3A-1. R.M. Christensen. Theory of Viscoelasticity: An Introduction 2nd ed., pp.
14,15,37,38. Academic Press, New York (1982).

3A-2. Wolfram Research, Inc. (Champaign, IL), Mathematica documentation:
http://documents.wolfram.com/mathematica/

APPENDIX 3B-Four Stage Runge-Kutta Method

In this appendix, the four stage Runge-Kutta numerical integration for a set of linear,
discrete dynamic system of equations is outlined.

Consider a matrix equation given by

n = Au + f (3B-1)

where u is the state vector, A is a matrix and f is a prescribed forcing vector. The Four

Stage Runge-Kutta method [3B-1] is given by

lu = At(Atu+tf) (3B-2)

2l t+2
2U =AtA 'U+- +At2fJ (3B-3)

2

2u t+' A
3 = AtA u+---+At 2 f (3B-4)

2

4u = AtA(tu+3u)+ At(t+Atf) (3B-5)

t+At u='u+ I ('u+2-2 u + 2.U+4u) (3B-6)
6

where left superscripts 1, 2, 3 and 4 denote intermediate steps.

The time stepping procedure for the one-dimensional mass-spring-lattice model

(MSDLM) as shown in Fig. 3B-1, for example, is given by
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h h

Fig. 3B-1-Schematic of MSDLM for one-dimensional standard linear solid, where each interior particle
has mass per unit area (orthogonal to plane of page) equal to ph.

Step 1:

f = At i.tf + 1 tu -2+tui )+ g1 +g 2 (ta - 2- + a (3B-7)
Z' thA hA

I = At-I (3B-8)

ai =At( f (3B-9)

Step 2:

2f = Atf- + ui'L-(. -2-'u,+tui+ g1 +g2 (' 2-i +fji)
r rhA hA (3B-10)

+ -t I + lui-2-1u +u_)+g 1 ±g 2 (a, -2-'a +'1+ ui+ / rh hA li)

2u =i At-Ii + At,-i (3B- 11)
2

At

2af+At+ j+ At fbI (3B-12)
p) 2 p

Step 3:

V1 = At 1tf + g, (tu' - 2-'u +u + 1+ g 2 ('a 2-' +t),i i+ hA-) hA i i1 i1zhA hA(3B-13)
At _12f+ -2- 2 u.+2 u_ K 2 2, -2- 2 fi + 2 i
2 MA hA

u3 = At-' + .2ai (3B-14)
2

At

i) At(2'+-3af, =At +- + At b (3B-15)p 2 p p+~CiD At
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Step 4:

4f =At - -'f + 1('u ,-2-'u,+' ui + t2('g - 2! ti+, t
T AhA hA

+ At( -z- + g(3AUt, - 2-3+u

4u = At-' + At{-g 3{

At ( -- 2+At ± +At( ±

p 1
+I(i +2-2f +2-3f+4f,6

t+tU = tui + 1 (ui + 2.2U i + 2-Bui+4 u, J6

t t i=tt+ -1 ,zj+ 2.2g, + 2-3 ,+4,).6

Reference:

3B-1. M. Abramowitz and I.A. Stegun (Eds.), Handbook
with Formulas, Graphs and Mathematical Tables, pp.
(1965).

APPENDIX 3C-Convergence and Accuracy Criteria for
Lattice Model

of Mathematical Functions
896-897. Dover, New York

the Mass-Spring-Dashpot

In this appendix, the convergence and accuracy criteria are derived via von Neumann
analysis for the one and two-dimensional mass-spring-dashpot lattice model (MSDLM).

One-Dimensional MSDLM

Convergence Criteria

The stress-dynamic equations for a one-dimensional standard linear solid

viscoelastic continuum described by a single relaxation time can be expressed as [3C-1]

af I rq$a 2u a 2g-= - + +# 0
at Z- r ax2 ,

(3C-1)
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aU (3C-2)
at

aU _ 1 +f) (3C-3)
at P

where f is the force per unit volume, r is the stress relaxation time, r is the squared ratio

of the minimum to maximum phase speeds (0 < r ;1), # is the governing elastic

constant, u is the displacement, p is the density, and fb is the body force per unit volume.

Taking the Fourier transform of eqns. (3C-1) through (3C-3) yields a matrix

equation

d ~ k T T#

U = 0 0 1 Uk (3C-4)
dt -

-Uk - 0 0 Oj
- - p -

where F, Uk and Uk are the respective complex amplitudes of the force per unit

volume, displacement, and velocity corresponding to the wavenumber k. Equation (3C-4)

can be rewritten as

u ,exact = a exact (3C-5)

The eigenvalues of A-, are given by

2A IDI-A W- = 0 (3C-6)

which satisfies the characteristic equation

I -12 Z rZ (3C-7)
_ _D + 2 AAD 30

exact exact exact

where

z = Ek2 2 (3C-8)
p

The eigenvalues of Aexact are

1 d(3Z - 1)Dl-1-D (3Z--) DI (3C-9a)
+Dexact

1,Aexact 3 i 3DlD 3Viv
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1 (1 + iVF)(3Z - 1) (1- V)DA--
1-D -+ 

exact

,Aexact 3r 3VND D 6Vfir

whFe)(3Z -1) (1 +s e- to D

1 -D +xc_, A e'c 3z- 3VrD- 1D 6V2r

where 1.: is equal to

D A ID = (Z(9 - 27r) - 2 + 3(3Z)(4Z2 + 27Zr2
-

Dxct

The exact time evolution of eqn. (3C-5) is given by

Uet(t)= GI- u (0)
Uexac~t) =exact exact (0)

where
G-D

G lD = e texact
exact

18Zr-Z+4r)

Here GI-, is the amplification matrix, etAac is the matrix exponential of Al% and

u (0) is the initial conditions vector. The dimensionless eigenvalues of G 1D areexact exact

called amplification factors and are simply related by the expression (
= IeD

=e I, ex
t

where 1 represents any of 1, 2 or 3.

Equations (3C-1), (3C-2), and (3C-3) are discretized via the one-dimensional

mass-spring-dashpot lattice model (MSDLM) in Fig.

equations for the discretized model are

-f fi + -91 (ujsj - 2ui + u,4)
dt r -rhA
dui

dt

-d -= -(fi + fb, i
dt p

+ g1 +g 2
hA

3C-1. The stress-dynamic

- 2a, + ,4) (3C-12)

(3C-13)

(3C-14)

where

_2-= -r (3C-15)
92

f is the force per particle volume due to the internal strain on particle i, g, and g 2 are

spring constants, h is the grid space, A is a unit cross-sectional area normal to direction of
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i -i - i i 2 +1

b2 92 b 2

h h

Fig. 3C-1-Schematic of MSDLM for one-dimensional standard linear solid, where each interior particle
has mass per unit area (orthogonal to plane of page) equal to ph.

force, and u, is the displacement of particle i, and fb, is the body force per unit particle

volume on particle i

Expanding eqn. (3C-12) via the Taylor's series in the limit as h-+0 and comparing

the result with eqn. (3C-1), the one-dimensional MSDLM is spatially consistent with the

govering PDEs if

h A (3C-16)
g'=h

92 = (1- r)#A
h

(3C-17)

Taking the discrete Fourier transform of eqns. (3C-12) through (3C-14), in light

of eqns. (3C-16) and (3C-17), yields a matrix equation

2r#
2 (I -cos kh)

0

0

-coskh) F

0 Uk

0 0,k

(3C-18)

(3C-19)nsdm = A ,msdm msdlm

The eigenvalues for A,-, satisfy the characteristic equation

O3 ID + -j 2 A
msdIm AmsdIm

Z' Z'r
+ v2  _- + 3 = 0,2 _msdlm _r

z' 20 2 (1-- cos kh)
ph

F
d k

dt I
Uk

or

where

(3C-20)

(3C-21)
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The eigenvalues of A-3,, are

2,A-D = - - 1 + 1)(3ZD-1) DAd (3C-22a)
,,A msdm 3r 3 zDAlsDim

1 (l+ilI)(3Z'--l) (l- iJ)D 1_D
12 1-D ssdm

I-D I -+ -( +rA(3 - mdi (3C-22b)
A,Amsdlm 3-r 3 V4rD ID6V6r

I (1-i[3)(3Z'--1) (1+ V')D(-D
I3 -D -+msd/m 

(C2c
3,Amsd. 3z- 3 V4 rD 1-D 6Viz-

where

DA -D (Z'(9 - 27r) - 2+3 (3Z')(4Z'2 + 27Z'r2 -18Z'r - Z'+ 4r)) (3C-22d)

The exact solution to eqn. (3C-23) is

ttUmsdlm =GlID t U (3C-23)
- msdlm msdm

where
1-D

G'7,,m e At
Amsdim (3C-24)

In numerical computations, the G,- must be approximated. Using a four stage Runge-

Kutta integration method [3C-2], the numerical amplification matrix is written as

Ger = I+ ± AtAi- +1 (AtA-, ) + 1 (AtA-, ) + 1(AtAI-D ) (30-25)
1! 2! 3! 4!

G ,.iaI is equal to the Taylor series expansion of G,,,3,,, truncated before the term of

order (Aty. As h -> 0 and At -> 0 the solution approaches the exact continuum

solution, eqn. (3C-10); thus, the MSDLM discretization in space combined with the

Runge-Kutta temporal integration yield a consistent numerical scheme. Equation (3C-

25) can be rewritten as

a, 12  a 13

GI,-,,,cai = a21 a2  a23  (3C-26a)

_a 3 1  a3 2  a33 .

where
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a A =1- (At)2 (
1 

+ 2

1 2#(1-coskh)
2 2

+ (At) -I 20(2- r)(1- cos kh)
6 (r3 pZh 2 )

20(1 - cos kh)
ph2T2

a12 = -2rAt(1 - cos kh)+ r0(At)2 (1- cos kh)
Zh2 T 2h 2

+ (At)3 (r(1-coskh)) I 2(1- cos kh)
3 h2,2 ) T 2  h2p )

(At)4 2#r(1 - cos kh) 1 2#r(1-coskh)
24 h21 (3 PT

a 2#At(1 - cos kh) +b(1 - r)(At)2 (1- cos kh)
13  h2 +h2

(At) 2(1- r)(1 - cos kh) 402(1- cos kh)2

6 h2p + h2p

+ (At)4 2#(1-r)(1-coskh) 1 4#(1- cos kh)
24 ( h 2Z- )(2 h 2 p

a = (At) 2 (At)3 + (At)4r(1-coskh)
2p 6pr 12h 2 P2

a2 (At) 3 r(1 - cos kh) + (At) 4 #r(1 - cos kh)
22  3h2 pr 12h2 pr2

a =At - (At)3 (1 - cos kh) + (At)4 (1 - r)(1 - cos kh)
3h2p 12h 2pT

a - At (At)2 (At) 3

p 2rp 6
1 2#(1-coskh)

T2 hp2 '
(3C-26h)

+(4 1 2#(2 - r)(I- cos kh)
24 pro p0h2r

a = -(At) 2 r(1 - cos kh) + (At)3 r(1 - cos kh)

prh2  3h 2p 2

(At) 4#r(1- cos kh) 1 2(1- cos kh)
12h2 pT r 2 h2p
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a3 = 1(At)2#(l- cos kh) + (At) 3#(1- r)(l- cos kh)
h2 p 3h 2 pv33 h P 3 h 2 P T(3 C -2 6 j )

+(At) 4  2#(1 - r)(1 - cos kh) + 402(1- cos kh) 2

24 h2iT2  + h2P 2

The amplification factors of Gn7.meric-, are

numerical =(a, + a2 2 + a33 ) + k/id 2
3 d + d1

2+ 4d2 (3C-26k)

33+ d1+ ds+4d)

2,nmera /3

334 d1 + d1
2 + 4d2 (3C-261)

+ ( d-v + N ±d2 +4d2
6k/i

3,numerical = (3a22+ a3) - 2
'"'" 3V4 (d, + d + 4d21 d2 (3C-26m)

+ + dl + d1 +4d2
6 Vi

where

d= 2(a + a3 + a 3 ) -3(a 2a + a a33 + 2 + a a23 + a 22a 3 )

+9 a, a 2A + a 12a2 1a2 + anaA3

+a 22 a 2 3 a3 2 + a13a 31a 33 + a 2 3a 32 a 3 3  (3C-26n)

+12aa 22 a 33 -18(a 3a22al+ ajja23a32+ a12a2la33)

+ 27(a 2 a23a 31 + a13a 2 1a 32 )

2= -(afi +a + a2) -- 3(aa 21 + a,3a31 + a 23a 32 + aIa22  (3C-26o)
+ aa 33 + a22 a 33

The amplification factors of G -7,,rical must lie within the stability region expressed in

terms of the amplification factors of AtA -D, as

1+ ' AA - tAlD t f , ~AAD
AdlmD + + + Ldlm 1 (3C-27)AYdm 2 6 24
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The amplification factors of AtA ,,, satisfy the following characteristic equation

,,,I -AtAI-D =0
AlA Dt msdlm

or

+3 2 1-Zi 2imI + rWZ2tID+W 4A1D + =I- 0~A Asm + ,nmsdlm Z
2

AAm + *W

where

At
W

and

Z = icmaAt 1- cos kh
h

Here Cmax is given by

cmax
p

The amplification factors of AtA,-, are

A1,I-A w - V2(3z 2 _ W2) d

msdlm 3 3d1, 3V2
At'msdlm

w (1+ lh)(3z2 _ 2  (1- )d m
msd-n 3 --- +2,AtAmsd=m 3 3VId 6V2

Z2 3 I2D (1+ f,)d
3,AtAmsd'm 3 3VNd D6 2

(3C-33a)

(3C-33b)

(3C-33c)

where

(w(9z2 -27rz2 -2w 2 )+
d I-D =AtAmsdm (z 2 - 2) 3 -- 2(9z -27rZ

2 -2W
2

)2

The special case of amplification factors of AtA lying on the real axis

requires

100
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-2.78 tAID O1 (3C-34)

The special case of amplification factors of AtA,-, lying on the imaginary axis requires

(3C-35)-2i2V AtA- ! i12,r
msdlm

where i is equal to 4-.

As r approaches unity, the amplification factors of AtAI- reduce to one real and

one pair of imaginary complex conjugates.

-lD =-W
1,AtAmsdlm

I-D2,AtAmsdlm

-1D 1Z3,AtAmsdlm

Thus, from eqns. (3C-34) and (3C-36)

At
-2.78 < - 0

or

At
2.78

and, from eqns. (3C-34), (3C-36) and (3C-37)

Izl 2 fi

(3C-36)

(3C-37)

(3C-38)

(3C-39)

(3C-40)

(3C-41)

or

-cmaxAt 1-coskh 2-
h

Because eqn. (3C-41) must be satisfied for all kh, it follows that

CmaxAt 1.4 1
h

(3C-42)

(3C-43)

Approximation -2.78 results from requiring AD to lie on the real axis in eqn. (C.27). Exact expression

for lower limit is 4 1 -"2 +- 4(9 = - 43)-
3 3 99 _ 43 3
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The nondimensional number chAt is often important in wave propagation problems
h

and is defined as the Courant number [3C-4].

The above stability analysis is valid as r approaches unity. To generalize, Fig. 3C-

2 shows boundaries of stability regions in the z-w plane for various values of r. The

stability condition in eqn. (3C-39) is applicable for all valid r; the stability condition in

eqn. (3C-42) is valid for 0.13 < r <1. However, for 0 < r < 0.13, a conservative stability

limit requires the Courant number to be less than 1.30.

