Comparative Analysis of Robust Design Methods
by
Jagmeet Singh
B. Tech., Mechanical Engineering
Indian Institute of Technology at Kanpur, 2001

S.M., Mechanical Engineering
Massachusetts Institute of Technology, 2003

Submitted to the Department of Mechanical En gineering
In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2006

© 2006 Massachusetts Institute of Technology

All rights reserved ,
L

Signature of Author

Departmeﬁf of Mechanical Engineering
—/ " May5, 2006

Certified by ‘

Danieﬂ). Frey

Assistant Professor, Department of Mechanical Engineering and Engineering Systems
P! Thesis Supervisor

Accepted by

Lallit Anand
Chairman, Department Committee on Graduate Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 14 2006 BARKER

LIBRARIES

Comparative Analysis of Robust Design Methods

by
Jagmeet Singh

Submitted to Department of Mechanical Engineering
on May 5, 2006 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Mechanical Engineering

Abstract

Robust parameter design is an engineering methodology intended as a cost effective
approach to improve the quality of products, processes and systems. Control factors are
those system parameters that can be easily controlled and manipulated. Noise factors are
those system parameters that are difficult and/or costly to control and are presumed
uncontrollable. Robust parameter design involves choosing optimal levels of the
controllable factors in order to obtain a target or optimal response with minimal variation.
Noise factors bring variability into the system, thus affecting the response. The aim is to
properly choose the levels of control factors so that the process is robust or insensitive to
the variation caused by noise factors. Robust parameter design methods are used to make
systems more reliable and robust to incoming variations in environmental effects,
manufacturing processes and customer usage patterns. However, robust design can
become expensive, time consuming, and/or resource intensive. Thus research that makes
robust design less resource intensive and requires less number of experimental runs is of
great value. Robust design methodology can be expressed as multi-response optimization
problem. The objective functions of the problem being: maximizing reliability and
robustness of systems, minimizing the information and/or resources required for robust
design methodology, and minimizing the number of experimental runs needed. This
thesis discusses various noise factor strategies which aim to reduce number of
experimental runs needed to improve quality of system. Compound Noise and Take-The-
Best-Few Noise Factors Strategy are such noise factor strategies which reduce
experimental effort needed to improve reliability of systems. Compound Noise is made
by combing all the different noise factors together, irrespective of the number of noise
factors. But such a noise strategy works only for the systems which show effect sparsity.
To apply the Take-The-Best-Few Noise Factors Strategy most important noise factors in
system’s noise factor space are found. Noise factors having significant impact on system
response variation are considered important. Once the important noise factors are

identified, they are kept independent in the noise factor array. By selecting the few most
important noise factors for a given system, run size of experiment is minimized. Take-
The-Best-Few Noise Factors Strategy is very effective for all kinds of systems
irrespective of their effect sparsity. Generally Take-The-Best-Few Noise Factors Strategy
achieves nearly 80% of the possible improvement for all systems. This thesis also tries to
find the influence of correlation and variance of induced noise on quality of system. For
systems that do not contain any significant three-factor interactions correlation among
noise factors can be neglected. Hence amount of information needed to improve the
quality of systems is reduced.

Thesis Supervisor: Daniel D. Frey
Title: Robert N. Noyce Assistant Professor, Department of Mechanical Engineering &

Engineering Systems

Committee Member: Daniel E. Whitney

Title: Senior Research Scientist, Center for Technology, Policy and Industrial
Development and Department of Mechanical Engineering, Senior Lecturer in
Engineering Systems

Committee Member: Warren P Seering :
Title: Weber-Shaughness Professor, Department of Mechamcal Engineerin g

Acknowledgements

I offer prayer of thanks to GOD for giving me this wonderful opportunity to do research
in one of the premier institutes. I would like to thank my thesis advisor Dan Frey. I am
always short of words for his mentorship, support, guidance, patience and integrity. I
have learnt a lot from him in both research and life. He is one of best advisors that one
could have asked for in research. It was for him that I truly enjoyed my PhD research and

was always excited about it through out my duration of PhD.

Dan Whitney and Warren Seering are the best committee members to have. Their keen
observations and tremendous experience helped me a great deal in shaping path of my
research. They helped me a lot in putting my research results in perspective. I have been
learning from them since the day I joined MIT. I again find myself short of words to
thank both of them for their support, guidance, mentorship and blessings. I would also
like to thanks Nathan Soderborg, Joe Saleh and Ford-MIT Research Alliance for

supporting this research.

My grandparents, parents, Mr. Yashpal Singh and Mrs. Surjeet Kaur and sister, Jaideep
Kaur provided me with support all throughout my research. And no acknowledgement is
complete without mentioning Rajesh Jugulum. He is part of our research group. His
reviews on research progress, his insights were very helpful in the progress of research. I

would also like to thank my friends for their goodwill and support.

Table of Contents

ADBSIIACE e e e ettt e eee 3
ACKNOWIEAGEMENLES ..ot 5
List Of FIQUIES ...t e 11
LiSt Of TabIES ..ottt e saa e e eae s 15
Chapter 1: INtroduction ...t 19
TAMOGIVALIONc.oeoeeee et ettt et e e 19
1.2 GOAl OF RESEAICH ..ottt 20
1.3 Organization Of TRESIS................ccccooviiiiiiiniiiiiie et e 21
Chapter 2: Hierarchical Probability Modelc..oo, 23
2.1 Regularities in Engineering Systemscccccococnnniivnnicvecnene 23
2.2 Hierarchical Probability Modelcccoomniniiinnincncceneneee 25
2.3 Selecting parameters for Hierarchical Probability Model 30
2.4 Variants of Hierarchical Probability Model......................ccccoovvevueevenennnnnn. 31
2.5 CRaPLer SUMMAIYcccoocooieeeeeeeceeeeeeesiee et eteevee e eseasssenssasensaens 34
Chapter 3: Compound Noise: Evaluation as a Robust Design Method 37
3.1 Introduction and Background........................cccoccereivieeeeeneseeeeee e 37
3.2 Setting up of Compound Noise studyc.ccocoveiimiineiceicicinieeeens 41
3.2.1 Generating Response Surface instances ..., 42
3.2.2 Algorithm to study Compound Noise...............cc.cocoiiiiiiinnece, 47
3.2.3Measures studied...................cccoiiiiiiii e 49
3.2.4 Results from Compound Noise studies.............c.ccooeniiiiiennenn. 50
3.2.5 Conclusions from Probability Model ... 56
B.3CaASE SHUAICS ... e 57

3.3.1 Lenth Plots for Case Studieseoeieeoeoeeeeeeeeeeeeeee e, 58

3.3.2 Results from Compound Noise Strategy on Case Studies 63
3.4 Effectiveness of Compound Noise in Real scenarios............................. 65
3.5 Conditions for Compound Noise to be completely effective................. 69

3.5.1 Strong Hierarchy Systemsccoooiiieiiicceeee e, 69

3.5.2 Weak Hierarchy Systems.............c.ccooiiiiniiiieee s 72

3.5.3 Conclusions from Case Studiesccccooeirinirrinceecere, 76
3.6 CONCIUSIONS ..ottt 77
3.7 Chapter SUMMATYcoooiioeieeeeieeeeeeeee ettt eneennn 82

Chapter 4: Take-The-Best-Few Strategy: Evaluation as a Robust Design

MELROM et e ea e se et 85
4.1 Introduction and Background....................cccoeeeeueeveeeeeeeeeeeeeeeeeeereeeereenen 85
4.2 Setting up OF TTBF StUAYooeomeeeeieeeeeeeeeeeeeeeeeeeee e 87

4.2.1 Generating Response Surface instances.................c..cccoeeeviveenn. 88
4.2.2 Algorithm to study TTBF strategy.............cccccvvvereeiieiiiiciceeeee, 90
4.2.3 Measures studied................o.ococviiin e, 93
4.2.4 Results from TTBF Strategy studies..................coceveveiinniceeene, 94
4.2.5 Conclusions from Probability Modelccocoeiiiiei. 99
4.3 Comparison of TTBF strategy and Compound Noise strategy........... 100
4.4 Case Studies and effectiveness of TTBF strategyc............. 104
4.4.1 Effectiveness of TTBF strategy in Real scenarios......................... 107
4.5 Hybrid NOIS@ Strategyc.oooeoemeeeeeeeeeeeeeeeeieeeeeee e 109
4.6 CONCIUSIONSc.ocoeieeireeeeeeeeee ettt 111
4.7 Chapter SUMMArYcooooeeioeeeiieteeeeeeeereeee et eeess e 114

Chapter 5: Analyzing effects of correlation among and intensity of noise

factors on quality of systems ... 117
5.1 Introduction and Background......................ccccoocoueeeeeeeceeieeeeeeeeeeeeee, 117
5.2 Setting up of correlation and variance studyc.cccccoco....... 123

5.2.1 Generating Response Surface instances....................ccccooevennn.. 123

5.2.2 Algorithm to evaluate noise strategiescccooceniiinin 130

5.2.3 Measures studied.................cccooiiiiiiii e 133
5.2.4 Results from model-based analysisoccooineiiinin. 133
5.2.5 Significance of results from model-based approach................... 135
5.3CaS0 SHUAIESeooeeeeeeeeee et 136
5.3.1 Results from Case Studies.............cccocooevniiinciniicee, 137
5.4 CONCIUSIONS..............ooooviee et 139
5.5 Chapter SUMMATIYccoooooiieieiinieieeeeee et e 142
Chapter 6: Conclusions and Future Work...................ccoooooiiiiiininnnne 145
6.1 Overview of researchcccoccoiviiiiiiiiniiieeeeeeee s 145
6.2 Algorithms to improve quality of Ssystems.cccocovviniiinceceennn, 149
6.3 Cost-Benefit Analysis of Robust Design Methods................................ 155
6.4 Scope of future research.........................ccccovviniinnnenieniieecteecee 159
REFERENGCEScooie ettt ettt e 161
Appendices: MATLAB® and Mathcad-11 Files ... 165

10

List of Figures

Figure 2.1: The hierarchy and heredity among main effects and interactions in a
system with four factors 4, B, C, and D. Interactions between factors are
represented by letter combinations such as the two-factor interaction AC. The font
size represents the size of the effect...................

Figure 3.1: Algorithm used to evaluate Compound Noise Strategies...................

Figure 3.2: Improvement Ratio: Ratio of Realized Reduction to Maximum

Reduction possible.o

Figure 3.3: Median Improvement Ratio verses Effect Density for Strong Hierarchy

Response Surface INStances.oouvveiiiiiiitiii i i

Figure 3.4: Median Improvement Ratio verses Effect Density for Weak Hierarchy

Response Surface INStances.o.oouvieiiiiriii e

Figure 3.5: Median Improvement Ratio verses Effect Density for both Strong and

Weak Hierarchy Response Surface Instances................ooooiiii i,
Figure 3.6: Lenth Plot of Effect Coefficients for Op Amp, Phadke (1989)............

Figure 3.7: Lenth Plot of Effect Coefficients for Passive Neuron Model, Tawfik
and Durand (1994). ... e

Figure 3.8: Lenth Plot of Effect Coefficients for Journal Bearing: Half Sommerfeld
Solution, Hamrock, et al. (2004)........ ... o,

11

25

48

50

54

55

56

59

60

61

Figure 3.9: Lenth Plot of Effect Coefficients for CSTR, Kalagnanam and Diwekar
(1997). e

Figure 3.10: Lenth Plot of Effect Coefficients for Temperature Control Circuit,
Phadke (1989)......eeeeeeee e,

Figure 3.11: Lenth Plot of Effect Coefficients for Slider Crank, Gao, et al. (1998)...

Figure 3.12: Median Improvement Ratio verses Effect Density for Strong and

Weak Hierarchy Response Surface Instances and Six Case Studies....................

Figure 3.13: Suggested procedure for Compound Noise in Robust Design............

Figure 4.1: Algorithm used to evaluate TTBF strategy............c.ccovieiiiiniininnn.

Figure 4.2: Median Improvement Ratio verses Effect Density for Strong Hierarchy

Response Surface Instances.oveiiiiiiiiii e

Figure 4.3: Median Improvement Ratio verses Effect Density for Weak Hierarchy

Reponse Surface Instances ..o,

Figure 4.4: Median Improvement Ratio verses Effect Density for both Strong and

Weak Hierarchy Response Surface Instances.................coovvieiiiiiiiiiiininn...

Figure 4.5: Median Improvement Ratio verses Effect Density for Strong and Weak

Hierarchy Response Surface Instances and Six Case Studies............................

Figure 4.6: Suggested procedure for TTBF Strategy and Compound Noise in
ROBUSE DESIZI. ..ot e

Figure 5.1: Noise Strategy in Robust Design..................coooiiiiiiiiiiiiin

12

62

62

63

79

82

92

97

98

99

112

114

119

Figure 5.2: Algorithm used to evaluate Noise Strategies.............coevueieiiinen...

Figure 5.3: Flowchart to reduce information needed to implement Robust Design

MeEthOAOIOZY ettt e e e

Figure 6.1: Suggested procedure for TTBF Strategy and Compound Noise in
RODUSE DESIGIN e etetiieeieiieeie ettt ettt st e ettt saee e eaae e e s e e

Figure 6.2: Flowchart to reduce information needed to implement Robust Design

MEthOAOIOZY....ccvviieieiiie ettt sttt st sae e e snae e s

Figure 6.3: Cost-Benefit Analysis of Robust Design Methods for reducing

EXPEIIMENLAl TUNS....coiiiiiiiiiiiiei e

Figure 6.4: Cost-Benefit Analysis of Robust Design Methods for minimizing

information regarding noise factor SPACE........cceevrereeereeriinieiie et

13

141

151

154

156

14

List of Tables

Table 2.1: Parameters for Hierarchical Probability Model.............cccooiiiiiiinnicnenen.

Table 2.2: Additional parameters for Hierarchical Probability Model.......................

Table 2.3: Parameters for Variants of Hierarchical Probability Model......................

Table 3.1: Hierarchical Probability Model Parameters used for Strong Hierarchy

ReSponse SUrface INSTANCES.vevueeriiernrinieeiirnee ettt seacesrnes e

Table 3.2: Hierarchical Probability Model Parameters used for Weak Hierarchy

Response Surface instances.............oocoeveriiiiiiiiiiicce e

Table 3.3: Hierarchical Probability Model Parameters used for Strong Hierarchy

Response Surface instances, reflecting effect sparsity...........cccoooeociveivcniciniincnnennnn.

Table 3.4: Hierarchical Probability Model Parameters used for Weak Hierarchy

Response Surface instances, reflecting effect sparsity............ccccovivivivniiiicnnnnn.

TADIE 3.5 MEASUTE L.ttt ettt ettt et s eeeenannnnnns

TaADIE 3.6: IMEASUTE 2.ttt e e e e s e et e e e e s e e e e e tba e e s sennessennneenns

Table 3.7: MEASUIE 3. ..ottt e ettt eaes

TaDIE 3.8: IMEASUTIE 3. eeieeeeeeee e e e e e e e e s sesesseneereaneraeeeesennennnes

TaAbLE 3.9: MEASUTE 4. ..o ettt ee e e s e e e e e e e e s

15

30

31

33

43

43

44

45

51

51

52

52

53

TaAbIE 3.10: IMEASULE D ...t e e e ee e e e e e e ee e e e eee e e eeeanaanaaes

Table 3.11: Results from Full Factorial Control Factor array and Two-Level

Extreme Compound NOISE.......cc.uervuinreiiririerieseni e ettt e ease e

Table 3.12: Results from Resolution III Control and Noise Factor Array..................

Table 3.13: Results from Resolution III Control Factor array and Two-Level

Extreme Compound NOISE.......c.cocceeiiiiririiiirrirertesceiesteeeeesnee st seesereeesaeeensereens

Table 3.14: Average results from Full Factorial Control Factor array and Two-

Level Simple Compound NOiS€ Strategy.........ccecervrreriiieeiririerie et

Table 4.1: Hierarchical Probability Model Parameters used for Strong Hierarchy

Response Surface INSANCES........cc.covrvireieceeiiriieieiee ettt

Table 4.2: Hierarchical Probability Model Parameters used for Weak Hierarchy

Respore Surface INSTANCESc..covivieiieiecieinciee et s

Table 4.3: MEASUIE L. .oovveeiriiiiieiieee et ee e e e e e e e e e et e e e e e e e e e eeesaaeeans

Table 4.4: MIBASUIE 2. ..o e e

Table 4.5: MEASUTE 3. ... ooeeieiieieeeeeeeeeeeee et e e e e e e e e e e e s e e e e e eeeeaaaeeeeeeasasreanen

TaADIE 4.6: MEASUIE 3.t e e e e e s e e et e e e e s e e e e e enne s

TADIE 4.7 MEASUIE A oo e e e e e e e e e e e e e e s e e e e e e s

TabIE 4.8: MEASUIE ...ttt e e e e e e e et eeae e e e e e e

16

53

64

66

67

68

89

89

94

94

95

95

95

96

Table 4.9: MEASUIE 1. .e.ceeeee ettt e e ee e e e s e e staase e s eeeneeeaaeeereensees

TADIE 4.10: MEASUTE 2. e eee e e e e e e ee e e e e e et e e e e e eeeeeeeesasaeesseseaaaansrrereennaas

TaADIE 4. 11: MEBASULE 3.t ee et et ee et e e r e e et e e e s s es s snsssssssanarnasssessesssesanns

TaADIE 4.12: MEASUTIE 3ottt ettt e et e e e e e e s s s e s s s s s sassarsnnsannessssereaanas

TabIE 4.13: MEASUTE Ao e et eeeee b s r st beeeseeeesesnsnsnan

B)oY (S 0 O B (< 10 ¢ o SO

Table 4.15: Results from Full Factorial Control Factor array and TTBF strategy.....

Table 4.16: Results from Resolution III Control and Noise Factor Array..................

Table 4.17: Results from Resolution III Control Factor array and TTBF Strategy....

Table 5.1: Parameters for Variants of Hierarchical Probability Model......................

Table 5.2: Median fraction of the maximum possible improvement attained in

hierarchical probability response surface inStances.............ccoeceevvrriiiiienericciiicneenn.

Table 5.3: Percentage of hierarchical probability response surface instances in

which optimum control factor settings were attained............ccceveevecvenniniiiicnnenen.

Table 5.4: Median fraction of the maximum improvement attained in case study

STMIUIALIONS ..o e oot e e e e e s e e e e e e s

Table 5.5: Percentage of case study simulations in which optimum control factor

SEttiNGs Were attaiNed........cceeriiiuieieiiieie ettt

17

108

134

134

137

18

Chapter 1: Introduction

1.1 Motivation

Robust parameter design is an engineering methodology intended as a cost effective
approach to improve the quality of products, processes and systems, Taguchi (1987),
Robinson et al. (2004). Taguchi (1987) proposed that inputs to any system can be
classified as control factors and noise factors. Control factors are those system parameters
that can be easily controlled and manipulated. Noise factors are those system parameters
that are difficult and/or costly to control and are presumed uncontrollable. Robust
parameter design involves choosing optimal levels of the controllable factors in order to
obtain a target or optimal response with minimal variation. The challenge arises in
obtaining optimal response due to the influence of the uncontrollable noise factors. Noise
factors bring variability into the system, thus affecting the response. The aim is to
properly choose the levels of control factors so that the process is robust or insensitive to

the variation caused by noise factors.

Robust parameter design is among one of the most important developments in systems
engineering in 20" century, Clausing and Frey (2005). These methods seemed to have
accounted for a significant part of quality differential that made Japanese manufacturing
dominant during 1970s. Robust parameter design enables in smoother system integration,

faster transition to production, and higher field reliability.

19

Taguchi (1987) also proposed techniques of experimental design to identify the settings
of control factors that would achieve robust performance of systems. He used orthogonal
designs where an orthogonal array involving control factors (‘inner array’) is crossed
with an orthogonal array involving noise factors (‘outer array’). The response of the
systems’ at each setting of control factors were treated as replicates for the formulation of
a measure that would be indicative of both the mean and variance of response. One of the
weaknesses of these crossed array experiments is that they tend to require large number

of experimental runs.

1.2 Goal of Research

Robust parameter design methods are used to make systems more reliable and robust to
incoming variations in environmental effects, manufacturing processes and customer
usage patterns. However, robust design can become expensive, time consuming, and/or
resource intensive. Thus research that makes robust design less resource intensive and
requires less number of experimental runs is of great value. Robust design methodology
can be expressed as multi-response optimization problem. The objective functions of the
problem being: maximizing reliability and robustness of systems, minimizing the
information and/or resources required for robust design methodology, and minimizing the |
number of experimental runs needed. We will present noise strategies for robust design
methods which would reduce the amount of experimental effort needed and information

about noise factors space needed to maximize quality of a system.

20

1.3 Organization of Thesis

The thesis will first present simplest of the noise strategy which minimizes amount of
experimental effort needed. Then it will suggest some alternative, useful and more
efficient noise factor strategies. Chapter 2 will discuss the formulation of hierarchical
probability model. This will form the basis to compare different robust design methods
statistically. First the regularities exhibited by engineering systems will be discussed.
Next those regularities will be put in a mathematical format. The mathematical
formulation will be used to generate response surface instances to analyze different
robust design methods. We will also discuss about selection of various parameters for

hierarchical probability model.

Chapter 3 will introduce Compound Noise. Compound Noise is very effective as a robust
design strategy on the systems which show effect sparsity. We will run two formulations
of compound noise on response surface instances generated using strong and weak
hierarchical probability model. Next these formulations of compound noise will be run on
six different case studies from various engineering domains to verify conclusions from
hierarchical probability model. In the end conditions for compound noise to be
completely effectiveare outlined . We will also device an algorithm to use compound

noise as a robust design method.

Chapter 4 will introduce Take-The-Best-Few Noise Factor Strategy, which is very
effective as a robust design strategy for all kinds of systems. We will run this noise

strategy on response surface instances generated using strong and weak hierarchical

21

probability model and six different case studies from various engineering domains. We
will also compare this noise strategy with compound noise strategy. We will propose
hybrid noise strategy as amalgamation of two noise strategies. We will then device an
algorithm on the use of this noise strategy and compound noise strategy as robust design

methods.

Chapter 5 will explore the influence of correlation among noise factors on robust design
methods. We will see the impact of correlation and variance of induced noise factors on
response surface instances and six different case studies. We will see that if system does
not have any significant three-factor interaction then during robust design experiments
we can neglect correlation and/or exaggerate intensity of induced noise factors. We will

design an algorithm for implementing correlation influence in practice.

Chapter 6 will summarize the key messages from this thesis. It will present cost-benefit
analysis of various robust design methods and the percentage improvement each robust
design method can give for a given system. This cost-benefit analysis can be used by
engineers to find the maximum benefit they can get out of a robust design study based on
their allocated budget. Also it outlines scope of future research in area of robust design.

This will be followed by references and appendices.

22

Chapter 2: Hierarchical Probability Model

2.1 Regularities in Engineering Systems

Experimentation is an important activity in design on systems. Almost every existing
engineering system was shaped by a process of experimentation including preliminary
investigation of phenomenon, sub-system prototyping, and system verification tests.
Based on experience in planning and analyzing many experiments, practitioners and
researchers in system design have identified regularities in the inter-relationships among
factor effects and their interactions, Wu and Hamada (2000). Hamada and Wu (1992),
Box and Meyer (1986), Chipman, Hamada and Wu (1997) and Wu and Hamada (2000)

describe these regularities in detail:

e Effect Sparsity Principle — among many effects examined in any system only a
small fraction of those effects are significant in system, Box and Meyer (1986).
This is sometimes called the Pareto principle in Experimental Design based on
analogy with the observations of the 19™ century economist Vilfredo Pareto who
argued that, in all countries and times, the distribution of income and wealth
follows a logarithmic pattern resulting in the concentration of resources in the
hands of a small number of wealthy individuals. Effect sparsity appears to be a
phenomenon characterizing the knowledge of the experimenters more so than the
physical or logical behavior of the system under investigation. Investigating an

effect through experimentation requires an allocation of resources -- to resolve

23

more effects typically requires more experiments. Therefore, effect sparsity is in
some sense an indication of wasted resources. If the important factor effects could
be identified during planning, then those effects might be investigated
exclusively, resources might be saved, and only significant effects would be

revealed in the analysis.

Hierarchical Ordering Principle — main effects are generally more significant that
twe factor interactions, two-factor interactions are generally more significant than
three-factor interactions, and so on, Hamada and Wu (1992). Effects of same
order are likely to have same significance level. This principle is also sometimes
referred as “hierarchy”. Effect hierarchy is illustrated in figure 2.1 for a system
with four factors A, B, C and D. Figure 2.lillustrates a case in which hierarchy is

not strict — for example, that some interactions (such as the two-factor interaction

AC) are larger than some main effects (such as the main effect of B).

24

main effects

two-factor interactions

AD | =] [s] [e]

AB

three-factor interactions

ABC A B D [ACD | | BCD |
four-factor interactions

Figure 2.1: The hierarchy and heredity among main effects and interactions in a system with four
factors A, B, C, and D. Interactions between factors are represented by letter combinations such as

the two-factor interaction AC. The font size represents the size of the effect.

o Effect Heredity Principle — an interaction effect is likely to be significant when at

least one of its parent factors is significant, Wu and Hamada (2000). It is also

sometimes referred to as “inheritance”.

2.2 Hierarchical Probability Model

Hierarchical probability models have been proposed as a means to analyze the results of
experiments with complex aliasing patterns. In any system main effects and interaction

effects present are of interest. There is also a need to predict the relative importance and

25

relationship among these effects. Chipman, Hamada and Wu (1997) have expressed these
properties in mathematical form in a hierarchical prior probability model. The
hierarchical probability model proposed by Chipman, Hamada and Wu (1997) has been
extended here to enable evaluation of noise strategies in robust design. The model
includes both control and noise factors since they are both needed for the present
purposes. The model includes two-factor interactions since control by noise interactions
are required for robust design to be effective. It also includes the possibility of three-
factor interactions since these have been shown to be frequently present, especially in
systems with a large number of factors Li and Frey (2005) and might affect the outcomes

of robust design. The details of the model are in Equations 2.1 through 2.10.

y(xy,%,,.00,x,) = Z,B,.xi +22ﬁi}.xixj +ZZZﬂiﬂ,xixjxk +& 2.1
i=1

i=1 j=1 i=1 j=1 k=l
J>i Jeik>j

x, ~ NID(O,w,) i €l...m

2.2)
x,e{+l-l}iem+1...n @.3)
& ~ NID(0, w,") 2.4

Ny if 5 =0
S(Bl6) = {N(O,cz) i c;'i =1 @.5)

26

N(0,5,%) if &,=0

10.) =
f(ﬂ"l 2 {N(o,ch) if §,=1

(2. 6)
N(,s,%) if &, =0
S Bifoy) = {N(O ¢ sy i 8y —1
T ik Q2.7
Pr(6, =D =p 2.8)
Po if &+8,=0
Pr(5; =16,,6,) =4 py, if &, +6;=1
py if 6+6,=2 2.9)
Poo if 8,+8,+6, =0
Doy if 6, +6,+6, =1
Pr(5, =15,,6,,5,) =
MO =1008500=1 ' ip 54545, =2
puy if 8, +6,+6, =3 2. 10)

This hierarchical probability model allows any desired number of response surface
instances to be created such that population of response surface instances has the desired
properties of sparsity of effects, hierarchy, and inheritance. Equation 2.1 represents the
measured response of the engineering system y. The independent variables x;’s are both
control factors and noise factors. Control and noise factors are not distinguished in this

notation except via indices. Equation 2.2 shows that the first set of x variables (x;, x;, ...

27

xm) are regarded as “noise factors” and are assumed to be normally distributed. Equation
2.3 shows that the other x independent variables (x,+;, Xm+2 ... x,) are the ‘“control
factors” which are assumed to be two level factors. The variable represents the pure
experimental error in the observation of the response which is assumed to be normally
distributed. Since the control factors are usually explored over a wide range compared to
the noise factors, the parameter w; is included to set the ratio of the control factors range
to the standard deviation of the noise factors. The intensity of noise factors can be
changed by changing the value of parameter w,. The parameter w; is included to set the
ratio of the standard deviation of the pure experimental error to the standard deviation of

the noise factors.

The generated instance response y is assumed to be a third order polynomial in the
independent variables x;’s. The coefficients ;’s are the main effects. The coefficients i’s
model two-way interactions including control by control, control by noise and noise by
noise interactions. The coefficients ;x’s model three-way interactions including control-
by-control-by-control, control by control by noise, control by noise by noise and noise by
noise by noise. The model originally proposed by Chipman, Wu and Hamada (1997) did
not include three-way interactions. Li and Frey (2005) extended the model to included

three-way interactions.

The values of the polynomial coefficients #’s are determined by a random process that

models the properties of effect sparsity, hierarchy, and inheritance. Equation 2.5

determines the probability density function for the first order coefficients. Factors can be

28

either “active” or “inactive” depending on the value (0 or 1 respectively) of their
corresponding parameters ;’s. The parameter strength of active effects is assumed to be ¢
times that of inactive effects. Equations 2.6 and 2.7 determine the probability density
function for second order and third order coefficients respectively. In equations 2.6 and
2.7 the hierarchy principle is reflected in the fact that second order effects are only s;
times as strong (on average) as first order effects (s;<1) and third order effects are only s,

times as strong as first order effects.

Equation 2.8 reflects sparsity of effects principle. There is a probability p of any main
effect being active. Equation 2.9 and 2.10 enforce inheritance. The likelihood of any
second order effect being active is low if no participating factor has an active main effect
and is highest if all participating factors have active main effects. Thus generally one sets

P11>Po1>Poo and so on.

We classified systems and response surface instances based on hierarchical ordering

principle. The classes are:

e Strong hierarchy systems are ones which have only main effects and two-factor
interactions active. Some small three-factor interactions might be present in such
systems but they are not active.

e Weak hierarchy systems are ones which also have active three-factor

interactions.