In summary, for a one-dimensional MSDLM the stability conditions for all r are

given by

At
-- 52.78

cmaxAt < 1.41
h

0 < r 1 (3C-44)

(3C-45)0.13 < r ! 1

2

A

-4

increasing r

-. ... ... .1

... ... ........................

-............................

-3 -2 1 0 1

f1c At
Z = ' vmax -cos kh

h

r z0.13 /

J.-

rl. .

... .. .. .. ... .. .. .. .. . -.. .

........ ... .. ... . ... .. .. .. ... ..

2 3 4

Fig. 3C-2-Stability region boundaries for fourth order Runge-Kutta method on z-w plane for various
values of r. For given r, all points that lie between stability boundary and origin are stable.
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cAt 1.30 0 < r 0.13 (3C-46)
h

In accordance with the Lax equivalence theorem [3C-4], the demonstrated consistency

and stability ensure the MSDLM's convergence.

Accuracy Criteria

The accuracy of the MSDLM is determined by a comparison of the amplification

factor of the exact solution of the continuum model, , and the amplification factor

due to the Runge-Kutta numerical integration of the MSDLM, 4numerical. In general the

amplification factors are complex, and it is often easier to compare their magnitudes and

the phases. The respective magnitudes of the exact and numerical amplification factors

are given by

eec Re e i.....:A (3C-46)

where A,,,c represents any eigenvalues from eqns. (3C-9a), (3C-9b) and (3C-9c),

and

(3C-47)

where nue,, represents any of amplification factors from eqns. (3C-26k), (3C-261) and

(3C-26m) and the overbar denotes complex conjugation. The respective phase angles of

the exact and numerical amplification factors are given by

K exac,) = {,}At (3C-48)

and

( c ) =Im{ln( ,umerica )I (3C-49)

(It is noted that the phase angle for the numerical amplification factor will always lie in

the range -# < ( ,,i,,. ) < .)

Figure 3C-3 shows the magnitude and phase of the exact and numerical

amplification factors as a function of normalized wavenumber when r = 0.55, C = V ,

At/r = 2.78/4. For the exact and numerical amplification factors, it is clear that each falls

the following categories: a purely real amplification factor corresponding to non-
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- Exact
Numerical
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0.2 0.4 0.6
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p
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1
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0.2 0.4 0.6 0.8 1
kh/(27c)

Fig. 3C-3-One-dimensional exact and numerical (MSDLM) magnitudes and phase angles as function of

normalized wave number k, for r = 0.55, C = Ji2, and At/r = 0.70.
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propagating decay, denoted by decay', or a complex conjugate pair of amplification factors

corresponding to decayed propagation with positive phase and negative phase, denoted

by $,rop and prop , respectively. It is noted that the category for each into one of

amplification factor is not determined by the order of the subscripts listed in eqns. (3C-

9a), (3C-9b), (3C-9c), (3C-26k), (3C-261) and (3C-26m).

At small kh, the numerical amplification factors approach the exact values; as kh

grows larger, the error increases. To quantify this behavior, the error in magnitude and

phase of the amplification factors are expressed as

Percent Error in Magnitude """ "'"""r"' X 100% (3C-50)
1 ,'actI

Percent Error in Phase = K """i"' X 100% (3C-51)

For the case where r = 0.55, C = V , and At/r = 2.78/4, Fig. 3C-4 shows the percent

error in magnitude for fdccay as a function of kh. The plot reveals that, to achieve a 1%

error or less in the magnitude of decay, the maximum allowable kh/2zc is ~0.75. For the

same case, Fig. 3C-5 shows the percent error in magnitude and phase for propi- as a

function of kh. To achieve less than 1% error in magnitude for prop requires kh/2rto be

less than ~0.15; however, to achieve less than I% error in phase for #po/- requires

kh/2lf to be less than -0.07. For this example, one can conclude that the grid spacing

should be set according to the error in phase.

The ordinate and abscissa labels in Fig. 3C-4 have a more physical meaning.

From the definition of wavenumber, recall that

k- - h (3C-52)
21 K

where K is the wavelength. If Ns is defined as ratio of the wavelength K per grid spacing

h, the following relationship exists

N, = (3C-53)
S2;r
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rA

0

.........

0.05 0.1 0.15 0.2 0.25
khl(27)0

10

9

8

7

6

5

4

3

2

1

0
0 0.05 0.1 0.15 0.2

khl(2n)

Fig. 3C-5--Percent error in magnitude and phase angle of amplification factor corresponding to wave

propagation as function of normalized wave number k, for r = 0.55, C = Fi, and At/r = 0.70.

106

10

9

8

7

6

5

4

3

2

1

+
0.
0

0.

0

C)
0

0
On
Co

0
C)
C..)

C)

0 1
0 0.25

.................- - -

- - .

........... . - -

..... .. .. . . -. -.. . . . . .

-. - - - - - -

- - ...

-.-

- . . . . . . . . . .. . . . . . . . . .

- . .. .- ...- ...-.. .-.



Chapter 3: Formulation of Mass-Spring-Dashpot Lattice Model

Thus, if kh/2 r must be less than, say, 0.05 to achieve the required accuracy in phase, it

requires a discretization of at least 20 (1/0.05) grid spacings per wavelength.

The phase value of the exact and numerical amplification factors, can be

described as the circular frequency multiplied by the time step [3C-3], or

({,,,)= c oAt (3C-54)

K nmerica ) = wonume,c(I At (3C-55)

The relationship between phase speed, circular frequency, and wavenumber is

ce 0, c = tc' (3C-56)
k

= m""'nericc (3C-57)

Hence, in light of eqns. (3C-54) through (3C-57), eqn. (3C-51) can be rewritten as

ex - K'numerica) X 100% = l'XUct nZminerical X 100% (3C-58)
K Nexact) Cc Ic,

Thus, the phase error is also equal to the error in wave speed.

Combining these concepts, Fig. 3C-6 shows contour plots of the minimum

number of grid spacings per wavelength required to achieve less than a 1% error in phase

speed as functions of C and At/r for various values of r ranging from 0.25 to 1. (These

values of r were chosen to be representative of the behavior of real materials subject to

ultrasonic waves. Generally, large variations of phase speed as functions of frequency are

not expected, and here the lower limit, r-0.25, corresponds to the case when the ratio of

minimum phase speed to maximum phase speed is 0.5.) Fig. 3C-6 reveals that a

conservative estimate to achieve less than a 1% error in phase speed requires a minimum

of 20 grid spacings per wavelength.

To ensure errors in magnitude below 1%, it has been found numerically to require

- < (3C-59)
7- 3
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Two-Dimensional MSDLM
Convergence Criteria

The stress-dynamic equations for a two-dimensional, linear viscoelastic

continuum described by a single relaxation time under plane strain conditions in the x-y

plane (w-O) can be expressed as [3C-1]

8f, 1 rUIa2 u rn-rsM a 2v rsMa 2u
_--f+P

at T X ax2  T axay I(3C-60)

+H +(n-M) +M
ax axay ay 2

af, 1 a 2v rU-rsM a2U rsM a2V
=-f + +

8t r ' r axay ax2y r xa t TT(3C-61)

+ r- + (1- - M) + M F

at
at = 9 (3C-62)

av
a- = 1 (3C-63)

- (fx + fbx) (3C-64)
at p

- , + fby (3C-65)
at p

where

r, = 1+- 1 (3C-66)
r A+2p

rs = I+-- (3C-67)

EP =A+2p+ A'+ 2 p' (3C-68)

and

Es = $(3C-69)
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Here, 2 and p are the Lame constants and A' and u' are the analogous viscous

constants.

Taking the two-dimensional discrete Fourier transform of eqns. (3C-60) through

(3C-65) yields a matrix equation

1
13,0 a 2 a a a 

S,0 a a 3 ,D, a2 5  a A 6a2  FY

d U 0 0 0 0 1 0 U(3-)d U U(3C-70)
dt V 0 0 0 0 0 1 V

U 0 0 0 0 0 0
.j p IV V

0 - 0 0 0 0
p

or

nexact =a- exact (3C-71)

where

kx rU- + k 2rsMa 2-D k Y1 Hkr M (3C-72)
13,A2-D

a 2D k k (rH - rsM) (3C-73)

a15 A = -(k H +kM) (3C-74)

a 2
D -kXy (I - M) (3C-75)

kk k(rfl - rsM )
2-D (3C-76)

a24 ,AaD -kxk, (H - M) (3C-77)

kx rU + k 2rsM
- - k M (3C-78)

a 26,A;a, -(k + kM) (3C-79)

The eigenvalues of A 2-D, are given by

2- I- A 2-D 0 (3C-80)
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which satisfies the characteristic equation

2-D + 2-D +P2-D

exact exact 2 exac

where

Hk 2 2
Z, =

P

Mk 2-2

Zs =p
P

(3C-8 1)

(3C-82)

(3C-83)

and

(3C-84)

The eigenvalues of the exact two-dimensional problem (satisfying eqn. (3C-8 1)) are two

sets of eigenvalues of the exact one dimensional problem (satisfying eqn. (3C-7))-one

set for a P wave and one set for an S wave.

Equations (3C-60) through (3C-65), have been discretized according to the two-

dimensional MSDLM in Fig. 3C-7. The discretized dynamic equations have been written

in component form for a generic particle position (ij)

j f + D U -2u +u
dt Z' ' rh2D +, J

+h iD ~42+ u +u 1 1 ±+ +u,_1 1 4u11

+rh2D 4h+ - -

+ 1 + 2  - 2  +

4 2 23 i+l,j+l i-,j-i i+l,j-1 i-l,j+l ij

1 r+ 72 + 3 +g94

+h2D 4h2 + )\U_ -9 _ -

111

(3C-85)
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Fig. 3C-7-Schematic for two-dimensional MSDLM in vicinity of interior particle at position (ij), where
each interior particle has mass per unit depth equal to ph2 .

dt =Tj rh2D (vij+ -2vL + v11 /

+ zh2 D 4h + +

+ Zh2 D 4h+ U +

+ 1 2 2ij+ - i ,j-)

+ 1h (I )D + 9 3 ;g 4 )&i+j+1-:~ 1

71 + 2  9 3 +9 4 +I

4 h 2 2 ) kIi + 1, 1+ 1 i 1I-1 - Ii+lj-l _-I~~

du.1 =

dt

dvi1

dt
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v +v - 4v1,)
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(3C-87)

(3C-88)

+ j+,,jj + j_,,j+j - 4 jj)



Chapter 3: Formulation of Mass-Spring-Dashpot Lattice Model

'~ =!-(f +fx) (3C-89)
dt p

''' -(f + f(3C-90)
dt p

where h is the grid space, D is the unit depth, ui,, and vi, are the respective x and y-

direction displacements, fi and fb are the respective x and y-direction volumetric

body forces, fj7 and fiy are the respective volumetric forces due to internal strain, g1,

g 2 , g 3, and g 4 are the extensional spring constants, and q, and 1 2 are the rotational

spring constants.

Because only a single stress relaxation time is defined in the theoretical model, all

the force relaxation times in the extensional and rotational elements used in the MSDLM

must also equal this single relaxation time. Thus, the extensional dashpots b2 and b4

and rotational dashpot 72 must satisfy the expression

-2= b4 = 72-=,r (3C-91)
g 2  9 4  772

Expanding eqns. (3C-85) and (3C-90) via a Taylor's series in the limit as h-+O

and comparing the result§ with eqns. (3C-60) and (3C-65), the two-dimensional MSDLM

is spatially consistent with the govering PDEs if

g, = D(rH - rsM) (3C-92)

g2= D((1-- rp)n -(I- rs)M) (3C-93)

g3 = -(rr + rsM) (3C-94)
4

§ The useful equations are

a
2 pP P1 +1.1 - 2 p 1 + Al+O(h2), a2 P Pi+i,1- 2p 11' ++ h2',

ax 2  h 2 O2 h2

a 2 
+ a2 p p ,+ ,pI,,+1p, +p,_,-4p,,j +O(h2), and

ax2  
2 2h 2

a2p Pi+1,3+ - Pi-lj+l - Pi+l,- + pi-i-1+O(h2)
axay 4h2
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4 ((I- r,)H +(I- rs)M) (3C-95)
4

h2D(3-)
771 - (3rsH - rM) (3C-96)

4

h2D
/2= - (3(1- rs)l -(1 -r,)M) (3C-97)

4

Substituting eqns. (3C-92) through (3C-97) into eqns. (3C-85) through (3C-90)

and taking the two-dimensional, discrete Fourier transform yields a matrix equation

1
0 a13,A a14 ,A2 a 15,A 2-D a 16,A -D

F 0 2 3 ,A2  24,A 25 ,A2m a 6 ,2, F,

d U 0 0 0 0 1 0 U (3C-98)
dt V 0 0 0 0 0 1 V

i - 0 0 0 0 0 0

0 - 0 0 0 0
p

or

nmsdlm Au-D (3C-99)
-msdlm msdlm

where

a -D 2 (rl -rsM)(coskh-1)+rsM(cosk.,hcoskxh-1)) (3C-100)
1,msdIm h

I

a22 (3C-102)
a 2 = 2EsM-rH)sink khsin k~h (C1

a 2 _D = 2 (H -M)(coskh -1) + M(coskh cosk~h -1)) (3C-102)
msAndlm h

a 2-D = -(M H) sin kh sin k~h (3C-103)
1,mdlm h2

1
a 2-D sM -r,)sin khsin kh (3C-104)

23,Amsdlm

a24 ,-A 2 (,r, - rsM)(cos kh -1) + rsM(cos kh cos kh -1)) (3C-105)

a2 A2-D 1 (M - 1)sin kh sin kh (3C-106)2,msdIm h2
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a26 A2-D = 2(TIr - M)(cos k~h -1) + M(cos kh cos kh -1)) (3C-107)
26,msdlm h

For the special case when the wavenumber is along the x or y axis, that is k =k or k= ky,

the eigenvalues of A 2-D satisfy the characteristic equation

1 r Z',
IV 2-D + 2-D + 2 -D +yQ r AmsdIm T msdim 3 (3C-108)

msdIm msdIm A msdim 3

where

Z'= 2 (1- cos kh) (3C-109)
h p

Z (1- cos kh) (3C-l 10)
h p

The eigenvalues of the two-dimensional MSDLM (satisfying eqn. (3C-108)) are two sets

of eigenvalues of the corresponding one-dimensional problem (satisfying eqn. (3C-20))-

one set for a P wave and one set for an S wave.

The amplification factors of AtA 2-D satisfy

I - AtA2- = 0 (3C-111)
JAnudlm ,nsdIm I

or

( 2-D~ + W At2-D ± Z P 2-D~ + wrpzp) 3C- 22- + tAwd2 m , z , nAtA2sdlm + 0

( 2D + 2 2D +Z2 ,A2- rsZ

where

W (3C- 113)
r

-C5 At 14)
z,= h' 1- cos kh (3C-114)

h

zs. = h , l2- cos kh (3C-l 15)
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The amplification factors of the two-dimensional MSDLM (satisfying eqn. (3C- 112)) are

two sets of eigenvalues of the corresponding one dimensional problem (eqn. (3C-29)).

Thus, the stability criteria are

2.78

and

(3C-1 16)

cmax,PAt 1.30
h

(3C-1 17)

In the case of a general orientation of wavevector,

k, =kcos9 (3C-1 18)

(3C-1 19)k, = ksin9

where 0 is the angle the wavevector makes with the positive x-axis. In the special case of

0=45' and rs =r =r,

tA2-L ± W4 2-D + ± - rW2 ~
A dl A msdlm + AtAmsdlm

(41A2-L + W - z 2AA- ±rwz2 ,0
( A m d m A A ,,dlm - A t A im /

Cmax ,At MM
Z= 2-2 I1 coskh+ I- sin2

2- -1 ci

Z_ = '"ax'P' 2-2 I_ coskh - M sin 2
-- h 1H

M
kh-2-cos2 kh

M
kh -2--cos 2 kh

H

Again, the amplification factors of eqn. (3C-120) are two sets of eigenvalues of the

corresponding one-dimensional problem, eqn. (3C-29). Requiring the expressions

beneath the radical in eqns. (3C-121) and (3C-122) satisfy the stability conditions for all

kh yields the following stability criteria:

- 2.78
r

(3C-123)

and

cmaxp At M 2.61
h : min f(1.3M0 --
h k, r ' 2(2 - M / rl)

(3C-124)
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M1
Because 0 < - < - , the stability criterion in eqn. (3C-124) is satisfied by eqn. (3C- 117).

171 2

Accuracy Criteria

Accuracy criteria is investigated for the special case of rs= r=r, or

alternatively for a frequency-independent Poisson's ratio, which is defined as

1-2M /7
V= (3C-125)

2(1- M /H I)

Additionally, for the special case when the wave number is along the x or y axis, that is

k =k or k =k,, the accuracy of the P and S waves are directly found from the one-

dimensional analysis.

Figure 3C-8 shows the magnitude and phase of the exact and numerical

amplification factors as a function of normalized wavenumber when r = 0.55, C = 1.30,

At/r = 2.78/4 and the wavevector is aligned at 450 with respect to horizontal springs in

the MSDLM. As in the one-dimensional case, the exact and numerical amplification

factors for P and S waves fall into one of the following categories: a purely real

amplification factor corresponding to non-propagating decay, denoted by decay , and a

complex conjugate pair of amplification factors corresponding to decayed propagation

with positive phase and negative phase, denoted by $prop and p,,op , respectively.

According to eqn. (3C-58) the percent error in the phase is equal to the percent

error in wave speed. Figures 3C-9 through 3C-18 detail the minimum number of

gridspacings per wavelength that result in an error in P or S wave speeds less than 1

cmaAt At
percent as a function of v, r, "ap and -. From the figures, the accuracy

h

requirement would be fulfilled for 0 < v < 0.40 when there are 23 grid spacings per

wavelength.
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Fig. 3C-13-Minimum number of two-dimensional MSDLM grid spacings per wavelength required to
achieve less than 1% error in P phase speed as functions of Courant number C, normalized time step At/r,
and various values of r, r= r, squared ratio of minimum to maximum phase speeds, when v = 0.20.
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Fig. 3C-14-Minimum number of two-dimensional MSDLM grid spacings per wavelength required to

achieve less than 1% error in S phase speed as functions of Courant number C, normalized time step At/ r,
and various values of r, = ,=rsquared ratio of minimum to maximum phase speeds, when v = 0.20 .
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Fig. 3C-15-Minimum number of two-dimensional MSDLM grid spacings per wavelength required to
achieve less than 1% error in P phase speed as functions of Courant number C, normalized time step At/ r,
and various values of r, r = r, squared ratio of minimum to maximum phase speeds, when v = 0.30.
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Fig. 3C-16-Minimum number of two-dimensional MSDLM grid spacings per wavelength required to
achieve less than 1% error in S phase speed as functions of Courant number C, normalized time step At/r,
and various values of r, = rs = r, squared ratio of minimum to maximum phase speeds, when v = 0.30 .
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Fig. 3C-17-Minimum number of two-dimensional MSDLM grid spacings per wavelength required to

achieve less than I% error in P phase speed as functions of Courant number C, normalized time step At/ r,

and various values of rp r = r, squared ratio of minimum to maximum phase speeds, when v =0.40.
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achieve less than 1% error in S phase speed as functions of Courant number C, normalized time step At/r,
and various values of r, = rsquared ratio of minimum to maximum phase speeds, when v =0.40.
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APPENDIX 3D-Two-dimenisonal MSDLM Schematic and Stress Dynamic

Equations for a Longitudinal Interface of Dissimilar Materials.

Consider a longitudinal interface of dissimilar standard linear solids, Material I and

Material II, as illustrated in Fig. 3D- 1. The stress-dynamic equations of motion are

+7 2-h h2D - 2u u

g , 2 2 + 
3D 1

fI +

+1 2r l7l 2 +g&"(ui+j+i +ui 1  - 2u 2)r hD 4h 2
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bff 2 /2 g /2 Material II

h h b b

Fig. 3D-i-Schematic of mass-spring-dashpot lattice model (MSDLM) near longitudinal interface
dissimilar materials.
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g1 = D(rjH' - rM') (3D-9)

2 = D((1 - rp )n' -(I- rss)M') (3D-10)

g =(rDHIM') (3D-i 3)4

I h (( 3- r )ri + (i - rl)M') (3D-12)4

gI =h(rM'D" -r ) (3D-13)

7 - (3(1 - rs )M' - (- r)) (3D-14)

4

h = D(r"IHIMI) (3D-15)

2 = D(((-r")H" -(I-rs")M ) (3D-16)

g"s = e or,"Mt" + r"ilM"a) (3D- 17)

g4" = D ((i-- r,"I)r" + (i - rs"')M") (3D- 18)44

77" = 4(3rs'H" - rPM" (3D-9

772 = (3(-l" " -(- r,"M" (3D-)

and where h is the grid spacing, D is the unit depth, and p' and p"I are respective

densities of Material I and Material HI.

APPENDIX 3E-Steady-State Wave Propagation in One and Two-Dimensional
Standard Linear Solids
In this appendix, the steady-state displacement field is derived for various boundary
conditions in one and two-dimensional standard linear solids.

One-Dimensional Standard Linear Solids

Prescribed Displacement Slab of Length I

Consider a one-dimensional standard linear solid of length / as shown in Fig. 3E-

1. Given the excitation circular frequency co, the elastic constant 0, the squared ratio of
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(l,t )=0
u(Ot)= u e- or

u(1't) =0

Fig. 3E-1-Prescribed harmonic displacement/fixed or displacement/free boundary conditions on one-
dimensional standard linear solid.

minimum to maximum phase speed r, the stress relaxation time z, and density p, the

governing equation of wave propagation in a standard linear solid is given by

u(x, t) = Ae-'e (-") + Be ie~k-" (3E-1)

where A and B are the complex amplitudes of the damped waves propagating in the

positive and negative directions, respectively, a is the attenuation coefficient given by the

positive root of

2 p(O2 1 + 7t)12 1+r-2W2
a= 1 2  (3E-2)

2r# 1+ r 202r 2  1+ r-2) 

i is equal to [fi1, and k is the wavenumber given by the positive root of

2 P(O 1+ 2 O+2d 2  1+r 2W22

k= 1 2  + (3E-3)
2r# I+ r2 2 + r-2g

Consider the boundary condition at x = 0 is a prescribed displacement given by

u(x,t) = ue-'" (3E-4)

where uO is the amplitude.

Consider a fixed boundary condition at x = I

u(1,t)=0 (3E-5)

Substituting eqn. (3E-1) into eqns. (3E-4) and (3E-5) and solving the resulting

simultaneous system of equations yield
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A 0 1-2 2 co2kfxed U0 1- e-2 dcos 2k1 + I e sin 2k1 (3E-6)
1e - e 2" cos 2k Ie" sin 2k1

fixd 0 2c-d -2t

e- e"Cos 2kl - fe~ sin 2ki 3E7
fixed '0 1- 2e-2 cos 2k1 + e 4 ( )

Consider a free boundary condition or the steady-state stress at x=l is given by

r + w r2 + i wr(r -1) au
o-(l, t) =5 1+ r = 0 (3E-8)

1 + W2 r2 a =

Substituting eqn. (3E-1) into eqns. (3E-4) and (3E-8) and solving the simultaneous

system of equations yield

S1+e os 2kl -±e sin 2kl
Bfree 0 1+ 2e 2 '4 os 2kl + e 4 ( 1

"e- + e-Cos 2kl + Ie-sin 2kl(3-0
freeI+ 2e -c os 2kl + e -

The steady-state envelope, or maximum amplitude at a given location, is given by

Iu(x) = Ae'eik + Be"e-A (3E-11)

It is noted that, for either fixed or free boundary conditions, as the length become very

long (a >> 1), the solution reduces to

u(x,t) = uoe~"ae i (~-o) (3E-12)

Only right-going waves exist when the length becomes very long because all left-going

waves dissipate completely and no reflection occurs at the boundary.

Transmission and reflection coefficients at interface of semi-infinite standard linear

solids

Consider the displacement field in steady-state, one-dimensional wave propagation near

the interface of two standard linear solids as shown in Fig. 3E-2

u, (x,t) = uoe alxei (kx-x) + Ruoe ax e I(-kx-) -oo <x 0 (3E-13)

u,, (x,t) =Tu0 e-a"xe (k,,x-&), 0 X < Co (3E-14)

where u0 is the amplitude of the incoming wave at x = 0, a, and a,, are the respective

attenuation coefficients of Materials I and II, given by

134



Chapter 3: Formulation of Mass-Spring-Dashpot Lattice Model

incident

reflected -'

Material I14- -No Material IH

Fig. 3E-2-Schematic of reflection and transmission of waves at interface of dissimilar materials.

a 2 P,2' + r _ _2_

r, , 1 22

l+r o2 2
(3E-15)

2 _____ i + 2 2

" 2r# 11im22

1+ -l0 2 2

1+r~j2)v
(3E-16)

I is V- i, k, and kj, are the respective wavenumbers of material I and II, given by

2 +W2 2( +-122

2 P 2 ' + 2 rI +r,I I1

2r,#, l+ri- 2 c 2 1 ri2 2

k 2 _ 
CO2 

"2rjj#j

1+ I 227_

l+rh2 2 2IHI il

(3E-17)

(3E-18)1+ r-1 2 2

+ + r; 2 w2 2

and R and T are the reflection and transmission coefficients, respectively.

The boundary conditions at x = 0 are a continuity of displacement and that of

normal and axial stress

u, (0,t) = u,,(0,t)

o-,(0,t)= o,,(0,t)

(3E-19)

(3E-20)

or, expressing the steady-state stress as the product of a complex modulus and strain,

, r-i , ax O 'I
I I cr, ax X=

_ r, -r , auj
I- I co ax x=O

Inserting eqns. (3E-13) and (3E-14) into eqns. (3E-19) and (3E-21) yields

I+ R =T

1-R=XT

where
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X =b" (r, -Iwcor)(-a 1 +ik)(l--lcor,) (3E-24)
#, (r, - i coz,)(-a, + ikj)(I -i cory )

Thus, expressions for ITI and IR1 are

2T = (3E-25)
I + X

R1 = I(3E-26)
I + X

Reflection coefficient due to absorbing boundary conditions

Consider a semi-infinite standard linear solid defined for - 00 < x < 0 with the

following boundary condition at x = 0:

au(x,t) +c au(x,t) (3E-27)
x=O x=O

where c is a characteristic velocity. Consider the displacement field of an incoming

attenuating wave traveling in the positive x-direction and a reflected outgoing wave

traveling in the negative x-direction given as

u(x, t) = ue-Oe i' ) + Ruoe'e1-I-") (3E-28)

where u0 is the amplitude of the incoming wave at the origin and R is the reflection

coefficient. Substituting eqn. (3E-28) into (3E-27) yields the following expression for the

reflection coefficient

IRI a 2c 2 +(c - ck) 2  (3E-29)
a 2 c2 + (co +ck)2

In the high frequency limit (cor >> 1), c is set equal to E /p and the reflection

coefficient is

=-r for or >>1 (3E-30)
4cor

In the low frequency limit (cor << r), c is set equal to rE / p and the reflection

coefficient is

R1 = wo(1-r) for cor << r (3E-3 1)
4r
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Two-Dimensional Standard Linear Solid

Consider a half space of a two-dimensional standard linear solid (described by a single

relaxation time r and squared ratio of minimum to maximum P and S wave speeds r)

defined by -oo < y < 0 as shown in Fig. C.3.

Reflection at Fixed Surface

First consider a fixed boundary at y = 0, that is,

u(x,O,t) = v(x,O,t) = 0 (3E-32)

A plane strain displacement field in the x-y plane, formed from an incident P

plane wave (angle of incidence 9p'), reflected P plane wave (angle of reflection pr),

and a reflected S plane wave (angle of refraction Osr) is described in ray form in Fig.

C.3.

The displacement field is described by the following combination a P plane wave

attenuated in the direction of wave propagation,

upi(x, y, t) = u( (sin +,i)e~"'i"''y cosO'e (kxsinOiYCos9'')-O) (3E-33)

vi (x, y, t) = uO (cos 9,p )eap (xsine ,,+ycospe e(kp(xsin 9,,+ycosOp,)-av) (3E-34)

a reflected P plane wave attenuated in the direction of wave propagation,
-ap(xsintOP,,YCoOP, ) (kp(xsin Opr-y cos

9
p',)-a*) (E 3 )

UP,,(x, y, t) = RP,.U0 (sin ,,)e e (3E-35)

Free/Fixed
Surface

x

OS,r

P, i OP'i P,r

S, r P~r

Fig. 3E-3-Ray representation of incident P plane wave, reflected P plane wave and reflected S plane
wave near free/fixed surface of standard linear solid.
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V,,r(x, y,t) = -R,,,U 0 (cOS P,,)e-aP(x sin O,,-,r ) x sinO,,-,COS ,, (3E-36)

and a reflected S plane wave attenuated in the direction of wave propagation,

Ur (X, Y' St) (O ~ acs (x sins 0S, YOS ie1(ks (x sinOS,-Y COS OS,r )-Cd) (3E-37)
s,r (X, Y, 0= Rsruo (cos Osr)e e (3E-37)

vs,(~yt)= Rs,,uo(sin Os,)e e ~) ( -8

where

2r1 
2 2 1+r 2  3E2-3

ap - (3E-39)
S2rM- 1+r-2 2 2 1+r-2 2 - 2

- rs 1+r + 1+ r= - T (3E-4)2r M 1+ r-22 2 -222

2 V1 2 1+ co2 1 +r-o 2 )
2r H )+r-2,22 1+-2j2,r2

and

s = r + ±r (3E-42)
2rM 1 + r-22,2 1+r -2 2 )2

Thus, the total displacement field is

U = U,,, +U r,,.+Usr (3E-43)

V = V, +v. +vs,, (3E-44)

In the above equations, the subscripts P and S denote respective properties of longitudinal

and shear waves. Subscripts i and r denote incident and reflected waves, respectively, and

superscripts a and k denote the angle of the attenuation and wave propagation,

respectively.

Substituting eqns. (3E-43) and (3E-44) into eqn. (3E-32), yields

0, = P,r (3E-45)

sin tes,
sin k M (3E-46)
sinpj H

138



Chapter 3: Formulation of Mass-Spring-Dashpot Lattice Model

RP~I =- sin , sin s5 r ± COSP COSSr (3E-47)
sin P,r sins,r + COS 9 cos sS 9S,r

jRj~ I =- sin ,, cos P --cosPr sin (3E-48)
sin9,,sin9s,+cos9,,cos9s~snP,r snS,r +O P,r CO S,r

Reflection at Free Surface

The relevant in-plane stresses in a plane strain standard linear solid can be

expressed as [3C-1]

av Du av __u

o- +vo- = rH--+r(H -2M)-+zH - -(H -2M) (3E-49)
"y 8x yat axat

o-, +rn- = rM -- +- +M -- (3E-50)
* By ax ayat axat

where o-, is not needed to derive the reflection coefficient.