29

To generate a response surface instance, first the values of the probabilities of given
factor effects being active (next section) are determined. Using them in equations 2.8 to
2.10, active effects for a given response surface instance are determined. Once active
effects are known equations 2.5 to 2.7 are used to find the values of #’s. Equations 2.2 to
2.4 are used to find the values of control factor, noise factors and experimental error for
the model. To the find the instance’s response, values of x;’s, f’s and are substituted in

equation 2.1.

2.3 Selecting parameters for Hierarchical Probability Model

Hierarchical Probability Model has several real valued parameters which have significant
effect on the inferences drawn from its use. To provide a balanced view Frey and Li

(2004) in tables 2.1 and 2.2 share six different settings of parameter settings.

4 51 S2 W | W
Basic WH 10 1 1 1 1

Basicloww {10 1 1 10.1]0.1
Basic 2™ order | 10 | 1 0 1 1
Fitted WH 1511/312/3] 1 1

Fittedloww [15| 1/3]2/3(0.1]0.1
Fitted 2¥order [15[13] 0 [1 [1

Table 2.1: Parameters for Hierarchical Probability Model

30

y4 Pu_ | pPa
Basic WH 0.25]0.251] 0.1

Basic low w 0251025| 0.1
Basic 2" order | 0.25 [0.25 | 0.1
Fitted WH | 0.43 | 0.31 | 0.04
Fitted loww | 0.43 [0.31 | 0.04
Fitted 2™ order | 0.43 | 0.31 | 0.04

0251 0.1 0
0.25(0.1 0
N/A [N/A | N/A | N/A
0.17] 0.0810.02] O
0.17(0.08]10.02| O
N/A | N/A | N/A | N/A

Dt | Poir | Poor | Pooo
0
0

OOOOOO?

Table 2.2: Additional parameters for Hierarchical Probability Model

The basic weak heredity model (basic WH) is based on the parameters used in Bayesian
model selection, Chipman, Wu and Hamada (1997). Two variants were developed from
this basic model. The low w variant accounts for the fact that control factors are generally
explored over a wider range than noise factors. The 2™ order variant zeros out the
coefficients of all the three-factor interactions. The fitted weak heredity model (fitted

WH) was developed by Frey and Li (2004) based on experimental data.

Through out this thesis several different variants of these model parameters will be used.
We will also use other parameter values, different from the ones as given over here to
explore some effects in greater details. This would be done specifically to study the
effectiveness of Compound Noise strategy and Take-The-Best-Few strategy on systems

showing effect sparsity.

2.4 Variants of Hierarchical Probability Model

To study the impact of neglecting correlation among noise factors on Robust Design
Studies, some more variants of Hierarchical Probability Model were developed. In

particular equation 2.2 was modified as:

31

x, ~N(OK)iel...m 2. 11)

Equation 2.11 shows that the first set of m input parameters to Hierarchical Probability
Model (x;, x3,..., xm) are regarded as noise factors and are assumed to be normally

distributed with variance-covariance K among noise factors.

Multiple variants of the hierarchical probability model were formed by selecting different
sets of model parameters as described in Table 2.3. As the column headings of Table 2.3
indicate, a key difference between the variants is the assumption concerning effect
hierarchy. A Strong Hierarchy Model assumes that the only active effects in the system
are main effects and two-factor interactions although small three factor interactions are
present as can be seen in Equation 2.7. A Weak Hierarchy Model includes a possibility
for active three-factor interactions. The values for parameters in Table 2.3 such as
p1/=0.25 and py;=0.1 are based on the Weak Heredity model proposed by Chipman,
Hamada and Wu (1997). In fact, the Strong Hierarchy model is precisely the Weak
Heredity model published in that paper and used for analyzing data from experiments
with complex aliasing patterns. The Weak Hierarchy model proposed here is an
extension of that model to include higher order effects and therefore relies less on the

assumption of hierarchy.

Additional model variants are based on the options in the last three rows of Table 2.3.

The on-diagonal elements of the covariance matrix were varied among two levels. The

32

covariance matrix was also composed by three different methods inducing different
degrees of correlation. These resulted in off-diagonal elements of the covariance matrix
with different average magnitudes. Given the two model options related to the columns
of Table 2.3 and the additional combinations of options due to the alternatives in the last

three rows, there are 24 different model variants in all.

parameters Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two- (active three-factor
factor interactions) interactions also included)

m 5 5
n 12 12
c 10 10
p 0.25 0.25

pil 0.25 0.25

poi 0.1 0.1

Poo 0.0 0.0

P11 0.0 0.25

Poil 0.0 0.1

Pool 0.0 0.0

Pooo 0.0 0.0

o, 1or10 lorl10

K 1.0or1.75 1.0or 1.75

H(Z.I;‘]? |) 0.01, 0.26, or 0.47 0.01, 0.26, or 0.47

Table 2.3: Parameters for Variants of Hierarchical Probability Model

K is the variance-covariance matrix for the real noise factors. The modeled noise, in
response surface instance is assumed to have a covariance of an identity matrix. Thus the
more different K is from an identity matrix, the more the noise strategy varies from a

faithful representation of the noises the system will experience in the field.

33

The on-diagonal elements of the matrix, K;;, are the variance due to each noise factor x;.
The size of these on-diagonal elements is an indication of the amplitude of the real noise
factors relative to the modeled noise factors. Two options within the model are defined:
one in which the real noise has the same variance as the modeled, and one in which the

real noise has higher variance than the modeled.

The off-diagonal elements of the matrix, Kj;, are the covariance among noise factors x;
and x;. Three options within the model are defined: one with almost no correlation (with
the average absolute value of the correlation coefficients being 0.01), one with relatively
mild correlation (with the average absolute value of the correlation coefficients being
0.26) and one with relatively strong correlation (with the average absolute value of the
correlation coefficients being 0.47). The matrix K was formed so as to ensure the
resulting matrix was positive semi-definite while also having the desired variance and the

desired degree of correlation.

2.5 Chapter Summary

In this chapter the formulation of Hierarchical Probability Model was discussed. This will
form the basis to compare different robust design methods statistically. First the
regularities exhibited by engineering systems were discussed. Next those regularities
were put in a mathematical format. The mathematical formulation would be used to
generate response surface instances to analyze different robust design methods. We also

discussed about selecting various parameters for Hierarchical Probability Model. We can

34

have many variants of Hierarchical Probability Model. We discussed some of these

variants.

In the next chapters some robust design methods will be discussed, which focus on
reducing number of experiments done on systems and reducing amount of information
required about system and still improve robustness of the system. We will use
Hierarchical Probability Model as one of the basis to analyze these robust design

methods.

35

36

Chapter 3: Compound Noise: Evaluation as a Robust

Design Method

3.1 Introduction and Background

In Robust Parameter Design methodology, the effect of noise (variation) is reduced by
exploiting control-by-noise interactions. These control-by-noise interactions can be
captured by using crossed-array approach. The control factor setting that minimizes the
sensitivity of the response to noise factors is called the optimal control factor setting or
the most robust setting for the system. A crossed-array approach is a combination of two
orthogonal arrays, one of control factors and other of noise factors. Exploiting control-by-
noise interactions is just the beginning of reducing sensitivity of the response. For
systems that have active three-factor interactions, control-by-control-by-noise and
control-by-noise-by-noise interactions can also be utilized to reduce the sensitivity of
system’s response. But as the complexity of the system increases, use of full factorial
control and noise factor arrays becomes prohibitively expensive. As an attempt to reduce
the run size of this crossed-array approach, Taguchi (1987) proposed a compound noise
factor technique. A compound noise factor is typically formed by combining all the noise

factors of a system into a single factor, which is used instead of noise array.

When we know which noise factor levels cause the output to become large or small they

are compounded so as to obtain one factor with two or three levels. On doing this, our

37

noise factors become a single compounded factor, no matter how many factors are
involved. Taguchi (1987) and Phadke (1989) outlined conditions on the use and
formulation of compound noise. Noise factors can be combined into a single compound
factor based on their directionality on the response. Directionality of effects of noise
factors on the response can be found by running small number of experiments. Phadke
(1989) showed how to construct a compound noise factor using the results from the

Operational Amplifier and Temperature Control Circuit.

Du, et al. (2003, 2004) used percentile performance difference of the system to construct
compound noise. This method is applicable for systems which show unimodal response
characteristics. The compound noise formed this way also carries information about
sensitivity of system’s response to noise variables. In this thesis compound noise will be
formed by the algorithm given by Phadke (1989). We will determine directionality of the
effects of noise factors on the system’s response and will combine noise factors based on

their directionality.

Hou (2002) studied the conditions that will make compound noise yield robust setting for
systems. Hou said “extreme settings should exist for compound noise to work”. We will
later find that compound noise can be effective even when extreme settings do not exist.
The conditions mentioned in “Compound Noise Factor Theory” turn out to be the
sufficient conditions. In later sections the analysis will be extended to determine
conditions under which compound noise will predict a robust setting. Hou’s formulation

was limited to systems which had active effects up to two-factor interactions. We will

38

extend the formulation to systems which can have active effects up to three-factor

interactions.

Compound Noise can be considered an extension of supersaturated designs (SSD). This
concept initially originated with a paper by Satterthwaite (1959). SSDs were assumed to
offer a potentially useful way to investigate many factors with few experiments. In some
SSDs the number of factors being investigated may exceed the number of experiments by
a large factor. Holcomb, et al. (2002) discusses the construction and evaluation of SSDs.
Holcomb, et al. (2003) outlines the analysis of SSDs. Compound Noise is an unbalanced
SSD. Allen and Bernshteyn (2003) discuss the advantages of unbalanced SSDs in terms
of performance and affordability. Heyden, et al. (2000) argues SSDs can be used to
estimate variance of response, which can be used as a measure of robustness rather than
using it to find main effects. SSDs “do not allow estimation of the effects of the individual
factors because of confounding between the main effects”. But “estimation of the
separate factor effects is not necessarily required’ in improving robustness. Using
compound noise as a robust design method we try to estimate robustness of the system at
a given control factor setting. The setting which improves this estimate is taken as the

predicted robust setting.

The main aim of this chapter is to explore the effectiveness of compound noise as a
robust design method. We will first look at the effectiveness of compound noise strategy
on response surface instances generated using Hierarchical Probability Model, Li and

Frey (2005). Two different kinds of response surface instances were generated. One with

39

only main effects and two factor interactions also called as strong hierarchy instances
and other with main effects, two factor interactions and three factor interactions, also

called as weak hierarchy instances.

The conclusions from compound noise studies on response surface instances from
Hierarchical Probability Model were then verified by testing compound noise on six case
studies from different engineering domains. The thesis also provides theoretical
justification for the effectiveness of a compound noise strategy. This thesis also gives an
alternative strategy to formulate a compound noise, distinctly different from Taguchi’s
formulation of compound noise. This new compound noise strategy requires no
knowledge about noise factors effect for its formulation. The main take away of this
chapter is that, Compound Noise as a Robust Design Method was very effective on the
response surface instances and case studies for which only few effects accounted for

significant impact on response.

The chapter is organized as: first we will describe setting up of compound noise strategy
on response surface instances, measures we studied, results from compound noise studies
followed by conclusions from Hierarchical Probability Model. Then compound noise
strategy for six case studies from different engineering domains will be formulated. We
will also study the conditions which lead to effectiveness of Compound Noise strategy. In

the end conclusions and summary of the chapter will be given.

40

3.2 Setting up of Compound Noise study

The objective of this chapter is to see the effect of compounding noise on the prediction
of optimal setting of a response surface instance generated by hierarchical probability
model parameters and verify the results by case studies from various engineering
domains. Here two kinds of compounding schemes were studied: simple compounding
of noise factors and extreme compounding of noise factors. In the field when the
direction of a system’s response due to changing each of the noise factors is known,
extreme compound noise can be constructed. This formulation of compound noise was
originally proposed by Taguchi (1987) and Phadke (1989). We make a two-level extreme
compound noise factor by combining noise factor levels in such a way that, at the lower
setting of extreme compound noise all the noise factor settings give minimum response
and vice versa. When there is no idea about the direction in which noise factors affect a
system’s response, simple compound noise is constructed. In this case noise factor levels
are simply combined to form two-level simple compound noise. For example, we can

select the setting of noise factors randomly to form lower-level compound noise.

To construct extreme compound noise strategy, some knowledge about effect of noise
factors on system’s response is needed. Hence it is in some sense more expensive to
construct for a given system. But no such information is required about effect of noise
factors while formulating simple compound noise strategy. Simple compound noise
strategy is less resource intensive as compared to extreme compound noise strategy. We
will apply both of these compound noise strategies to strong and weak hierarchy response

surface instances and analyze robustness gain. We will explore the reasons behind

41

success or failure of compound noise application for response surface instances. The

questions we want to address in this chapter are:

e Why is compound noise effective in achieving robust setting in certain cases, but
ineffective in other cases?

e How can we measure the effectiveness of a compound noise strategy?

e Do we need to know the directionality of noise factors to use compound noise?

(Simple Compound Noise strategy vs. Extreme Compound Noise strategy)

3.2.1 Generating Response Surface instances

To study the effectiveness of compound noise strategy we will generate instances of
response surfaces using Hierarchical Probability Model. The instances of response
surfaces studied had 7 control factors and 5 noise factors. These response surfaces were
generated according to a relaxed weak heredity model. The full third-order response

surface equation is given by

12 12 12 12 12

V(X1 Xgsees X)) = lzzlﬂzxi + ZZﬁijxixj + Zzzﬁijkxixjxk te @.D

i=1 j=1 i=1 j=1k=1
J>i J>ik>j

where x)-xs represent normally distributed random noise variables, x¢- X2 represent

control factors, f's are factor coefficients and ¢ is experimental error.

42

In our study, we generated both strong and weak hierarchy response surface instances.
The noises factors were assumed to be uncorrelated. Full factorial array was used for 7
control factors. Table 3.1 and table 3.2 give hierarchy probability model parameter values

used to generate strong and weak hierarchy response surface instances respectively.

parameters values
c 15

S 0.33
82 0.67
ws 1

P 0.43
P 0.31
poi 0.04
Poo 0

Table 3.1: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances
parameters values
c 15
S] 0.33
52 0.67
Wy 1
p 0.43
Pl 0.31
Poi 0.04
Poo 0.0
D1 0.17
Poi1 0.08
Pool 0.02
DPooo 0.0

Table 3.2: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances

43

To gaze the impact of effect sparsity on the effectiveness of compound noise strategy, we
changed parameter values for both strong and weak hierarchy response surfaces. The

changed parameters are given in tables 3.3 and 3.4 for strong and weak hierarchy

response surface instances respectively.

parameters values
c 15

S7 033
S2 0.67
w2 1

p 0.3
D1 0.15
Poi 0.04
Poo 0

Table 3.3: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances, reflecting effect sparsity

44

parameters values
c 15
S; 0.33
S2 0.25
w3 1

p 0.3
Dl 0.15
Po1 0.04
Doo 0.0
D1 0.03
Poil 0.03
Door 0.02
Pooo 0.0

Table 3.4: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances, reflecting effect sparsity

5-1
For noise factors we defined 3 different noise strategies. First was a 2y noise array. This

noise strategy is very close to full factorial noise factor array. Hence it will give almost
perfect results for generated response surface instances. This will form a basis of
comparison for compound noise strategies. Second was simple compound noise, in which
noise factors settings were selected randomly to form two-level simple compound noise.
Third was extreme compound noise, in which noise factors were compounded based on
the sign of their effect coefficient in the response surface instance. The way simple and
extreme compounded noises were formed for the 5 noise factors, is shown below,

equations 3.2 and 3.3.

45

Simple Compounded Noise Factor levels

Ny Ny N3y Ny Ns

- random(sign(f,)) random(sign(pf;))
= (3.2)
+ -y -y
Extreme Compounded Noise Factor levels
N, Ny Ny N, N
{‘jl _{_ Sig”(ﬂl) _Sig”(ﬂz) —sign(,@) —Sign(ﬂ,) —Sig”(ﬂs)} (3.3)
+ Sig”(ﬂl) Sign(ﬂz) Sig”(ﬂ3) Sign(ﬁ4) Sig”(ﬂs) .

1
where 'S are the coefficient of noise factors for a given instance of response surface as

predicted by hierarchy probability model parameters.

For each of the three noise strategies, we generated 200 response surface instances. For
each instance of generated response surface, we used Monte Carlo on noise factors to
find response variance at each level of full-factorial control factor array. The setting of
control factors giving minimum variance of response was the optimal setting for that

instance of response surface.

We analyzed each response surface instance by running a designed experiment using 3

27 %27

different robust design crossed arrays: (Noise Strategy 1), 27><Simple

Compound Noise strategy and 27 x Extreme Compound Noise strategy. For each crossed
array experiment we predicted optimal setting of control factors of response surface, by

finding minimum response variance for that experiment. This predicted optimal setting of

46

response surface under each crossed array experiment was then compared with optimal
setting we got by using Monte Carlo on noise factors. In the next section we will present

this algorithm in a diagrammatic manner.

3.2.2 Algorithm to study Compound Noise

The algorithm used to study noise compounding is shown in figure 3.1. The same
algorithm was used to study both strong and weak hierarchy response surface instances.
For each generated response surface instance, we studied three different robust design
methods as outlined in previous section. Left hand side of the algorithm finds optimal
setting of response surface instance, using Monte Carlo on noise factors. Right hand side

of the algorithm finds optimal setting of response surface instance as predicted by a

27 x 2?/—1

chosen robust design method ((Noise Strategy 1), 2" x Simple Compound Noise

strategy or 2’ X Extreme Compound Noise strate). Various measures are finall
gy p gy Y

compared to compute the effectiveness of a chosen robust design strategy.

47

> Relaxed weak heredity

parameters

1

Generate a response surface
instance; i.e. generate B's

Run a designed experiment
. based on one of the 3 robust
Use Momf,éifj: CRTEES design noise strategies

Predict optimal contro! factor setting

Compute variance of il g S S
response at each control gives 1ance
of response

factor setting l

l Find variance @ predicted

Fu-z_ghcm?tr'ol facto_r HCHSng optimal setting using Monte
VR SRR YLl Cario on noise factors

Compare the resuits for a given robust
design noise strategy

1

Repeat the process for 200 response

surface instances

l

Compute median and inter-quartile range of
percent reduction in variance and other
parameters

Figure 3.1: Algorithm used to evaluate Compound Noise Strategies

48

3.2.3 Measures studied

There were number of measures that were derived from the above study. The first was the
percentage number of times a given noise strategy could predict the optimal control
factor setting, as given by running Monte Carlo simulation at each control factor setting

for each generated instance of response surface.

For the second measure we found the predicted optimal settings of the 7 individual
control factors as given by a noise strategy. We compared the predicted optimal setting of
each control factor with the optimal control factor setting as given by Monte Carlo
simulation. We then found number of control factors out the 7, which had same setting as
given by noise strategy and Monte Carlo simulation. The second measure was the mean

of this number for 200nstances that were generated.

For the third measure, we first found the predicted optimal control factor setting by using
a given noise strategy. Then we ran Monte Carlo simulation on noise factors at that
predicted optimal control factor setting and calculated the standard deviation labeled

strategy- 1he minimum standard deviation found by running Monte Carlo simulation at
each control factor setting is called oop. The third measure was the ratio of Ggtrategy t0 Gopt
for each generated instance of response surface. We studied the median and inter-quartile

range of this measure for 20(nstances that were generated.

For the fourth measure, we calculated the mean of the standard deviations, as given by

Monte Carlo at each control factor setting. We called this mean as Opase. ThiS Gpase Was

49

our reference. (Gpase - opt) 1S the maximum reduction that is possible in standard deviation
for a given instance of response surface. But by running a given noise strategy the
realized reduction would only be (Gpase - swrategy). The fourth meaure was the ratio of
realized reduction to the maximum reduction possible, i.e. ratio of (Gpase = strategy) tO (Obase
- opt) for each generated instance. And we studied the median and inter-quartile range of
this measure for 200instances that were generated. Figure 3.2 shows diagrammatic
representation of positive improvement ratio for an instance of generated response

surface.

base m.

Realized Reduction

Variance
of
Response

Maximum Reduction

K

st ratcgy-

Opl-ﬂ

Figure 3.2: Improvement Ratio: Ratio of Realized Reduction to Maximum Reduction possible

3.2.4 Results from Compound Noise studies

The results from Compound Noise studies on Strong and Weak Hierarchy response

surface instances are presented from tables 3.5 to 3.10.

50

Percent Matching of ALL Control Factors with their Robust Setting

Strong Hierarchy Strong Weak Hierarchy Weak
response surfaces RISy response surfaces SERtaneny
s response response
parse effects) surfaces (sparse effects) surfaces
[Noise Strategy 1 72% 70% 63% 61%
SHIDE 8% 6% 3% 3%
Compounding
g 10% 8% 4% 4%
Compounding

Table 3.5: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy Strong Weak Hierarchy Weak
Hierarchy Hierarchy
response surfaces cesppnse response surfaces response
(sparse effects) s (sparse effects) et
[Noise Strategy | 93% 90% 82% 80%
suple 55% 50% 53% 49%
Compounding
i 73% 61% 54% 49%
Compounding

Table 3.6: Measure 2

51

* C}-'U'{”E v
Median {A]
o-apt
Strong Hierarchy Strong Weak Hierarchy Weak
Hierarchy Hierarchy
response surfaces response response surfaces I
(sparse effects) surfaces (sparse effects) surfaces
oise Strategy 1 1.00 1.00 1.00 1.00
Simple 112 1.25 1.49 1.56
Compounding
Elak 1.08 112 1.36 1.41
Compounding
Table 3.7: Measure 3
th th . Gslrate)
25" and 75" percentile (——”J
J()pl
Strong Hierarchy Strong Weak Hierarchy _Neak
Hierarchy Hierarchy
response surfaces response response surfaces response
(sparse effects) P g (sparse effects) sipbies
[Noise Strategy 1 1.00-1.00 1.00-1.00 1.00-1.03 1.00-1.03
Smple 1.04-1.35 1.12-1.51 1.25-1.79 1.27-1.73
Compounding
FRUSHE 1.02-1.16 1.13-1.62 1.15-1.64 1.15-1.73
Compounding

Table 3.8: Measure 3

52

Median (_——U’ d

strategy

|

O-ba,\'e - O-apl
Strong Hierarchy Strong Weak Hierarchy Weak
Hierarchy Hierarchy
response surfaces F—— response surfaces S—
(sparse effects) surfaces (sparse effects) surfaces
[Noise Strategy 1 1.00 1.00 1.00 1.00
Simple 0.68 0.52 0.33 0.29
Compounding
Exteene 0.82 0.69 0.54 0.43
Compounding
Table 3.9: Measure 4
25" and 75 percentile Foase ~ srasegy.
O-ba:g - o-opl
Strong Hierarchy S_trong Weak Hierarchy Weak
Hierarchy Hierarchy
response surfaces fesponise response surfaces response
(sparse effects) surfaces (sparse effects) surfaces
oise Strategy 1 0.99-1.00 0.98-1.00 0.96-1.00 0.95-1.00
Simple 0.24-0.88 0.14-0.75 0.16-0.64 0.11-0.63
Compounding
i 0.53-0.94 0.31-0.87 0.23-0.80 0.20-0.74
Compounding

Table 3.10: Measure 4

As we can see from above tables that as the effects become less sparse (i.e. more dense)

improvement in robustness that can be achieved for both Strong and Weak Hierarchy

response surface instances decreases. To explore this effect further, we varied effect

density over a wide range and plotted median improvement ratio for both Strong and

Weak Hierarchy response surface instances. Figures 3.3 to 3.5 present the results from

the above study.

53

09+, ° eees

o8k * . . .

+ ‘, * -
06

04

03r

Median Improvement Ratio
&
T

02r

01F

0 1 1 1 L Il 1 ! 1]

1
0 01 02 03 04 05 06 07 08 09 1
Effect Density

Figure 3.3: Median Improvement Ratio verses Effect Density for Strong Hierarchy Response Surface

Instances

54

09

08+

06

05+ e . .

Medlan improvement Ratlo

03 . .

02

0 1 L L i 1 1 1 L I }
0 0.1 02 03 04 05 06 07 08 09 1

Effect Density

Figure 3.4: Median Improvement Ratio verses Effect Density for Weak Hierarchy Response Surface

Instances

55

.
.
09 . ok
s e e gk
. . T i
* 2 D *
08 * . P AR
.. . * Strong Hierarchy Response
. * - * iuﬂaces Instances
07F <. T # *
+ ks #¥
2 . * % #*) * .
g Fa¥ ik s
= 06} My *
S . . * #*# L
£ " #e ’*:r-*** *¥ . *
o A ¥
* * #* * W
§ 05+ AR . s - b ¥ *
a. ¢ * *
= * . . A - - N
= R e e T L .t . . .
o 04+ o * e, e L e ot . . . P e e v e . R
g . . . " . te . * . . .
. . .
2 Weak Hierarchy Response ° i ot b .
03} Surfaces Instances .
.
02}
01
0 L | 1 1] L I ! 1 i
0 0.1 02 03 04 085 06 07 08 08 1
Effect Density

Figure 3.5: Median Improvement Ratio verses Effect Density for both Strong and Weak Hierarchy

Response Surface Instances

3.2.5 Conclusions from Probability Model

The use of compound noise as robust design method leads to reduction in experimental
effort. Up till now we have tried to gage the effectiveness of compound noise as a robust
design method for response surface instances generated using Strong and Weak
Hierarchical Probability Model. As we can see from above tables and figures that
compound noise strategy is very effective for instances which show effect sparsity. We

used two formulations of compound noise strategies. One of them was adopted from

56

Taguchi (1987) and Phadke (1989), extreme compound noise. For such a formulation we
need to know the directionality of noise factors on system’s response. The other
formulation was simple compound noise. For simple compound noise strategy we
randomly combine the settings of noise factors, and we do not need to know the
directionality of noise factors. We also found that even such a formulation of compound
noise strategy was very effective in obtaining high robustness gains, for response surface
instances showing effect sparsity. The reason why such a formulation of compound noise

is very effective is that active effects in response surface instances are sparse.

As active effects present in response surface instance become more densely populated,
the percentage improvement that can be achieved using compound noise strategies
decreases. This happens for response surface instances generated via both Strong and

Weak Hierarchical Probability Model.

In the next section we will analyze compound noise strategies for six case studies from
various engineering domains. We will explore the reasons for the effectiveness or

ineffectiveness of compound noise strategies.

3.3 Case Studies

In the previous section we have seen that both extreme and simple formulations of
compound noise strategy work good in improving robustness gain for instances of
response surfaces that show effect sparsity. To provide a further check on these results,

we identified and implemented six system simulations, three of them followed strong

57

hierarchy and three followed weak hierarchy. Using these six case study simulations from
various engineering domains, we performed robust design studies using various
compound noise strategies as described in previous sections. The three case studies that
exhibited strong hierarchy are Operational Amplifier (Op Amp), Phadke (1989), Passive
Neuron Model, Tawfik and Durand (1994), and Journal Bearing: Half Sommerfeld
Solution, Hamrock, et al. (2004). The three case studies that exhibited weak hierarchy are
Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),
Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). For
each case study we ran full factorial control and noise factor crossed array experiments.
These runs were used to determine the effect coefficients for main effects, two-factor
interactions and three-factor interactions. Lenth's Method, Lenth (1989), was employed to
determine the active effects. The full factorial results were also used to determine the

most robust setting for all six systems.

3.3.1 Lenth Plots for Case Studies

For each of the six case studies we ran full factorial control and noise factor crossed
array. The results from these robust design experiments were used to determine the effect
coefficients for main effects, two-factor interactions and three-factor interactions. Figures
3.6 to 3.11 give Lenth plots for all six case studies, to determine active main effects

present in them.

58

] Two-Waylnteractiond

LenthPlot

Three-Way Interaclions

Estimated Effect Intensities

Figure 3.6: Lenth Plot of Effect Coefficients for Op Amp, Phadke (1989)

Effects

59

Lenth Plot
1.4,

1.2
Two-Way Interactions Three-Way Interactions
0.8
0.6

0.4+

Estimated Effect Intensities

0.2

Effects

Figure 3.7: Lenth Plot of Effect Coefficients for Passive Neuron Model, Tawfik and Durand (1994)

60

Lenth Plot
....... el -t e+ .__,__,_._‘_._A_._A_SME_._._

Two-Way Interactions | Three-Way Interactions

6000

4000

2000

-2000

Estimated Effect Contrasts
(an]

-4000

-6000 I I 1 1 I
0
Effects

Figure 3.8: Lenth Plot of Effect Coefficients for Journal Bearing: Half Sommerfeld Solution,

Hamrock, et al. (2004)

61

Lenth Plot
120 -

100 |
80 .)
Two-Way interactions Three-Way Interactions

60}

40

20 Jl
0 [a. ,I . 4 2 T
20 [

Estimated Effect Intensities

Effects

Figure 3.9: Lenth Plot of Effect Coefficients for CSTR, Kalagnanam and Diwekar (1997)

Lenth Plot
6
5
% 4
g Two-Way Interactions Three-Way Interactions
k=
=]
(&)
©
[
b=
w
o
]
«
E
& | E— -
Effects

Figure 3.10: Lenth Plot of Effect Coefficients for Temperature Control Circuit, Phadke (1989)

62

Lenth Plot

Two-VWay Interactions [Three-Way Interactions

Estimated Effect Contrasts

_1 i] 1] I I | !]
0 20 40 60 80 100 120 140 160 180

Effects

Figure 3.11: Lenth Plot of Effect Coefficients for Slider Crank, Gao, et al. (1998)

3.3.2 Results from Compound Noise Strategy on Case Studies

In order to formulate extreme compound noise for robust design experiments, we found
the directionality of noise factors on the system response for all six systems. For each
system we ran a full factorial design in control factors crossed with two-level compound
noise. Pure experimental error was introduced in the system’s response. The error was of
the order of active main effects. From Lenth’s Method, we can estimate the average
magnitude of active main effects. Pure experimental error introduced into the system’s

response was normally distributed with zero mean and standard deviation as the average

63

magnitude of active main effects. Extreme compound noise strategy performed extremely

well for the PNM, Op Amp, Journal Bearing and Slider Crank. Table 3.11 shows results

from robust design experiments.

Percent Percent
Measure | Existence of Matching of Matching of
Syst Hierarch of Extreme Number of All Control Control Improvement
ystem ierarchy Sparsity Settings, Replications | Factors with Factors with Ratio
of Effects | Hou (2002) their Robust their Robust
Setting Setting
Op Amp Strong 0.105 Existed 100 96% 99.2% 99.2%
PNM Strong 0.132 Not-existed 100 98% 99% 99.5%
Journal | o\ 0 0.28 Existed 100 97.8% 98.8% 98.84%
Bearing
CSTR Weak 0.647 Not-existed 100 10% 55.17% 58.4%
Temp.
Control Weak 0.725 Not-existed 100 5% 29.25% 30.65%
Circuit
Slider | ook 0.119 Existed 100 95% 98% 98.5%
Crank

Table 3.11: Results from Full Factorial Control Factor array and Tweo-Level Extreme Compound Noise

The third column of Table 3.11 shows the measure of sparsity of effects, which is the

ratio of active effects in a system to total number of effects that can be present in the

system. The sparsity of effects means that among several experimental effects examined

in any experiment, a small fraction will usually prove to be significant, Box and Meyer

(1986), Hamada and Wu (1992), Wu and Hamada (2000). The sixth column of Table

3.11 shows how well the predicted robust setting from compound noise experiments

matches with the actual robust setting as found by carrying out full factorial control and

noise array experiments. The seventh column of Table 3.11 shows the percent of control

factors whose robust setting matched for full factorial and compound noise experiments.

64

At the predicted robust setting of control factors from compound noise experiments, we
found corresponding variance of system’s response from full factorial experiments. Full
factorial experiments yield the optimal variance of the system’s response and average
variance of response at all control factor settings. With this knowledge, variance can be
improved from the average value to the optimal value, which is the maximum possible
improvement. For compound noise experiments variance of response can be improved
from the average value to the variance at the predicted robust setting. The ratio of
achieved improvement to maximum possible improvement is called improvement ratio.
The average of this measure for all replicates is shown in the eighth column of Table

3.11.

From Table 3.11 we can see that extreme compound noise strategy works reasonably well
for the Op Amp, PNM, Journal Bearing and Slider Crank, but not nearly as well for the

CSTR, and Temperature Control Circuit.

3.4 Effectiveness of Compound Noise in Real scenarios

In real scenarios it is often not possible to run full factorial inner arrays like those
reported on in Table 3.11. Therefore we also studied the use of fractional factorial arrays
by running robust design experiments which were resolution III in both the control and
noise factor array. We predicted robust settings from such experiments and compared the
results to those from full factorial experiments in Table 3.12. We also ran robust design
experiments which were resolution III in the control factor array combined with two-level

extreme compound noise. Results for these experiments are summarized in Table 3.13.

65

Resolution III experiments formed the basis of comparison for the results we got from
resolution III control factor array crossed with two-level extreme compound noise. Pure
experimental error was introduced into the system’s response, for all six case studies. The
error introduced was of the order of active main effects. The control factors were

randomly assigned to Resolution III inner array.

We did not study Passive Neuron Model and Journal Bearing systems because these

systems had only two control factors and thus had no distinct resolution III control factor

array.
Percent Percent
Measure of Number of Matching of All Matching of Improvement
System Hierarchy Sparsity of Replications Control Factors | Control Factors pRatio
Effects P with their with their
Robust Setting Robust Setting
Op Amp Strong 0.105 100 98% 99.6% 99.91%
CSTR Weak 0.647 100 NONE 76.5% 96.5%
Temp.
Control Weak 0.725 100 28% 55% 87%
Circuit
Stider Weak 0.119 100 91% 95.5% 97.6%
Crank

Table 3.12: Results from Resolution III Contrel and Noise Factor Array

Table 3.12 indicates that the robust setting for the Op Amp and Slider Crank can be
achieved with high probability when a resolution III noise factor array is used. For the
CSTR and Temperature Control Circuit, the high mean improvement ratio means we will
not attain the robust setting but will arrive near the optima. The high improvement ratio
suggests that we will achieve most of the improvement possible in the variance of

system’s response.

66

Percent Percent
Matching of | Matching Improvement
Measure of Number of All Control | of Control Improvement Ratio
System | Hierarchy | Sparsity of Replications Factors Factors pRatio (from
Effects P with their with their Resolution I
Robust Robust Noise Array)
Setting Setting
Op Amp Strong 0.105 100 86% 97.2% 99.37% 99.91%
CSTR Weak 0.647 100 NONE 41.17% 39.8% 96.5%
Temp.
Control Weak 0.725 100 NONE 43.5% 25.2% 87%
Circuit
Slider 1} ok 0.119 100 89% 94% 96.5% 97.6%
Crank

Table 3.13: Results from Resolution III Contrel Factor array and Two-Level Extreme Compound

Noise

Table 3.13 indicates that even when using a resolution III control factor array, a
compound noise strategy will predict the robust setting for the Op Amp and the Slider
Crank with high probability. The compound noise strategy does not work too well with
resolution III control factor array for the CSTR. The average improvement ratio possible
is only 40%, as opposed to nearly 97% had the resolution III noise factor array been used.
Nor does the compound noise strategy perform well with a resolution III control factor
array for the Temperature Control Circuit. The improvement ratio drops from 87% for

resolution I1I noise array to 25% for two-level extreme compound noise.

In the formulation of compound noise as suggested by Taguchi (1987) and Phadke
(1989), we need to know the directionality of noise factors on system’s response. We
need to run some fractional factorial experiments on the system to gather information
about directionality of noise factors. We tried a different formulation of compound noise.

Noise factor settings can be picked randomly to form a two-level random compound

67

noise (simple compound noise strategy). We ran such a compound noise strategy with

full factorial control factor array for each of the six case studies. Table 3.14 presents the

average results from these experiments.

Percent Percent Improvement
Measure of Matching of | Matching of Ratio
System | Hierarch Sparsity of Number of All Control Control Improvement (from
y Y };3 P Replications | Factors with | Factors with Ratio Taguchi’s
ects their Robust | their Robust Compound
Setting Setting Noise)
Op Amp Strong 0.105 1000 30.8% 73% 80.2% 99.2%
PNM Strong 0.132 2°=16 50% 68.75% 79.9% 99.5%
;‘;‘;2‘:; Strong 0.28 23 =8 100% 100% 100% 98.84%
CSTR Weak 0.647 2% =64 54.69% 70.3% 67.6% 58.4%
Temp.
Control Weak 0.725 25=132 68.75% 76.56% 74.75% 30.65%
Circuit
Shder | Weak 0.119 =32 50% 70% 552% 98.5%

Table 3.14: Average results from Full Factorial Control Factor array and Two-Level Simple

Compound Noise Strategy

The Op Amp has 21 noise factors, so there can be 2°' combinations of random compound
noise. Instead we ran 1000 such combinations of random compound noise for the Op
Amp. The Passive Neuron Model has 4 noise factors. Hence there are 2* combinations of
random compound noise for the PNM. The Journal Bearing has three, the CSTR has six
and the Temperature Control Circuit and Slider Crank have five noise factors each. From
Table 3.14 we see that such a formulation of simple compound noise is very effective on
an average. Except for the Slider Crank system, simple compound noise can achieve
improvement ratios greater than 68% on an average, for all systems. For the Slider Crank

system too, half of the replications gave robust setting of the system and half of them led

68

to poor settings. Hence had we used simple compound noise with care for the Slider

Crank system we would have attained robust setting.

3.5 Conditions for Compound Noise to be completely effective

Hou (2002) gave conditions under which a compound noise strategy will predict the
robust setting for a system. One of the conditions for compound noise to work is the
existence of extreme settings. The extreme settings of compound noise are those which
maximize and minimize the system’s response to capture noise variations. But we found
that in some systems (for example Passive Neuron Model, Tawfik and Durand (1994))
compound noise strategy would work even if extreme settings do not exist. So the
conditions outlined in Theorem 4, Hou (2002) are sufficient but not necessary conditions

for compound noise to work.

3.5.1 Strong Hierarchy Systems

For strong hierarchy systems the response y can be expressed as

m m 1
Y=L X X))+ DBz + DD Yz (3.4)
j=1

j=1 i=l

where f(x,, x,,...,x;) is a general function in the control factors x,, z, (/=1...m) denotes
noise factors affecting the system, 8, denotes effect intensity of noise factor j, and y,

denotes the effect intensities of control-by-noise interactions present in the system.

69

Control factors can have two settings -1 and 1. (Control factor variability can be
represented as separate noise factors.) Noise factors are in the range -1 to 1, and are
independent, with zero mean and variance of 1. Noise factors are symmetric about 0. The

variance of y with respect to z,’s is given by

Var,(y)=C+ 2(2(2 B.7, Jx + Z(Z Vil]x ka (3.5)

i=1 i<k _j=1

where C is a constant. The robust setting of the system is one which minimizes the

variance of response with respect to noise factors. It can be represented as

= arg[n}lm(g(i B7,]x + Z(Z Vil }x x, H (3.6)

i<k

where X is the setting of x,’s that minimizes the variance.

If we follow Taguchi’s formulation of compound noise, based on the directionality of

noise factors, then responses at two levels of compound noise will be given by

m /
Vo = f (X X)) + Z(ﬂ,. + Zygxi}ign(ﬂ,) 3.7

y_= f(xl"xZ""’xl)_i(ﬂj + Z}/;jxi}vign(ﬂj) (3'8)

70

The estimated variance with respect to compound noise levels is

Var(y)=(, -y)+ -y)’ =%(y+ -y) (3.9)

i[i’ﬂj’gsign(ﬂj)yijjxi +

i=1 _j=1

I m m
Z(ZSign(ﬂj)71/' ZSig”(ﬂj)ij Xk
i<k Jj=1

Jj=1

Var(y)=C, +4 (3.10)

where C; is a constant. The estimated robust setting of the system is one which minimizes
the estimated variance of response with respect to compound noise levels. It can be

represented as

Z[i B3 sign(p,)hj)xi +

. i=l _j=1 j=1
XCompound = arg minl

X; i m m
5 Sl b Sl e,
i<k j=t

=

(3.11)

where X7 is the setting of x,’s that minimizes the estimated variance. For

compound noise to be completely effective the control factor setting that minimizes the
estimated variance should be the same as the control factor setting that minimizes the

actual variance of response, i.e.,

71

X=X Compound (3 . 12)

3.5.2 Weak Hierarchy Systems

For weak hierarchy systems the response can be represented by

1 m_ 1

m m !
y =f(x1,x2,...,x,)+2ﬂjzj +ZZyyxizj +ZZZGWx,.xkzj +
j=1 j=1

i=t j=1 i=l i<k
i

j=t

(3.13)

3

!
ZQijn XiZjZn
i i=]

B

.,
)

where y denotes system’s response, x’s represent control factors of the system and there

are [/ control factors present. f(x,,x,,..,x;) is a general function in the control factors
x;’s. B,’s denote effect intensity of noise factors. z,’s are noise factors present in the
system and there are m number of noise factors. y, ’s are the effect intensities of control-

by-noise interactions present in the system. 6,.’s and Q, ’s are effect intensities of

ijn
control-by-control-by-noise interactions and control-by-noise-by-noise interactions
respectively, present in the system. Control factors can have two settings -1 and 1. Noise
factors are in the range -1 to 1, and are independent, with zero mean and variance of 1.

Noise factors are symmetric about 0. The variance of y with respect to z;’s, Rao (1992),

is given by

72

!

m I m
Zzﬂjyvxf + ZZ?’amxixk +

P ik =1

! I m m I I 1
.22 B,0xx, + Z(ZW:)[Z 2. 6ux%, J +
iml ick j=I RN i=1 i<k
{ ! I m
ZZZZ%%%WU% +
i<k o<i p<o j=1

Var (y)=C, +2| | o o Lo (3.14)
D22 B % + 222,05, +
i=l j=1 j<n i<k j=1 j<n

where C, is a constant. The robust setting of the system is one which minimizes the

variance of response with respect to noise factors. It can be represented as

m I m
22 B+ 2D Vg +

i<k j=1

Il I m
222 B,6,x% +
-1 i

Z(er][ZZaxx] N

i=l i<k

i ! I m
X =arg min| Zzzzaikjeopjxixkxv'xp +
i<k o<i

-
I
—

m m !
§[£80un S
JRL\ < i= i=
m m_ | I
Q. x, 6,.x
] ;(;; lj"le(gi(Zk llilxtxk] | (3.15)

73

where X is the settings of x,’s that minimizes the variance.

If we follow Taguchi’s formulation of compound noise, based on the directionality of

noise factors, then responses at two levels of compound noise will be given by

= f(x,,%y,... x,)+Z[,B +Zy,lx,+zz X ‘xk}ign(ﬂj)+

i=l i<k

N (3.16)
ZZZQ”" ,szgn(ﬂ)szgn(ﬂ
= f(x), %5500 %) — Z[ﬂ +Z7’y"z+zz ik X xxk}ign(ﬂj)_
ik (3.17)

iiinw «signlp, Jign(5,)

The estimated variance with respect to compound noise levels is

74

55 S s+ 3 Sl b, | Ssenls e, +

i=l j=1 Jj=1 i<k _j=1

iZI: iﬂszﬂgn(ﬂ)9:1\;}71’7‘1(+

i=l i<k _j=1

3 (Sl s | SE(St o o

i=1 i<k _j=1

/—_\\

i

o z(5 sl o, | Sl o, s,

i<k o<i p<o

i[ilﬂ,l@i signlp, sign(5, X2,]]

I}ar(y) =C, +4

y =

'zl(E”:Slgn(ﬂ Jsign(B, han}(ii”g”(ﬂ; Jign(s, pﬁ"JXiXk '

MN

x>

1 j<n Jj=1 j<n

> sign(B, Jsign(B,)Qk,n) i{i sign(B,)7,,} J+

1 _/=

£5 (S ols o)

i=l i< j=1

<

33

i=

_]= _]<'l

g !
i(iiﬂgn(ﬁ Jsign(8, X2y, |x J(

i=l _j=1 j<n

—

(3.18)

where Cj is a constant. The estimated robust setting of the system is one which minimizes

the estimated variance of response with respect to compound noise levels. It can be

represented as

75

X Compound

(3.19)

= arg

min

-~

m

>3 Soven s+ B Sl | Sl s+

i=l j=1 Jj=1 i<k _j=1

S5 Slo S mnle b,

i=1 i<k _j=1

[i(isign(ﬂj)}/U}xiJ(ZZ[isign(ﬂj)akj]x,,xk]Jr

i=1 _j=1 i=1 i<k _j=1

353 Sl o, | Sl o s, +

i<k o<i p<o_j=1

3 S $ Sl i, -

i=1 \ j=1 J=1 j<n

MN

(isz-gn(ﬂj)sign(ﬂnni,n](iisign(ﬂj)signwn)n] \

Jj<n j=1 j<n

isign(ﬁj)sign(ﬂ,,p,gnJ J{z zszgn(ﬂ b, Jx]+

Jj<n i=l _j=1

ES

<

>

3
8

LMi

~

1

5SS sl isntp 0 J 5[Sl o)]

i=1 J<i i=l i<k _j=1

-
X

j=

where X" is the setting of x,’s that minimizes the estimated variance. For

compound noise to be completely effective X = X

Compound

3.5.3 Conclusions from Case Studies

From the full factorial experiments done on six case studies, we found effect intensities

for noise factors and control-by-noise interactions for strong hierarchy systems. For weak

hierarchy systems we also found intensities of control-by-control-by-noise and control-

by-noise-by-noise interactions. On plugging effect intensities for strong hierarchy

systems in equations 3.6 and 3.11, we found that all three systems satisfied equation 3.12.

76

The effect intensities for weak hierarchy systems were plugged in equations 3.15 and
3.19 and only the Slider Crank satisfied equation 3.12. The PNM is one of the systems
which do not have extreme settings, Hou (2002), but still compound noise works for such

a system.

Compound noise was effective on the systems which showed effect sparsity, Box and
Meyer (1986), Hamada and Wu (1992), Wu and Hamada (2000). For all strong hierarchy
systems there were only few active control-by-noise interactions in each of the systems to
be exploited during robust design experiments. The Slider Crank has only one significant
noise factor to which it needs to be desensitized. The Temperature Control Circuit and
CSTR did not show effect sparsity. These systems have many significant noise factors,

twe factor and three-factor interactions.

3.6 Conclusions

The use of compound noise in robust design experiments leads to reduction in
experimental effort. Due to limitations on resources, full factorial or even fractional
factorial on noise factors can’t be run. Compound Noise is one of the ways in which all
the noise factors can be combined in a single factor, which can be used to improve
robustness of a system. In this chapter the effectiveness of compound noise as a robust
design method was gaged and compared to other noise strategies. We also built upon
conditions given by Hou (2002) for the complete effectiveness of compound noise. We

modified the conditions to make them more general and encompass a larger set of

77

systems on which compound noises can work. Also those conditions were extended to

include the possibility of three-factor interactions.

Compound noise as a robust design strategy is very effective on response surface
instances and on systems which show effect sparsity. We ran compound noise on strong
and weak hierarchy response surface instances with varying degree of effect sparsity and
on six case studies from different engineering domains. The case studies were:
Operational Amplifier, Passive Neuron Model, Journal Bearing, Continuous-Stirred Tank
Reactor, Temperature Control Circuit and Slider Crank. Compound Noise strategy
predicted robust settings for the systems which showed effect sparsity. It also resulted in
large improvement in robustness for such systems and response surface instances (figure
3.12). The reason for its effectiveness on sparse systems is, in compound noise all the
noise factors are combined. Hence their individual impact on system’s response is
confounded. But if effects are sparse then the probability of the impact of two noise
factors being oppositely confounded is extremely low. Hence compound noise is able to
exploit all significant control-by-noise interactions for such systems, leading to its high

effectiveness.

78

Median Improvement Ratio

.
. Passive Neuron
ool 0£ Ar Wﬂ'ﬂl* ‘uumal Bearing
. el Crankert
. ¢ D
* % . % 5
08 s * *_4_' *
% u o ’ » * Strong Hierarchy Response
4 * * % Surfaces
i *%H *
07 . , Fk " * =
bt i » ¥*
& KaF e B
Ho . x5
06+ F ¥
. * # o
csTil® *x oy S T
051 . . SE R X o
M- . + . 4 *
s R4 ¥ - B . * .. *
- . .t . . 5 - @ +
04 ‘. . . ‘. L2 ._ ..‘ . PR & ". § . ., & . .‘
A .
Weak Hierarchy F.'aspun.se . ® 4 % i
03K Surfaces
Temperature
Control Circuit

02F
01

0 1 | 1 1 | | | 1 I |

0 0.1 02 03 04 05 06 07 08 09 1
Effect Density

Figure 3.12: Median Improvement Ratio verses Effect Density for Strong and Weak Hierarchy Response

Surface Instances and Six Case Studies

The given formulation of compound noise was adopted from Taguchi (1987) and Phadke

(1989). For such a formulation the directionality of noise factors on system’s response is

needed to be known. To know the directionality of noise factors fractional factorial

experiments on the system are needed. We tried to measure the effectiveness of simple

compound noise for which the directionality of noise factors is not needed. We found that

79

such a formulation of compound noise can be very effective in obtaining high robustness
gains. The reason why such a formulation of compound noise is very effective is that
active effects in the system are sparse. Even if noise is compounded randomly there is
very low probability that two opposite acting interactions get confounded with each

other.

These results may be used in the overall approach to deploying compound noise as a
robust design strategy. The flowchart in Figure 3.13 presents our suggestion for
implementing these findings in practice. First of all, practicing engineers must define the
scenario including what system is being improved, what objectives are being sought, and

what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding
effect sparsity. It should be noted here that we do not argue that engineers need to make a
factual determination of effect sparsity. The experience on the system should be used to

make decision.

If engineers decide that effects are dense, then they should follow the procedure on the
right hand side of Figure 3.13. In this case, the results in this paper suggest that instead of
using compound noise, a fractional factorial noise factor array should be used as outer

array.

80

If engineers decide that effects are sparse, then they should follow the procedure on the
left hand side of Figure 3.13. At this point, engineers should consider the directionality of
noise factors. If the directionality of noise factors is known, then they should use Taguchi
and Phadke’s formulation of compound noise. Otherwise they can formulate simple
compound noise as outer array. From Table 3.14, we can say that the systems for which
effect sparsity holds simple compound noise is effective. However experience, judgment
and knowledge of engineering and science are critical in formulating such a compound
noise. It is hoped that the procedure proposed here in Figure 3.13 will be of value to
practitioners seeking to implement robust design efficiently and using minimum

resources.

81

Yes

Define the Robust Design Scenario

s the directionality of
noise factors known?

Use Compound Noise
{as defined by Taguchi,
Phadke) as Outer Array

Assumptions about
Effect Sparsity

Use fractional/full
factorial array as
Outer Array (instead
of Compound
Noise)

y

Use Random
Compound Noise
as Quter Array

L 4

A

Carry out Robust Design Using the
Chosen Outer Array

Figure 3.13: Suggested procedure for Compound Noise in Robust Design

3.7 Chapter Summary

Compound Noise as a robust design strategy, is very effective on the systems which show
effect sparsity. The reason for its effectiveness on sparse systems is, in compound noise
all the noise factors are combined. Hence their individual impact on system’s response is

confounded. But if effects are sparse then the probability of the impact of two noise

82

factors being oppositely confounded is extremely low. Hence compound noise is able to
exploit all significant control-by-noise interactions for such systems, leading to its high

effectiveness.

We first ran two formulations of compound noise (simple and extreme) on response
surface instances generated using strong and weak hierarchical probability model. This
was done to confirm compound noise effectiveness statistically. Next those formulations
of compound noise were ran on six different case studies from various engineering
domains to verify conclusions we got from hierarchical probability model. In the end
conditions for compound noise to be completely effective for both strong and weak
hierarchy systems were outlined. We engineered an algorithm on the use of compound
noise as a robust design method, based on our conclusions from response surface

instances and case studies.

In later chapters we will look at robust design methods which are slightly more resource
intensive than compound noise, but works good for all systems. These new robust design
methods are highly economical as compared to fractional factorial noise array

experiments.

83

84

Chapter 4: Take-The-Best-Few Strategy: Evaluation as a

Robust Design Method

4.1 Introduction and Background

To counter the effect of noise control-by-noise interactions are exploited in Robust
Parameter Design methodology. These control-by-noise interactions can be captured by
using crossed-array approach. The control factor setting that minimizes the sensitivity of
the response to noise factors is called the optimal control factor setting or the most robust
setting for the system. A crossed-array approach is a combination of two orthogonal
arrays, one of control factors and other of noise factors. But as the complexity of the
system increases, use of full factorial control and noise factor arrays becomes
prohibitively expensive. As an attempt to reduce the run size of this crossed-array

approach, Taguchi (1987) proposed a compound noise factor technique.

One of the prominent reasons why the compound noise factor strategy is so popular is
that it reduces run size of experimentation needed to improve robustness. We set out to
develop a noise factor strategy that retains the attractiveness of reduced run size but is
more effective than the compound noise strategy. The result is the Take-The-Best-Few

Noise Factors strategy (referred to hereafter as the TTBF strategy).

To apply TTBF Strategy, most important noise factors in system’s noise factor space are

found. Noise factors having significant impact on system response variation are

&5

considered important. Once the important noise factors are identified for a given system,
they are kept independent in the noise factor array. By selecting the few most important
noise factors for a given system, run size of experiments is minimized. The TTBF
strategy builds upon the TTB strategy by Gigerenzer and Goldstein (1996), which gives a
criterion for selecting an alternative under uncertainty and poor information. Under the
TTB strategy, a person picks one characteristic among all the available characteristics;
the option that scores highest with respect to that characteristic becomes the final choice.
In the TTBF strategy, instead of picking just one such characteristic, we try to choose a
few such characteristics (noise factors) and determine a control factor setting that gives
maximum improvement in robustness. As engineers work with a particular class of
system(s), they learn about the important noise factors that affect the system(s), and this

valuable knowledge is used to formulate TTBF strategy.

As in previous chapter, main aim of this chapter is to explore the effectiveness of TTBF
strategy as a robust design method. We will first look at the effectiveness of TTBF
strategy on response surface instances generated using Hierarchical Probability Model, Li
and Frey (2005). Two different kinds of response surface instances were generated. One
with only main effects and two factor interactions also called as strong hierarchy
instances and other with main effects, two factor interactions and three factor
interactions, also called as weak hierarchy instances. We will measure improvement in

robustness while using TTBF strategy and compare it with compound noise strategy.

86

The conclusions from TTBF strategy on response surface instances from Hierarchical
Probability Model would then be verified by testing TTBF strategy on six case studies
from different engineering domains. The main take away of this chapter is that, TTBF
strategy as a Robust Design Method is very effective on all response surface instances

and case studies.

The chapter is organized as: first we will describe the setting up of TTBF strategy on
response surface instances, measures we studied, results from TTBF strategy studies
followed by discussion of these results. Then these results will be compared with the
results from compound noise studies on response surface instances. Then TTBF strategy
will be formulated for six case studies from different engineering domains. We will also
look into the formulation of Hybrid Noise Strategy involving Compound Noise strategy

and TTBF strategy. In the end conclusions and summary of the chapter will be given.

4.2 Setting up of TTBF study

The objective of this chapter is to see the effect of TTBF strategy on the prediction of
optimal setting of a response surface instance generated by hierarchical probability model
parameters and verify the results by case studies from various engineering domains. We
also want to compare the improvement achieved by such a strategy with improvement
achieved by compound noise strategies and full/fractional factorial noise array strategies.
One of the assumptions in setting up of TTBF strategy is that significant noise factors

impacting system’s response variance are known. To find significant noise factors for a

87

given system or response surface instance, fractional factorial array of noise factor can be

used on any setting of control factors, Phadke (1989).

4.2.1 Generating Response Surface instances

To study the effectiveness of TTBF strategy instances of response surfaces will be
generated using Hierarchical Probability Model. The instances of response surfaces
studied had 7 control factors and 5 noise factors. These response surfaces were generated
according to a relaxed weak heredity model. The full third-order response surface

equation is given by

12 12 12 12 12

(X Xg5000 %) = iﬂi“xi + Zzﬂijxi‘xj +ZZZ,Bijkxixjxk +é& (“.1)

i=1 j=1 i=1 j=1 k=l
J>i i k>

where x;-xs represent normally distributed random noise variables, xs- x;2 represent

control factors, f's are factor coefficients and ¢ is experimental error.

In our study, we generated both strong and weak hierarchy response surface instances.
The noises factors were assumed to be uncorrelated. Full factorial array was used for 7
control factors. Table 4.1 and table 4.2 give hierarchy probability model parameter values

used to generate strong and weak hierarchy response surface instances respectively.

88

parameters values
c 15

S 0.33
S 0.67
W 1

)4 0.43
pi 0.31
Dol 0.04
Poo 0

Table 4.1: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances
parameters values
c 15
S 033
S2 0.67
w2 1
J2 0.43
pii 0.31
Poi 0.04
Poo 0.0
plil 0.17
Poil 0.08
Poo! 0.02
Po0o 0.0

Table 4.2: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances

. 2371 .
For noise factors we defined twddifferent noise st rategies. First was a ¥ noise array.

This noise strategy is very close to full factorial noise factor array. Hence it will give
almost perfect results for generated response surface instances. This will form a basis of
comparison for TTBF strategy. Second was TTBF strategy. In TTBF strategy for each

generated response surface instance, we prioritized noise factors based on their absolute

&9

effect coefficients |,3|‘s. The two noise factors (out of total five noise factors) having

highest | ,B| were used in TTBF strategy. Those two important noise factors were kept

independent in noise array. Thus the noise array under TTBF strategy had 2°=4 runs.

For each of the two noise strategies, we generated 200 response surface instances. For
each instance of generated response surface, we used Monte Carlo on noise factors to
find response variance at each level of full-factorial control factor array. The setting of
control factors giving minimum variance of response was the optimal setting for that

instance of response surface.

We analyzed each response surface instance by running a designed experiment using two

7 5-1
2 %2y (Noise Strategy 1) and 2’ X TTBF

different robust design crossed arrays:
strategy. For each crossed array experiment we predicted optimal setting of control
factors of response surface, by finding minimum response variance for that experiment.
This predicted optimal setting of response surface under each crossed array experiment

was then compared with optimal setting we got by using Monte Carlo on noise factors. In

the next section we will present this algorithm in a diagrammatic manner.

4.2.2 Algorithm to study TTBF strategy

The algorithm used to study TTBF strategy is shown in Figure 4.1. The same algorithm
was used to study both strong and weak hierarchy response surface instances. For each

generated response surface instance, we studied two different robust design methods as

950

outlined in previous section. Left hand side of the algorithm finds the optimal setting of
response surface instance, using Monte Carlo on noise factors. Right hand side of the

algorithm finds the optimal setting of response surface instance as predicted by a chosen

7 5~1
robust design method (2 X2y (Noise Strategy 1) or 2" XTTBF strategy). Various
measures are finally compared to compute the effectiveness of a chosen robust design

strategy.

91

e Relaxed weak heredity

parameters

g

Generate a response surface
instance; i.e generate A's

-
Run a designed experiment
based on one of the two robust

Jea M i ; ; :
Use Monte Carlo on noise design noise sirategies

factors

| 1

Compute variance of RO OI. # o Ai .faﬂ 4 2 S:
th vhich giv ; ;
o at each contro! € one which g1ves minimnum variance

factor setting of zeslnonse

Find ¢ 1 . Find variance @ predicted
o th““!“.‘“ ALK FESMRG optimal setting using Nontg,
TRRSTEREER Carlo on noise factors

Compare the resuits for a given robust
design noise strategy

l

Repeat the process for 200 response

surface imstances

l

Compute median and inter-quartile range of
percent reduction in variance and other
paramsters

Figure 4.1: Algorithm used to evaluate TTBF strategy

92

4.2.3 Measures studied

There were number of measures that were derived from the above study. The first was the
percentage number of times a given noise strategy could predict the optimal control
factor setting, as given by running Monte Carlo simulation at each control factor setting

for each generated instance of response surface.