At the traction-free surface (y =0), o-, and o-, must be equal to zero.

Substituting eqns. (3E-43) and (3E-44) into eqns. (3E-49) and (3E-50), evaluating all

terms at y = 0, and requiring the boundary condition to be independent of x yield

9,, = P,r (3E-5 1)

sin'r =M (3E-52)
sin p E1

RI = (I - M /17)cos20sr - (M /I1)cos 2(0,, +Os,,)
(I - M / H)cos 20sr - (M / H)cos 2(9p6 - (s,r)

IRSr =2-M /V1(1 +(M / H1X + cos 29p, ))sin 2 (3E-54)
(1-M/H)cos20s,r -(M/l)cos2(6 - 9 S,r)

Reflection at Interface of Dissimilar Materials

Consider two dissimilar two-dimensional standard linear solids, Material I,

- oo < y < 0 , and Material II, 0 < y < oo. A plane strain displacement field in the x-y
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plane, formed from an incident P plane wave (angle of incidence Op,), reflected P plane

wave (angle of reflection Ar), reflected S plane wave (angle of refraction Os,),

transmitted P plane wave (angle of transmission Op,), and a transmitted S plane wave

(angle of refraction Os,), is shown in ray form in Fig. 3E-4.

The displacement field in Material I is described by a combination of a P plane

wave attenuated in the direction of wave propagation,

u,(x,y,t) = u(sin0 &)ep(xsinp+ycop e 1(kP"(xsin9p+yos9p,-) (3E-28)

,x s )e~"5(xsin co iQ ek(xsin ,+ycos0p,1 -c') (3E-29)v~j (x, y9 0~ = u0 (cos pje-Pe(329

a reflected P plane wave attenuated in the direction of wave propagation,

Ur(x, y, t) = R,,uo(sin or)e-aP(xsin p,,yCOSp)e "(kpo-(xsinOPrYC OP)t) (3E-30)

=~ -RIY, Pu 0 (COS Or)e -RU 9l~ nP,r-YCOS 9p,r)e i(k!dx sin GPr-yCOS OPr,)OC))

V,,(x, y, t) =- 9 Pocs,,r e-eo' -

and a reflected S plane wave attenuated in the direction of wave propagation,

U~rX~Yt) a~xsn~syCO~s ) (k'(x sin OSrYCOS 9S,r)WOX)
US,(n(x, y, t) = Rs,(((COS Osr )eX'S '""n fOS e

vsr(x,y,t) = Rsruo-sin0sr)e e(xsin SsYCOSOS,) (ks(xsinOS,- COS -

P, i9P'l

(3E-40)

(3E-41)

(3E-43)

Material II

Material I

0s,
SPr

, ,r

S,r P,r

Fig. 3E-4-Ray representation of incident P plane wave and reflected and transmitted P and S plane waves
near interface of two dissimilar standard linear solids.
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where

1+22 r2

+_

1+(rcI
2w22

1+ o2 r2

1+0)21-2

F 1 + r ) 2 2 m 2 2

1+(r Y2 T2

l+(r Y2 w2T2

1+r (rIY 2 Z'2

l+(rI)2r 2

1+(r 2 2 2

1+(rI )2 2 2

1+(r' Cl2

1+(r Y2 w2 r2

(3E-45)

(3E-46)

(3E-47)

(a 
= P'I2W 2

aP 2r'r'

as 2 'I

2r'M',

(ks p'Ico2 '
2r'M'

(3E-49)

(3E-50)

The displacement field in Material II is described by the combination of a

transmitted P plane wave attenuated in the direction of wave propagation,

u,, (x, y, t) = Tuo (sin O,, )eap (x s O,,+y c O (kp![ (x sin p,e+y cos Op, )-t)

-af (x sin Op, ey cos Op,) i(kp'(x sin 
9

p, ±y cos 
9
p - )

and a transmitted S plane wave attenuated in the direction of wave propagation,

US, (x, y, t) = Ts,u (cos Os,'''e

vs (x, y, t) = -Ts, 1uo (sin Os,)eas (xsin Os,,+ycOS )e T(k."(xsin Os,,+ycos 9 5 )-a )

(3E-5 1)

(3E-52)

(3E-53)

(3E-54)

(a"' =_ P IC92_
I 2r" (

(a"4 = P"M2 2

S 2r"IM"

1+ cw2 2

1 +(r") 2 2r21+ c) 2 -2

1rII

1+ r 2

1+ (r" )2 22

IY 1 
22

1+ (r" 2 o2 I2)
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(3E-48)

and

The displacement field in Material I is

U' =UPi+UPr +US,r

V' =VPj + Vp, + Vs,

v,,t (x, y, t) = T,,u0 (cos Op, )e

where

(3E-55)

(3E-56)
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(k"= P"' 2  1+ l0 2 -2  + 1+(r" - C02 Z2

2r" H I +(r" )2 2 2 1+ (r" )2 w 22

(ks H = IIC 22r"M"
1+ 2(rI 2 2

T+(r"2I,2 T

(3E-58)_ + (rII } 2 2

1+(r"iY ) c2 T2

The displacement field in Material II is

u" = U,, +us,,

V"I = V,, + vs,,

Expressions for the relevant stresses in each plane strain standard linear solid are

+ z'-' = r' + - r'( ' - 2M')--+ ''
"y ax ayat

+ r'( -2M')au
axat

I I I
OY + I rl

II II II
O-yy +i- OjyY

II II CII0" + " -xy

rM'au
r'M' + r'M'

ayat axat

-r 1 ' -r"(" 2 M")-±""
y ax ayat

+ T" (n"- 2MI)au
axat

-r"1 M" -au-
ay

x IaI
ax ayat +-

Expressions for o' and a"' are not needed for the computation of the various reflection

and transmission coefficients.

The boundary conditions are

u'(x,O, t) = u"(x,O,t)

v'(x,O, t) = v"(x,O, t)

0,',,,(x,O, t) = 11"(x,0,t)

c' j(x,Ot) = o1(x,O,t)

(3E-65)

(3E-66)

(3E-67)

(3E-68)

For the special case when
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(3E-69)

(3E-70)

(3E-71)

o2rI <<1

co T"I <<1

1-r' __1-r"
1 Ir I II

the angles are given by

Pi = P,r

sin 9 S, r M
sinOp, H'

sin 9 pt p'H"
sin 9 p"I

sin 9 St _ p'M"
sin0 p"'

(3E-72)

(3E-73)

(3E-74)

(3E-75)

and the reflection and transmission coefficients are given by the solution to the following

system of equations, eqn. (3E-76):

-1

a(' -2M' sin 2 9,.)

csc29,,- ( 7 sI

cim,s C--

-aM'sin 20 I

-aM'sin2,,j aM' cos20 C

'IMP

- csc2
96, c",2C- P

(-H" + 2M" sin
2 O,,)

- sin 20,'
C fl p ,

EnL

- csc
2
9,

C , P

M" sin 2 0s

-cos26,(

-1
-cot ,

a(2M' sin 2 
O, -H ')

-M' sin2p, j

where

C'axp = l' /p'

cmaxs = M' '

CmaxP =i

cmaxs = M" /'p"

a=1+i(r' -1)/(wor')a +"
1 + i(r" -1/a"

and

(3E-77)

(3E-78)

(3E-79)

(3E-80)

(3E-8 1)
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Surface Waves

In this section, surface waves on a standard linear solid half-space defined by

y < 0 will be investigated according to the procedure outlined in [3E-4]. Consider the

displacement in the x - y plane of the form

ux = UP, e I w(SP ,x+SPy-) + Us'xe I "(ssXX+SSyY) (3E-82)

Uy = Upyet CO(SP,,XSpYY-t) + Usye (ssXX+ssYYt) (3E-83)

where u, is the component of displacement, UPn and Us,, are the complex compenents

for each of the P and S modes, se,, and ssn are the components of the slowness vector,

and where subscript n can be x or y.

The relevant steady-state stresses in the solid are

- = rH -- +r(H* -2M)-- (3E-84)07 D y ax

0- = r Q-+-- (3E-85)
Oy ax

(expressions for o *x is not needed for the computation of the surface wave) where the

elastic constants are written in complex form as

)2T2

n = rr+ . +iwr(r- (3E-86)
1+0)o2

. r+C02T2 +orgr -M =M I + ±i21-) (3E-87)

The viscoelastic Rayleigh wave exists when the surface tractions vanish

o-*, = *, = 0 (3E-88)

and

s,, = ss'x = sx (3E-89)

To find the various parameters the following cubic equation must be solved

c3 -8C2+ 24-16- -16 I =0 (3E-90)
H whr

where
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s;Mv

The other parameters are given by

2 PM 
* 

-

ssx

s 2 * s 2
Pj 1-I

US' = US. s'

ss.Y

U, -U,. s'5 y

Because spurious solutions will be generated in the formulation of eqn. (3E-90), the roots

of c are admissible if

Re{s,} > 0, Im{sj 0

Im{s5 } < 0, Im s,,} <0

(3E-96)

(3E-97)

and if

s 2 --
M*s2

(3E-98)

is satisfied.

Numerical observations have shown that for the present standard linear solid

viscoelastic model (single relaxation time and single dispersion parameter), there exists

only an "elastic-like" Rayleigh wave, with a frequency dependent wavespeed, cR

CR =
Re{s}

such that

(3E-99)

CR < S <CP

The attenuation of the Rayleigh wave is given as

aR = co Im {s

(3E-100)

(3E- 10 1)

Figure E.5 and E.6 show the frequency dependence of the phase speed and attenuation for

the Rayleigh, P and S waves for the case when r = 0.55 and v =0.30.
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Fig. 3E-5-Frequency dependence of Rayleigh (R), P, and S phase speeds when r = 0.55 and v = 0.30.
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Fig. 3E-6-Frequency dependence of Rayleigh (R), P, and S attenuation when r = 0.55 and v = 0.30.
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The particle displacement is expressed as

=Re{A,(y)jA9(y)} siRen (e{sx}-t) -

Im{A(y)}sin (Resx - t)j

Reju} = [Re{A(y)}cos co(Re{sx}x - t)- e
Im {A, (y)} sin co(Re {sx }x - t)

where

A =e + 2 e Pyy
c-2

Ay = s> eI sYY + 2 e i.,yj
ssyI c-2

The elliptical orbit at a given point is

(Im{A,} Re{ux} + Im{Ax} Re{uy})

+ (Re {A} Re{ux} - Re{Ax} Re{uY})

=(Re{A}Im{AY} - Re{AY} Im{Ax})e2ox
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APPENDIX 3F-Absorbing Boundaries for Mass-Spring-Dashpot Lattice Model.
In this appendix, absorbing boundaries are formulated and validated by numerical
examples.

One-dimensional

The equations governing P wave propagation in a one-dimensional standard linear

solid are [3F-I]:

af f rl a2u a2a
-= -- + + F-I

at Z I- x2 ax2

auBu

at

(3F-1)

(3F-2)
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- (f +f1 (3F-3)
at p0

where f is a force per unit volume, r is the relaxation time, r is the dispersion

coefficient, I is an elastic constant, u is the displacement, t is the velocity, p is the

density and fb is the volumetric body force.

Consider harmonic waves of the form

u = e-fe (~') (3F-4)

where a is the attenuation (Np/unit length), i is Vii, k is the wavenumber (rad/unit

length) and co is the circular frequency (rad/unit time). Eliminating f and 1i from eqns.

(3F-1) through (3F-3) and substituting in (3F-4), and considering the high frequency limit

(co << 1) yields the following dispersion relation:

l= 1-r (3F-5)
2

rcax

k= -O (3F-6)
Cmax

where

cmax = (3F-7)

To reduce spurious numerical reflections caused by the truncation of the

computational domain, an absorbing layer is proposed. This absorbing layer gradually

increases the attenuation coefficient to a predetermined maximum magnitude. In view of

eqn. (3F-7), one approach to increase attenuation is to make r and r monotonically

decreasing functions of x in such an absorbing layer.

Consider steady-state wave propagation in a standard linear solid half-space (x > 0)

having peak magnitude u0 at x =0 and center frequency co. It is desired to simulate the

physical response in the domain 0 x x 50 where k is the wavenumber corresponding

to co, and absorb out-going waves beyond the physical domain. Thus equation eqn. (3F-

1) is rewritten as

af f r(x)I aU Ai (3F-8)-- =- + +HI 
(3F-8)at -r(x) 4~x) 8x2~~ ax2
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where

[r, 0 Ikxc50

r(x) =r expln(rmn / r) x-50/k j
L

r, 0 kx s 50
er(x) x-50 /kj

7 exp( In(rmi /rT) ,

50 < kx50 + kL

50 < kx s 50 + kL

where inun and rmin are the minimum values of r and r , respectively, and L is the length

of the absorbing layer.

Equations (3F-8), (3F-2) and (3F-3) are disrectized via the mass spring dashpot

lattice model (MSDLM) as

ci-t
dt

1 rnl I-
+ (u -2u + +

h +1 2 11 ) (tii+, -h2i ±z 1)

dui

dt

di 1
S=-(f{+ Ji)

at p

(3F-11)

(3F-12)

(3F-13)

where h is the grid space and the subscript i is an integer that denotes the value of the

preceding variable at x = (i - l)h.

Equations (3F- 10), (3F- 11) and (3F- 12) are numerically integrated by the fourth

order Runge-Kutta method [3F-2] having stability conditions:

- 2.78 (3F- 14)
T

m 1.30 (3F-15)
h

where At is the numerical integration time step. In view of eqn. (3F-14), the lower limit

for rVin is

(3F-15)
At

2.78

** 2.78 is an approximation for the exact limit, which is given by

4 10 2 +24(9vf 43) -

I 3 A/91-43 4
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The theoretical lower limit for rm is zero, but to provide bounds on the exponential

function used in eqn. (3F-9), the following is adopted

rmin = 0.Olr (3F-16)

To further reduce any numerical reflection at the boundary of the absorbing layer,

an acoustic boundary condition according to [3F-3] is applied at kx = 100 + kL.

An MSDLM simulation of a physical domain and an absorbing region in response

to a harmonic prescribed displacement at x = 0 (uO magnitude, co magnitude) is shown

in Fig. 3F-1.