For the second measure we found the predicted optimal settings of the 7 individual
control factors as given by a noise strategy. We compared the predicted optimal setting of
each control factor with the optimal control factor setting as given by Monte Carlo
simulation. We then found number of control factors out the 7, which had same setting as
given by noise strategy and Monte Carlo simulation. The second measure was the mean

of this number for 20(nstances that were generated.

For the third measure, we first found the predicted optimal control factor setting by using
a given noise strategy. Then we ran Monte Carlo simulation on noise factors at that
predicted optimal control factor setting and calculated the standard deviation labeled

strategy- 1he minimum standard deviation found by running Monte Carlo simulation at
each control factor setting is called cop. The third measure was the ratio of Ggpategy tO Gopt
for each generated instance of response surface. We studied the median and inter-quartile

range of this measure for 20(nstances that were generated.

For the fourth measure, we calculated the mean of the standard deviations, as given by

Monte Carlo at each control factor setting. We called this mean as Opase. ThiS Opase Was

93

our reference. (Gpase - opt) 1S the maximum reduction that is possible in standard deviation
for a given instance of response surface. But by running a given noise strategy the
realized reduction would only be (Gbase - swateqy)- The fourth meaure was the ratio of
realized reduction to the maximum reduction possible, i.e. ratio of (Obase = sirategy) tO (Obase
- op) for each generated instance. And we studied the median and inter-quartile range of

this measure for 20(nstances that were generated.

4.2.4 Results from TTBF Strategy studies

The results from TTBF strategy study on Strong and Weak Hierarchy response surface

instances are presented from tables 4.3 to 4.8.

Percent Matching of ALL Control Factors with their Robust Setting

Strong Hierarchy response surfaces

Weak Hierarchy response surfaces

[Noise Strategy 1

70%

61%

TTBF Strategy

44%

18%

Table 4.3: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy response surfaces

Weak Hierarchy response surfaces

[Noise Strategy 1

90%

80%

TTBF Strategy

87.7%

64.3%

Table 4.4: Measure

94

2

Median (

o-sfra regy
a-ap.'

Strong Hierarchy response surfaces

Weak Hierarchy response surfaces

Noise Strategy 1

1.00

1.00

TTBF Strategy

1.00

1.15

Table 4.5: Measure 3

25" and 75™ percentile (

Js{i'a legy
O-np.'

Strong Hierarchy response surfaces

Weak Hierarchy response surfaces

[Noise Strategy 1

1.00-1.00

1.00-1.03

TTBF Strategy

1.00-1.05

1.02-1.33

Table 4.6: Measure 3

g

base

O-r)pf

Median
Jba.ve

g - stralegy }

Strong Hierarchy response surfaces

Weak Hierarchy response surfaces

[Noise Strategy 1

1.00

1.00

TTBF Strategy

0.99

0.78

Table 4.7: Measure 4

95

25" and 75" percentile [

O-im.re - O-.flmlcgv
O-bm'e -0

opt

Strong Hierarchy response surfaces (Weak Hierarchy response surfaces

[Noise Strategy 1 0.98-1.00

0.95-1.00

TTBF Strateg_y 0.89-1.00

0.58-0.96

Table 4.8: Measure 4

To explore the impact of effect density on improvement in robustness that can be

achieved for both strong and weak hierarchy response surface instances, we varied effect

density over a wide range and plotted median improvement ratio for both strong and

weak hierarchy response surface instances. Figures 4.2 to 4.4 present the results from

such a study.

96

.
09+ .’

08+ . E A R L e e .

07}

06

05k

Median improvement Ratio

03

02

01}

0 t 1 1 ! L | | Il]

|
0 0.1 0.2 03 04 05 06 07 08 09 1
Effect Density

Figure 4.2: Median Improvement Ratio verses Effect Density for Strong Hierarchy Response Surface

Instances

97

09

08k . .., o . -

06

05F

Median Improvement Ratio

03

02

01

0] L 1 1 L 1 1 I 1)
0 0.1 02 03 04 05 06 07 08 08 1

Effect Density

Figure 4.3: Median Improvement Ratio verses Effect Density for Weak Hierarchy Response Surface

Instances

98

s
e |
.
.

o
w0
5 T
k
It
¥
-
ES
#*

o
o]
T

+
.
.
+
.
+
-
.
.
.
.
.
'3
-
.
»

=]
—
T
.
.
.
.
.
.
.
.
.
.

Weak Hierarchy Response
Surface Instances

o
(o]
T

Median Improvement Ratio
o o
n [5)]
T T

o
w
T

02

0 | 1 1 1] 1 I I 1]
0 01 02 03 04 05 06 07 08 09 1

Effect Density

Figure 4.4: Median Improvement Ratio verses Effect Density for both Strong and Weak Hierarchy

Response Surface Instances

4.2.5 Conclusions from Probability Model

The use of TTBF Strategy as robust design method leads to reduction in experimental
effort. Up till now we have tried to gage the effectiveness of TTBF strategy as a robust
design method for response surface instances generated using Strong and Weak
Hierarchical Probability Model. As we can see from above tables and figures that TTBF
strategy is very effective for both Strong and Weak hierarchical response surface

instances. For both Strong and Weak hierarchical response surface instances we can

99

achieve on average 80% of the total possible improvement (table 4.7 and figure 4.4). In
above study TTBF strategy requires only one-eighth of the experimental effort needed to

run full factorial noise array.

Though to find two most significant noise factors out of total five noise factors, we can
use a fractional factorial array for noise factors under any control factors setting. This
will increase number of outer array runs on an average, but this increase is minimal as
compared to overall experimental effort to run TTBF strategy for full factorial control

factor array.

In the next section we will compare TTBF strategy with Compound Noise strategy.
Strong and Weak hierarchical probability model response surface instances would be

used as the basis for comparison of these two noise factor strategies.

4.3 Comparison of TTBF strategy and Compound Noise strategy

We generated response surface instances as per above equation 4.1 to compare TTBF and
Compound Noise strategies. Each instance of generated response surface had 7 control
factors and 5 noise factors. We used extreme compound noise as one of the noise
strategies (chapter 3), Taguchi (1987) and Phadke (1989). In this strategy noise array was
comprised of 2 runs, which represented lower and higher setting of compound noise. We
made two-level extreme compound noise factor by combining noise factor levels in such
a way that, at lower setting of extreme compound noise all noise factor settings give

minimum response and vice versa. For the TTBF strategy, the two most important noise

100

factors out of the total five were found, for the generated instance of response surface and
kept them independent in the noise array. Under the TTBF strategy, the noise array was
comprised of 4 runs. We estimated the amount of improvement in robustness achieved
using each of these two noise strategies for both strong and weak hierarchy response

surface instances. Tables 4.9 to 4.14 present comparison summary of these two noise

strategies for both strong and weak hierarchy response surface instances.

Percent Matching of ALL Control Factors with their Robust Setting

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces
TTBF Strategy 44% 18%
Compound Noise g9/, 4%
Strategy

Table 4.9: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces
TTBF Strategy 87.7% 64.3%
Compound Noise 61% 499
Strategy

Table 4.10: Measure 2

101

Me d ian a.wrurcgv
(e}

opt

Strong Hierarchy response Weak Hierarchy response

surfaces surfaces
TTBF Strategy 1.00 1.15
Compound Noise 112 141
Strategy
Table 4.11: Measure 3
th th . O-.Hmregy
25™ and 75" percentile | ———
g
opt
Strong Hierarchy response Weak Hierarchy response
surfaces surfaces
TTBF Strategy 1.00-1.05 1.02-1.33
tepmpemd Hoise 1.13-1.62 1.15-1.73
Strategy
Table 4.12: Measure 3
o e sirategy
Median | —2%¢ e et
O-hn.\'e O-opi‘
Strong Hierarchy response Weak Hierarchy response
surfaces surfaces
TTBF Strategy 0.99 0.78
Compound Noise 0.69 0.43
Strategy

Table 4.13: Measure 4

102

25™ and 75" percentile buse ~ Tsrategy.
o-hase - O-apl
Strong Hierarchy response Weak Hierarchy response
surfaces surfaces
TTBF Strategy 0.89-1.00 0.58-0.96
Compound Noise 0.31-0.87 0.20-0.74
Strategy

Table 4.14: Measure 4

The use of Compound Noise and TTBF strategy as robust design methods lead to
reduction in experimental effort. Compound Noise strategy requires less number of
experimental runs than TTBF strategy. But both require much less number of
experimental runs as compared to full/fractional factorial noise strategies. We can
conclude from above tables (4.9 to 4.14) that TTBF strategy is more effective than
Compound Noise strategy for both Strong and Weak hierarchical response surface
instances. With TTBF strategy, for both strong and weak hierarchical response surface
instances on average 80% of the total possible improvement can be achieved but with
Compound Noise strategy only 40% of the total possible improvement can be achieved

(table 4.13).

In the next section TTBF strategy will be analyzed for six case studies from various

engineering domains. We will also explore the reasons for the effectiveness of TTBF

strategy on case studies.

103

4.4 Case Studies and effectiveness of TTBF strategy

In the previous sections we have seen that TTBF strategy works better than Compound
Noise strategy in improving robustness gain for instances of response surfaces generated
via strong and weak hierarchical probability model. To provide a further check on these
results, we identified and implemented six system simulations, three of them followed
strong hierarchy and three followed weak hierarchy. Using these six case study
simulations from various engineering domains, we performed robust design studies using
TTBF strategy as described in previous sections. The three case studies that exhibited
strong hierarchy are Operational Amplifier (Op Amp), Phadke (1989), Passive Neuron
Model, Tawfik and Durand (1994), and Journal Bearing: Half Sommerfeld Solution,
Hamrock, et al. (2004). The three case studies that exhibited weak hierarchy are
Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),
Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). For
each case study we ran full factorial control and noise factor crossed array experiments.
These runs were used to determine the effect coefficients for main effects, two-factor
interactions and three-factor interactions. Lenth's Method, Lenth (1989), was employed to
determine the active effects. The full factorial results were also used to determine the
most robust setting for all six systems. Lenth Plots for case studies were given in section

3.3.1 for chapter 3.

In order to formulate TTBF strategy for robust design experiments, we found two most
important noise factors, having highest impact on system’s response variance for all six

systems. For each system we ran a full factorial design in control factors crossed with

104

four run noise array, as per TTBF strategy. The two most important noise factors were
kept independent in noise array and rest of the factor levels were selected randomly under
TTBF strategy. This resulted in four run noise array. Pure experimental error introduced
into the system’s response was normally distributed with zero mean and standard
deviation as the average magnitude of active main effects. TTBF strategy performed

extremely well for all case studies. Table 4.15 shows result from robust design

experiments.
Percent Percent
Measure Matching of Matching of
Svst Hi h of Number of All Control Control Improvement
ystem terarchy Sparsity | Replications | Factors with Factors with Ratio
of Effects their Robust their Robust
Setting Setting
Op Amp Strong 0.105 100 98% 99.6% 99.96%
PNM Strong 0.132 100 91.2% 94.6% 96.25%
Journal Strong 028 100 100% 100% 100%
Bearing
CSTR Weak 0.647 100 79% 96.5% 89.74%
Temp.
Control Weak 0.725 100 71% 85.0% 80.58%
Circuit
Slider Weak 0.119 100 71.4% 88.62% 85.87%
Crank

Table 4.15: Results from Full Factorial Control Factor array and TTBF strategy

The third column of Table 4.15 shows the measure of sparsity of effects, which is the
ratio of active effects in a system to total number of effects that can be present in the
system. The sparsity of effects means that among several experimental effects examined
in any experiment, a small fraction will usually prove to be significant, Box and Meyer
(1986), Hamada and Wu (1992), Wu and Hamada (2000). The fifth column of Table 4.15
shows how well the predicted robust setting from TTBF strategy matches with the actual

robust setting as found by carrying out full factorial control and noise array experiments.

105

The sixth column of Table 4.15 shows the percent of control factors whose robust setting
matched for full factorial and TTBF strategy experiments. At the predicted robust setting
of control factors from TTBF strategy experiments, we found corresponding variance of
system’s response from full factorial experiments. Full factorial experiments yield the
optimal variance of the system’s response and average variance of response at all control
factor settings. With this knowledge, variance can be improved from the average value to
the optimal value, which is the maximum possible improvement. For TTBF strategy
experiments variance of response can be improved from the average value to the variance
at the predicted robust setting. The ratio of achieved improvement to maximum possible
improvement is called improvement ratio. The average of this measure for all replicates is

shown in the seventh column of Table 4.15.

From Table 4.15 we can see that TTBF strategy works reasonably well for all the case
studies and it can achieve at least 80% of the total possible improvement in robustness for
all six systems. TTBF Noise Factor strategy as a robust design strategy is very effective
for all systems, even the ones which do not show effect sparsity. The reason for the
effectiveness of TTBF strategy for all systems is that, it keeps the important noise factors
in the system independent. Hence the individual impact of important noise factors on
system’s response is not confounded. TTBF strategy is able to exploit all significant
control-by-noise interactions for such systems with very high probability, leading to its

high effectiveness.

106

4.4.1 Effectiveness of TTBF strategy in Real scenarios

In real scenarios it is often not possible to run full factorial inner arrays like those
reported on in Table 4.15. Therefore we also studied the use of fractional factorial arrays
by running robust design experiments which were resolution III in both the control and
noise factor array. We predicted robust settings from such experiments and compared the
results to those from full factorial experiments in Table 4.16. We also ran robust design
experiments which were resolution III in the control factor array combined with four run
noise array (as per TTBF strategy). Results for these experiments are summarized in
Table 4.17. Resolution IIT experiments formed the basis of comparison for the results we
got from resolution III control factor array crossed with TTBF noise strategy. Pure
experimental error was introduced into the system’s response, for all six case studies. The
error introduced was of the order of active main effects. The control factors were

randomly assigned to Resolution III inner array.

We did not study Passive Neuron Model and Journal Bearing systems because these

systems had only two control factors and thus had no distinct resolution III control factor

array.

107

Percent Percent
Measure of Number of Matching of Al} Matching of Improvement
System Hierarchy Sparsity of Replications Control Factors Control Factors pRatio
Effects with their with their
Robust Setting Robust Setting
Op Amp Strong 0.105 100 98% 99.6% 99.91%
CSTR Weak 0.647 100 NONE 76.5% 96.5%
Temp.
Control Weak 0.725 100 28% 55% 87%
Circuit
Stider Weak 0.119 100 91% 95.5% 97.6%
Crank

Table 4.16: Results from Resolution III Control and Noise Factor Array

Table 4.16 indicates that the robust setting for the Op Amp and Slider Crank can be
achieved with high probability when a resolution III noise factor array is used. For the
CSTR and Temperature Control Circuit, the high mean improvement ratio means we will
not attain the robust setting but will arrive near the optima. The high improvement ratio

suggests that we will achieve most of the improvement possible in the variance of

system’s response.

Percent Percent
Matching of | Matching Improvement
Measure of Number of All Control of Control Improvement Ratio
System | Hierarchy | Sparsity of Replications Factors Factors pRatio (from
Effects P with their | with their Resolution IIT
Robust Robust Noise Array)
Setting Setting
Op Amp Strong 0.105 100 95% 99% 99.5% 99.91%
CSTR Weak 0.647 100 66% 66% 87.74% 96.5%
Temp.
Control Weak 0.725 100 71% 85% 80.58% 87%
Circuit
Slider | 01 0.119 100 65% 87.6% 82.71% 97.6%
Crank

Table 4.17: Results from Resolution IIT Control Factor array and TTBF Strategy

108

Table 4.17 indicates that even when using a resolution III control factor array, TTBF
strategy will predict the robust setting for Op Amp, CSTR, Temperature Control Circuit
and Slider Crank with high probability. TTBF strategy along with resolution III control
factor array gives average improvement ratio of more than 80% for all the case studies.
The reason for the effectiveness of TTBF strategy for all case studies is that, it keeps the
important noise factors in the system independent. Hence the individual impact of
important noise factors on system’s response is not confounded. TTBF strategy is able to
exploit all significant control-by-noise interactions in case studies with very high

probability, leading to its high effectiveness.

4.5 Hybrid Noise Strategy

In the previous sections we analyzed the effectiveness of TTBF strategy for both
response surface instances and case studies. We also have compared TTBF strategy with
Compound Noise strategy for both response surface instances and case studies (Tables
3.11 and 4.15). We can infer from above sections and previous chapter that TTBF
strategy performed better than Compound Noise strategy for both response surface
instances and case studies. TTBF strategy needs four-run noise array whereas Compound
Noise strategy needs two-run noise array. So in terms of experimental run size

Compound Noise strategy is more economical than TTBF strategy.

Compound Noise as a robust design strategy is very effective on response surface
instances and on systems that show effect sparsity. The reason for its effectiveness on

sparse systems is, in compound noise all the noise factors are combined. Hence their

109

individual impact on system’s response is confounded. But if effects are sparse then the
probability of the impact of two noise factors being oppositely confounded is extremely
low. On the other hand TTBF Noise Factor strategy as a robust design strategy is very
effective for all systems, even the ones which do not show effect sparsity. The reason for
the effectiveness of TTBF strategy for all systems is that, it keeps the important noise
factors in the system independent. Hence the individual impact of important noise factors
on system’s response is not confounded. TTBF strategy is able to exploit all significant
control-by-noise interactions for such systems with very high probability, leading to its
high effectiveness. But TTBF strategy requires more number of experimental runs than

Compound Noise strategy.

In practice robust design engineer can employ a Hybrid Noise strategy which is
combination of both TTBF strategy and Compound Noise strategy. Since Compound
Noise strategy works well with systems showing effect sparsity, this Hybrid Noise
strategy will be similar to Compound Noise strategy for systems showing effect sparsity.
Hybrid Noise strategy will be similar to TTBF strategy for rest of the systems. Thus
Hybrid Noise strategy not only gives high realized reduction in the variance of system’s
response but also deploys noise array runs economically. For systems showing effect
sparsity under Hybrid Noise strategy noise array will comprise of only two runs, while
for rest of the systems it will comprise of four runs. Thus average number of noise array
runs under Hybrid Noise strategy will be less than TTBF strategy and it would capture

most of the benefit in robustness for all sort of systems.

110

4.6 Conclusions

Run size of experiments is one of biggest concerns while running robust design methods
on any system. The reason why compound noise factor strategy is so popular is that it
reduces run size of experimentation needed to improve robustness of system(s). In this
chapter we set out to develop a noise factor strategy that retains the attractiveness of
reduced run size but is more effective than compound noise factor strategy. We called
this strategy Take-The-Best-Few Noise Factors strategy. To apply TTBF strategy most
important noise factors affecting a system were found and those few noise factors were
kept independent in noise factor array. In this chapter the effectiveness of TTBF strategy

as a robust design method was measured and compared it with other noise strategies.

TTBF strategy as a robust design strategy is very effective for all kinds of response
surface instances and systems. We ran TTBF strategy on strong and weak hierarchy
response surface instances and on six case studies from different engineering domains
with varying degree of effect sparsity. The case studies were: Operational Amplifier,
Passive Neuron Model, Journal Bearing, Continuous-Stirred Tank Reactor, Temperature
Control Circuit and Slider Crank. It resulted in large improvement in robustness for all
systems (Table 4.15) and response surface instances (Tables 4.3-4.8 and Figure 4.5). The
reason for the effectiveness of TTBF strategy for all systems is that, it keeps the
important noise factors in the system independent. Hence the individual impact of
important noise factors on system’s response is not confounded. TTBF strategy is able to
exploit all significant control-by-noise interactions for such systems with very high

probability, leading to its high effectiveness.

111

1 o "
. op Amp’ fPassive Neuro

Journal Bearing
*

. % Model * ¢ ;
- * Th ¥ EH]
09k = T % 3 ' i 5
o E E o PP S @®csmr
e @ siider Crank * S 2 +* . 4.
. #i X s 4 B ¥ ¢
¥ . o % R e T empera!lutg)
08k ¢ el PR . e ® e A 'Cnﬁ|w| C.ﬁcuﬂ # + ak
- . . . ‘e . . g g .y * F,070
. . + . & . * g # % .3 K
.t * N . . " e
& . . L . * . . * o . » . #e *
07+ . ; 4 . R, ‘
. . 3
WWeak Hierarchy Response
06 Surface Instances

04

Median Improvement Ratio
o
W
T

03

02

01F
0] I 1 1 1 1 I I 1 |
0 0.1 02 03 04 05 06 07 08 09 1

Effect Density

Figure 4.5: Median Improvement Ratio verses Effect Density for Strong and Weak Hierarchy

Response Surface Instances and Six Case Studies

We compared TTBF strategy with Compound Noise strategy for strong and weak
hierarchy response surface instances. TTBF strategy though deploys more experimental
runs than Compound Noise strategy, but it is more effective. With TTBF strategy, for
both strong and weak hierarchical response surface instances on average 80% of the total
possible improvement can be achieved but with Compound Noise strategy only 40% of
the total possible improvement can be achieved. In practice an engineer can use Hybrid

Noise strategy which is similar to Compound Noise strategy for systems showing effect

112

sparsity and is similar to TTBF strategy for rest of the systems. Hybrid Noise strategy

deploys noise array runs economically and gives high robustness gain for all systems.

The results of this chapter can be used in an overall approach to deploying TTBF strategy
and Compound Noise strategy as a robust design strategy. The flowchart in Figure 4.6
presents our suggestion for implementing these findings in practice. This flowchart is
built upon flowchart given in chapter 3 (Figure 3.13). First of all, practicing engineers
must define the scenario including what system is being improved, what objectives are

being sought, and what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding
effect sparsity. It should be noted here that we do not argue that engineers need to make a
factual determination of effect sparsity. The experience on the system should be used to
make decision. If engineers decide that effects are sparse, then they should follow the
procedure on the left hand side of Figure 4.6. But if they decide that effects are dense,
then they should figure out the most important noise factors for the system under
consideration. In this case they should formulate TTBF strategy by keeping all the
important noise factors independent in outer array and follow the procedure on the right
hand side of Figure 4.6. Figure 4.6 will be of value to practitioners seeking to implement

robust design efficiently.

113

Define the Robust Design Scenario

Assumptions about
Effect Sparsity

4

Use TTBF Strategy
as Outer Array
Yes s the directionality of {instead of
noise factors known? Compound Noise)

F

Use Compound Noise Use Random
(as defined by Taguchi, Compound Noise
Phadke) as Outer Array as Outer Amray

7 3

¥

Camry out Robust Design Using the
Chosen Quter Array

Figure 4.6: Suggested procedure for TTBF Strategy and Compound Noise in Robust Design

4.7 Chapter Summary

TTBF Noise Factor strategy as a robust design strategy is very effective for all systems,
even the ones which do not show effect sparsity. The reason for the effectiveness of

TTBF strategy for all systems is that, it keeps the important noise factors in the system

114

independent. Hence the individual impact of important noise factors on system’s response
is not confounded. TTBF strategy is able to exploit all significant control-by-noise

interactions for such systems with very high probability, leading to its high effectiveness.

We ran TTBF strategy on response surfaces generated using strong and weak hierarchical
probability model. This was done to confirm its effectiveness statistically. Next TTBF
Noise Factor strategy was run on six different case studies from various engineering
domains to verify conclusions from hierarchical probability model. We also compared
TTBF strategy with Compound Noise strategy for response surfaces generated using
strong and weak hierarchical probability model. We also proposed a Hybrid Noise
strategy with combines the effectiveness of both TTBF strategy and Compound Noise
strategy. We devised an algorithm on the use of TTBF strategy and Compound Noise
strategy as robust design methods, based on our conclusions from response surface

instances and case studies.

In next chapter we will look at how correlation and variance of noise factors induced
during robust design influences the success of reliability improvement efforts. We will
try to find a class of systems for which we can safely neglect correlation among noise

factors and can amplify the magnitude of induced noise factors.

115

116

Chapter 5: Analyzing effects of correlation among and

intensity of noise factors on quality of systems

5.1 Introduction and Background

Every engineering system is affected by noise factors — uncertain parameters such as
environmental conditions, customer use profiles, and interface variables. Robust design
methods are frequently used in industry to make subsystems and components less
sensitive to noise factors. However, deployment of robust design may become too costly
or time consuming unless there is an appropriate strategy focusing the effort on what is
most important. This chapter documents a study to assess which aspects of noise factors
have the greatest influence on the outcomes of robust parameter design. A model-based
approach is presented and used to evaluate the effects of correlation among noise factors
and the magnitude of noise factors on robust design. It was determined that for systems
having only main effects and two-factor interactions, exaggerating the magnitude of the
noise has a positive effect if pure error is high and that correlation among the noise
factors has a small effect and can be safely neglected for most purposes. By contrast, for
systems having active three-factor interactions, correlation among the noise factors has a
large effect on the control factor settings and should be represented realistically during
robust design. These results are explored through six case studies from various

engineering domains.

117

Robust design is a set of engineering and statistical methods that can improve the
consistency of a system response, Taguchi (1987). Robust design is an important part of
quality/system engineering enabling smoother system integration, faster transition to
production, and higher field reliability. However, robust design can also be expensive,
time consuming, or otherwise resource intensive. Research that makes robust design less
resource intensive is therefore of great value to engineers. As a result, many recent
advances in robust parameter design have sought, for example, to reduce the number of

experiments required, Wu and Hamada (2000).

In order to make a system more robust, it is generally necessary to expose the design to
“noise factors” — variables such as environmental effects, manufacturing process
variations, and customer usage patterns. In order to improve robustness, it is also
necessary to explore alternative designs. Typically, this is done by systematically
varying selected “control factors” — parameters which the designer has the latitude to
change. The goal is to select a set of values of the control factors for which the system

response(s) will exhibit lower variance, where variance is caused due to the noise factors.

“Noise strategy” is a term used to denote the efforts of the quality/system engineering
team to characterize noise factors and to expose system to those noises. Figure 5.1 is a
graphical representation of the robust design process illustrating the need for noise
strategy. In this figure, a distinction is drawn between the real system that is eventually
fielded and the system simulation or prototype used for design. The real system is

represented by a block with two types of inputs — control factors and noise factors. The

118

noises that the system will actually experience in the field are denoted as “real noise”. By
contrast, the system simulation or prototype is exposed to “surrogate noise” — a term
coined by practitioners at Ford Motor Company to describe the noises induced in system
simulations or prototypes, Ejakov, Sudjianto and Pieprzak (2004). The robust parameter
design process is represented by a gray box in Figure 5.1. The system simulation or
prototype is exposed to the surrogate noise. Simultaneously, the control factors are
varied to seek improved robustness. The process results in the selection of control factor

settings.

Selected
Control Factor
Settings
Realized
Real Syst
ystem Robustness

T

Surrogate Noise € — — = 1~ ~ => Real Noise

Noise strategy = Determining which aspects of this
correspondence are important and how noises will be
characterized and represented during product development.

Figure 5.1: Noise Strategy in Robust Design

A key issue in noise strategy is the difference between surrogate noise and real noise.
There are several reasons surrogates are not identical to real noise, of which two are

important to the present investigation:

119

1) The real noise is known only approximately. Engineers are often called on to
estimate the variations due to manufacture, ambient conditions, and customer use
conditions. These variations can be characterized by ranges, standard deviations,
correlations, and probability distributions. These characterizations are all subject to
considerable ambiguity and uncertainty. Reducing that uncertainty by providing more
accurate and more detailed characterization of the noises may be costly. It is particularly

challenging to determine the correlation among noises in large systems. The number of

m

2) . For example, in a system

correlation coefficients in a system with m noise factors is[
subjected to 15 noise factors there are over 100 correlation coefficients and in a system
subjected to 46 noise factors there are over 1,000 correlation coefficients. One is tempted
to neglect these correlations and focus on characterizing the marginal densities of the
variables. Recent literature advises against neglecting correlation among noise factors,
Goldfarb, Borror and Montgomery (2003). It is certainly true that neglecting correlation
will cause some degree of error, but when robust design is applied to complex systems

the costs grow to such a degree that some trade-off between cost and accuracy is likely to

be necessary.

2) The real noise conditions may be deliberately exaggerated. Particularly when pure
experimental error is high, it is often an effective strategy to induce exaggerated levels of
noise so that the changes in sensitivity to noise can be more efficiently detected. This can
be a highly effective strategy for increasing the information provided by a robust design

experiment. For example, Joseph and Wu (2000) list noise factor amplification as one of

120

three feasible means of amplifying failure rates in experiments with categorical responses
and they show that the amount of information from such experiments is maximized when
failure rates are around 50% (which is probably much higher than what would be
experienced in the field). Although the responses considered here are continuous, a
similar principle applies. The efficiency of experiments might be increased by
employing exaggerated noise conditions because the effects of the control factors on
sensitivity are then amplified compared to measurement errors in the laboratory. On the
other hand, the system may respond differently to exaggerated noises, so there is a risk

inherent in this strategy.

The differences between real noise and surrogate noise may not be consequential for
improving quality of a system. Ultimately, the selected control factor settings are
implemented in the fielded system. The system is exposed to the real noise factors and
the realized robustness of the system becomes evident. If the surrogate noise leads to the
best control factor settings, the outcomes will be favorable even if the surrogate noise is
different from the real noise. However, if the differences between the surrogate noise and
the real noise mislead the engineering team into selecting poor control factor settings, the

resulting field reliability will be less than desired.

The considerations discussed in this section led us to a set of questions to be addressed in

thischapter .

e Which aspects of noise strategy have the largest influence on the realized robustness?

121

e Are there aspects of the real noise that one may safely neglect (at least under some
conditions)?
e More specifically, are there conditions under which one may safely amplify the

magnitude of noise and/or safely neglect correlation?

The main aim of this chapter is to explore the influence of correlation and variance of
noise factors induced during robust design on the improvement in quality achieved for a
system. We will first look at the influence on response surface instances generated using
Hierarchical Probability Model, Li and Frey (2005). Two different kinds of response
surface instances were generated. One with only main effects and two factor interactions
also called as strong hierarchy instances and other with main effects, two factor

interactions and three factor interactions, also called as weak hierarchy instances.

The conclusions from studies on response surface instances from Hierarchical Probability
Model were then verified by testing similar noise strategies on six case studies from
different engineering domains. The main take away from this chapter is that, systems
having no significant three-factor interactions, correlation among noise factors can be
safely neglected and it is often helpful to amplify the magnitude of induced noise.
Otherwise, noise factors should be used that match the true magnitude and correlation in

field conditions.

The chapter is organized as: first we will describe the setting up of correlation and

variance study on response surface instances, measures we studied results from studies

122

and followed by conclusions from Hierarchical Probability Model. Then similar
strategies for case studies from different engineering domains will be formulated. In the

end conclusions and summary of the chapter will be given.

5.2 Setting up of correlation and variance study

The objective of this chapter is to see the influence of neglecting correlation among noise
factors and exaggerating variance (intensity) of induced noise, on the prediction of
optimal setting of a response surface instance. Response surface instance is generated by
hierarchical probability model parameters and the results by case studies from various
engineering domains will be verified. Next subsection describes a brief overview of
hierarchical probability model (from chapter 2), the multiple variants of that model used

in our investigation, and procedure by which the model was used.

5.2.1 Generating Response Surface instances

Hierarchical probability models have been proposed as a means to analyze the results of
experiments with complex aliasing patterns. In any system we are interested in main
effects and interaction effects present in the system. There is also a need to predict the
relative importance and relationship among these effects. Chipman, Hamada and Wu
(1997) have expressed these properties in mathematical form in a hierarchical prior
probability model. The hierarchical probability model proposed by Chipman, Hamada
and Wu (1997) has been extended here to enable evaluation of noise strategies in robust

design. The model includes both control and noise factors since they are both needed for

123

the present purposes. The model includes two-factor interactions since control by noise

interactions are required for robust design to be effective. It also includes the possibility

of three-factor interactions since these have been shown to be frequently present,

especially in systems with a large number of factors Li and Frey (2005) and might affect

the outcomes of robust design. The details of the model are in Equations 5.1 through

5.10.

n n U n n n
V(X XgsnX,) = D BX DY Bx X+ Y Bux,x X, +E
i=1

i=1 j=1
J>i

x,~NO,K)iel...m

x, e{+l,-1}iem+1...n

&~ NID(0,5,”)
5y | NOD if =0
B = N(0,c?) if & =1

N1y if &, =0

f(ﬁﬁ|5?)={N(O,cz) if 5, =1

i=l j=1 k=1
i k>j

124

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

5y N(@©)) if 6, =0 3.7
f(ﬂijk‘ i) = N(0,c%) if &, =1 o7

Pr(5, =1)=p (5.8)

Po if 6,+6;=0
Pr(5, =1|6,,6,) =4 po if & +6,=1
py if 6+6;=2

(5.9)
Do if & +6,+6,=0
_ _ | Ponn if 6, +6,+6, =1
Pr(cs"f"‘_llé"’éf’a")_ Po; if 5i+5j+5k=2
Py if 5i+5j+5k=3 (5.10)

This hierarchical probability model allows any desired number of response surface
instances to be created such that population of response surface instances has the desired
properties of sparsity of effects, hierarchy, and inheritance. Equation 5.1 represents the
measured response of the engineering system y. The independent variables x;’s are both
control factors and noise factors. Control and noise factors are not distinguished in this
notation except via indices. Equation 5.2 shows that the first set of m input parameters to
Hierarchical Probability Model (x;, x5,..., x») are regarded as noise factors and are
assumed to be normally distributed with variance-covariance K among noise factors.
Equation 5.3 shows that the other input variables (x,+1, Xm+2 ... X,) are the control factors

which are assumed to be two-level factors. The variable represents the pure

125

experimental error in the observation of response which is assumed to be normally

distributed.

The model response y is assumed to be a third order polynomial of the input variables x;.
The values of the polynomial coefficients (f’s) are determined by a process implemented
with pseudo-random number generators. Equation 55 determines the probability density
function for the first order coefficients. Factors can be either “active” or “inactive”
depending on the value (0 or 1 respectively) of their corresponding parameters . The
strength of active effects is assumed to be ¢ times that of inactive effects. Equations 56
and 57 determine the probability density function for second order and third order

coefficients respectively.

Equation 58 sets the probability p of any main effect being active. Equation 59 and 510
enforce inheritance. If the parameters are set so that p;;>po;>pep and so on, then the
likelihood of any second order effect being active is lowest if no participating factor has

an active main effect and is highest if all participating factors have active main effects.

Given the model in Equations 51 through 510, some inferences about noise strategy can
be made based on probability theory. The following formula adapted from Siddall (1983)
gives the transmitted variance in y (as given in Equation 51) assuming all terms of the

form ijk=0

126

o*(y)= Z(ﬂ + Zﬁ,, JJ ,4,.+2ii__l (ﬂ,.+ iﬂ[kxkj(ﬁj+ Zn:ﬂ,kxk)K +

J=m+1 i=1 j=1 k=m+1 k=m+1
ZZZZ(/? + 38,) Ak, +K,k)+2ZZZ(/J’ W) Ak, +K)+
i=1 ji :lj p=m+1 i=1 j:} :lj p=m+1
2535 5+ S, ks x)
i=1 j=1k= p=m+
J>i k>j
(5.11)

This equation shows that off-diagonal terms in the covariance matrix (terms of the form
Kj;) do influence transmitted variance in a response due to noise. However, these terms
will not be a function of the control factors if all the noise by noise interactions are zero
(if terms of the form ;=0 where j and k are less than or equal to m). Therefore,
probability theory suggests that if three-factor interactions can be neglected and noise by
noise interactions are small, then robust design will not be strongly affected by
correlation among noise factors. No similar statement can be made if three-factor
interactions might be large. Closed form equations can only provide these rather

qualitative statements; therefore further results will be pursued via simulations.

Multiple variants of the hierarchical probability model were formed by selecting different
sets of model parameters as described in Table 5.1. As the column headings of Table 5.1
indicate, a key difference between the variants is the assumption concerning effect
hierarchy. A Strong Hierarchy Model assumes that the only active effects in the system

are main effects and two-factor interactions although small three factor interactions are

127

present as can be seen in Equation 5.7. A Weak Hierarchy Model includes a possibility
for active three-factor interactions. The values for parameters in Table 5.1 such as
p1~0.25 and py;=0.1 are based on the Weak Heredity model proposed by Chipman,
Hamada and Wu (1997). In fact, the Strong Hierarchy model is precisely the Weak
Heredity model published in that paper and used for analyzing data from experiments
with complex aliasing patterns. The Weak Hierarchy model proposed here is an
extension of that model to include higher order effects and therefore relies less on the

assumption of hierarchy.

Additional model variants are based on the options in the last three rows of Table 5.1.
The on-diagonal elements of the covariance matrix were varied among two levels. The
covariance matrix was also composed by three different methods inducing different
degrees of correlation. These resulted in off-diagonal elements of the covariance matrix
with different average magnitudes. Given the two model options related to the columns
of Table 5.1 and the additional combinations of options due to the alternatives in the last

three rows, there are 24 different model variants in all.

128

parameters Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two- (active three-factor
factor interactions) interactions also included)
m 5 5
n 12 12
c 10 10
P 0.25 0.25
§27, 0.25 0.25
Poi 0.1 0.1
Poo 0.0 0.0
D 0.0 0.25
DPoii 0.0 0.1
Pooo 0.0 0.0
o, lLorl0 1orl10
K 1.00r1.75 1.0or1.75
KC 1.1:1’7 |) 0.01, 0.26, or 0.47 0.01, 0.26, or 0.47

Table 5.1: Parameters for Variants of Hierarchical Probability Model

K is the variance-covariance matrix for the real noise factors. The modeled noise, in
response surface instance is assumed to have a covariance of an identity matrix. Thus the
more different K is from an identity matrix, the more the noise strategy varies from a

faithful representation of the noises the system will experience in the field.

The on-diagonal elements of the matrix, Kj;, are the variance due to each noise factor x;.
The size of these on-diagonal elements is an indication of the amplitude of the real noise
factors relative to the modeled noise factors. Two options within the model are defined:
one in which the real noise has the same variance as the modeled, and one in which the

real noise has higher variance than the modeled.

129

The off-diagonal elements of the matrix, Kj;, are the covariance among noise factors x;
and x;. Three options within the model are defined: one with almost no correlation (with
the average absolute value of the correlation coefficients being 0.01), one with relatively
mild correlation (with the average absolute value of the correlation coefficients being
0.26) and one with relatively strong correlation (with the average absolute value of the
correlation coefficients being 0.47). The matrix K was formed so as to ensure the
resulting matrix was positive semi-definite while also having the desired variance and the

desired degree of correlation.

5.2.2 Algorithm to evaluate noise strategies

The different variants of the hierarchical probability model were used to evaluate noise
strategies as described in Figure 52. The first step in the algorithm is to generate 1000
instances of the Strong Hierarchy Model and 200 instances of the Weak Hierarchy
Model. Fewer instances of the Weak Hierarchy Model are used because that model takes
much longer to run given that it contains 220 (12 choose 3) extra polynomial terms to
evaluate for each observation of the response. For all of these model instances, a full
factorial experiment is crossed with Latin Hypercube sampling assuming the variance-
covariance matrix is an identity matrix. The control factor settings that minimize the
transmitted variance are recorded. This simulates the choice of control factor settings
under a noise factor surrogate. The same process is repeated for six different versions of
the variance-covariance matrix K. For each generated instance of this matrix K, the

average transmitted variance, the minimum transmitted variance, and the control factor

130

settings that minimize the transmitted variance are recorded. In addition, the previously
recorded control factor settings that minimize the transmitted variance assuming I, are
used to look up the transmitted variance assuming K. This step simulates a confirmation
experiment under the real noise conditions given the settings selected under the surrogate

noise conditions.

131

Generate 200 instances of response surfaces using the YWeak Hierarchy Model
Generate 1000 instances of response surfaces using the Strong Hierarchy Model
For each of the 1200 response surface instances
For each control factor setting in a full factorial array 27

i Estimate the transmitted variance using Latin Hypercube Sampling

Select and record the control factor sefting that minimizes the fransmitied
variance assuming the variance-covariance matrix equals J

Generate six variants of K as indicated n Table 5.1

For each variant of K

. For each control factor setting in a full factorial array 27
 Estimate the fansmilted variance using Latin Hypercube

Sampling

i Compute the average transmitted variance assuming K

Compute the minimum transmitted variance assuming K

, Look up the wansmitted variance assuming K at the control factor

‘ settings minimizing the ransmitted variance assuming 1

Compute the percentage of possible improvement achieved by
assuming I

Select and record the control factor setting that minimizes the
transmitted variance assuming X ‘

Check if the confrol factor seftings minimizing transmitted variance
assuming X match those minimizing transmitted variance
assuming I and record a match if all seven confrol factor settings
are equal

Foralt 24 model variants

Compute the percentage of times the control factor settings selected using the
given noise strategy matched the optimum control factor setiings

Compute the median percentage of possible improvement achieved

Figure 5.2: Algorithm used to evaluate Noise Strategies

132

5.2.3 Measures studied

Through the algorithm in Figure 52, two different performance measures are computed:

1)

2)

Median fraction of possible reduction in standard deviation. At any particular setting

of the control factors, a response surface will exhibit a given amount of variance due
to variation of the input noise factors. The most robust of all the control factor
settings will exhibit the least variance and have the lowest standard deviation of the
response. The possible reduction in standard deviation is the difference between the
minimum standard deviation and the average standard deviation throughout the
possible settings of the control factors. A robust design process will rate 1.0 if it
always attains the lowest standard deviation possible. Selection of control factor
settings at random would rate 0.0. Most robust design strategies will earn a rating in

between these two extremes.

Percent of systems for which optimum control factor settings matched. A goal of
robust design is to select the best settings of the control factors. However, any robust
design method is likely to occasionally miss the optimal setting of at least one factor.
The average number of cases in which the exact optimum settings are attained is

another performance measure for a noise strategy.

5.2.4 Results from model-based analysis

The procedure described in the previous section was carried out. Table 5.2 presents the

results with the performance metric defined as the median fraction of maximum

133

improvement attained. Table 53 presents the results with the performance metric defined

as the probability of attaining the optimum control factors.

Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two-factor |(active main effects, two-factor, and
interactions) three-factor interactions)
- Correlation Correlation
;t: None | Mild |Strong None | Mild |Strong
g Large error | @| Matching | 0.97 | 0.89 | 0.81 | & [Matching| 0.94 | 0.84 | 0.70
o o Q
E |e~NID(0,10) Z | Amplified| 1.00 | 0.92 | 0.86 |Z |Amplified| 0.90 | 0.81 | 0.56
Q
jo . .
i Small error | 2 Matching | 1.00 | 0.96 | 0.90 v Matching | 1.00 | 0.89 | 0.72
g 2 | o 3
2|~ NIDO.I) | Z| Amplified| 1.00 | 0.96 | 0.90 |Z |Amplified| 0.92 | 0.82 | 0.57

Table 5.2: Median fraction of the maximum possible improvement attained in hierarchical

probability response surface instances

Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two-factor |(active main effects, two-factor, and
interactions) three-factor interactions)
o Correlation Correlation
]
5 None | Mild [Strong None | Mild |Strong
g Large error | @ | Matching | 36% | 20% | 13% | & | Matching | 38% | 21% | 9%
5] [©) =]
E |e~NID(0,10%) Z | Amplified| 49% | 26% | 13% |Z |Amplified| 32% | 16% | 11%
[0
r.%- Small error | 2 Matching | 81% | 32% | 13% 9 Matching | 57% | 36% | 21%
& | e~NID(0,1%) | 2 ~ S ~
3| €~NIDOIY | Z | Amplified| 72% | 18% | 11% |Z |Amplified| 40% | 35% | 18%

Table 5.3: Percentage of hierarchical probability response surface instances in which optimum

control factor settings were attained

134

5.2.5 Significance of results from model-based approach

Both Tables 52 and 53 suggest that increased correlation in the noise f actors adversely
affects performance of robust design if that correlation is not represented in the noise
strategy. It is also salient that correlation among the noise factors has a much stronger
effect on robust design if the Weak Hierarchy Probability model is assumed than if the
Strong Hierarchy Probability model is assumed. It is also noteworthy that increased
correlation generally had a milder effect on the median fraction of the optimum reduction
in standard deviation than it did on percentage matching control factor settings. There is
only one optimum setting of the control factors, but there can be many settings that
provide results nearly as good as the optimum. It appears that lack of fidelity in
modeling correlation leads to selection of settings that are only slightly sub-optimal.
Conclusions about the need to model correlation in noise strategy depend critically on the
goals of the project. One is more likely to be able to neglect correlation if improved
consistency of the response is the goal and failing to attain the optimum settings of

control factors can be tolerated.

The magnitude of the noise factors has a mild effect on the performance of robust design,
except when the system has active three factor interactions and the correlation is
moderate or high. Note also that the effect of amplifying the noise is positive if the pure
experimental error is high and strong hierarchy can be assumed. However, if only weak
hierarchy can be assumed, then the response to the noise depends on the amplitude of the
noise and it is probably better to induce noises typical of field levels rather than

exaggerated. However, if those levels are not known, exaggerating the noise amplitude

135

will have only mild negative effects on the design process. To summarize, under most
conditions, it appears to be safe to amplify the noise and under selected conditions

amplifying noise can have a beneficial effect.

In next section we will analyze correlation and variance effect of induced noise on six
case studies from various engineering domains. We will compare results from case

studies with results we got from hierarchical probability response surface instances.

5.3 Case Studies

In the previous section we inferred that the choice of noise strategy depends on
assumptions about hierarchy — that is, whether three-factor interactions can be assumed to
be small. To provide a further check on these results, we identified and implemented six
system simulations; three that contain significant three-factor interactions and three that
do not. Three case studies that do not contain significant three-factor interactions are
Operational Amplifier (Op Amp), Phadke (1989), Passive Neuron Model (PNM), Tawfik
and Durand (1994), and Journal Bearing: Half Sommerfeld Solution, Hamrock, et al.
(2004). Three case studies that contain significant three-factor interactions are
Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),
Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). Using
these six case studies, we performed simulated robust design studies using various noise
strategies as described in the last section. By this means, we were able to create results
similar in structure to those in Tables 5.2 and 5.3 but for case studies rather than for a

hierarchical probability model response surface instance.

136

In case studies pure experimental error was comparable to that of one-tenth of largest
noise factor intensity. We can gage noise factor intensities for case studies from Lenth
Plots (Figures 3.6 to 3.11). Each noise strategy was replicated in order to assess the

repeatability of the results.

5.3.1 Results from Case Studies

Tables 5.4 and 5.5 describe the results we obtained from case studies.

System Hierarchy None Cor;/e[:illzglon Tigh

Noise Matching 1.00 1.00 1.00

Op Amp SUONE | Iitensity | Amplified | 1.00 1.00 1.00

Noise Matching 1.00 1.00 1.00

PNM SUONg | yoiensity | Amplified | 1.00 1.00 1.00

Journal Stron Noise Matching 1.00 1.00 1.00

Bearing & Intensity | Amplified 1.00 1.00 1.00

Noise Matching 0.99 0.96 0.70

CSTR Weak |y iensity [Amplified | 0.71 0.51 035

Temperature Noise Matching 1.00 0.96 0.92

Control Weak | Intensity | Amplified | 095 0.85 0.73
Circuit

. Noise Matching 1.00 0.99 0.99

Slider Crank | -~ Weak | 1 oo [“Amplified | 1.00 0.98 0.96

Table 5.4: 'Median fraction of the maximum improvement attained in case study simulations

' With replications

137

Correlation

System Hierarchy None Mild Tigh
o0 Am Stron Noise | Matching | 100% 100% 100%
p Amp £ | Intensity | Amplified | 100% 100% 100%
Noise Matching 100% 100% 100%
PNM SUONE | poensity | Amplified | 100% 100% | 100%
Journal Stron Noise Matching 100% 100% 100%
Bearing € | Intensity | Amplified | 100% 100% 100%
Noise Matching 75% 50% 25%
CSTR Weak | Intensity [Amplified | 25% 12.5% 0%
Temperature Noise Matching | 100% 89% 84%
Control Weak | ntensity | Amplified | 87% 74% 66%
Circuit
. Noise Matching 100% 95% 94.7%
Slider Crank | Weak | 1o ity [Amplified | 100% | 925% | 86%

Table 5.5: Percentage of case study simulations in which optimum control factor settings were

attained

The second column of tables 5.4 and 5.5 shows whether case study follow strong

hierarchy model (i.e. no significant three-factor interactions are present)v or follow weak

hierarchy model. The third and fourth column show whether induced noise intensities

matched with actual noise levels or were amplified as compared to actual noise levels.

The last three columns capture the impact of correlation among actual noise and the error

we will make in neglecting that correlation for induced noises. We can infer from these

tables that correlation among the noise factors has a much stronger effect on robust

design if case studies follow weak hierarchy model than if they follow strong hierarchy

model. Also increased correlation generally has milder effect on the median fraction of

138

the optimum reduction in standard deviation than it did on percentage matching of
optimal control factor settings. There is only one optimum setting of the control factors,

but there can be many settings that provide results nearly as good as the optimum.

5.4 Conclusions

Carrying out robust design requires, either implicitly or explicitly, a noise strategy. One
must decide how to represent the noise factors the product is likely to encounter during
its lifecycle. Only then can the product be exposed to those noise factors while searching
for design changes that improve robustness. Designers often have only a rough estimate
of the conditions the product will actually encounter and therefore must make
assumptions. It is useful therefore to understand what assumptions can be made safely

and which assumptions, if violated, will lead to disappointing results.

Using a hierarchical probability model response surface instances and following up with

case studies, we found that:

e With a strong assumption of hierarchy, surrogate noises can safely be used in robust
design that neglect correlation and/or exaggerate the intensity of noise factors.

e With a strong assumption of hierarchy and in the presence of large experimental
errors, surrogate noises that exaggerate the intensity of noise factors may improve the
results of robust design.

e Absent a strong assumption of hierarchy, correlation should not be neglected in the

noise strategy and noise factors should net be amplified.

139

These results may influence one’s strategy in deploying robust design in product
development. The flow chart in Figure 53 presents our suggestion for implementing
these findings in practice. First of all, the engineering team must define the scenario
including what system is being improved, what objectives are being sought, and what
design variables may be altered. After defining the parameters of the scenario, it should
be possible to assess the assumptions can be made regarding effect hierarchy. We are not
suggesting that the team needs to make a factual determination of the existence of three-
factor interactions. The experience of the team should be used to make an assessment

which will necessarily be made under uncertainty.

If the team decides that only weak hierarchy can be assumed, that is, that three-factor
interactions might be present, then the team should choose the procedure on the right
hand side of Figure 5.3. In this case, the team must decide whether it is possible or
advisable to take measures that eliminate or reduce the possibility of three-factor
interactions. In some cases, reformulation of the response, or the input variables, or
redesign of the system can be effective. It is possible that formulating responses related
to the energy transformations in the system will greatly reduce the likelihood of high
order interactions. If the team finds it difficult to avoid the possibility of such
interactions, the results in this chapter suggest that the noise strategy should seek to

accurately represent both the intensity and correlations of the noises.

140

Define the Robust Design Scenario

Strong Assumptions
about Effect
Hierarchy

possibility of three-
factor interactions be

A
Roughly
approximate
intensities of real
noises

With substantial fidelity,
assess the intensities of
real noises and the
correlation among noise

factors
Use surrogate noises with [
matched/amplified noise Use surrogate noises
factors, correlation may with nearly the same
be neglected intensities and
correlatins as real
noises

Carry out Robust Design Using the
Chosen Surrogate Noises

Figure 5.3: Flowchart to reduce information needed to implement Robust Design Methodology

If the type of system under consideration, the type of response, and the design variables

are judged as unlikely to exhibit three-factor interactions, then the team may choose the

141

procedure on the left hand side of Figure 53. The op tions on the left side offer
significant efficiencies, however, it should be noted that a recent meta-study of over 100
full factorial data sets suggests that in systems with five variables, one significant three-
factor interactions is likely to be present and in systems with 10 variables, an average of
five significant three-factor interactions are likely to be present, Li and Frey (2005). The
noise strategies on the left of Figure 53 may save time and money but there have to be

good reasons to believe that three-factor interactions are unlikely to arise.

Experience, judgment, and knowledge of engineering and science are critical formulating
a noise strategy. These can be supplemented by effective processes guiding the work of a
quality engineering team. It is hoped that the procedure proposed here (Figure 53) will
be of value to practitioners seeking to implement robust design efficiently as part of their

product development process.

5.5 Chapter Summary

Correlation among the noise factors has a much stronger effect on robust design if the
Weak Hierarchy model is assumed than if the Strong Hierarchy model is assumed. Since
the systems which follow strong hierarchy there is no significant three factor interactions.
Impact of correlation among noise factors is pronounced when control-by-noise-by-noise
interactions are present. Control-by-noise-by-noise interactions are present only in Weak
Hierarchy Systems hence correlation has stronger effect on robust design is the system

follows Weak Hierarchy.

142

The magnitude of the noise factors has a mild effect on the performance of robust design,
except when the system has active three factor interactions and the correlation is
moderate or high. In the presence of moderate or high correlation among noise, and
active three factor interactions, control-by-noise and control-by-noise-by-noise
interaction having same common control factor get confounded. This leads to sub-

optimal selection of control factor settings.

In this chapter we first saw the impact of correlation and variance of induced noise
factors on response surface instances generated via strong and weak hierarchy probability
model. Next we ran similar noise strategies on six different case studies from various
engineering domains to verify conclusions from hierarchical probability model. We saw
that if system follows strong hierarchy then during robust design experiments we can
neglect correlation and/or exaggerate the intensity of induced noise factors. We also
designed an algorithm for implementing research findings in this chapter in practice to

reduce amount of information needed to implement robust design methodology.

In the next chapter we will provide a brief summary and findings of all main chapters in

this thesis. We will also present scope of future research in the area of reliability and

robust design applied to complex systems.

143

144

Chapter 6: Conclusions and Future Work

6.1 Overview of research

Robust parameter design methods are used to make systems more reliable and robust to
incoming variations in environmental effects, manufacturing processes and customer
usage patterns. However, robust design can become expensive, time consuming, and/or
resource intensive. Thus research that makes robust design less resource intensive and
requires less number of experimental runs is of great value. Robust design methodology
can be expressed as multi-response optimization problem. The objective functions of the
problem being: maximizing reliability and robustness of systems, minimizing the
information and/or resources required for robust design methodology, and minimizing the

number of experimental runs needed.

Robust parameter design is an engineering methodology intended as a cost effective
approach to improve the quality of products, processes and systems, Taguchi (1987),
Robinson et al. (2004). Taguchi (1987) proposed that inputs to any system can be
classified as control factors and noise factors. Control factors are those system parameters
that can be easily controlled and manipulated. Noise factors are those system parameters
that are difficult and/or costly to control and are presumed uncontrollable. Robust

parameter design involves choosing optimal levels of the controllable factors in order to

145

obtain a target or optimal response with minimal variation. The challenge arises in
obtaining optimal response due to the influence of the uncontrollable noise factors. Noise
factors bring variability into the system, thus affecting the response. The aim is to
properly choose the levels of control factors so that the process is robust or insensitive to

the variation caused by noise factors.

Robust parameter design is among one of the most important developments in systems
engineering in 20" century, Clausing and Frey (2005). These methods seemed to have
accounted for a significant part of quality differential that made Japanese manufacturing
dominant during 1970s. Robust parameter design enables in smoother system integration,

faster transition to production, and higher field reliability.

In chapter 1 we saw that robust parameter design process is crucial in improving the
quality and reliability of any system/process. The main aim of this thesis is to find
algorithms which will make robust design process a cost effective approach to
implement. We explored noise strategies which make robust design processes require less
number of experimental runs and less information about noise factor space to attain high
quality improvement. We proposed random compound noise over compound noise since
it does not require the knowledge of directionality of noise factors to be known. We also
proposed TTBF strategy over compound noise for systems and processes in which factors
effects were dense. TTBF strategy provides more resolution over compound noise hence

is able to utilize all important interactions to improve the quality. We also proposed that

146

for the systems which have no active three-factor interactions correlation among noise
factors can safely be neglected and/or intensity of noise factors can be exaggerated and

still high robustness improvement will be achieved.

In chapter 2 the formulation of Hierarchical Probability Model was discussed. This will
form the basis to compare different robust design methods statistically. First the
regularities exhibited by engineering systems were discussed. Next those regularities
were put in a mathematical format. The mathematical formulation would be used to
generate response surface instances to analyze different robust design methods. We also
discussed about selecting various parameters for Hierarchical Probability Model. We can
have many variants of Hierarchical Probability Model. We discussed some of these

variants.

In chapter 3 it was seen that Compound Noise as a robust design strategy is very effective
on the systems which show effect sparsity. The reason for its effectiveness on sparse
systems is, in compound noise all the noise factors are combined. Hence their individual
impact on system’s response is confounded. But if effects are sparse then the probability
of the impact of two noise factors being oppositely confounded is extremely low. Hence
compound noise is able to exploit all significant control-by-noise interactions for such
systems, leading to its high effectiveness. We first ran two formulations of compound
noise (simple and extreme) on response surface instances generated using strong and

weak hierarchical probability model. This was done to confirm compound noise

147

effectiveness statistically. Next those formulations of compound noise were run on six
different case studies from various engineering domains to verify conclusions from
hierarchical probability model. In the end conditions for compound noise to be
completely effective for both strong and weak hierarchy systems were outlined. We
engineered an algorithm on the use of compound noise as a robust design method, based

on our conclusions from response surface instances and case studies.

In chapter 4 it was found that TTBF Noise Factor strategy as a robust design strategy is
very effective for all systems, even the ones which do not show effect sparsity. The
reason for the effectiveness of TTBF strategy for all systems is that, it keeps the
important noise factors in the system independent. Hence the individual impact of
important noise factors on system’s response is not confounded. TTBF strategy is able to
exploit all significant control-by-noise interactions for such systems with very high
probability, leading to its high effectiveness. We ran TTBF strategy on response surfaces
generated using strong and weak hierarchical probability model. This was done to
confirm its effectiveness statistically. Next TTBF Noise Factor strategy was run on six
different case studies from various engineering domains to verify conclusions from
hierarchical probability model. We also compared TTBF strategy with Compound Noise
strategy for response surfaces generated using strong and weak hierarchical probability
model. We also proposed a Hybrid Noise strategy with combines the effectiveness of

both TTBF strategy and Compound Noise strategy. We devised an algorithm on the use

148

of TTBF strategy and Compound Noise strategy as robust design methods, based on our

conclusions from response surface instances and case studies.

In chapter 5 the impact of correlation and variance of induced noise factors on response
surface instances generated via strong and weak hierarchy probability model was seen.
Next similar noise strategies were run on six different case studies from various
engineering domains to verify conclusions from hierarchical probability model. We saw
that if system follows strong hierarchy then during robust design experiments correlation
can be neglected and/or the intensity of induced noise factors can be exaggerated. We
also designed an algorithm for implementing research findings in this chapter in practice

to reduce amount of information needed to implement robust design methodology.

6.2 Algorithms to improve quality of systems

In this section we will revisit two important flowcharts which define algorithms that
should be used to deploy experimental runs efficiently in robust design practices. These
algorithms also promise to reduce the amount of information required to improve the

quality of systems/processes.