Two-Dimensional

The two-dimensional stress-dynamic equations for a plain-strain standard linear solid,

having a single dispersion constant r and single relaxation time r, and incorporating

absorbing boundary conditions are

Of." 1 r(x,y)fJ 82 u r(x,y)(H - M) 82v r(x,y)M 82 u

- fl + ) + +
8t r(x,y) v (xy) 8x r(x,y) 8x8y r(x,y) 8y/

_ _2 8a2z
+H +j (n-M)----+M ' 3F16

-0.5

physical domain aser

-1.5 II

0 10 20 30 40 50 60

Fig. 3F-1-MSDLM simulation of steady-state one-dimensional standard linear solid showing exact
analytical envelope in physical domain and rapid decay in absorbing layer. Here uo is displacement

cmaxAt
magnitude at x=O, k is the wavenumber, r=0.652, cvr=50, kL=15, .=.30, and

h

= 5.1 x 10-
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1
r(x,y) '

r(x, y) 7 a2v r(x, y)(F - M) a 2u r(x,y)M a2v
+ Y + +

r(x,y) ay2 zxy xy rxy x2
(3F-17)

+ 4-i+(-M) +M
xya2 ax

au
at
av
at
at 1

(fy + fb)

at P

Equations (3F-16) through (3F-21) are discretized via the MSDLM as

1

i,'

(1i - M)
+ rjh2 (i+l,j - 2ui,j + Ui-I,j

+,M+ I h2 (i+,]+1 + i-1,-1 + i+lj-l + u ,+ 4u,,)

+ r ( - M) + - i
4r 1 h2 v +v - , -

+ H -M (Ii+,j -2~ +a

2 -_ i+_ , j+ + i-- j- l i+j- l i- 1, j+ )j
4 h2 ,
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af,
at

(3F-18)

(3F-19)

(3F-20)

(3F-21)

df, X

dt

(3F-22)
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Icy. ± r(F - M)
.j z- h2  \zi,j+1 ij ij-1

lJ 1,

2 i+1,j+1 + i-I,j-1 + +,j-1 +vj+i - 4v 1j)

+ ( 1) - M) + )
4zjh+2 ui + - - -u

2h2v + + +4

+ 4h 2M)(g~~l + Ii-j1-Zil - i-

duij 
i

dt "j

dv11 -

dt

d 1

dt
!(bx
-fp

p

dt p=(J ±j

where the subscripts i and j are integers that denotes the value of the corresponding

variable at position x = (i - l)h + c, and y = (j - )h+ c2 (here c, and c2 are constants

based on the relative position of the origin with respect to the grid).

Consider the physical domain -20 kx < 20, -20 : kx 20 surrounded by an

absorbing layer of thickness L. Extending eqns. (9) and (10) to the two-dimensional case

yields

- 20 kx & 20

-20 / ky 20

x - 20 / ki
r(x, y) = exp ln(rmin / r) L

xnexp n(rm /r) y-20 /

I L

- 20 - kL & kx ! 20 + kL

- 20 - kL & ky 5 20 + kL
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df,

dt

(3F-23)

(3F-24)

(3F-25)

(3F-26)

(3F-27)
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- 20 kx 20

- 20 ky ! 20

r(x, y)= exp ln(rmi, / r) V-20/ki1
L

v x miniyL A
expln~min/ |y - 20 / k|iexp (n( , / r) L L

-20- kL kx 20+kL

- 20 - kL ky 20+ kL

To further reduce any numerical reflection at the boundary of the absorbing layer, at

x= ±20 ±kL and ky = ±20 ±kL, there is a two-dimensional acoustic absorbing

boundary condition [3F-3] at the edge of the absorbing layer.

Fig. 3F-2 shows the steady-state response due to a sinusoidal time-varying circular

normal stress O,, at the origin.

-30

-20-

-10 -

- 0

10

20 F

30

-30 -20 -10 0 10 20 30
kv

-10

-20

-30

0

0

-50

60

Fig. 3F-2-MSDLM simulation of steady-state wave propagation due to sinusoidal time-varying circular
normal stress at origin in two-dimensional plane strain standard linear surrounded by absorbing boundary
of thickness L. Here k is wavenumber of P waves, r =0.652, v =0.377, cor =50, kL =15,

Cmax~t At -
C At = 1.30, and =5.1x10-3

h V
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CHAPTER 4:
ULTRASONIC NONDESTRUCTIVE

EVALUATION OF SUBSURFACE
CRACKS IN AN
ATTENUATING NANOCOMPOSITE

ABSTRACT: Theoretical predictions of specific strength and specific stiffness of
nanocomposites make them attractive replacements for alloys and modem fiber
reinforced composites in future generations of numerous structures. The reliable and safe
utilization of these nanocomposites will require their periodic characterization with
nondestructive evaluation.

Analytical mass-spring-dashpot lattice models (MSDLM) for the ultrasonic
nondestructive evaluation of an attenuating nanocomposite containing subsurface cracks
are developed. The homogenization of the elastic and viscoelastic mechanical properties
of the nanocomposite constituents is implied in the use of the MSDLM. Furthermore,
numerical accuracy requirements restrict minimum anomaly dimensions to one-twentieth
of the characteristic wavelength.

Full-field wave propagation simulations of these models as well as the
corresponding model of a pristine nanocomposite are conducted, and their relative
surface displacements are presented. The initial temporal and spatial disturbances of
these relative surface displacements along with root-mean-square averages of the vertical
relative surface displacement reveal guidelines for the characterization of subsurface
cracks in nanocomposites and other attenuating materials.
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NOMENCLATURE

Symbols
b extensional dashpot coefficient
c phase speed
e base of natural logarithm
F externally applied force per unit

depth

fX, f z horizontal and vertical force per

unit volume

frequency
extensional spring constant
numerical grid spacing

indicial notation for grid position
wavenumber

x" horizontal coordinate of crack tip
of horizontal semi-infinite crack

z' vertical coordinate of crack tip of
vertical semi-infinite crack

z" vertical coordinate of crack tip of
horizontal semi-infinite crack

a attenuation (Np/unit length)
At

3(x)
6

M instantaneous modulus governing
shear waves

P relating to longitudinal waves
r dispersion ratio
S relating to shear waves
T period corresponding to center

frequency
t * initial relative surface displacement

time
U, w horizontal and vertical

displacement
x * initial relative surface displacement

coordinate
x' horizontal coordinate of crack tip

of vertical semi-infinite crack

Subscripts
center

max, peak

min
P
R

relative
RMS

S
std.dev.

relating to
relating to
relating to
relating to
relating to
relative to
relating to
relating to
relating to

numerical time step
Dirac delta function

normalized surface displacement
resolution

e absolute surface displacement
detection resolution

7 rotational dashpot coefficient
1 rotational spring constant
K ratio of longitudinal phase speed

to shear phase speed
A wavelength
v Poisson's ratio
fl instantaneous modulus governing

longitudinal waves
z ratio of circle's circumference to

diameter
P density
o stress
r relaxation time

center
greatest magnitude
least magnitude
longitudinal waves
Rayleigh waves
pristine nanocomposite
root-mean-square
shear waves
standard deviation
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Chapter 4: Ultrasonic Nondestructive Evaluation of Subsurface Cracks in an Attenuating Nanocomposite

4-1 INTRODUCTION

Modem composites consist of a matrix (generally polymer, metal, or ceramic) and

reinforcement (generally fibers, platelets, or particles) that are combined to produce

materials having mechanical properties tailored for specific applications. Substandard

fabrication procedures, environmental exposure, and handling or service deterioration can

affect their mechanical properties without effect on their visual appearance.

Because composite components are subjected to increasingly demanding structural

requirements, their periodic characterization by various nondestructive evaluation (NDE)

techniques is an important aspect of ensuring their reliable performance. In NDE, rather

than absolute outputs of interrogated structures and materials (e.g., surface displacements,

temperatures), it is often more desirable to obtain outputs relative to known pristine

structures and materials (e.g., relative displacements or temperature rise) as shown

schematically in Fig. 4-1. In ultrasonic NDE, prescribed time-dependent waves are

propagated through the interrogated structure. Due to reflections, scattering, and

absorption of these waves, perturbations in output surface tractions and/or displacements

can be detected, and ideally related to deterioration or inherent characteristics of the

component.

Various theoretical and experimental modeling of ultrasonic NDE in engineering

materials have been undertaken in the last few decades. For example, Williams et. al

used theoretical and experimental ultrasonic NDE models for damage characterization in

various materials and structures, especially those utilizing composites [4-1 through 4-7];

Achenbach et. al investigated the theoretical scattering of time harmonic surface and

body waves due to the presence of subsurface cracks in an elastic half-space [4-8 through

4-12]; one-dimensional ultrasonic NDE theoretical models of layered composites have

been investigated [4-12, 4-13, 4-14]; and in the last few years, laser ultrasonics has

enabled full-field detection of composite surface displacements caused by subsurface

anomalies [4-15, 4-16].

Compared with most modem composites, nanocomposites are in their

developmental infancy. Nanocomposites, a classification that includes matrixes

reinforced by nanoparticles of dimensions less than 100 nm, often exhibit exemplary
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Prescribed NDE input
{stresses/

displacements, heat flux,
etc.}

Interrogated Pristine
Material/Structure: Material/Structure:

NDE output {stresses/ NDE output {stresses/
displacements, displacements,

attenuation, temperature, attenuation, temperature,
etc.} etc.}

Interrogated
Material/Structure:
Relative NDE output

{stresses/displacements,
attenuation, temperature

rise, etc.}

Fig. 4-1-Schematic of relative nondestructive evaluation (NDE) output for interrogated material or
structure, with respect to corresponding pristine material or structure.

structural properties. For example, a 5% concentration by weight of nanoparticulate clay

embedded in an epoxy matrix typically produces a 20 - 50% increase in strength and

stiffness over the pristine matrix [4-17]; single-walled carbon nanotubes (CNTs) have an

elastic modulus and yield strength on the order of 103 GPa and 50 GPa, respectively [4-

18, 4-19]; and future CNT reinforced polymers are projected to have a tensile strength of

2.5 GPa, an elastic modulus of 240 GPa, and a density of 103 kg/M3 [4-20].

The application of nanocomposites in structures is very promising. A case study by

NASA engineers [4-20] projected an 85% reduction in the weight of a reusable launch

vehicle if a CNT reinforced polymer were substituted for the current composites and

alloys. A similar case study involving a range of wide-bodied current commercial

aircraft predicted a 14% average reduction in structural mass and a 10% average decrease

in fuel consumption [4-23].

Nanocomposites often have specific areas-the total surface area of the matrix and
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reinforcement phase per unit volume-that are orders of magnitude higher than

comparable macrocomposites [4-21]. Furthermore, poor load transfer between the matrix

and reinforcement in such nanomaterials as CNT composites produce strengths and

stiffnesses far short of theoretical projections. The high specific area, poor load transfer

efficiency, and lack of proper reinforcement dispersion in the matrix, combine to produce

materials that exhibit significant viscoelastic behavior. For example, Suhr et. al [4-22]

have shown that the loss modulus is fifteen times higher in a CNT composite at

frequencies on the order of 10Hz compared to that in the neat matrix; and Zhou et. al [4-

21] have modeled and measured the "stick-slip" behavior of CNTs in a polymeric

matrix.

When subjected to ultrasonic waves, nanocomposites often have attenuation

coefficients that are an order of magnitude higher than those of modem carbon fiber

reinforced composites. Nanocrystalline metals exhibit attenuation that is five to ten times

higher than in the same coarse-grained metals for ultrasonic frequencies up to 20 MHz

[4-25]. Attenuation in zirconium-based bulk metallic glass composite increases 5 to 9

times with a 4% volume fraction of CNTs over the undoped glass [4-25]. These results

strongly indicate that an accurate model of ultrasonic wave propagation in

nanocomposites must include attenuation.

The remainder of the chapter is divided into five main sections: (1) an analytical

model for ultrasonic NDE of an attenuating half-space containing subsurface cracks is

introduced; (2) numerical discretization of the analytical model and the verification of

numerical solutions are described; (3) normalized parameters are formed; (4) specific

nanocomposite and ultrasonic investigation parameters are presented; and (5) the

parametric investigation of the full-field surface response is summarized.

4-2 ANALYTICAL MODEL

Consider a viscoelastic solid half-space (z < 0) containing subsurface semi-infinite

cracks. At time t = 0 , the half-space is subject to a time-varying vertical force per unit

depth F(x,t) concentrated at the origin as shown in Fig. 4-2a. The Gaussian-modulated
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Prescribed Z
Concentrated
Force F(xt)

(a)

* Particle

- Computational cell boundary -

Neighbor interaction line

- Crack boundary

Force application

(c)

*0,

-- +x----

(b)

Nh

000

(d)

Fig. 4-2--(a) Schematic of half-space containing vertical and horizontal semi-infinite cracks subject to
vertical concentrated force F(x, t), where p is mass density, c, is P-wave phase velocity, v is Poisson's

ratio, and a, is P-wave attenuation. Insets show lattice discretization in vicinity of (b) free surface, (c)

vertical crack tip (Case One) and (d) horizontal crack tip (Case Two), where h is grid space.

cosinusoidal forcing function F(x,t), chosen primarily due to its smoothness and well-

defined bandwidth, is given by

F(x,t) = F(eak,(x)exP[-,27f,,et - 3 r]cos(2,f'tt - 3fcn1f ) (4-1)

where F,,ak is the peak magnitude of the line force, 3(x) is the Dirac delta function,

ftd.dev. is the standard deviation frequency, and fe,,,,, is the center frequency ( fce, >0).

The function F(x,t) inputs "fce"te periods having an envelope greater than
Zfstd.dev.

Feak exp(- ') and thereafter rapidly decays to a traction-free boundary condition.

The viscoelastic solid is a single relaxation time standard linear solid half-space

having a density p, frequency independent P-wave phase speed c,, frequency

independent P-wave attenuation a,, and Poisson's ratio v. The plane strain stress-
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dynamic equations are [4-26]

f= -'fl+r 'Fu +r- i1 (1- M)w ,+ r--Mu,
+ Hu, + ( -M)wxz, +Mu,

f, = -fZ + r-w + f-I F(n - M + r-Mw

(4-3)
+ fw 1,, (n - M(H u , + MwI,

u,, = p-1(fX + fbx (4-4)

and

W,, = p-1(fz + f bz (4-5)

provided the initial conditions

fX (0) = Hu, (0) + (r, - M)w,' (0) + Mu,2 (0) (4-6)

fZ(0) = Uw (0)+ ( - M u,(0)+ MW(0) (4-7)

are satisfied. Here fx and fz are the respective horizontal and vertical forces per unit

volume, fb' and fb' are the respective horizontal and vertical body forces per unit

volume, r is the stress relaxation time, u and w are the respective horizontal and

vertical components of displacement, F is the dispersion coefficient given by

7=I- 2rapc,, (4-8)

1- is the instantaneous elastic constant given by

H = pc2 (4-9)

and M is the instantaneous shear modulus given by

2

M = P (4-10)

where K is given by

2 -2v
K= (4-11)

1- 2v

Additionally, the S-wave speed cs and S-wave attenuation as are given by

Cs = (4-12)
K

as= aK (4-13)
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Analytical dispersion relations for this solid are derived and discussed in [4-26].

The boundary conditions at the free surface and along the traction-free cracks are:

along the free surface z = 0

uX (x,O) = 0, o-.(x,0)=F(x,t), -oo <x < oo; (4-14)

along the vertical crack terminating at position (x', z')

o (x'~, z)= o-,(x'",z)= og (x'~,z)= -,(x',z)= 0, z' > z > -oo; (4-15)

and along the horizontal crack terminating at position (x", z")

C, (x, z"-)=o-2,(x, z"')= ax (x, z"-)= o-,(x, z",) = , x" < x< oo. (4-16)

4-3 NUMERICAL DISCRETIZATION

4-3.1 Mass-Spring-Dashpot Lattice Model

The half-space described in the previous section is numerically discretized and

simulated via the mass-spring-dashpot lattice model (MSDLM) [4-26], an extension of

the mass-spring lattice model [4-27,4-28]. In the MSDLM, as shown in Fig. 4-3, the

viscoelastic continuum is heuristically discretized into point masses interacting with

closest neighbors via extensional and rotational standard linear elements-a spring in

i-,j+l j+1i+,j+

11 77 2 94 92 9311 ,2722

h 93 b4 91 g24 9

2  b2

bb4

- qi 1, +,
b2 b238

b91

h hIE4

Fig. 4-3-Schematic of MSDLM discretization at interior particle located at position (ij). [4-26]
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parallel to a spring and dashpot in series. (The various spring and dashpot coefficients are

stated explicitly in [4-26].) The two-dimensional lattice discretization in the vicinity of a

free surface, horizontal crack tip and vertical crack tip is shown in Figs. 4-2b through 4-

2d. In addition to a summary of numerical convergence criteria relating the grid space h

and the time step At, the discretized MSDLM stress-dynamic equations for particles in

the vicinity of various interaction conditions are listed in Appendix A.