The results of this thesis can be used in an overall approach to deploying TTBF strategy
and Compound Noise strategy as a robust design strategy. The flowchart in Figure 6.1
presents our suggestion for implementing these findings in practice. This flowchart is

same as flow chart given in chapter 4, figure 4.6. First of all, practicing engineers must
149

define the scenario including what system is being improved, what objectives are being

sought, and what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding
effect sparsity for a given system/process. It should be noted here that we do not argue
that engineers need to make a factual determination of effect sparsity. The experience on
the system should be used to make decision. If engineers decide that effects are sparse,
then they should follow the procedure on the left hand side of Figure 6.1. But if they
decide that effects are dense, then they should figure out the most important noise factors
for the system under consideration. In this case they should formulate TTBF strategy by
keeping all the important noise factors independent in outer array and follow the
procedure on the right hand side of Figure 6.1. Figure 6.1 will be of value to practitioners
seeking to implement robust design efficiently and will reduce the amount of

experimental runs required in order to improve the quality of a system/process.

150

¥es

Define the Robust Design Scenario

s the directionality
noise factors known?

Use Compound Noise
{as defined by Taguchi,
Phadke) as Outer Array

Assumptions about
Effect Sparsity

A

Use TTBF Stategy
as Outer Array
(instead of
Compound Noise)

¥
Use Random
Compound Noise
as Quter Array

b 2
' 3

A 4

Carry out Robust Design Using the
Chosen Outer Amray

Figure 6.1: Suggested procedure for TTBF Strategy and Compound Noise in Robust Design

In order to minimize the information needed about noise factor space to run robust design
process, flow chart in figure 6.2 presents our suggestions. First of all, the engineering
team must define the scenario including what system is being improved, what objectives

are being sought, and what design variables may be altered.

151

After defining the

parameters of the scenario, it should be possible to assess the assumptions can be made
regarding effect hierarchy. We are not suggesting that the team needs to make a factual
determination of the existence of three-factor interactions. The experience of the team
should be used to make an assessment which will necessarily be made under uncertainty.
If the team decides that only weak hierarchy can be assumed, that is, that three-factor
interactions might be present, then the team should choose the procedure on the right
hand side of Figure 6.2. In this case, the team must decide whether it is possible or
advisable to take measures that eliminate or reduce the possibility of three-factor
interactions. In some cases, reformulation of the response, or the input variables, or
redesign of the system can be effective. It is possible that formulating responses related
to the energy transformations in the system will greatly reduce the likelihood of high
order interactions. If the team finds it difficult to avoid the possibility of such
interactions, the results in this chapter suggest that the noise strategy should seek to
accurately represent both the intensity and correlations of the noises. If the type of
system under consideration, the type of response, and the design variables are judged as
unlikely to exhibit three-factor interactions, then the team may choose the procedure on
the left hand side of Figure 6.2. The options on the left side offer significant efficiencies,
however, it should be noted that a recent meta-study of over 100 full factorial data sets
suggests that in systems with five variables, one significant three-factor interactions is
likely to be present and in systems with 10 variables, an average of five significant three-
factor interactions are likely to be present, Li and Frey (2005). The noise strategies on

the left of Figure 6.2 may save time and money but there have to be good reasons to

152

believe that three-factor interactions are unlikely to arise. Experience, judgment, and
knowledge of engineering and science are critical formulating a noise strategy. These
can be supplemented by effective processes guiding the work of a quality engineering
team. It is hoped that the procedure proposed here (Figure 6.2) will be of value to
practitioners seeking to implement robust design efficiently as part of their product

development process.

153

Define the Robust Design Scenario 1‘

Strang

¥

Assumptions
about Effect
Hierarchy

pessibility of three-

factor inferactions be

Roughly
approximate
intensities of real
noises
With substantial fidelity,
assess the intensities of
real noises and the
correlation among noise
factors
Use surrogate noises with T
matchecb’ampliﬁ'ed noise Use surrogate noises
factors, correlation may with nearly fhe same
be neglected intensities and
correlations as real
noises

F

Carry out Robust Design Using the

Chosen Surrogate Noises

Figure 6.2: Flowchart to reduce information needed to implement Robust Design Methodology

154

6.3 Cost Benefit Analysis of Robust Design Methods

In this section we will present Cost-Benefit analysis of robust design methods discussed
in this thesis. The results presented in this section are based on response surface instances
generated using strong and weak hierarchy probability model and six case studies taken
from various engineering domains. The case studies are Operational Amplifier (Op
Amp), Phadke (1989), Passive Neuron Model (PNM), Tawfik and Durand (1994),
Journal Bearing: Half Sommerfeld Solution, Hamrock, et al. (2004), Continuous-Stirred
Tank Reactor (CSTR), Kalagnanam and Diwekar (1997), Temperature Control Circuit,

Phadke (1989) and Slider Crank, Gao, et al. (1998).

We assume that a system contains N noise factors in its noise factor space and each of the
noise factors is considered at two factor levels. Figure 6.3 shows the benefit that can be
achieved for each of the robust design strategy out of the total maximum benefit that can
be achieved for a given system. It orders the robust design methods in terms of increasing
cost to implement them, from right to left. We try to characterize systems in figure 6.3,
based on prior knowledge about noise factor space that an engineer has about systems.
The percentages given in figure 6.3 are shows the amount of improvement that can be
achieved for a given system statistically out of total possible improvement that could
have been achieved using full factorial noise factor array. The * denotes that we will
approximately achieve that much improvement for systems, if we run a given robust
design process a number of times. The variance of response after running a given robust
design method is shown at the bottom of the tree. With no improvement the spread of

155

response is wide, with 50% improvement the spread reduces and at optimal (or near

optimal) setting of the system, spread of response is minimum.

Svstems L
‘ e
' Response Variance
No prior Prior Prior No prior No prior
knowledge knowledge knowledge knowledge knowledge
about about noise
l important effects l l
2% {or less) Bois¢ fackors direction 2 experiments No
experiments l l (in noise array) experiments
{in noise f] {(in noise
array) 4 experiments 2 expermments l array)
i (in noise array) (in noise array)
Random l
l l l Compound
Full/Fractional d Noise No change
factorial noise TTBF Compoun
strategy strategy Noise l l
| | l > 50% 0%
knaik . improvement improvement
~100% ~100% ~100% for most
improvement improvement improvement svstems P
for most for most for sparse - o .
systems ‘systems systems A
"ﬁs {1 ; / E ™

; L

1
i

t

i

/|

]\ /\

R So—Y

Cost

Figure 6. 3: Cost-Benefit Analysis of Robust Design Methods for reducing experimental runs

156

Figure 6.4 shows the benefit thatcan be achieved for each of the robust design strategy
out of the total maximum benefit that can be achieved for a given system. It orders the
robust design methods in terms of increasing cost to implement them, from right to left.
We try to characterize systems in figure 6.4, based on highest order of active interaction
present in the system, whether system follows strong hierarchy or weak hierarchy. We
assume that noise factors to be correlated. We try to gage the error by neglecting
correlation among noise factors and by amplifying the intensity of induced noise. The
assumptions that require least amount of information are mentioned at extreme right of
figure 6.4. As we go from right to left in figure 6.4 amount of information required about
noise factor space of a given system increases. The percentages given in figure 6.4 are
shows the amount of improvement that can be achieved for a given system statistically
out of total possible improvement that could have been achieved using full factorial noise
factor array at their actual intensities and including correlation among noise factors. The
* denotes that we will approximately achieve that much improvement for systems, if a

given robust design processis run a number of times.

157

Systems

Noises are
correlated

Active 3-factor

No active 3-factor
mteractions

Active 3.factoy | o active 3-factor inteactions l
; . interactions
interactions l Strong Hierarchy
l Weak Hierarchy Svstems
. . Sys:‘e:ms
‘Weak Hierarchy Stmzég }hﬂ?mr-"
Systems ystems
Neglect Corraiat:on
l : Neglect Gorrelancn
’ " Study correlation
el .
noise factors noise factors ~76% improvement
\ ‘ improvement
l Amplify Noise
~00% Amplify Noise Factors (no need to
. improvement Factors {no need to match exact Noise
improvement P . : :
p . . match exact Noise Setting)
Amplify Noise Setting)
Factors {no need to £ l
Amptify Noise match exact Noise l
Factors (no need to Setting) ~35% , m‘,’%

match exact Noise . > Improvement

" Setting) l improvement

160%
l improvement
>350%
improvement
Cost

<

Figure 6. 4: Cost-Benefit Analysis of Robust Design Methods for minimizing information regarding

noise factor space

158

6.4 Scope of future research

The algorithms presented in this thesis can be extremely helpful while designing new
products and processes. These algorithms can be used to efficiently allocate resources
among various sub-systems in a given complex system. Sub-systems which follow strong
hierarchy would require fewer resources to improve quality as compared to sub-systems

which follow weak hierarchy.

This would present a chance to incorporate robust design methods into product
development cycle at very early stages. There can a platform study done in one of the
design courses at MIT, where the improvement in quality that can be achieved in product
by incorporating robust design methods at very early stages of product development cycle
and allocating some resources for robust design methods can be gaged. We can document
the improvement in quality for those products and can compare it with products where no

such initiative was under taken.

Usually while working on legacy systems or prototypes, engineers learns a lot about the
inherent properties of systems. This knowledge can be extremely helpful in devising
specific robust design strategies for a particular class of systems which require less
number of experimental run and less newer information about the actual system. These
strategies can be even better than TTBF strategy and other noise strategies mentioned in
this thesis. We can explore such noise strategies for each class of system, where
deployment of robust design method is expensive affair.

159

160

REFERENCES

10.

11.

. Allen, T. T., Bernshteyn, M., “Supersaturated Designs that maximize the probability

of identifying active factors”, Technometrics, Vol. 45, No. 1, 2003.

Box, G.E.P. and Meyer, R.D., “An Analysis for Unreplicated Fractional Factorials”,
Technometrics, 28, 11-18, 1986.

Chipman, H., Hamada, M. and Wu, C.F.J., “A Bayesian Variable-Selection Approach
for Analyzing Designed Experiments with Complex Aliasing”, Technometrics, 39,
372 381, 197.

Clausing, D., Frey, D., “Improving System Reliability by Failure-Mode Avoidance
Including Four Concept Design Strategies”, Systems Engineering, Vol. 8, No. 3,
2005.

Du, Xiaoping, Sudjianto, Agus, Chen, Wei, “An Integrated Framework for
Probabilistic Optimization using Inverse Reliability Strategy”, ASME, DETC, 2003,
pp- 25-34.

Du, Xiaoping, Sudjianto, Agus, Chen, Wei, “An Integrated Framework for
Optimization Under Uncertainty Using Inverse Reliability Strategy”, Journal of
Mechanical Design, July 2004.

. Ejakov, Mikhail; Sudjianto, Agus; Pieprzak, John. Robustness and Performance

Optimization of an IC Engine Using Computer Model and Surrogate Noise, ASME
Design Automation Conference, Salt Lake City, Utah, USA, September 28 — October
2,2004; DETC2004-57327.

Frey, D.D.; Li, X., “Validating robust parameter design methods”, ASME Design
Engineering Technical Conference 2004, Salt Lake City, Utah; DETC2004-57518.

Gao, J., Chase, K., Magleby, S., “Generalized 3-D tolerance analysis of mechanical
assemblies with small kinematic adjustments”, IIE Transactions, Vol. 30, No. 4,
1998.

Gigerenzer, G. and Goldstein, D., “Reasoning the Fast and Frugal Way: Models of
Bounded Rationality", Psychological Review, 103(4), pp. 650-69, 1996.

Goldfarb, H.; Borror, C.; Montgomery, D. Mixture-process variable experiments with
noise variables. Journal of Quality Technology, 35(4), 393-405, 2003.

161

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hamada, M. and Wu, C.F.J., “Analysis of Designed Experiments with Complex
Aliasing”, Journal of Quality Technology, 24, 130-137, 1992.

Hamrock, B., Schmid, S., Jacobson, B., “Fundamentals of Fluid Film Lubrication”,
2nd edition, Marcel Dekker, 2004.

Heyden, Y. V., Kuttathatmmakul, S., Smeyers-Verbeke, J., Massart, D. L.,
“Supersaturated Designs for Robustness Testing”, Analytical Chemistry, Vol. 72, No.
13, July, 2000.

Holcomb, D. R., Carlyle, W. M., “Some notes on the construction and evaluation of
supersaturated designs”, Quality and Reliability Engineering International, 18: 299-
304, 2002.

Holcomb, D. R., Montgomery, D. C., Carlyle, W. M., “Analysis of supersaturated
designs”, Journal of Quality Technology, Vol. 35, No. 1, 2003.

Hou, X. Shirley, “On the use of compound noise factor in parameter design
experiments”, Applied Stochastic Models in Business and Industry, Vol. 18, pp. 225-
243, 2002.

Joseph, V. R,, and C. F. J. Wu, “Failure Amplification Method: An Information
Maximization Approach to Categorical Response Optimization,” Technometrics, Vol.
46,no. 1, pp.1 12,2004.

Kalagnanam, Jayant R., and Diwekar, Urmila, M., “An Efficient Sampling Technique
for Off-line Quality Control”, Technometrics, Vol. 39, No. 3, pp. 308-319, August,
1997.

Lenth, R., “Quick and Easy Analysis of Unreplicated Factorials”, Technometrics,
Vol. 31, No. 4, November, 1989.

Li, X., Frey, D., “Regularities in Data from Factorial Experiments”, Complexity,
2005.

Phadke, Madhav S., “Quality Engineering Using Robust Design”, Prentice Hall PTR,
Englewood Cliffs, NJ, 1989.

Rao, S. S., “Reliability-Based Design”, McGraw-Hill, Inc., 1992.

Robinson, T., Borror, C., Myers, R., “Robust Parameter Design: A Review”, Quality
and Reliability Engineering International, Vol. 20:81-101, 2004.

162

25. Satterthwaite, F. E., “Random balanced experimentation (with discussion)”,
Technometrics, 1(2): 111-137, 1959.

26. Siddall, J. N., “Probabilistic Engineering Design”, Marcel Dekker, New York, 1983.

27. Taguchi, G., “System of Experimental Design: Engineering Methods to Optimize
Quality and Minimize Costs”, translated by Tung, L. W., Quality Resources: A
Division of Kraus Organization Limited, White Plains, NY; and American Supplier
Institute, Inc., Dearborn, MI, Vols. 1 and 2, 1987.

28. Twafik, B. and Durand, D., “Nonlinear Parameter Estimation by Linear Association:
Application to a Five-Parameter Passive Neuron Model”, IEEE Transactions on
Biomedical Engineering, Vol. 41, No. 5, pp. 461-469, May, 1994.

29. Wu, C.F.J. and Hamada, M., “Experiments: Planning, Analysis, and Parameter
Design Optimization”, Wiley & Sons, Inc., NY, 2000.

163

164

Appendices: MATLAB® and Mathcad-11 Files

MATLAB® and Mathcad-11 files used in the thesis are given here.

1.1

% function compounding()

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using

% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each modei has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 modeis for Strong Hierarchy RWH Model
% 09/24/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsetting]=fracfact('a b ¢ d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact('a b ¢ d abcd), % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=modeis(modeipara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
w1=modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); p00=modelparameter(1,9);% defining
parameters

165

ncf=7; % # of CF's
nnf=5; % # of NF's

counter_OCF_1=0; % To increment when OCF from MC is same as from Noise Strategy 1
counter_OCF_c = 0; % To increment when OCF from MC is same as from Compounded Noise

MU=[0 O 0 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates ldentity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

Yo % Yo %o %o %o Yo %o %o %o Yo Yo %o Yo Yo Yo %6 Yo %o %o % %o %o %o %o Yo Yo Yo %o %6 %o %6 %o % %o % %o % Yo
maxmodels = 200; % The number of models to be tested

% %% % Yo %o %o %o %o Yo Yo Yo Yo %o Yo %o %o Yo %o Yo %o %o % %o Yo Yo %o Yo Yo Yo %6 % %o % % %% %o % %o %

h1 = waitbar(0,'Running Models');

for modelcounter=1:maxmodels % To run a given number of models
[bi,bij]=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00); % Finding beta values for a given

model

nfsetting1 = [-1*sign(bi(1:5));

sign(bi(1:5))]; % defining compounded noise based on b-values as described above
nfsetting?2 = [-1;

17; % defining fow and high setting of compounded noise

% For 2(5-1}(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

166

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1’ for 2(5-1)(V) Noise Array

nxc=1; % Counter for Control by Noise Interactions
for nf=1:nnf % Defining Control by Noise Interactions terms for Transmitted Variance
Model

for cf=nnf+1:nnf+ncf
NxC(:,nxc)=ResponseMatrix1(:,nf).*“RespaonseMatrix1(:,cf);
nxc = nxc + 1;
end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:nnf
for nf2=nf1+1:nnf
NxN(:,nxn)=ResponseMatrix1(:,nf1).“ResponseMatrix1(:,nf2);
nxn = nxn + 1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf
for nf2=nf1+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrix1(:,cf).*ResponseMatrix1(:,nf1).*“ResponseMatrix1(:,nf2);
cxXnxn = cxnxn + 1;
end
end
end
cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf
for cf1=nnf+1:nnf+ncf
for cf2=cf1+1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrix1(:,cf1).*ResponseMatrix1(:,cf2).*ResponseMatrix 1(:,nf);
cxexn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Modei
inputs = [ones(2048,1) ResponseMatrix1(:,1:12) NxC NxN CxNxN CxCxNJ;
[b,bint,r,rint,stats]=regress(ResponseMatrix1(:,13),inputs);
% b0(1) bi's(2:13) CxN{14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:12) = b(2:13);

167

Bij(5,12) = 0;

index=14; % CxN
fori=1:5
for j=6:12
Bij(i,j) = b(index);
index=index+1;
end
end

fori=1:5 % NxN
for j=i+1:5
Bij(i,j) = b(index);
index = index+1;
end
end

Bijk(12,12,12)=0; % CxNxN
fori=1:5
for j=i+1:5
for k=6:12
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

fori=1:5 % CxCxN
for j=6:12
for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;
end
end
end

% Fitting Transmitted Variance Model
foref=1:128
sum1=0;sum2=0;
fornf=1:nnf % First term in Variance Model
sum_a=Bi(nf);
sum_b=0;
for j=6:12
sum_b=sum_b+Bij(nf,j)*X(cf,j-5);
end
sum_c=0;
for j=6:12
for k=j+1:12
sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);
end
168

end
sum1 =sum1 + (sum_a + sum_b +sum_c)*2;
end

fornf=1:nnf % Second term in Variance Model
for j=nf+1.5
sum_d=0;
for k=6:12
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum?2 + (Bij(nf,j) + sum_d)*"2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1 =min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);

OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c NxC NxN CxCxN CxNxN; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,jy*x(1,i)*x(1,j);
end
end
y_c(cfruns,nfruns) = bi*x" + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns));
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN; % Clearing the History
% Fitting Response Model to 'y1’ for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

169

for nf=1:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor
for cf=2:8
NxC(:,nxc)=ResponseMatrix_c(:,nf).*ResponseMatrix_c(:,cf);
nxc = nxc + 1;
end
end

cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:1
for cf1=2:1+ncf
for cf2=cf1+1:1+ncf

CxCxN(:,cxexn)=ResponseMatrix_c(:,cf1).*ResponseMatrix_c(:,cf2).*ResponseMatrix_c(:,nf);
cxcxn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_c(;,9),inputs);

% b0(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =1f2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x Compounded_Noise

Bijk(8,8,8) = 0;
index = 17;
fori=1:1 % CxC x Compounded_Noise
forj=2:8
fork = j+1:8
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

% Fitting Transmitted Variance Model

for cf = 1:128
sum1=0;sum2=0;
fornf=1:1 % First Term in Variance Model

sum_a=Bi(nf);

170

sum_b=0;
forj=1:7
sum_b=sum_b + Bij(j)*X(cf.j);
end
sum_c=0;
forj=2:8
fork =j+1:8
sum_c = sum_c + Bijk(1,j,k)*X(cf,j-1)*X(cf k-1);
end
end
sum1 = sum1 + (sum_a + sum_b + sum_c)"2;
end

varianc(cf,1) = sum1+sum2;
end

STDev_c = varianc.*0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c = min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c X],1);

OCF_c = PredMin_c(1,2:8),

% Doing Monte Carlo for each setting of Controt Factors
clear ResponseMatrix_ MC; % Response Matrix = [CF Y's_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma_uncorrelated);

STDev_MC = varianc.”0.5; % Stdev for each CF setting

%std_base_MC = STDev_MC(1,1});
std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of all STDev's

op_std MC = min(STDev_MC); % Finding least Stdev
PredMin_MC = sortrows([STDev_MC X]},1);
OCF_MC = PredMin_MC(1,2:8);

if OCF_MC == OCF_N1
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)(V) Noise Array
end

if OCF_MC == OCF_c
counter_OCF_c = counter_OCF_c + 1; % When same Optimal CF setting is predicted by
Monte Carlo and Compounded Noise Factor
end

171

cf 1=0;c¢f c=0; % Tofind number of Control factors whose settings are predicted
correctly

for matching_cf = 1.7
if OCF_N1(1,matching_cf) == OCF_MC(1,matching_cf)
cf 1=cf_1+1,
end
if OCF_c(1,matching_cf) == OCF_MC(1,matching_cf)
cf c=cf c+1;
end
end

matching_noise1(modelcounter) = cf_1; % To store # of OCF Matched
matching_compound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC);,

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = std_for_cfsetting(ResponseMatrix_MC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt_c = std_for_cfsetting(ResponseMatrix_MC, OCF_c);

std_base = std_base_MC; % Base Stdev is taken as mean of ail STDev's

% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_1/ Opt_MC);
std_fraction2(modelcounter) = (Opt_c/ Opt_MC);

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
std_fraction3(modelcounter) = ((std_base - Opt_1)/(std_base - Opt_MC + 1e-10));
std_fraction4{modelcounter) = ((std_base - Opt_c)/(std_base - Opt_MC + 1e-10));

Y(modelcounter) = (std_base - Opt_c)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf('Running Modei #%d',modeicounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

172

1.2

function vector=models(modeipara)

% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model

% Reference Chipman, Hamada and Wu (1997) and Li and Frey (2005)
% 03/04/2004 by Jagmeet Singh

Table1=[10 1 1 1 1
10 1 1 0.1 041
10 1 0O 1 1
16 1/3 2/3 1 1
15 1/3 2/3 01 01
15 1/3 0 1 1];

Table2 =[0.25 0.25 01 O 0.25 01 O 0
025 0.25 01 O 0.25 01 O 0
025 025 01 O 0 0 0 0
043 0.31 004 O 6.17 0.08 002 O
043 0.31 0.04 O 0.17 008 0.02 O©
043 0.31 004 O 0 0 o© 0},

Table1= [Table1 Table2]; % for input to Main Model
vector=Table1(modelpara,:);

173

1.3

function [bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00)

% Developing Strong Hierarchy RWH Mode! (without ERROR)
% INPUTS: #0of CF's, #ofNF's, ¢, s1, wi, p,
% p00, pOft, ptt

% OUTPUT: bi's and bij's
% Developed on 03/03/2004 by Jagmeet Singh

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf
t(i)=w1;
else
t(i)=1;
end
end

delta=unifrnd(0,1,[1 nnf+ncf]); % Defining delta
for i=1:nnf+ncf % Prob (deita_i=1)=p
if delta(1,i) <= p
deita(1,i)=1;
else
delta(1,i)=0;
end
end

deltaij(1:(nnf+ncf), 1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=deita(1,i)+delta(1,j); % Finding the sum of delta-i + deita-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1}

if sum_deltas == % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when one of the factors is active
if deltaij(i,j) <= p01
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when both the factors are active
174

if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deiltaij(i,j)=0;
end
end

end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i) ==
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if deltaij(i,j) ==
bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else
bij(i,j)=t(i)*t()*normrnd(0,c*s1);
end
end
end

175

1.4

% Function to find the variance of the response once it is given the
% Control Factor (CF) setting and the Matrix with contains the response and
% cfsetting
% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmeet Singh
function {std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7);
std_dev = std(ysetting);

end
end

176

1.5

% Function Var_cf_setting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor setting for fuil model

% 03/16/2004 by Jagmeet Singh
function [ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar;

X = f2n(7)*2 - 1; % Defining x’s for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar),
for cfruns = 1:size(X,1)
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,)*x(1,j}
end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + normrnd(0,w2);
end
end

ResponseMatrix_MC = [Xy_MCJ; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC"))"; % Finding the Variance for each CF setting

177

1.6

% Function to piot the outputs of the response

% 03/16/2004 by Jagmeet Singh

function output()

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCF_MC is same as OCF_N1

figure; success=[(counter_OCF_1) (maxmodels-counter_ OCF_1)];

explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type’,'text’); oldstr = get(textobjs,{'String"});

Names = {{Same CF levels: ;'Diff CF levels: '}; newstr = strcat(Names, oidstr);
set(textobjs,{'String"},newstr);

pos = get(textobjs,{Position’}); pos{1,:} =[-0.28 -0.61 .35},
set(textobjs,{'Position},pos);

title(['Success in prediction of OCF_M_CfromOCF_n o is e _s trate gy 1
for',num2str(maxmodels),' response surface instances');

hgsave('piet’);

% Pie Chart when OCF_MC is same as OCF ¢

figure; success=[(counter_OCF_c) (maxmodels-counter_OCF_c)J;

explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type','text’); oldstr = get(textobjs,{'String’});

Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);

pos = get(textobjs,{'Position}); pos{1,:} =[-0.28 -0.61 .35];
set(textobjs,{’Position'},pos);

_n_o_i_s_e for ,num2str(maxmodels),’ response surface instances’);
hgsave('pie2'),

% Plotting Histograms

figure;

hist(std_fraction1),

,num2str(maxmodels),’ response surface instances’);

colormap cool; iq = prctile(std_fraction1,[25 50 75]); tmax = max(hist(std_fraction1));

line([ig(1) iq(1)].[0 tmax],'LineStyle','--"); line([iq(3) iq(3)],[0 tmax], LineStyle','--','Color’,'");

line([ig(2) ia(2)],[0 tmax],'LineWidth',2,'Color','m"); legend(['25_t_h Percentile = ',num2str(ig(1))}...
J['75_t_h Percentile = ",num2str(iq(3))],[Median = ',num2str(iq(2))],' Frequency");

xlabel(OPT.STD.N1/ OPT.STD.MC");

ylabel(' number of instances of response surface ');

hgsave('fig1");

figure;
178

hist(std_fraction2);

,num2str(maxmodels),’ response surface instances');

colormap cool; iq = prctile(std_fraction2,[25 50 75)); tmax = max(hist(std_fraction2));

line([ig(1) ig(1)1,[0 tmax],'LineStyle',--'"); line([iq(3) iq(3)],[0 tmax], LineStyle','--','Color’,'r');

line(fiq(2) ig(2))],[0 tmax],'LineWidth',2,'Color','m"); legend(['25_t_h Percentile = ",num2str(ig(1))]...
[75_t_h Percentile = ",num2str(iq(3))],[Median = ',num2str(iq(2))],' Frequency");

xlabel(OPT.STD.Compd / OPT.STD.MC');

ylabel(' number of instances of response surface ');

hgsave('fig2');

figure;

hist(std_fraction3);

OPT.STD_M_C) for ',num2str(maxmodels),' response surface instances’]);

colormap cool; iq = prctile(std_fraction3,[25 50 75]); tmax = max(hist(std_fraction3));

line(fig(1) iq(1)],[0 tmax],'LineStyle',--"); line(fiq(3) iq(3)],[0 tmax], LineStyle','--','Color’,'r');

line([ia(2) iq(2)1,[0 tmax],'LineWidth',2,'Color','m"); legend(['25_t_h Percentile = ",num2str(iq(1))]...
J['75_t_h Percentile = ',num2str(iq(3))],[Median = ",num2str(iq(2))],' Frequency');

xlabel('(STD.Base-OPT.STD.N1)/{STD.Base-OPT.STD.MCY);

ylabel(' number of instances of response surface ');

hgsave('fig3");

figure;

hist(std_fraction4);

OPT.STD_M_C) for ',num2str(maxmodels),’ response surface instances']);

colormap cool; iq = prctile(std_fraction4,[25 50 75]); tmax = max(hist(std_fraction4));

line(lig(1) ig(1)],[0 tmax],'LineStyle’,"-"); line(liq(3) iq(3)],[0 tmax],'LineStyle’,’--','Color','t");

line([iq(2) iq(2)],[0 tmax], LineWidth',2,'Color’,'m’); legend(['25_t_h Percentile = ",num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],[Median = ",num2str(iq(2))}],’ Frequency’);

xlabel('(STD.Base-OPT.STD.Compd)/(STD.Base-OPT.STD.MC)");

ylabel(’ number of instances of response surface '),

hgsave('figd');

figure;

plot(X1,Y,™, 'color','r");

X2 = [ones(size(X1")) X17;

a = X2\Y",

Y2 =a"*X2,

B =[X1'Y27;

i0 = regress(Y',X1");

B = sortrows(B,1);

hold on;

line({B(1,1);B(maxmaodels,1)], [B(1,2);B(maxmodels,2)],'Color','g’, 'LineWidth’, 0.5);
line([0;B(maxmodels, 1)],[0;i0*B(maxmodeis, 1)], LineWidth',1.5);
title(['For 2°n*d Order Response Surfaces : Plotting (STD_b_a s e -
num2str(a(2,1))]);

xlabel((STD_ b _a_s e-3TD o p t)ySTD b a s e');

hgsave('figs");
179

prob_pos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels
if Y(1,index) >= 0.00
prob_pos = prob_pos + 1;
end
end

% Printing the resuits

sprintf('mean{Number of OCF matched for Noise Strategy 1) =
,num2str(mean(matching_noise1))])

sprintf(mean(Number of OCF matched for Compounded Noise) =
",num2str(mean(matching_compound))])

sprintf([' Probability that Compounding will Yield Positive Improvement =
,num2str(prob_pos/maxmodels)])

180

21

% function compounding()

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using

% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo {o generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Strong Hierarchy RWH Model
% 09/24/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsettingl=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact(’a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for Strong Hierarchy
model

% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4);, Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the vaiues of ¢, s1, p's elc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2),; s2=modelparameter(1,3);
w1=modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); p00=modelparameter(1,9);% defining
parameters

ncf=7; % # of CF's
nnf=5; % # of NF's

counter_OCF_1=0; % To increment when OCF from MC is same as from Noise Strategy 1

181

counter_OCF_c = 0; % To increment when OCF from MC is same as from Compounded Noise

MU=[0 O 0 0 0}; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

Yo% %o %o %o %o %o %o %o %o %o Yo %o Yo %o %o %o Yo Yo %o % Yo %o %o %o %o Yo %o %o %o % %o % %o % % % % Yo
maxmodels = 200; % The number of models to be tested

% %% %o % %o % %o %o %o %o Yo %o Yo %o Yo %6 Yo Yo Yo %o %o %o Yo % % Yo %o %o %o Yo %o Yo Yo Yo %6 Yo % Yo

h1 = waitbar(0,'Running Models’);

for modelcounter=1:maxmodels % To run a given number of models
[bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00); % Finding beta values for a given

model

nfsetting1 = [-1 -1 -1 -1 -1;
1111 1); % defining simple compound noise
nfsetting2 = [-1;
1} % defining low and high setting of compounded noise

% For 2(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
y1(cfruns,nfruns) = bi*x’ + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns))];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1’ for 2(5-1)(V) Noise Array
nxc=1; % Counter for Control by Noise Interactions

182

for nf=1:nnf % Defining Control by Noise Interactions terms for Transmitted Variance
Model
for cf=nnf+1:nnf+ncf
NxC(:,nxc)=ResponseMatrix1(:,nf).“ResponseMatrix1(:,cf);
nxc = nxc + 1;
end
end
nxn=1, % Counter for Noise by Noise Interactions
for nf1=1:nnf
for nf2=nf1+1:nnf
NxN(:,nxn)=ResponseMatrix1(:,nf1).*ResponseMatrix1(:,nf2);
nxn =nxn + 1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf
for nf2=nf1+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrix1(:,cf).“ResponseMatrix1(:,nf1).*ResponseMatrix1(;,nf2);
cxnxn = cxnxn + 1;
end
end
end
cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf
for cf1=nnf+1:nnf+ncf
for cf2=cf1+1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrix1(:,cf1).“ResponseMatrix1(:,cf2).*ResponseMatrix1(:,nf);
cxexn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(2048,1) ResponseMatrix1(:,1:12) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix1(:,13),inputs);

% b0(1) bi's(2:13) CxN(14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X=1ff2n(7)*2 - 1, % Defining x's for Response Medel
% Defining B's for the ease

Bi(1:12) = b(2:13);

Bij(5,12) = 0;

index=14; % CxN
183

fori=1:5
for j=6:12
Bij(i,j) = b(index);
index=index+1;
end
end

fori=1:5 % NxN
for j=i+1:5
Bij(i,j) = b(index);
index = index+1;
end
end

Bijk(12,12,12)=0; % CxNxN
fori=1:5
for j=i+1:5
for k=6:12
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

fori=1:5 % CxCxN
for j=6:12
for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;
end
end
end

% Fitting Transmitted Variance Model
forcf=1:128
sum1=0;sum2=0;
fornf=1:nnf % First term in Variance Model
sum_a=Bi(nf),
sum_b=0;
for j=6:12
sum_b=sum_b+Bij(nf,j)*X(cf,j-5);
end
sum_c=0;
for j=6:12
for k=j+1:12
sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);
end
end
sum1 = sum1 + (sum_a + sum_b +sum_c)*2;
end

184

fornf=1:nnf % Second term in Variance Model
for j=nf+1:5
sum_d=0;
for k=6:12
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum?2 + (Bij(nf,j) + sum_d)*2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);

OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c NxC NxN CxCxN CxNxN; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)x(1,i)*x(1.j);
end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN; % Clearing the History
% Fitting Response Model to 'y1’ for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

for nf=1:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor

185

for cf=2:8
NxC(:,nxc)=ResponseMatrix_c(:,nf).”“ResponseMatrix_c(:,cf);
nxc = nxc + 1;
end
end

cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:1
for cf1=2:1+ncf
for cf2=cf1+1:1+ncf

CxCxN(:,cxcxn)=ResponseMatrix_c(:,cf1).*ResponseMatrix_c(:,cf2).*ResponseMatrix_c(:,nf);
CXCXn = ¢xexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_c(:,9),inputs);

% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining Xx's for Response Model
% Defining B's for the ease

Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x Compounded_Noise

Bijk(8,8,8) = 0;
index = 17;
fori=1:1 % CxC x Compounded_Noise
forj=2:8
fork =j+1:8

Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

% Fitting Transmitted Variance Model
forcf=1:128
sum1=0;sum2=0;
for nf = 1:1 % First Term in Variance Model
sum_a=Bi(nf),
sum_b=0;

186

forj=1.7
sum_b=sum_b + Bij(j)*X(cf,j);
end
sum_c=0;
forj=2:8
fork =j+1:8
sum_c = sum_c + Bijk(1,j,k)*X(cf,j-1)"X(cf,k-1);
end
end
sum1 =sum1 + (sum_a + sum_b + sum_c)*2;
end

varianc(cf,1) = sum1+sum2; .
end

STDev_c = varianc.*0.5; 9% Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c = min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c X],1);

OCF_c = PredMin_c(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y’s_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma_uncorrelated);

STDev_MC = varianc.”0.5; % Stdev for each CF setting

%std_base_MC = STDev_MC(1,1);
std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of ali STDev's

op_std_MC = min(STDev_MC); % Finding least Stdev
PredMin_MC = sortrows([STDev_MC X],1);
OCF_MC = PredMin_MC(1,2:8);

if OCF_MC == OCF_N1
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)(V) Noise Array
end

if OCF_MC == OCF_c
counter_OCF_c = counter_OCF_c + 1; % When same Optimal CF setting is predicted by
Monte Carlo and Compounded Noise Factor
end

187

cf_1=0;cf c=0; % To find number of Control factors whose settings are predicted
correctly

for matching_cf = 1.7
if OCF_N1(1,matching_cf) == OCF_MC(1,matching_cf)

cf_ 1=cf 1+1;

end

if OCF_c(1,matching_cf) == OCF_MC(1,matching_cf)
cf_ c=cf c+1;

end

end

matching_noise1(modelcounter) = cf_1; % To store # of OCF Matched
matching_compound(modeicounter) =cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimai Standard Deviation from Noise Strategy 1
Opt_1 = std_for_cfsetting(ResponseMatrix_MC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt_c = std_for_cfsetting(ResponseMatrix_MC, OCF_c);

std_base = std_base_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_1/ Opt_MC);
std_fraction2(modelcounter) = (Opt_c/ Opt_MC);

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
std_fraction3(modelcounter) = ((std_base - Opt_1)/(std_base - Opt_MC + 1e-10));
std_fraction4(modelcounter) = ((std_base - Opt_c)/(std_base - Opt_MC + 1e-10));

Y(modelcounter) = (std_base - Opt_c)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d’',modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;
188

3.1

% function compounding()

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using

% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each modei has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Weak Hierarchy RWH Model
% 09/24/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsetting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact('a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for Weak Hierarchy
model

% Basic WH(1); Basic low w{2), Basic 2nd order(3); Fitted WH(4), Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=modeis(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
w1=modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); pO1=modelparameter(1,8); p00=modelparameter(1,9);
p111=modelparameter(1,10); p011=modelparameter(1,11); p001=modelparameter(1,12);
p000=modelparameter(1,13);% defining parameters

ncf=7; % # of CF's
nnf=5; % # of NF's

189

counter_ OCF_1=0; % To increment when OCF from MC is same as from Noise Strategy 1
counter_OCF_c =0; % To increment when OCF from MC is same as from Compounded Noise

MU=[0 O 0 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates ldentity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

% %% %o %o % %o Yo %o %o %o % %o Yo %o Yo % Yo Vo %o % %o % Yo Yo %o %o %o %o % %o % Yo % Yo % Yo Y Yo
maxmodels = 200; % The number of models to be tested

% % %o % Yo % %o % Yo %o Yo Yo %o Yo Yo %o Yo %o %o %o %o Yo Yo Yo Yo Yo %o Yo Yo %6 %o Yo Yo Yo %o %o %o Yo Yo

h1 = waitbar(0,'Running Modeis’);
for modelcounter=1:maxmodels % To run a given number of models

[bi, bij, bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000); %
Finding beta values for a given model

nfsetting1 = [-1*sign(bi(1:5));

sign(bi(1:5))1; % defining compounded noise based on b-values as described above
nfsetting2 = [-1;

11; % defining low and high setting of compounded noise

% For 2(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,iy*x(1,j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)"x(1,iy*x(1,j)*x(1,k);
end
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);

190

ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)};
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1' for 2(5-1)(V) Noise Array

nxc=1; % Counter for Control by Noise Interactions
for nf=1:nnf % Defining Control by Noise Interactions terms for Transmitted Variance
Model

for cf=nnf+1:nnf+ncf
NxC(:,nxc)=ResponseMatrix1(:,nf).”"ResponseMatrix1(:,cf);
nxc = nxc + 1;
end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:nnf
for nf2=nf1+1:nnf
NxN(:,nxn)=ResponseMatrix1(:,nf1).*ResponseMatrix1(:,nf2);
nxn = nxn + 1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:.nnf
for nf2=nf1+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,exnxn)=ResponseMatrix1(:,cf)."ResponseMatrix1(:,nf1).*ResponseMatrix1(:,nf2);
cxnxn = ¢xnxn + 1;
end
end
end
cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf
for cf1=nnf+1:nnf+ncf
for cf2=cf1+1:nnf+ncf

CxCxN(:,excxn)=ResponseMatrix1(:,cf1).*ResponseMatrix1(:,cf2).*ResponseMatrix1(:,nf);
cxexn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(2048,1) ResponseMatrix1(:,1:12) NxC NxN CxNxN CxCxN};
[b,bint,r,rint,stats]=regress(ResponseMatrix1(:,13),inputs},

% bO(1) bi's(2:13) CxN(14:48) NxN{49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

191

X =1ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:12) = b(2:13);
Bij(5,12) = 0,

index=14; % CxN
for i=1:5
for j=6:12
Bij(i,j) = b(index);
index=index+1;
end
end

for i=1:5 % NxN
for j=i+1:5
Bij(i,j) = b(index);
index = index+1;
end
end

Bijk(12,12,12)=0; % CxNxN
fori=1:5
for j=i+1:5
for k=6:12
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

fori=1:5 % CxCxN
for j=6:12
for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;
end
end
end

% Fitting Transmitted Variance Model
forcf =1:128
sum1=0;sum2=0;
fornf=1:nnf % First term in Variance Modei
sum_a=Bi(nf);
sum_b=0;
for j=6:12

192

sum_b=sum_b+Bij(nf,j)*X(cf,j-5);

end

sum_c=0;

for j=6:12
for k=j+1:12

sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end

end

sum1 = sum1 + (sum_a + sum_b +sum_c)*2;

end

fornf=1:nnf % Second term in Variance Model
for j=nf+1:5
sum_d=0;
for k=6:12
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sum_d)"2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.*0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1 =min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);

OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);

193

end
end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN CxNxN CxCxN; % Clearing the History
% Fitting Response Model to 'y1' for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

for nf=1:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor
for cf=2:8
NxC(:,nxc)=ResponseMatrix_c(:,nf).*ResponseMatrix_c(:,cf);
nxc = nxc + 1;
end
end

cxexn=1; % Counter for Control X Contro} X Noise Interaction
for nf=1:1
for cf1=2:1+ncf
for cf2=cf1+1:1+ncf

CxCxN(:,cxcxn)=ResponseMatrix_c(:,cf1).*ResponseMatrix_c(:,cf2).*ResponseMatrix_c(:,nf);
CXCXN = cXcxn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxNJ;
[b,bint,r,rint,stats]=regress(ResponseMatrix_c(:,9),inputs);

% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =1ff2n(7)*2 - 1, % Defining x's for Response Model
% Defining B's for the ease

Bi(1:8) = b(2:9); % Main Effects

Bij(1:7) = b(10:16); % C x Compounded_Noise

Bijk(8,8,8) = 0;
194

index = 17;
fori=1:1 % CxC x Compounded_Noise
forj=2:8
fork =j+1:8
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

% Fitting Transmitted Variance Model
for cf = 1:128
sum1=0;sum2=0;
for nf=1:1 % First Term in Variance Model
sum_a=Bi(nf);
sum_b=0;
forj=1:7
sum_b=sum_b + Bij(j)*X(cf,j};
end
sum_c=0;
forj=2:8
fork =j+1:8
sum_c = sum_c + Bijk(1,j,k)*X(cf,j-1)*X(cf,k-1);
end
end
sum1 = sum1 + (sum_a + sum_b + sum_c)*2;
end

varianc(cf,1) = sum1+sum2;
end

STDev_c = varianc.0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c = min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c X],1);

OCF_c = PredMin_c(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y's_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij,bijk, MU, sigma_uncorrelated);

STDev_MC = varianc.”0.5; % Stdev for each CF setting
%std_base_MC = STDev_MC(1,1);

std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of all STDev's
195

op_std_MC = min(STDev_MC); % Finding least Stdev
PredMin_MC = sortrows([STDev_MC X],1);
OCF_MC = PredMin_MC(1,2:8);

if OCF_MC == OCF_N1
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)}(V) Noise Array
end

if OCF_MC == OCF_c
counter_OCF_c = counter_OCF_c + 1; % When same Optimal CF setting is predicted by
Monte Carlo and Compounded Noise Factor
end

cf_ 1=0;cf_c=0; % To find number of Control factors whose settings are predicted
correctly

for matching_cf = 1.7
if OCF_N1(1,matching_cf) == OCF_MC(1,matching_cf)

cf 1=cf 1+1;
end
if OCF_c(1,matching_cf) == OCF_MC(1,matching_cf)
cf c=cf c+1;
end
end

matching_noise1(modelcounter) = cf_1; % To store # of OCF Matched
matching_compound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = std_for_cfsetting(ResponseMatrix_MC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt_c = std_for_cfsetting(ResponseMatrix_MC, OCF_c);

std_base = std_base_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_1/ Opt_MC);
std_fraction2(modelcounter) = (Opt_c/ Opt_MC);

196

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
std_fraction3(modelcounter) = ((std_base - Opt_1)/(std_base - Opt_MC + 1e-10));
std_fraction4(modelcounter) = ((std_base - Opt_c)/(std_base - Opt_MC + 1e-10));

Y(modelcounter) = (std_base - Opt_c)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf('Running Mode! #%d’,modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

197

3.2

function vector=models(modelpara)

% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model

% Reference Chipman, Hamada and Wu (1997) and Li and Frey (2005)
% 03/04/2004 by Jagmeet Singh

Tablet=[10 1 1 1 1
10 1 1 01 0.4
0 1 0 1 1
15 13 2/3 1 1
15 1/3 2/3 01 0.1
15 13 0 1 1}

Table2 =[0.25 0.25 01 O 0.25 01 0 0
025 0.25 01 O 0.25 01 0 0
025 025 01 O 0 0 0 0
043 031 004 O 0.17 0.08 0.02 0
043 0.31 004 O 0.17 0.08 0.02 0
043 0.31 004 0O 0 0 0 0l;

Table1= [Table1 Table2]; % for input to Main Model
vector=Table1(modelpara,:);

198

3.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000)

% Developing Weak Hierarchy RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: # of CF's, # of NF's, c, s1, s2, wil, p,
% p00, pO1, p11, p111, p011, p001 pOOOC

% OUTPUT: bi's, bij's,and bijk’s
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (w1)
w1 =1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf
t(i)=w1;
else
t(i)=1;
end
end

delta=unifrnd(0,1,[1 nnf+ncf]); % Defining delta
for i=1:nnf+ncf % Prob (delta_i=1)=p
if delta(1,i) <= p
delta(1,i)=1;
else
delta(1,i)=0;
end
end

deltaij(1:(nnf+ncf), 1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1}

if sum_deltas == 0 % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j)=1;
else
deiltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when one of the factors is active
199

if deltaij(i,j) <= p0O1
deltaij(i,j)=1,;
else
deltaij(i,j)=0;
end
end

if sum_deitas ==
if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

end

% Defining delta-ijk
deltaijk(1:(nnf+ncf),1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)

for k=j+1:(nnf+ncf)

% Defining delta-ij when both the factors are active

sum_deltas=delta(1,i)+delta(1,j)+delta(1,k); % Finding the sum of delta’s

deltaijk(i,j,k)=unifrnd(0,1);

if sum_deltas ==

if deltaijk(i,j,k) <= p000

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas ==

if deltaijk(i,j,k) <= p001

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas ==

if deltaijk(i,j,k) <= p011

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas ==

if deltaijk(i,j,k) <= p111

% Defining delta-ijk [0,1]

% Defining delta-ijk when all 3 main effects are inactive

% Defining delta-ijk when all 2 main effects are inactive

% Defining delta-ijk when ali 2 main effects are active

% Defining delta-ijk when all 3 main effects are active

200

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

end
end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i) == 0
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if deltaij(i,j) ==
bij(i,j)=t(i)*t(i)*normrnd(0,s1};
else
bij(i,j)=t(i)*t()* normrnd(0,c*s1);
end
end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:nnf+ncf
for k=j+1:nnf+ncf
if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,s2);
else
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,c*s2);
end
end
end
end

201

3.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting
% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmeet Singh
function [std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7);
std_dev = std(ysetting);

end
end

202

3.5

% Function Var_cf_setting takes inputs from RWH model!, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor sefting for full model

% 08/10/2004 by Jagmeet Singh
function [ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, bijk, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar;

X =ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = thsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x{1,i)*x(1.,j);
end
end
sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end
end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(0,w2);
end
end

ResponseMatrix_MC = [X y_MC]; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC"); % Finding the Variance for each CF setting

203

3.6

% Function to plot the outputs of the response

% 03/16/2004 by Jagmeet Singh

function output()

load variables;

% Plotting and Analysing Resuits from the runs

% Pie Chart when OCF_MC is same as OCF_N1

figure; success=[(counter_OCF_1) (maxmodels-counter_OCF_1)];

explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type’,'text’); oldstr = get(textobjs,{'String"});

Names = {'Same CF levels: ';'Diff CF levels: }; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);

pos = get(textobjs,{'Position’}); pos{1,:} =[-0.28 -0.61 .35];
set(textobjs,{'Position’},pos);

title(['Success in prediction of OCF_M_C from OCF_n o i_s e _s tr a te g y_1
for’ ,num2str(maxmodels),’ response surface instances');

hgsave('pie1’);

% Pie Chart when OCF_MC is same as OCF_¢

figure; success=[(counter_OCF_c) (maxmodels-counter_OCF_c)];

explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type',text’); oldstr = get(textobjs,{'String’});

Names = {'Same CF levels: ';'Diff CF levels: }; newstr = strcat(Names, oldstr);
set(textobjs,{'String’},newstr),

pos = get(textobjs,{'Position’); pos{1,:} =[-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);

_n_o_i_s_e for',num2str(maxmodels),’ response surface instances'));
hgsave('pie2");

% Plotting Histograms

figure;

hist(std_fraction1);

,num2str{maxmodels),’ response surface instances?);

colormap cool; iq = prctile(std_fraction1,[25 50 75)); tmax = max(hist(std_fraction1));

line(fia(1) iq(1)],[0 tmax], LineStyle',--"); line([ig(3) iq(3)],[0 tmax], LineStyle','--','Color’,'r");

line([ia(2) iq(2)].[0 tmax],LineWidth’,2,'Color','m’); legend(['25_{_h Percentile = ',num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],['Median = ‘,num2str(iq(2))],' Frequency');

xlabel(OPT.STD.N1 / OPT.STD.MC");

ylabel(" number of instances of response surface '),

hgsave('fig1’);

figure;
204

hist(std_fraction2);

',num2str(maxmodels),’ response surface instances']);

colormap cool; iq = pretile(std_fraction2,[25 50 75]); tmax = max(hist(std_fraction2));

line([ig(1) iq(1)],[0 tmax], LineStyle','--"); line([iq(3) iq(3)1,[0 tmax], LineStyle',--,'Color’,'r');

line([iq(2) iq(2)1,[0 tmax],'LineWidth’,2,’Color','m'); legend(['25_t_h Percentile = ',num2str(iq(1))]...
J[75_t_h Percentile = ",num2str(iq(3))],[Median = ',num2str(iq(2))],’ Frequency');

xlabel(OPT.STD.Compd / OPT.STD.MC);

ylabel(' number of instances of response surface ');

hgsave('fig2");

figure;

hist(std_fraction3);

OPT.STD_M_C) for ,num2str(maxmodels),’ response surface instances’);

colormap cool; iq = prctile(std_fraction3,[25 50 75}); tmax = max(hist(std_fraction3));

line(fig(1) iq(1)],[0 tmax],'LineStyle’,--); line(lig(3) iq(3)],[0 tmax], LineStyle','--','Color’,'r");

line(fig(2) iq(2)},[0 tmax],'LineWidth',2,'Color,'m’); legend(['25_t_h Percentile = ',num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],[Median = ',num2str(iq(2))],' Frequency);

xlabel('(STD.Base-OPT.STD.N1)/(STD.Base-OPT.STD.MCY);

ylabel(" number of instances of response surface ');

hgsave(fig3");

figure;

hist(std_fraction4);

OPT.STD_M_C) for ,num2str(maxmodels),’ response surface instances');

colormap cool; iq = prctile(std_fraction4,[25 50 75]); tmax = max(hist(std_fraction4));

line([ig(1) iq(1)}],[0 tmax], LineStyle',"--"); line([ia(3) iq(3)],[0 tmax], LineStyle','--'Color','r');

line([iq(2) iq(2)],[0 tmax], LineWidth',2,'Color','m'); legend(['25_t_h Percentile = ',num2str(iq(1))]...
,[75_t_h Percentile = ",num2str(iq(3))].'Median = ‘,num2str(iq(2))],’ Frequency'),

xlabel('{STD.Base-OPT.STD.Compd)/(STD.Base-OPT.STD.MC)');

ylabel(' number of instances of response surface "),

hgsave(fig4'),

figure,

plot(X1,Y,™,'color’,’r");

X2 = [ones(size(X1')) X17;

a = X2\Y";

Y2 = a"X2,

B =[X1'Y27;

i0 = regress(Y',X1");

B = sortrows(B,1);

hold on;

line([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Color','g’, 'LineWidth', 0.5);

line([0;B(maxmodels,1)],[0;i0*B(maxmodels, 1)],'LineWidth’,1.5);

title(['For 2*n*d Order Response Surfaces : Plotting (STD_b a s e -

num2str(a(2,1))});

xlabel((STD_b a s e-STD_o_p t)/STD_b a s_e');
_____ _s_e');

hgsave('figh');
205

prob_pos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels
if Y(1,index) >= 0.00
prob_pos = prob_pos + 1;
end
end

% Printing the results

sprintf('mean(Number of OCF matched for Noise Strategy 1) =

' ,num2str(mean(matching_noise1))])

sprintf(['mean{Number of OCF matched for Compounded Noise) =
,num2str(mean(matching_compound))])

sprintf([' Probability that Compounding will Yield Positive Improvement =
,num2str(prob_pos/maxmodels)])

206

4.1

% function compounding()

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modeiparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using

% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% mode} determines how active they are.

% WH for 200 models for Weak Hierarchy RWH Model
% 09/24/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsettingl=fracfact('a b c d e f g'); % defining 2(7) Fuil Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact('a b ¢ d abcd); % defining 2(5-1XV) Array for NF's

modelpara=1; % Defining which model parameters we would be using for 3rd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4);, Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
wi=modelparameter(1,4); w2=modeiparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); pO1=modelparameter(1,8); pO0=modelparameter(1,9);
p111=modelparameter(1,10); p011=modelparameter(1,11); p001=modelparameter(1,12);
p000=modelparameter(1,13);% defining parameters

ncf=7; % # of CF's
nnf=5; % # of NF's

counter_OCF_1=0; % To increment when OCF from MC is same as from Noise Strategy 1

207

counter_OCF_c = 0; % To increment when OCF from MC is same as from Compounded Noise

MU=[0 O 0 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates ldentity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

%o % % %o % %o %o % % %o %o %o %o %o %o %6 %o %o %o %6 Yo %o %o %o %o %o %o Yo % Yo %o Yo Yo %o % % % % %
maxmodels = 200; % The number of models to be tested

Yo% % Yo% %% %o %o %o %o %o % %o Yo %o % Yo %o %o %o %o %o Yo % %o Yo Yo %o Yo %o %o %o %o %o %o % % Yo

h1 = waitbar(0,'Running Models");

for modelcounter=1:maxmodels % To run a given number of models
[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000); %

Finding beta values for a given modei

nfsetting1 = [-1-1-1-1-1;
111 1 1]; % defining simple compounded noise
nfsetting2 = [-1;
11, % defining low and high setting of compounded noise

% For 2{(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:16
X(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,iy*x(1.,j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)*x(1,iy*x(1,j)*x(1,k);
end
end
end
y1(cfruns,nfruns) = bi*x’ + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)};

208

index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1' for 2(5-1)(V) Noise Array

nxc=1; % Counter for Control by Noise Interactions
for nf=1:nnf % Defining Controi by Noise Interactions terms for Transmitted Variance
Model

for cf=nnf+1:nnf+ncf
NxC(:,nxc)=ResponseMatrix1(:,nf).*ResponseMatrix1(:,cf);
nxc = nxc + 1;
end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:nnf
for nf2=nf1+1:nnf
NxN(:,nxn)=ResponseMatrix1(:,nf1).*ResponseMatrix1(:,nf2);
nxn = nxn + 1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf
for nf2=nf1+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrix1(:,cf).*ResponseMatrix1(:,nf1).“ResponseMatrix1(:,nf2),
cxnxn = cxnxn + 1;
end
end
end
cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf
for cf1=nnf+1:nnf+ncf
for cf2=cf1+1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrix1(:,cf1)."ResponseMatrix1(:,cf2).*“ResponseMatrix1(:,nf);
cxexn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(2048,1) ResponseMatrix1(:,1:12) NxC NxN CxNxN CxCxNJ;
[b,bint,r,rint,stats]=regress(ResponseMatrix1(:,13),inputs),

% b0(1) bi's(2:13) CxN{14:48) NxN{49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =1ff2n(7)*2 - 1; % Defining x's for Response Model
209

% Defining B's for the ease
Bi(1:12) = b(2:13);
Bij(5,12) = 0;

index=14, % CxN
fori=1:5
for =6:12
Bij(i,j) = b(index);
index=index+1;
end
end

fori=1:5 % NxN
for j=i+1:5
Bij(i,j) = b(index);
index = index+1;
end
end

Bijk(12,12,12)=0; % CxNxN
fori=1:5
for j=i+1:5
for k=6:12
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

fori=1:5 % CxCxN
for j=6:12
for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;
end
end
end

% Fitting Transmitted Variance Model
forcf=1:128
sum1=0;sum2=0;
fornf=1:.nnf % First term in Variance Model
sum_a=Bi(nf);
sum_b=0;
for j=6:12
sum_b=sum_b+Bij(nf,j)*X(cf,j-5);
end

210

sum_c=0;

for j=6:12
for k=j+1:12

sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end

end

sum1 = sum1 + (sum_a + sum_b +sum_c)"2;

end

fornf=1:nnf % Second term in Variance Model
for j=nf+1:5
sum_d=0;
for k=6:12
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sum_d)*2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1=min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);

OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1.j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

211

end
end
y_c(cfruns,nfruns) = bi*x" + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

clear NxC NxN CxNxN CxCxN; % Clearing the History
% Fitting Response Model to 'y1' for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

for nf=1:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor
for cf=2:8
NxC(:,nxc)=ResponseMatrix_c(:,nf).*ResponseMatrix_c(:,cf);
nxc = nxc + 1; ,
end
end

cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:1
for cf1=2:1+ncf
for cf2=cf1+1:1+ncf

CxCxN(:,cxcxn)=ResponseMatrix_c(:,cf1).“ResponseMatrix_c(:,cf2).*ResponseMatrix_c(:,nf);
CXCXN = ¢cXcxn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Model

inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_c(:,9),inputs),

% b0(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X=1ff2n(7)2 - 1, % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x Compounded_Noise

Bijk(8,8,8) = 0;
index = 17;

212

fori=1:1 % CxC x Compounded_Noise
forj=2:8
fork =j+1:8
Bijk(i,j,k) = b(index);
index = index+1;
end
end
end

% Fitting Transmitted Variance Model
for cf = 1:128
sum1=0;sum2=0;
for nf=1:1 % First Term in Variance Model
sum_a=Bi(nf),
sum_b=0;
forj=17
sum_b=sum_b + Bij(j)*X(cf.j);
end
sum_c=0;
forj=2:8
fork =j+1:8
sum_c = sum_c + Bijk(1,j,k)*X(cf,j-1)*X(cf k-1);
end
end
sum1 = sum1 + (sum_a + sum_b + sum_c)"2;
end

varianc(cf,1) = sum1+sum2;
end

STDev_c = varianc.*0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c = min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c X],1);

OCF_c = PredMin_c(1,2:8);

% Doing Monte Carlo for each setting of Control Factors

clear ResponseMatrix_MC; % Response Matrix = [CF Y's_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij,bijk, MU, sigma_uncorrelated);
STDev_MC = varianc.?0.5; % Stdev for each CF setiting

%std_base_MC = STDev_MC(1,1);
std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of all STDev's

213

op_std_MC = min(STDev_MC); % Finding ieast Stdev
PredMin_MC = sortrows([STDev_MC X],1);
OCF_MC = PredMin_MC(1,2:8),

if OCF_MC == OCF_N1
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)(V) Noise Array
end

if OCF_MC == OCF_c
counter_OCF_c = counter_OCF_c + 1; % When same Optimal CF setting is predicted by
Monte Carlo and Compounded Noise Factor
end

cf_1=0;cf_c=0; % To find number of Control factors whose settings are predicted
correctly

for matching_cf = 1.7
if OCF_N1(1,matching_cf) == OCF_MC(1,matching_cf)

cf_1=cf_1+1,
end
if OCF_c(1,matching_cf) == OCF_MC(1,matching_cf)
cf c=cf c+1;
end
end

matching_noise1(modelcounter) = cf_1; % To store # of OCF Matched
matching_compound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = std_for_cfsetting(ResponseMatrix_MC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt_c = std_for_cfsetting(ResponseMatrix_MC, OCF_c);

std_base = std_base_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_1/ Opt_MC);
std_fraction2(modelcounter) = (Opt_c / Opt_MC);

214

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
std_fraction3(modeicounter) = ((std_base - Opt_1)/(std_base - Opt_MC + 1e-10));
std_fraction4(modelcounter) = ((std_base - Opt_c)/(std_base - Opt_MC + 1e-10));

Y(modelcounter) = (std_base - Opt_c)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf(Running Model #%d',modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

215

5.1

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise.