4-3.2 Verification

The verification of a few two-dimensional examples involving the reflection of

plane waves at planar boundaries is given in [4-26]. Here, the focus of the numerical

verification is on two specific problems related to the problem statement-surface wave

propagation and crack tip diffraction. For all numerical verification problems, the

MSDLM dispersion coefficient F is set to unity to simulate an elastic material.

First, consider the time-varying vertical force F(x, t) given in eqn. (4-1) acting on a

pristine elastic half-space as shown in Fig. 4-2a. The Rayleigh wavelength corresponding

to the center frequency is

AR (4-17)
fenter

where the Rayleigh wave velocity CR is calculated according to [4-29]. The maximum

frequency content of F(x,t) is defined (arbitrarily) as when the frequency is three

standard deviations above the center frequency, fLax = fe,,,+ 3 f,,de, where the

absolute value of the frequency content has dropped to a value exp(- 1) relative to the

content at the center frequency. Therefore, the minimum wavelength propagating along

the surface of the pristine half-space is the Rayleigh wavelength corresponding to fL,

or

Amn2 CR 21? (4-18)
fx 1 +3fstd.dev.fc ter

For numerical accuracy, the MSDLM grid space is set as h = Amin /20.

The exact transient solution for the surface displacements is solved by Lamb [4-

30]. Figure 4-4 shows the exact and MSDLM horizontal and vertical surface
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Exact
x MSDLM

C 0.2 , 0.2

0.1 0.1

0 0'

-0.1 -0.1

-0.2' -0.2'
0 2 4 6 8 10 12 0 2 4 6 8 10 12

(Time)/(Period at Center Frequency) (Time)/(Period at Center Frequency)
(a) (b)

Fig. 4-4--Comparison of exact [4-30] and MSDLM (a) horizontal and (b) vertical surface displacements
due to Gaussian-modulated cosinusoidal vertical force (normalized bandwidth f,,ddfe 1/3)

concentrated at origin of elastic solid having Poisson's ratio v = 0.30. Measurements are taken at ten
Rayleigh wavelengths from the origin, corresponding to center frequency f .

displacements at x = 1 0 2
R for an elastic half-space having a Poisson's ratio v = 0.30 and

when the normalized bandwidth f,,d d,,fert, = 1/3. (For increased clarity, the numerical

solution is shown only at every fifth time step At.) The initial disturbance due to the

surface P-wave followed by the Rayleigh wave is clearly seen in the figure. A discrete

Fourier transform (DFT) [4-31] of the surface displacements reveals that the MSDLM

surface displacements have a 1.5% error in amplitude at the center frequency.

Next, consider an unbounded elastic solid containing a semi-infinite crack that

terminates at the origin and lies along the positive x-axis as shown in Fig. 4-5. An

incident Gaussian-modulated cosinusoidal plane P-wave propagates at an angle of

incidence Op with respect to the crack having a center P-wavenumber k, (center P-

wavelength 2, = 2;d<k) and standard deviation P-wavenumber kpstddev. . The minimum

wavelength propagated in the model corresponds to Rayleigh wavelength Amin given by
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ni-Infinite
ack

x

Incident
P-Wave

Fig. 4-5-Schematic of incident plane P-wave impinging on vicinity of tip of semi-infinite crack.

2. = CR +kmm c(+ 3kp~stddevkp1) (4-19)

For accuracy, the MSDLM grid space is set as h = Ar /20.

The diffracted P and S-wave fields due to an incident harmonic P-plane wave

impinging the tip of a semi-infinite crack are given exactly in the form of integral

equations [4-32]. An asymptotic analysis of the far field reveals that the diffracted body

waves can be thought of as being formed from rays emanating from the crack tip, being

inversely proportional to the square root of the distance traveled and directly proportional

to the so-called "diffraction coefficients." The respective diffraction coefficients for P

and S-waves, D, (0; ,,, v) and D' (9; O,, v), are given explicitly in [4-32]. The MSDLM

diffraction coefficients are calculated by subtracting the incident and reflected plane

waves from the simulated displacement field and performing a DFT on relevant

displacements (Appendix 4B).

Figure 4-6 compares the asymptotic and MSDLM diffraction coefficients

corresponding to a plane wave having an angle of incidence 9, =90* for a material

having v = 0.30. Here all MSDLM measurements are taken at radii approximately 32,

and 52,,. The MSLDM diffraction coefficients are in good qualitative agreement with the
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2 2

1.5 - 1.5-

0.5- 0.5

0 0
0 90 180 270 360 0 9,0- 180 270 360

o(degrees) (degrees)
(a) (b)

Fig. 4-6--Comparison of asymptotic [4-32] and MSDLM (a) P-wave diffraction coefficient and (b) S-wave
diffraction coefficient due to incident P-wave having angle of incidence O, = 90' interacting with semi-

infinite crack embedded in elastic solid having Poisson's ratio v =0.30. Here normalized bandwidth of

spatial disturbance is k,,,,,kp- = 1/3 and MSDLM measurements are taken at radii approximately three

and five P-wavelengths A,, corresponding to center wavenumber k,.*

asymptotes. In general, as the radius increases the near field effects diminish; that is, the

MSDLM diffraction coefficients more closely approximate the asymptotes. The

oscillatory amplitude behavior in Fig. 4-6b is due to a secondary shear wave created by

the interaction of the P-wave with the traction-free surface of the crack; such a secondary

shear wave is commonly referred to as a head wave.

4-4 NORMALIZED PARAME TERS

The relative surface displacements on an attenuating half-space containing a

vertical or horizontal semi-infinite crack is written in normalized functional form as

M Urltv = fcn, x t v 7 f s'd-"de- (4-20)
Fpeak f'"' R S enwer ' R AR)
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M x t x Z
Wrelative = Cn2 , std.dev. X Z (4-21)

Fpeak AR 'T apl2' fcenter 'R AR

where the normalized parameters are divided into five groups:

* the normalized relative surface displacements: (M / Feak)(u,,,t) and

(M /Fpeak )(Wreatve) where uela, v and Wreataive given by

Ureative =U -Upristine (4-22)

Wrelative WWpristine (4-23)

namely, the difference between the horizontal and vertical surface displacements

on the interrogated nanocomposite, u and w, respectively, and the horizontal and

vertical surface displacements on an identically loaded pristine nanocomposite,

Upristine andWpristine ;

* the independent coordinates: the normalized surface coordinate x/AR and the

normalized time t / T, where T is the period corresponding to the center

frequency;

* the material properties of the half-space: the Poisson's ratio v and the normalized

penetration depth parameter 7f/(aA,), which is the number of wavelengths at the

center frequency required for a wave to attenuate by a factor exp(-Z);

* the normalized bandwidth of the surface loading fsd.d f ;

* and the normalized location of the crack tip: i /AR Rand 2/ AR, which represents

either a vertical or horizontal orientation.

It has been shown [4-14] that numerical errors due to the dispersion in attenuation and

phase speed are less than 1% if the following non-dimensional requirement is satisfied:

> 2)f,,r > 5 (4-24)
aP P

4-5 MATERIAL AND INTERROGATION PARAMETERS

The interrogated material is a hypothetical polymeric composite having a 60%

volume fraction of CNTs [4-20], in which the mechanical properties of this future-

generation composite are predicted to obey the micromechanical "rule-of-mixtures."
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Henceforth, this material will be denoted "nanocomposite." The orders of magnitude for

P-wave phase velocity and density are CR ~104 m/s and p ~10' kg/m3 , respectively, and

the estimated Poisson's ratio and P-wave attenuation are v = 0.30 and a, ~10 Np/m,

respectively. Furthermore, the nanocomposite is assumed to be interrogated at a center

frequency I -ene, ~10 MHz and normalized bandwidth ftd.dev.fc ter =1/3, and having a

peak force per unit depth Fak- 100 N/m. Accordingly, the normalized penetration

depth is ffa-1 2I'. = 100. Table 4-1 summarizes the order of magnitudes for the various

parameters for the ultrasonic interrogation of the nanocomposite.

The nanocomposite is discretized and simulated via a 401 x 401 MSDLM grid in

the region defined by - 5AR x 5AR and -10AR ! z i 0. The corresponding

simulations cover 1242 time steps over the time period 0 t 20T. Furthermore,

absorbing boundaries [4-26] are situated at x = 5AR and z = - 1 0 AR to simulate the

semi-infinite half-space.

In the numerical examples that follow, two cases of subsurface cracks embedded in

the nanocomposite halfspace are highlighted. Case One is a vertical semi-infinite crack

terminating at coordinates x' = -2.5AR and z'= -5AR . Case Two is a horizontal semi-

infinite crack terminating at coordinates x = -2.5AR and z = -5AR . (Refer to Fig. 4-2.)

Table 4-1--Orders of magnitude for various parameters involved in ultrasonic interrogation of
hypothetical carbon nanotube-based nanocomposite [4-20].

Density p ~10 3 kg/m 3

P-wave phase velocity c, - 104 M/s

Material Properties Poisson's ratio v = 0.30
P-wave attenuation a, ~10 Np/m

Normalized penetration depth ' 100
aPAP

Peak line force per unit depth Fpeak - 100 N/m

Interrogation Parameters Center frequency fce,,, 1 z

Normalized bandwidth f=d.d,. 1/ 3

Rayleigh wavelength AR -310 m
Output Surface Parameters Elastic far-field surface displacement u ~ 101 m
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4-6 DISPLACEMENT FIELD

Figures 4-7 and 4-8 show the displacement field throughout the nanocomposite

half-space for Cases One and Two. The P and S-waves radiating into the nanocomposite,

as well as the Rayleigh waves propagating along the free surfaces can be clearly seen in

both cases. In Fig. 4-7, the diffraction from the vertical crack tip is observed. In Fig. 4-8,

the multiple reflections from the parallel free surfaces and the diffraction from the

horizontal crack tip are clearly visible. For both Cases One and Two the relative surface

displacements are zero until the P-wave interacts with the crack and returns to the

surface.

4-7 REQUIRED DETECTION RESOLUTION

Figure 4-9 shows the maximum relative vertical surface displacement of a

nanocomposite having identical elastic material properties and ultrasonic interrogation

parameters as Cases One and Two, except that the normalized penetration depth varies

from 10 (an extremely attenuative material) to co (a perfectly elastic non-attenuative

material). For both the horizontal and vertical cracks, the maximum relative vertical

surface displacement monotonically increases with increasing penetration depth to an

asymptotic value for a perfectly elastic material. For a fixed penetration depth, the

maximum relative vertical surface displacement for the horizontal crack is roughly two

orders of magnitudes higher than the corresponding value for the vertical crack.

Consider an experimental noncontact monitoring system capable of detecting an

absolute displacement as low as e. A normalized surface displacement resolution,

denoted by 1, is defined as the minimum detectable surface displacement divided by a

specified experimental measurement range (ideally, the range that maximizes

experimental contrast). It is assumed that the experimental measurement range is tuned

to maximize the elastic far-field Rayleigh wave amplitude, which is approximately equal

to 0.2FpeakM-1 [4-30], the relationship between the normalized and absolute displacement

resolution is

0.28 M (25)
Fpeak
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Fig. 4-8-Snapshots of displacement field for Case Two, where nanocomposite is subject to
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Case One: - Vertical Semi-ifinite Crack Tenninating @ (#'-2.5AR, z'=-5,)
Case Two: --- - Horizontal Semi-Infinite Crack Terninating (=-2.5 z"-5)

10-1

--- ------ -- ----- 
------

10 110 210

Normalized Penetration Depth, I ,'

-- more attenuative less attenuative --

Fig. 4-9-Maximum relative vertical surface displacement as a function of normalized penetration depth
for Cases One and Two. Here AR is Rayleigh wavelength at center frequency, a, is P-wave attenuation,
and A, is P-wavelength at center frequency.

Thus, the required normalized detection resolution is of the same order of magnitude as

the contours of maximum vertical surface displacement shown in Fig. 4-9.

4-8 INITIAL RELATIVE SURFACE DISTURBANCE

In order to further characterize the relative vertical surface displacement response,

two parameters are proposed based upon 6. The time when the normalized relative

vertical surface response initially equals 0.26 is defined as t *. Additionally, the surface

coordinate at which the initial 0.28 surface displacement appears is defined as x*.

Figure 4-10 shows a schematic that interrelates parameters 6, t*, and x*. The

normalized functional forms of t * and x * are

= fcn3 {6, v3, std-dev X Z (4-26)
T a,2, feene, 'AR AR

Z fStt.teV. X- Z -7-=fcn4 6,v, ,, (4_
AR P center 'R AR
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t <t*

t >t*

~~4)

0

Surface Coordinate

Fig. 4-10-Schematic of relative vertical surface displacement at time t *and in vicinity of surface

coordinate x * based on normalized detection resolution S .

For the vertical semi-infinite crack, the relative surface displacements are zero until

t ~ t *, which is equal to the time necessary for the fastest wave, the P-wave, to interact

with the sub-surface vertical crack-tip and return to the surface. Thus, approximate

relationships for eqns. (4-26) and (4-27) are derived by using a simple ray analogy for the

P-waves, which minimize the origin/crack-tip/surface distance. As 15 -+ 0 , which

suggests infinitely fine resolution of surface displacements, the normalized relationship

between x* t * , x' , and z' are given by the following equations

Z (R , 2 R-1

AR 2 cp R 2 cp T)

and

-- = -- (4-29)
AR AR

where cR /CP is a function of v only ( CRlcp = 0.50 for v = 0.30 ). Equation (4-28) is an

expression for trajectories of constant t * in the x'- z' plane; the trajectories consist of
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ever-flattening cascading parabolas in increasing t *.

The results for t * and x * as a function of the vertical crack-tip location are shown

in Fig. 4-11 for 3 -+ 0 (dashed contour lines) and =10-' (solid contour lines), where

excellent agreement with eqns. (4-28) and (4-29) is displayed. Figure 4-11 suggests that

the location of a vertical semi-infinite crack tip can be graphically determined by

overlaying contours of t * and x * on a single set of axes and noting the point of

intersection.

For the horizontal semi-infinite crack, as 3 -> 0, the path that minimizes the

origin/crack/surface distance depends upon the quarter-space location of the crack. If

x" > 0 , that is, if the crack does not cross the line x = 0, the normalized relationship

between x*, t *, x", and z" follows from eqns. (4-28) and (4-29) as

z" R RX (E1 2J-% 
(4-30)

AR 2 cp T R 2 cp T R

and

wiU Normalized Detection Resolution 5-> 0

C1D Normalized Detection Resolution 8= 10-6

- 0- -

T

S-2- 2 2-

3

-4 4 -4

-6 6 -6

7

S-8 8 -8

9

-10 -10
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5

(Horizontal Coordinate of Crack Tip)/ (Horizontal Coordinate of Crack Tip)/
(Rayleigh Wavelength at Center Frequency) (Rayleigh Wavelength at Center Frequency)

(a) (b)

Fig. 4-11-(a) Initial reaction time t * normalized by period at center frequency T and (b) initial reaction
surface coordinate x * normalized by Rayleigh wavelength at center frequency AR as function of location
of vertical crack tip embedded in nanocomposite for normalized detection resolutions 3 -> 0 (dashed
contour lines) and S =10-' (solid contour lines).
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X* =X" X>0 (4-31)
AR R R

If x" < 0 , that is, if the crack crosses the line x = 0, the minimum P -wave path is

simply twice the origin/crack depth distance. In this case, the normalized relationship

between x*, t*, x", and z" is

AR 2 cp T R

-- = 0, - < 0 (4-33)
AR AR

Figure 4-12 shows contours of t * and x * as a function of the horizontal crack-tip

location for S -+ 0 (dashed contour lines) and 5 = 10-6 (solid contour lines). Fig. 4-12

suggests that, based solely on measurements of t * and x *, in general only the depth of

crack can be determined; a scanning of the line load must be undertaken.

2_-, Normalized Detection Resolution 5 -+ 0

Normalized Detection Resolution 5= 10-6

0 0

T

-2 - -- 2 -27

------- - - - -8

-4 -3 -a 4 3 - -4

-6 -------- 4-6 6

o;Q

-6--------------- 66

-10 A 10,
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5

(Horizontal Coordinate of Crack Tip)/ (Horizontal Coordinate of Crack Tip)/
(Rayleigh Wavelength at Center Frequency) (Rayleigh Wavelength at Center Frequency)

(a) (b)

Fig. 4-12--(a) Initial reaction time t * normalized by period at center frequency T and (b) initial reaction
surface coordinate x * normalized by Rayleigh wavelength at center frequency AR as function of location

of horizontal crack tip embedded in nanocomposite for normalized detection resolutions 5 -- 0 (dashed
contour lines) and S = 10' (solid contour lines).
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4-9 TRANSIENT RELATIVE SURFACE DISPLACEMENT

The transient full-field relative vertical surface displacement in the spatial window

- 5 R 5 x 5AR and time period 0 t 20T is characterized by the corresponding root-

mean-square value given by

RMS I 1 N N,
Wreiative I N Wrelative (Xm 2 (4

NNt mn=1 n=1

where Nx = 401 horizontal grid points, N, = 1242 time steps, and where

xm =h m-1- N (4-35)

and

tn = At(n -1) (4-36)

(An alternative way of analyzing the transient relative surface displacements in

wavenumber-frequency space is detailed in Appendix 4C.)

Figure 4-13 shows wR S a function of crack-tip location for vertical and

horizontal semi-infinite cracks. A few observations are noted. First, for a fixed horizontal

coordinate of the crack tip, Wr7 Sy monotonically decreases with increasing crack depth.

Second, for a vertical crack, for a fixed depth WRSve has a relative minimum for a

vertical crack located directly under the origin. Third, for a horizontal crack, for a fixed

depth Wrv monotonically decreases with increasing horizontal coordinate.

In the preceding analysis, it has been assumed that the line load remains fixed at the

origin. However, the above analysis is valid if a scanning line load function F,7n(x, t) is

defined by

Fean(x,t) = ZF(x - ccant, t - pTcan) (4-37)
p=o

that is, the line load is scanned on the surface of the nanocomposite with a scanning

speed cscan and period Tcan, provided c.n << CR and Ts. >> 20T. According to eqns.
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-3 -1 1 3
(Horizontal Coordinate of Crack Tip)/

(Rayleigh Wavelength at Center Frequcncy)
(a)

5 -5 -3 -1 1 3
(Horizontal Coordinate of Crack Tip)/

(Rayleigh Wavelength at Center Frequency)
(b)

Fig. 4-13-Root-mean-square relative vertical surface displacement WR,, normalized by shear modulus

M and peak force per unit length Fak, as function of crack tip location in nanocomposite for (a) vertical

semi-infinite cracks and (b) horizontal semi-infinite cracks.

(4-1) and (4-37), the line load is above the origin at time t = 0. The relative horizontal

position of the line load with respect the horizontal coordinate of the crack tip is

xrelativ, = X' -c.t

for vertical cracks and

(4-38)

(4-39)xrdalv, = x" -c .t

for horizontal cracks. In this case xraiv, > 0 if the line load is to the right of the

horizontal crack tip location.

Figure 14 shows wRMS as a function of X,live for Cases One and Two. A few

observations are noted.

First, the peak magnitude of wms for Case Two is two orders of magnitude larger

than the peak magnitude of WIv, for Case One. Second, for Case Two,

montonically decreases with decreasing Xeative . Third, for Case One,

symmetric with respect to x,,,, =0, that is, when the line load is directly above the

vertical crack. This symmetry is due primarily to the diffraction coefficient of a crack

subjected to normal plane wave radiation being much smaller than the diffraction
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Case One: - Vertical Semi-Infinite Crack Having Subsurface Depth z'=-5-R
Case Two: ..-- Horizontal Semi-Infinite Crack Having Subsurface Depth z"=- 5 -R

10

10'

-5 -4 -3 -2 -1 0 1 2 3 4 5
(Relative Position of Line Load with respect to Horizotal Crack Tip Location)/

(Rayleigh Wavelength at Center Frequency)

Fig. 14-Root-mean-square relative vertical surface displacement as function of relative position of line
load with respect to the horizontal crack tip location for vertical and horizontal semi-infinite cracks having
same depth as Case One and Case Two.

coefficient of a crack subjected to plane wave radiation that is slightly to moderately

oblique [4-32]. Thus, a scanning measurement would produce distinctly different

signatures for horizontal and vertical semi-infinite cracks, having crack tips at equal

depths.

4-10 CONCLUSIONS

Analytical mass-spring-dashpot lattice models for the ultrasonic nondestructive

evaluation of an attenuating nanocomposite containing subsurface cracks were

developed. Full-field wave propagation simulations of these models as well as the the

simulations for a corresponding model of a pristine nanocomposite were conducted, and

their relative surface displacements were presented. The initial temporal and spatial

disturbances of these relative surface displacements along with root-mean-square

averages of the relative vertical surface displacement reveal guidelines for the

characterization of subsurface cracks in nanocomposites and other attenuating materials.
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APPENDIX 4A-MSDLM Discretizations at Various Boundary and Interaction

Conditions

This appendix details the stress-dynamic equations for the MSDLM discretization of a

single relaxation time, single dispersion ratio standard linear solid [4A-1] in the vicinity

of various interaction conditions.

Interior Particle

The MSDLM discretized stress-dynamic equations for an interior particle located at

position (i,j), as shown in Fig. 4A- 1, are

dfi X F(H - M)'i = fii + 2 \Ni+l,j -2 i,j + i-,j)dt T A

j2 +1,+1 + - + j u+ 1  - i-+ , - 4ui,j)2Zh2

+ ( - M) +w-'- ii{- iijl
4h2 (4A-1)

*11h2M (Ziij- 21j + Ii1

r _2 M ( +1 ,j+ 1 i- j i+ j - l + i ,j

± - M(. .~ .~ .-
4h2  i+1,j+1 i1,j1 i+1 1,]+1

df Z f(H- M){
'i~~ ~ \ i 01-M (i'j+1 -2i,j - i,j-,)dt c Zh

2 i+1,j+1 + wj 1 +i+,j-l -+ wj 1j - 4wi,j

2 4rh2 )(A

H M){1 ~

+ +7n-m + +

47\/2 (\i+,j+1 i- j-1 U i+,j-1 i-,j+

du4h (4A-3)

cit
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dw 13

dt

dt p

d~~ I-(f + f)

dt p

Free Surface

(4A-4)

(4A-5)

(4A-6)

The MSDLM discretized stress-dynamic equations for a particle located on the

longitudinal free surface at position (ij), as shown in Fig. 4A-2, are

df fi j-7 F(n - M)d =- r + 2 (u,_ , -2uj + u1+1 )
dt r .

+ 2 (u +u -2u,)
Zh2

+.r(I - M) \ F(3M - 11)
+ 12 (Wi-1,J-1 - Wi+I,j-1) + Z2 1W-,j -*+1,j)2_M 4d

(4A-7)

2M ( - + )+ M + -2h 2 -.-

_M . . 3M- .
+ H 2 (I-1 - Ii+,1),+ 412 -1, vi+1,I)

dfZ f1 j 2r(r - M)
'i 2=_ + T2 \W -i~- WO)/dt Z'r

2 \M _i+,j- + w-,j- - ijrh-

+ r(I- - M) 7 (3M - 1-)
+ 2(1 h M )( ) + 42 H) (v_, 1 - )

2(H -M) . ).M . . .

+ 2-i1, i1,n -2

+H2-M (g -U 1 + 3M - 1 -)
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du J1

dt

dw.. =

dt
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(4A-9)
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(4A-12)

Crack Tips

The MSDLM discretized stress-dynamic equations for a particle located on the crack tip

of a horizontal semi-infinite crack, as shown in Fig. 4A-2, are

-i t + F(H M)(. 5 u + 0. 5ul
r di

+(3M - n)
2,rh2 (4+Ij+ - 1 j

--2u 1 +u
_Ij)

2 \ui+1,j+ 1 ±+-+,j- + i+,j-4 i-,,j+l - 4

+ F(HM)(+ ±W{ik1 - W+'+,1 -
4 72 \ i+l,j+l ,- ~ ~ - i-Ij+1 j

H - M (.
+ h2 \O.5 a . ,+ ±O.5u1 1

(4A-13)
- 2 +

3M - H
+ 2h 2 u+ -u j

M
+ Mfi+,,~ i~~~ + U~j+ 1 1-1 + fijl- 4fi,jI

2h
2

S -M4h 2 91,+1 M i,;1 9 1 u ,jl

l F(H 1 z. 
-- M)

_"'J~ ~ \ r (i, j+l w1 i-

+ (3M - rl) U
2 Ih2 (U ~-u .~~

2± h2 W'+,j+l+ wFN + w + w - 4w)

+ F( - M) + U
41h 2 \( i+,j+l i-I,j-1 - i+lj-1 i-lj+

+ lh 2 W (i,jnl- 2 v' -w ij'

(4A-14)

+3M -- I

M {.+ M2 wI~~jl+- -ji+*Ij1+*-, -4w.
2h 2 i+1,++ + ,+ + -1 4 ij/

2M 2 + _]_-a - I j+)
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dui,
d = Uij (4A-15)

dt

dw = (4A-16)
dt

da = + f X. (4A-17)
dt p

- f + f (4A-18)
dt p

The MSDLM discretized stress-dynamic equations for a particle located on the crack tip

of a vertical semi-infinite crack, as shown in Fig. 4A-4, are

df~ I F(I - M) +f i~~ ~ \ i + 7( M ) Ui+1,j - 2 i,j + i -ijdt T ,h2

+ (3M - H)
+ 21h2 Wi,- I -,'-1)

+ ( +u. +u +u_ -4u.)

+ 2 i+,j+1 i -1,j-1 i+1,j--1 - 1,
+ 4h2 (W~+ ~1 i+lIjl - i-l,i+l) (A 9

+ h 2 kU 1 + 1  2u 1 +(4A-19)
+ 2M (g - 21i +

3M - 1_1

2 2 (0 + + + - 4u

+ 4h2 +, + i,1- - +, i-1,j+1,
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dfJ = + F(f - M)( 2 \

~~ rh2 \ i,j+t -2 i,j - 0.5w ., - 0.5 I . 1

F(3M - H)
+_2zh2 (ui,1 -ui+j )

2 T +\ i+j+1 -,j-1 i+l,j-1 + i-1,j-1 i,j

2-~j- -~h (iWil 
~ij 1+

S(H - M) - )
4h 2  

\Ni+,j+ i ,j-1 i+,j-1 - i-j+

4urh =(4A-21)

+h 2 =ij+ -2 -0.5) -0.5

3M -1

* 2 \ i+l,j+l + i--1,j 1 + i+l,j-1 + i-,,j-l 1 i,j)j2h

*1 2M (Zi+ij+ 1 i-1,~ -1 i+lj, j 1 i-lj+1)

duh

1 ij (4A-2 1)
dt

dzii. *!f x (4A-22)
dt

- f f3)(4A-23)
dt p

- (f +f (4A-24)

dt p

Convergence

The stress-dynamic equations (4A-1) through (4A-24) are numerically integrated

via the standard 4 th order Runge-Kutta algorithm [4A-2]. Numerical analysis [4A-3] has

shown that the stability requirements relating the grid spacing h and the time step At are

c At 1.30 (4A- 19)
h

At
--- 2.78 (4A-20)

Furthermore, the accuracy condition required to limit the numerical dissipation and phase

speed error to less than 1% is
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> 20 (4A-2 1)

where 2
min is the minimum effective wavelength propagating in the model.

Because 0 < F 1, the penetration depth of the material, rfc4'2,', (that is, the

number of wavelengths required for a plane wave to decay by a factor exp(-z)) must

satisfy

> Por
cxP2P

(4A-22)

It has been shown that materials with penetration depths as low as 5 can be accurately

modeled in this manner; materials having a penetration depth lower than five exhibit

significant dispersion [4A-3].
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Fig. 4A-1--a) MSDLM discretization of interior particle at position (i,]) and (b) corresponding continuum element centered at the origin.
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Fig. 4A-2-(a) MSDLM discretization of particle located on free surface at position (i,j) and (b) corresponding continuum element bounded by the origin.
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Fig. 4A-3-(a) MSDLM discretization of particle located on tip of horizontal crack at position (i, j) and (b) corresponding continuum element centered at the
origin.
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Fig. 4A-4-(a) MSDLM discretization of particle located on tip of vertical crack at position (i,j) and (b) corresponding continuum element centered at the origin.
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APPENDIX 4B-Asymptotic and Numerical Analysis of Scattering and Diffraction

of an Incident Longitudinal Wave by a Semi-Infinite Crack

Introduction

Consider an isotropic elastic solid in a state of plane strain having density p, Lame

constants A and p, and containing a semi-infinite crack that terminates at the origin and

lies along the positive x-axis as shown in Fig. 4B-1. An incident harmonic plane P-wave

of circular frequency co and oriented at an angle 6, with respect to the horizontal,

impinges upon the crack edge. The asymptotic analyses of the scattered field (that is, the

part of the field that can be treated with geometrical elastodyanamics) and the diffracted

field (that is, the part of the field that interacts with the crack edge) are given by

Achenbach, Gautesen and McMaken [4B-1]. The first section of this appendix

summarizes their solutions. The second section is a verification of the mass-spring-

dashpot lattice model (MSDLM) [4B-2] applied to crack-tip scattering.

Asymptotic Solution [4B-1]

In this section, as part of the nomenclature conventions, superscripts are used in

conjunction with vectors, while subscripts are used in conjunction with scalars. As a

special case of scalars, reflection and diffraction coefficient use both superscripts and

subscripts, with the superscripts indicating the incident form of irradiation and subscripts

indicating the reflected form of irradiation.

Semi-Infinite
r Crack

0

Incident
P-Wave

Fig. 4B-1-Schematic of incident plane P-wave impinging on vicinity of tip of semi-infinite crack.
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Problem Formulation

The incident field is

Up = upeakdP exp(ikp -x) (4B-1)

where upeak is the peak amplitude and script P denotes properties relating to a P-wave,

d= (cosO,sin Op) (4B-2)

1 = Jj (4B-3)

k - _ (4B-4)
c, V(2 +2p)/ p

and

p' =(cosO,sin9,) (4B-5)

Here, co is the circular frequency, and throughout the remainder of the section on the

steady-state analyis, the time variation exp(-i cot) is omitted.

The total field can be written as

Ut = U e+Ud (4B-6)

where the superscripts t, ge and d represent the total, geometrical elastodynamic, and

diffracted fields, respectively.

Geometrical Elastodynamic Field

The geometrical elastodynamic field is

Uge =upeadP exp(z k~p -x)H[sgn(O - Op)]

+ueak R,(9L)d p exp(ikpp -Px)H[sgn(9+9p -2;r)] (4B-7)

+uek Rs (O9)drs exp(iksprs - x)H[sgn(±+Os - 2;r)]

where H[.] denotes the Heaviside step-function,

RP(9_)= sin(20p)sin(20rs) - Ks COS2 (2rs) (4B-8)
sin(20p)sin(20rs) + KS coS2 (2Ors)

script rP denotes the properties related to the scattered longitudinal waves,

d'P = (cos9p,-sin9,) (4B-9)

p = (cos9,,-sin6,) (4B-10)
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Rf (9,) = - 2Ks sin(20p)cos(20rs) (4B-11)
1sin(20,)sin(20rs) + Ks2 COS2 (2r s )

script rS denotes the properties related to the scattered vertically-polarized transverse

waves,

drs= (-sin Os, cos0s) (4B-12)

ks - -= (4B.13)
Cs /1/P

prs = (cos9s,-sin 0s) (4B-14)

Here Ors satisfies

cos Ors = cos (4B-15)
Ks

Ks = 2 = 2v (4B-16)
p - -2v

where v is Poisson's ratio.

Diffracted Field

The diffracted far-field is

Ud _ peak Dp(0;,)d P exp(ikpr)

+ Ds'(9;6)dpexp(iksr)
k-sr s(4B- 17)

+UpeakDs (p)d exp(ikR)

+UpDC(0,)dp exp(ikRr)

where for the diffraction coefficients of the body waves (8 = P, S)

D" (0; Op) = - P xZ,(0) JE (Op,)E( (0)Gs, (0)+ E f (O,)E2q(0) GpP ,(0) (4B- 18)

Here

p = (4B-19)
C'3

Z= -exp(I.j) (4B-20)

E1 (9)= sin(20) (4B-21)
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E'(0) = I -2cos
2 0

Els (9) = cos(20)

Es(0) = sin(29)

G7()= vcosO,+ K K -KCf Cos0

K~f
2

cos9L -p cos9)H,*(,)H (0)

H (0) = (KR ± Kp cos 9)K (±Kc cos0)

1 ta 1n
In K+()= -- --- tan

;r T 1 +t

44t 2 K-t 2 t2 __
-1 dt

(KCS -2t2)2

kR KR P

and where KR is the solution 4 to

(K-24 2)42 + 4 2
_ 2 2 _ 

2 =0

The diffraction vectors are

d = (cos0,sin 0)

ds =(-sin0,cos9)

and the diffraction coefficients of the symmetric and anti-symmetric Rayleigh waves are

DPs( )=-iE ()F iKRi -cosO,+1

DR (P)= -iE (OL)FP KR S Ks PSK

Here

2(1- -2)(cos,--KR)H,(0p)K*(-KR)

and the diffraction vectors are

ds = (0,1)

dp = (1,0)
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MSDLM Verifcation

Figure 4-1 is discretized according to the MSDLM [4B-2] and the P and S

dispersion coefficients are set to unity to simulate an elastic material. Instead of a

harmonic incident P-wave impinging upon the crack, the incident plane P-wave has the

form

U = U,,akdp exp[- 1(kPstddev cos(k,5) (4B-38)

where kpsddv is the standard deviation P-wavenumber, k, is the center P-wavenumber,

and

= xcos9, +ysin9 -cpt (4B-39)

Thus, at time t = 0, the plane containing the peak amplitude interacts with the crack tip.

The wavelength of the P-wave corresponding to the center wavenumber is

A, = 2;r (4B-40)
k,

and the minimum effective wavelength, which corresponds to the minimum effective

Rayleigh wavelength traveling along the crack face, is

Ami = cR A (4B-41)
m cp (1+ 3kpstddevk- (

where cR = C .PKR For accuracy, the MSDLM grid space is set as h = Amin

20

Figures 4B-2 and 4B-3 show snapshots of the diffracted MSDLM displacement

fields due to a plane P-wave having incident angles of 0' and 90', respectively, in an

elastic material having v = 0.30 when the normalized bandwidth is kPstddev kp- = 1/3.

For clarity, the geometric elastodyanamic field (that is, the incident and reflected plane

waves) have been subtracted from the images leaving only the waves resulting from the

crack tip diffraction. (Because of the incomplete subtraction of the incident and reflected

plane waves in Figs. 4B-2 and 4B-3, there are visible displacements two to three orders

of magnitude less than the peak displacement.) Here the center circular frequency is

equal to coc = kpc,. The circular P and S wave fronts emanating from the crack tip, as

well as the head waves trailing behind the P waves and the Rayleigh waves traveling

along the upper and lower faces of the crack can be clearly seen.
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Fig. 4B-2-Snapshots of diffracted waves due to incident P-wave having angle of incidence 0, =0' interacting with semi-infinite crack embedded in elastic
solid having Poisson's ratio v =0.30 and where normalized bandwidth of spatial disturbance is k,,k' =1/3. (Incident plane wave has been subtracted out of

images.)
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Figure 4B-4 shows the time histories of the displacement at the crack tip and the

radial and tangential displacements at a point located at r = 4A, and 9= 45' due to an

incident P-wave oriented at Op = 900. The frequency content of each wave packet is

found by taking a 1024-point discrete Fourier transform of the displacement history using

the time window

3 kp','d'de, < t < 3 kp'S'd-dev (4B-42)
cne k, o c k

for the incident wave at the crack tip; the time window

r 3 kP,std.dev r +3 k_'''d'de (4B-43)
CP coc p cp c kp

for the radial displacement history; and the time window

rs - 3-kp''''dev < t : Ks + 3 kPstd.dev. (4B-44)
C, c p P c kp

for the transverse displacement history. The respective discrete Fourier transforms of the

incident wave, the radial displacement, and the transverse displacement are denoted as

U (9), U,.(C),

1 0.2
Radial

. .- - - Tangential

S 0 .5 -- - -.. . -. . . . .--..- - .-.-- - - - .-- - - .-. --. .. 0 .1 --. ... -. ..-

0.05 -..-
.. . . .. . . . .... ..

0 - - - - - 0 -
0................................0.

-0.05 - -.. . . .

-0.5.-0----.----.-....-..1......... .... ............ . ...............

-0 .1 5 - - -. . . . . . .-. .-- - -. ..-. .- -. .- -. .-

-1 -0.2
-1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10

(Time)/(Period at Center Frequency) (Time)/(Period at Center Frequency)
(a) (b)

Fig. 4B-4-Displacement time histories at (a) crack tip of incident wave and (b) radial and tangential
displacements of diffracted wave at radius of four P-wavelengths and angle 6 = 45'. Here displacements
are due to incident P-wave having angle of incidence 0, = 900 interacting with semi-infinite crack
embedded in elastic solid having Poisson's ratio v = 0.30 and where normalized bandwidth of spatial
disturbance is kPstd devk,' =1/3.
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and U, (co). The absolute value of the MSDLM diffraction coefficients are formed

according to

D,(O;O,,v) = rU,.(mc)| 4-5
MSDLM U(c) (4B-45)

Ds (0; ,v) MSDLM = Ksp |U,(c) (4B-46)

Figures 4B-5 and 4B-6 compare the asymptotic diffraction coefficients, eqn. (4B-17), and

MSDLM diffraction coefficients at angles of incidence Op =0' and O,= 900,

respectively, for a material having v = 0.30. The MSDLM measurements are shown at

r 3A,, r 4A,, and r 5A,. The P-wave diffraction coefficients are in excellent

qualitative agreement with the asymptotes. The S-wave diffraction coefficients are in

excellent qualitative agreement with the asymptotes in the range of 550 < 0 < 305'. In

the ranges 0 < 0 < 55' and 305 < 0 <360', the S-wave fronts are interfered by the head

waves and Rayleigh waves (e.g., see Figs. 4-2e and 4-3e) that result in the oscillation of

the computed S-wave diffraction coefficients. If the head waves and Rayleigh waves

were effectively subtracted out of the images, the MSDLM simulations would achieve a

better agreement with asymptotic solutions.

References:

4B- 1. J.D. Achenbach, A.K. Gautesen and H. McMaken. Ray Methods for Waves in

Elastic Solids. pp. 109-132, 146-147. Pitman Advanced Publishing

Program, Boston (1982).
4B-2. A.F. Thomas, H. Yim, and J.H. Williams, Jr. submitted for publication (2005).
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Fig. 4B-5-Comparison of asymptotic [B-1] and MSDLM (a) P-wave diffraction coefficient and (b) S-
wave diffraction coefficient due to incident P-wave having angle of incidence OP = 0' interacting with

semi-infinite crack embedded in elastic solid having Poisson's ratio v = 0.30 and where normalized
bandwidth of spatial disturbance is k kevkP' =1/3. MSDLM measurements are taken at radii

approximately three, four, and five P-wavelengths A ,.
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Fig. 4B-6-Comparison of asymptotic [B-1] and MSDLM (a) P-wave diffraction coefficient and (b) S-
wave diffraction coefficient due to incident P-wave having angle of incidence O, =90' interacting with

semi-infinite crack embedded in elastic solid having Poisson's ratio v = 0.30 and where normalized
bandwidth of spatial disturbance is kPslddevk' =1/3. MSDLM measurements are taken at radii

approximately three, four, and five P-wavelengths A,.
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APPENDIX 4C-Spectral Analysis of Transient Relative Vertical Surface

Displacement

Consider a half-space (z<0) composed of a hypothetical polymeric composite

having a 60% volume fraction of CNTs [4C-1] subject to ultrasonic interrogation. Table

4C-1 summarizes the orders of magnitude for the various parameters for the ultrasonic

interrogation of the nanocomposite.

The transient surface displacement relative to a pristine half-space, wi,,aive(x,t), due

to a narrow-banded concentrated surface load (center frequency f.) is analyzed for its

wavenumber and frequency content via a spatial discrete Fourier transform (DFT) [4C-2].

According to Parseval's relation [4C-2], the sum of the squares of w,,,,,,(x,t) and its

corresponding two-dimensional DFT, (k, f), are related by

N, N, IN N
, x = I "'""X Ik,, e )I (4C- 1)

p=1 q=1 / N N _, =1 , 

where N, is the number of horizontal grid points, N, is the number of time points, N, is

the number points used in the spatial DFT (Nk N,), and N, is the number points used

in the temporal DFT (N, N,). Further,

x, = h(p - I- 2  (4C-2)

tq = At(q -1) (4C-3)

k = 2(r-1) (4C-4)
Nk

,= (s -) (4C-5)
Nf At

where h is the grid spacing and At is the numerical time step. Because the right-hand

side of eqn. (4C-1) is a numerical integration of the spectral "power" density function

over the zero wavenumber to the wavenumber corresponding to the Nyquist criterion,

T/ h, and over the zero frequency to the Nyquist frequency 1/(2At), the quantity

described in eqn. (4C-1) is called the spectral "energy". The total spectral energy is
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subdivided into nine designations, which are listed in Table 4C-2.

The nanocomposite half-space is numerically simulated via a MSDLM N, x N"

spatial grid over N, time steps [4C-3]. In the numerical examples that follow,

N, =N=401 and N, =Nf = 1249.

Figure 4C- 1 shows the spectral energy content subdivisions for two cases: Case

One is a vertical semi-infinite crack terminating at coordinates x'= -2.5AR and

z= -5AR, Case Two is a horizontal semi-infinite crack terminating at coordinates

x"=-2.5AR and z"=-5AR , where AR is the Rayleigh wavelength at the center

freqeuncy. It is noted that LkMf dominates the spectral energy content for both Cases

One and Two. The five designations containing high-range wavenumber or high-range

frequency-LkHf, MkHf, HkHf, HkMf and HkLf - are more than two orders of

magnitude below LkMf and can thus be neglected.

References:

4C-1. C.E. Harris, C.E., M.J. Shuart and H.R. Gray. SAMPE J. 38:33 (2002).

4C-2. A.V. Oppenheim and R.W Schafer. Discrete-Time Signal Processing, pp. 559-588,
621. Prentice Hall, Upper Saddle River, New Jersey, 1999.

4C-3. A.F. Thomas, H. Yim and J.H. Williams, Jr. submitted for publication (2005).
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Table 4C-1-Orders of magnitude for various parameters involved in ultrasonic interrogation of
hypothetical carbon nanotube-based nanocomposite [4C-1].

Density p ~10 3 kg/m3

P-wave phase velocity c, 104 M/s

Material Properties Poisson's ratio v = 0.30

P-wave attenuation a, ~ 10 Np/m

Normalized penetration depth '7 100
aPAP

Peak line force per unit depth Fpeak ~100 N/m

Interrogation Parameters Center frequency ~07 Hz

Normalized bandwidth f, / fc = 1/3

Rayleigh wavelength AR -3 '
Output Surface Parameters Elastic far-field surface displacement u 10-0 m

Table 4C-2-Spectral energy subdivisions in wavenumber-frequency space.
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Low-range Mid-range High-range

wavenumbers wavenumbers wavenumbers

0 s k <0.3kR 0.3kR k<1.7kR 1.7kR k<2kR

High-range frequencies LkHJ MkHJ HkHJ
1.7fc < f < 31fc

Mid-range frequencies LkMf MkMJ HkMf
0.3fc < f <1.7fc

Low-range frequencies LkLf MkLf HLf
0 f <0.3f, k I I H
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Fig. 4C-1-Spectral energy content of relative vertical surface displacement in wavenumber-frequency space for (a) Case One and (b) Case Two. Spectral
energy is subdivided into 9 designations indically defined by XkYf, where X and Y can be any of L (low-range), M (mid-range), or H (high-range), and where k is
wavenumber andf is frequency.
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Chapter 5: Thesis Conclusion

5-1 SUMMARY OF ACHIEVEMENTS

This thesis detailed the development of a computational lattice model, called the

mass-spring-dashpot lattice model (MSDLM), to simulate and visualize ultrasonic wave

phenomena in attenuating materials. This development involved an investigation of

numerical errors inherent in the elastic model upon which the MSDLM is based, the

mass-spring lattice model (MSLM). Finally, mass-spring-dashpot lattice models were

used in the theoretical nondestructive evaluation of subsurface cracks in an attenuating

nanocomposite. The main contributions of the thesis are summarized in the following

points.

" The MSLM convergence of phase speed for plane waves traveling at oblique

angles was investigated.

" The formulation and verification of correction terms for the precise

implementation of MSLM traction boundaries was presented.

" The stress-dynamic equations for a standard linear solid viscoelastic model and its

accompanying dispersion relations were derived.

" The formulation of the MSLDM for the simulation and visualization of ultrasonic

wave phenomena in attenuating materials containing reflecting and absorbing

boundaries was introduced.

" The nondestructive evaluation of subsurface cracks in an attenuating

nanocomposite was modeled via lattice methods.

5-2 RECOMMENDATIONS

Lattice modeling can provide a framework for the effective simulation and

visualization for engineering problems that are outside the scope of this thesis.

Recommendations for further refinement of the MSDLM include:

* Development of MSDLM for anisotropic media.

* Development of MSDLM containing a fractional derivative dashpot to allow for

more realistic attenuation modeling.

Recommendations for further applications of MSDLM include:

* Investigation of subsurface cracks of finite length.

* Investigation of distributed anomalies.
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