% And compare that with optimal control factor

% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p11, p01, p00 from 0.01 to 1.00.
% The p (prob. of active main effects) = 1.00. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% RWH for 200 models for Strong Hierarchy RWH Model
% 09/26/2005 by Jagmeet Singh

clear; cic;
global cfsetting w2 ncf nnf maxnoisevar,

[cfsetting,conf_cfsetting]=fracfact(a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's

modelpara=6; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w{2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
modei

c=modelparameter(1,1), s1=modelparameter(1,2); s2=modelparameter(1,3);
w1=modelparameter(1,4); w2=modelparameter(1,5); p = 1.00;% defining parameters and
Changing 'p'

ncf=7; % # of CF's
nnf=5; % # of NF's

216

%% % % %o Yo Yo %o %o %o %o %o Yo Yo Yo %o Yo Yo Yo Yo Yo %a %o %o Yo %o %o %o Yo %o %o %o Yo %o %o %o % % Yo
maxmodels = 200; % The number of models to be tested
% %o %o %o %o % Yo %o %o %o Yo Yo Yo Yo %o %o %o %o %o Yo Y% Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo % %o %o % %o Yo

counter_p11 =1;

for p11 =0.01: 0.01: 1.00

X2(counter_p11) = pi1; % Store p11 values for final plot
p01 =p11; % defining new probability parameters

p00 = p11;

h1 = waitbar(0,'Running Models’);
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00); % Finding beta values for a given

modei

nfsetting1 = [-1*sign(bi(1:5));

sign(bi(1:5))]; % defining compounded noise based on b-values as described above
nfsetting2 = [-1;

1]; % defining low and high setting of compounded noise

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,jy*x{1,i)x(1,j);
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

varianc = var(y1')';

STDev_1 = varianc.*0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1),

op_std_1 =min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting},1);

OCF_N1 = PredMin_1(1,2:8);

217

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,jy*x(1,i)*x(1,);
end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1, % For Storing Response Matrix
end
end

varianc = var(y_c');

STDev_c = varianc.”0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c =min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c cfsettingl,1);

OCF_c = PredMin_c(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise
for cfruns = 1:128
if OCF_c == PredMin_1(cfruns, 2:8);
Opt_c = PredMin_1(cfruns,1);
end
end

218

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 =op_std_1;

std_base = mean(STDev_1); % Base Stdev is taken as mean of all STDev's

% Storing Improvement Ratios for Compound Noise
std_fractiond4(modelcounter) = ((std_base - Opt_c)/(std_base - Opt_1 + 1e-10)),

waitbar(modelcounter/maxmaodels,h1,sprintf(Running Model #%d for p11, p01, p00 =
%.2f,modelcounter, p11))
end
close(h1); % Close waitbar

improvement_ratio_mean(counter_p11) = mean(std_fraction4); % Finding Improvement
Ratio for given pi1
improvement_ratio_median(counter_p11) = median(std_fraction4); % Finding Improvement

Ratio for given p11
counter_p11 = counter_p11 +1; % increasing the Counter

end

% saving workspace
save variabies;

clear; cic;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00

t2 = polyfit(X2, improvement_ratio_mean, 3); % Fitting a 3rd order polynomial

y2 = polyval(t2,X2);

hold on;

plot(X2, improvement_ratio_mean, ".");

plot(X2, y2,'k','LineWidth’,1, 'Marker’, '+, 'MarkerEdgeColor','k’,...
'MarkerFaceColor','k',...
'MarkerSize', 2);

xlabel('p_1_1,p_0_1,p_0_ 0, 'FontSize', 11);

ylabel('Mean Improvement Ratio’, ‘'FontSize', 11);

title('Mean Improvement Ratio vs Density of Effects for RWH Model', ‘FontSize',12);

ylim([0 1]);

hgsave('mean_improvement_ratio’);

hold off;

figure;

219

% Piotting Improvement Ratio Median vs P11, P01, P00

t3 = polyfit(X2, improvement_ratio_median, 3); % Fitting a 3rd order polynomial

y3 = polyval(t3,X2);

hold on;

plot(X2, improvement_ratio_median, ".");

plot(X2, y3,'k’,'LineWidth',1, 'Marker', '+', '"MarkerEdgeColor',’k',...
'MarkerFaceColor','k',...
'MarkerSize', 2);

xlabel('p_1_1,p_0_1, p_0_0', 'FontSize', 11);

ylabel('Median Improvement Ratio’, 'FontSize’, 11);

titte('Median Improvement Ratio vs Density of Effects for RWH Model, 'FontSize',12);

ylim([0 1]);

hgsave('median_improvement_ratio’);

hold off;

220

6.1

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modeiparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using

% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p11, p0O1, p00, p111, p011

% p001 and p00O from 0.01 to 1.00

% The p (prob. of active main effects) = 0.95. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% BASIC WH for 200 models for Weak Hierarchy RWH Model
% 10/16/2005 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsetting]=fracfact(’a b c d e f g'); % defining 2(7) Fuil Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact(a b c d e'); % defining 2(5) Full Factoriai Array for NF's

modelpara=1; % Defining which model parameters we would be using for Weak Hierarchy
model

% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4), Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=modeis(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); = si=modelparameter(1,2); s2=modeiparameter(1,3);
wi=modelparameter(1,4); w2=modelparameter(1,5); p=0.95;% defining parameters and
Changing 'p'

% defining parameters

ncf=7; % # of CF's
nnf=5; % # of NF's

221

% %o % % %o % % Yo % %o %o %o %o Yo %o Yo %o Yo %o Yo Yo Yo Yo %o Yo %o %o %o % % Yo Yo Yo Yo %o %6 Yo Yo Yo
maxmodels = 200; % The number of models to be tested
% % %o %o Yo % Yo Yo %o %o %o Yo % %o %o % Yo %o %o %o %o Yo %o %o Yo Yo %o Yo % %o Yo %o Yo %o %o Yo Yo %o Ve

counter_p11 = 1,

for p11 =0.01: 0.01: 1.00
X2(counter_p11) = p11; % Store p11 values for final plot
p01=p11;, % defining new probability parameters
p00 =p11; p111=p11; p011=p11; p001=p11; p000 =p11,

h1 = waitbar(0,’/Running Models');
for modelcounter=1:maxmodels % To run a given number of models
[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000); %
Finding beta values for a given model

nfsetting1 = [-1*sign(bi(1:5));

sign(bi(1:5))]; % defining compounded noise based on b-values as described above
nfsetting2 = [-1;

11 % defining low and high setting of compounded noise

% For 2(5) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)y*x(1,iy*x(1,j)*x(1,k);
end
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix

222

end
end

varianc = var(y1');

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1=min(STDev_1);, % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting],1);

OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1.j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end
end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

varianc = var(y_c')';

STDev_c = varianc.”0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c = min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c cfsetting],1);

OCF_c = PredMin_c(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise
223

for cfruns = 1:128
if OCF_c == PredMin_1(cfruns, 2:8),
Opt_c = PredMin_1(cfruns,1);
end
end

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 =op_std_1;

std_base = mean(STDev_1); % Base Stdev is taken as mean of all STDev's

% Storing Improvement Ratios for Compound Noise
std_fraction4(modeicounter) = ((std_base - Opt_c)/(std_base - Opt_1 + 1e-10));

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d for all p =
%.2f',modelcounter, p11))
end
close(h1); % Close waitbar

improvement_ratio_mean(counter_p11) = mean(std_fraction4); % Finding improvement
Ratio for given p11
improvement_ratio_median(counter_p11) = median(std_fraction4); % Finding Improvement

Ratio for given p11
counter_p11 = counter_p11 + 1; % Increasing the Counter

end

% saving workspace
save variables;

clear; clc;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00, P111, PO11, P001, POOC

t2 = polyfit(X2, improvement_ratio_mean, 3); % Fitting a 3rd order polynomial
y2 = polyval(t2,X2),
hold on;

plot(X2, improvement_ratio_mean, ".");

plot(X2, y2,'LineWidth',1, 'Marker, '+', ‘MarkerEdgeColor,'k’,...
'MarkerFaceColor''K,...
'MarkerSize', 2);

224

xlabei('p_1 1, p. 0 1, p. 0 0,p 1 1 1. p. 0 1. 1,p 00 1, p 0 0 0 ((Effect Density), 'FontSize’,
11);

ylabel('Mean Improvement Ratio’, ‘FontSize', 11);

title('Mean Improvement Ratio vs Density of Effects for RWH Model', ‘FontSize',12);

ylim({0 1);

hgsave('mean_improvement_ratio’);

hold off;

figure;

% Plotting Improvement Ratioc Median vs P11, P01, POO

t3 = polyfit(X2, improvement_ratio_median, 3); % Fitting a 3rd order polynomial
y3 = polyval(t3,X2);
hold on;
plot(X2, improvement_ratio_median, '.");
plot(X2, y3,'LineWidth',1, 'Marker', '+, 'MarkerEdgeColor','k’,...
'MarkerFaceColor','k’,...
'‘MarkerSize’, 2),
xlabel('p_1 1,p 0 1,p.00,p 1 1 1,p 0 1.1,p 0 0_1, p_0_0_0 (Effect Density), 'FontSize',
11);
ylabel('Median Improvement Ratio’, 'FontSize', 11);
title(Median Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([0 1]);
hgsave(‘'median_improvement_ratio’);
hold off;

225

71

function [M,V,VOUT]=opamp_lA

% This matlab code is used to Vout for the OpAmp for all the control factor
% settings given in Phadke table 8.4 and table 8.5. Here each setting of
% control factor is being fed to opamp_noiseOA.m and the calculation

% proceeds from there. -Rest of the Code is provided by Goeff Reber

% There is no input for this. And the output for the code is Vout for each
% noise factor setting for a given control factor setting and the resuits
% are stored in file.

% OUTPUT. Vout{CFsetting, NFsetting)
% [Mean,Variance,Voffset-output]=opamp_J{A

% Changed for Verification of RWH Model
% 04/08/2004 by Jagmeet Singh

clear;
clc;

% Defining the Control Factor Setting for the differential Op-Amp Circuit
CFlevel=[35.5e3 71e3;

7.5e3 15e3;
1.25e3 2.5e3;
10e-6 20e-6;
10e-6 20e-6;);

% Defining full factorial Inner Array
IA=ff2n(5)+1;

% Running experiments for each control factor settings

fori=1.32

% Determine control factor settings for the current experiment
for j=1:5

CF(j)=CFlevel(j,1A(i.)));
end

% Defining the variable for control factor setting with is being passed
% to opamp_noiseOA.m
Xc=CF,

[Vmean, Vvariance, Vout]=opamp_noiseOA(Xc,i);

% Variables to store values for each CF setting
MEANofV(i,1)=Vmean,
VARIANCEOofV(i,1)=Vvariance;

226

SNRatio(i,1)=(-10)*(log10(Vvariance/1000000));
VOUTforCF(i,:)=Vout’,

end

% save('Vout_CF .xis'VOUTforCF' -tabs',-ascii’);
% save('mean.xls',MEANofV' -ascii');
% save('variance.xis',' VARIANCEofV', -ascii');

% Saving mean, variance and Vout variables
M = MEANofV;
V = VARIANCEofV;

% The rows of VOUT are for a given control factor setting
VOUT = VOUTforCF,;

% To save the workspace so as to work on it later on

IA=1A*2-3;

OA=fracfact(’a b ¢ d e f abc abd acd bcd abe ace bce ade abf adf bdf aef cef def bedef),
OA=(0OA+3)./2;

OA = 0A*2-3;

save WORKSPACE 1A M V SNRatio VOUT OA
end

227

7.2

function varargout=opamp_noiseOA(Xc,innerarray)

%Uses an L36 orthogonal array to compute the variation in offseet voltage
%for the opamp problem at a given control factor setting.

%INPTUS:

% Xc = control factor settings to test at

%OUTPUTS:

% mean = average offset voltage for the given control factors settings

% variance (optional) = variance in offset voltage for the given control factors
% eta (optional) = S/N ratio (signed-target type) for the given Xc

% Changed for Verification of RWH Model
% 04/08/2004 by Jagmest Singh

=zeros(21,1); %The entries of X change for different experiments

% if isempty(Xc) %No control parameter settings supplied
% Xe(1,1)=71e3; Xc(2,1)=15e3; Xc(3,1)=2.5e3,;

% Xc(4,1)=20e-6; Xc(5,1)=20e-6;

% end

Xn=Xc;

%Non control parameters

Xn(11)=.9817; Xn(13)=.971; Xn(15)=.975;
Xn(16)=3e-13; Xn(18)=6e-13; Xn(20)=6e-13;
Xn(21)=298;

%The entries of Xn are static and needed to compute X

%Define Testing Levels: the 1st 10 factors have 2 levels
N=[.9967 1.0033;

93 1.07;

93 1.07;

.98 1.02;

.98 1.02;
9933 1.0067;
9933 1.0067;
.9933 1.0067;
.9933 1.0067,
.9933 1.0067;
99 1;

998 1;

99 1,

998 1;

99 1

45 1

92 1;

45 1

92 1;

67 1

94 1;

228

“%Create the 64 run 2(1V)21-15 Othogonal Array
OA=fracfact('a b c d e f abc abd acd bcd abe ace bce ade abf adf bdf aef cef def bedef');
OA=(0OA+3)./2;

%Begin experiments
h=waitbar(0,'Running Experiments in Outer Array'),
for i=1:size(OA,1)

%Determine factor levels for current experiment

for j=1:5

X(@=Xn()"N(j, OA(i,)));

end

=6, X()=X(1)*™N(j, OA(i,))); %

=T, XE)=X(1)*N(j, OA(i,j) ¥/3.55; %

i78; X()=X(1)*N(j, OA(,j))/3.55; %

79, X()=X(2)"N(j, OA(i,))); %

=10, X(j)=X(3)"N(j, OA(i.j)); %

=115 X([)=Xn(j)*N(j, OA(i.)));

=12, X(j)=X(11)*N(j, OA(i.J)); %

=13, X([)=Xn(j)*N(j, OA(i.j));

=14 X(1)=X(13)*N(]}, OA(i,j)); %

=15, X()=Xn(j)*N(j, OA(L.));

=16, X()=Xn(j)*N(j, OA(i.j));

=17, X(§)=X(16)*N(j, OA(i.j)); %

=18, X(1)=Xn(j)*N(j, OA(i.j));

=19, X(j)=X(18)*N(], OA(i,j)); %

720; X(1)=Xn(j)*N(j. OA(i.j));

721, X()=Xn()*N(j, OA(L.)));

waitbar(i/(size(OA,1)), h, sprintf('Running Inner array experiment %d for outer array %d’,
innerarray,i))

Voff(i,1)=opamp_red(X)*1e3; %Runs the experiment
end
close(h) %Close the waitbar

%Compute the mean, variance, and eta
mean = mean(Voff);
variance = var(Voff);
if nargout ==
eta = 10*log10(variance) ;
end

varargout{1}=mean;
t(1)=mean;
varargout{2}=variance;
t(2)=variance;
varargout{3}=Voff;
Y%varargout{3}=eta;

229

7.3

function [vout,converged]=opamp_red(X)

%This function computes the offset voltage of an operational amplifier used
%in coin-operated telephones. The amplifier is described in Phadke’s
%"Quality Engineering Using Robust Design". The governing equations for
%the circuit were determined by Dr. Frey. The input X is a 21-element
Y%vector of inputs describing 20 circuit elements and the ambient
Y%temperature, which are used to solve a reduced non-linear set of
%equations to determine voltage offset.

%OUTPUT:

% vout = offset voltage in Volts

% converged = boolean indicating whether the governing equations where
%satisfactorially solved.

% From Goeff Reber

%Constants
K=1.380658e-23; %Boitzmann's Constant
0=1.602177e-19; %Electron charge

%Unpack the elements of X

Rrfm=X(1); Rrpem=X(2); Rrmem=X(3); Icpcs=X(4); locs=X(5);
Rrfp=X(6); Rrim=X(7); Rrip=X(8); Rrpep=X(9); Rrnep=X(10);
Afpm=X(11); Afpp=X(12); Afnm=X(13); Afnp=X(14); Afno=X(15);
Siepm=X(16), Siepp=X(17); Sienm=X(18); Sienp=X(19); Sieno=X(20);
T=X(21);

%Determine the voltage values V which solve the reduced set of equations
v(1)=.4190; v(2)=.4370; v(3)=.4380;
% v=.4%ones(3,1);
%V = newtsearch(@opamp_goveq_red, 'true’, v, 1e-12, 1500, [}, X); %home-made minimizer
opts = optimset('Display’,'off', TolX',1e-12,'Maxiter’, 1500, TolFun',1e-12) ;
exitflag=0;
maxiter = optimget(opts, Maxliter');
while exitflag==0 & maxiter<1e5 %Make sure optimizer converges to an answer
home
[v,Fval,exitflag] = fsolve(@opamp_goveq_red,v,opts,X);
maxiter = optimget(opts, Maxlter');
opts = optimset(opts, Maxlter',maxiter*1.25);
end
if exitflag==
converged=false;
else
converged='"irue’;
end
V=v; %Use the current guess to find Voffset

%Unpack elements of V
Vbed4=V(1); Vbel=V(2); Vbe3=V(3);

230

%Find the offset voltage, vout (long equation broken into several terms)

termO=Icpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbe1*q/K/T) -
2*Siepm*exp(Vbe1*g/K/T);

term0=Siepp*(term0/(2*Siepp - Siepp*Afpp) - 1),

term1=Rrfp*((term0-Sienp*(exp(Vbe4*q/K/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm™*(
exp(Vbe1*q/K/T) - 1) - (1-Afpp)*termO),

term2=Rrip*((term0-Sienp*(exp(Vbed4*q/K/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm™*(
exp(Vbe1*g/K/T)-1));

term3=Rrim*term2/Rrip;

term4=Rrfm*((term0-Sienp*(exp(Vbe4*q/K/T) - 1))/(1-Afno) - locs);

vout= term1 + term2 + term3 + term4 ;

vout=-vout;

231

7.4

function F=opamp_goveqg_red(V, X) %Reduced Set

%This function provides the governing equations for the differential opamp
%problem described in function "opamp". The equations are non-linear.
%Input vector V (length=3) contains three circuit voltages, X is 21 element
%vector describing circuit paramaters. This function is meant to be called
%by a minimization routine which will select the values of V to minimize

%the sum of squares of three equations (in which X are parameters and V are
%variables whose values need to be determined)

% From Goeff Reber

%Constants
K=1.380658e-23; %Boltzmann's Constant
g=1.602177e-19; %Electron charge

Y%Unpack the elements of V
Vbed4=V(1); Vbel1=V(2); Vbe3=V(3);

%Unpack the elements of X

Rrfm=X(1); Rrpem=X(2); Rrnem=X(3); Icpcs=X(4); locs=X(5),
Rrfp=X(6); Rrim=X(7); Rrip=X(8); Rrpep=X(9); Rrnep=X(10);
Afpm=X(11); Afpp=X(12); Afnm=X(13); Afnp=X(14); Afno=X(15);
Siepm=X(16); Siepp=X(17); Sienm=X(18); Sienp=X(19); Sieno=X(20);
T=X(21);

F(1,1)= (1-Afnm)*Sienm*(exp(Vbe3*a/KIT) -1) - Siepm*(exp(Vbe1*q/K/T)-1) ...
+ Sienm*(exp(Vbe3*q/K/T) -1) + (1-Afnp)*Sienp*(exp(Vbed*q/K/T) - 1);
F(2,1)= Rrnem*(Sienm*(exp(Vbe3*q/KI/T) - 1) + (1-Afnm)*Sienm*(exp(Vbe3*a/K/T)-1)) ...
-Rrnep*(Sienp*(exp(Vbe4*q/K/T) - 1) + (1-Afnp)*Sienp*(exp(Vbed*q/K/T)-1)) ...
- Vbe4 + Vbe3;
%The third equation is really large, so it's broken up into several terms
term0O=Icpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbe1*q/K/T) -
2*Siepm*exp(Vbe1*q/K/T);
term0=Siepp*(termO/(2*Siepp - Siepp*Afpp) - 1);
term1=Rrip*((term0-Sienp*(exp(Vbed*a/K/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm™*(
exp(Vbet*g/KIT)-1));
term2=Rrim*(term1/Rrip);
term3=-Vbe1 - Rrpem*(Siepm*(exp(Vbe1*q/K/T) - 1) + (1-Afpm)*Siepm*(exp(Vbe1*q/K/T) - 1)
)
term4=Rrpep*(term0 + (1-Afpp)*term0);
term5=lcpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbe1*q/K/T) -
2*Siepm*exp(Vbe1*q/K/T);
term5=K*T*log(term5/(2*Siepp-Siepp*Afpp))/q;
% if ~isreal(term5)
% disp('lmaginary value found, press any key to continue’)
% pause
% end
F(3,1)=term1 + term2 + term3 + term4 + abs(term5);

232

7.5

function [sumsq, meansumsq]=sumsquare(obs)
% This program finds the Sum of Square and Mean Sum of Square for Control
% Factor Setting for Opamp.

% INPUT is a matrix in which the observations are sorted according to the
% treatments. Each treatment constitutes a column.

% OUTPUT contains the Sum of Squares and Mean Sum of Squares for the
% treatments

% 02/07/2004 - Jagmeet Singh

[n al=size(obs); % Find the size of the observation matrix
ytreatments = sum(obs); % Find the sum of observation for each treatment
ytotal = sum(ytreatments); % Find the sum of all obervations

sum1=0;
fori=1:a

sumi=sum1+ (ytreatments(i)*2);
end

sumsq = (1/n)*sum1 - (1/(n*a))*(ytotal*2);
meansumsq = sumsg/(a-1);

233

7.6

function [totsumsq, totmeansumsq]=totalsum(obs)
% This program finds the Total Sum of Square and Total Mean Sum of Square for Control
% Factor Setting for Opamp.

% INPUT is a matrix in which the observations all the observations are given (eg: SNRatio and
Mean)

% OUTPUT contains the Total Sum of Squares and Total Mean Sum of Squares for the
% treatments

% 02/07/2004 - Jagmeet Singh

[m]=size(obs); % Find the size of the observation matrix
ytotal = sum(obs); % Find the sum of all obervations

sum1=0;
fori=1:m

sumi=sum1+ (obs(i)*2);
end

totsumsq = sum1 - (1/m(1,1))*(ytotai*2),
totmeansumsq = totsumsag/(m(1,1)-1);

234

7.7

% This program takes input from the opamp_lA.m and plots the graphs and the
% tables to find the optimai setting of the Control Factors for the Opamp

% for a given Noise Factor Strategy

% 02/07/2004 - Jagmeet Singh

clear
clc

load WORKSPACE;

% To get the setting for the control factors given by 1A
rfm=IA(:,1);

rpem=1A(:,2);

rmem=IA(:,3);

cpcs=IA(:,4);

ocs=IA(:,5);

%
%
% Doing analysis for SN Ratio

% Matrix avgSN contains the averages for each setting of a given Control
% Factor

% To store the sorted result for RFM

sortrfm = sortrows([rfm SNRatio},1);

dummy=[sortrfm(1:12,2) sortrfm(13:24,2) sortrfm(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting

avgSN(1,:)=dummymean; % Stores values for RFM CF
[SumSq(1,:),MeanSq(1,:)]=sumsquare(dummy); % Stores vaiues for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RPEM

sortrpem = sortrows([rpem SNRatio],1);

dummy=[sortrpem(1:12,2) sortrpem(13:24,2) sortrpem(25:36,2)]; % Stores values for each CF
setting

dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(2,:)=dummymean; % Stores values for RPEM CF
[SumSq(2,:),MeanSq(2,:)]=sumsquare(dummy); % Stores values for Sum of Sgaure and Mean
Sum of Square

% To store the sorted result for RNEM

sortrnem = sortrows([rnem SNRatio],1);

dummy=[sortrnem(1:12,2) sortrnem(13:24,2) sortrnem(25:36,2)]; % Stores values for each CF
setting

dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(3,:)=dummymean; % Stores values for RNEM CF
[SumSq(3,:),MeanSq(3,:)]=sumsquare(dummy), % Stores values for Sum of Sqaure and Mean
Sum of Square

235

% To store the sorted result for CPCS

sortcpes = sortrows([cpcs SNRatio],1);

dummy=[sortcpcs(1:12,2) sortcpes(13:24,2) sortcpes(25:36,2)]; % Stores values for each CF
setting

dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(4,:)=dummymean; % Stores values for CPCS CF
[SumSq(4,:),MeanSq(4,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for OCS

sortocs = sortrows([ocs SNRatio],1);

dummy=[sortocs(1:12,2) sortocs(13:24,2) sortocs(25:36,2)]; % Stores values for each CF setting
dummymean=mean{dummy); % Stores the mean for each CF setting

avgSN(5,:)=dummymean; % Stores values for OCS CF
[SumSq(5,:),MeanSq(5,:)}=sumsquare(dummy); % Stores values for Sum of Sgaure and Mean
Sum of Square

% To find the Total Sum of Square and Total Mean Square for SNRatio
[SNtotsum,SNtotmsq] = totalsum(SNRatio);

% To find Errors DOF, Sum of Square and Mean Square
SSe = SNtotsum - sum(SumSq); % Error Sum of Square
[n a} = size(dummy);

dof_error = n*a - 5*(a-1) - 1;

dof_total = n*a- 1,

Msse = SSe/dof_error; % Defining Mean Square for Error

Fratio = MeanSqg/Msse; % Defining F Ratio for the CF's
Overall_mean = mean(SNRatio);

% Presenting the results in Tabular form
Table = zeros(7,7); % Formatting OUTPUT Table

for j=1:3
Table(:,j) = [avgSN(:,j)" Inf Inf];
end

Table(:,4) = [a-1 a-1 a-1 a-1 a-1 dof_error dof_total]’;
Table(:,5) = [SumSq(:,1) SSe SNtotsum];

Table(:,6) = [MeanSq(:,1) Msse SNtotmsq]’;
Table(:,7) = [Fratio(:,1)' Inf Inf]’;

colheads = ['Factor !
‘Avg SN-Level 1 '
'Avg SN-Level 2 '
'Avg SN-Level 3
" DOF '
'Sum Of Square
'Mean Square '
)

]

236

rowheads = [[A. RFM ’
'B. RPEM "
'C. RNEM "
‘D.CPCS "
'E. OCS 5
Error "
Total T

% Create cell array version of table
atab = num2cell(Table);
for i=1:size(atab,1)
for j=1:size(atab,2)
if (isinf(atabf{i,j}))
atab{i,j} = [I;
end
end
end
atab = [celistr(strjust(rowheads, 'left')), atabl];
atab = [cellstr(strjust(colheads, ‘eft)); atab];

wiitle = "ANALYSIS of S/N Ratio;
ttitle = "TABLE;

digits =[-1-1-1-10110];
statdisptable(atab, wtitle, ttitle, *, digits);

% To plot S/N Ratio graph
h = figure;

TITLE('S/N Ratio Graph');
XLABEL('Factors");
YLABEL('S/N Ratio, in dB");

h2 = text(2,min(min(avgSN)),’RFM','FontWeight','bold")
text(5,min(min(avgSN)),'RPEM','FontWeight','bold');
text(8,min(min(avgSN)),'RNEM','FontWeight','bold");
text(11,min(min(avgSN)),'CPCS’,'FontWeight','bold");
text(14,min(min(avgSN)),"OCS','FontWeight','bold’),

AXIS([0 16 min(min(avgSN))-2 max(max(avgSN))+2]);
X =1[0;16]; Y = [Overall_mean;Overall_mean];

h1 = line(X,Y,'Color','k’);

get(h1)

for i=1:5
X = [3*-2;3%-1;3"i]; Y= (avgSN(i,:));
line(X,Y,LineWidth',2,'Marker’,”™")
end

237

%
%o
% Doing analysis for Mean

% Matrix avgM contains the averages for each setting of a given Control
% Factor

% To store the sorted resuit for RFM

sortrfm = sortrows([rfm M],1);

dummy=[sortrfm(1:12,2) sortrfm(13:24,2) sortrfm(25:36,2)]; % Stores values for each CF setting
dummymean=mean{dummy); % Stores the mean for each CF setting

avgM(1,:)=dummymean; % Stores values for RFM CF
[SumSq(1,:),MeanSq(1,:)}=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RPEM

sortrpem = sortrows([rpem M],1);

dummy=[sortrpem(1:12,2) sortrpem(13:24,2) sortrpem(25:36,2)]; % Stores values for each CF
setling

dummymean=mean{dummy); % Stores the mean for each CF setting

avgM(2,:)=dummymean; % Stores values for RPEM CF
[SumSq(2,:),MeanSq(2,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RNEM

sortrnem = sortrows([rnem M}, 1);

dummy=[sortrnem(1:12,2) sortrnem(13:24,2) sortrnem(25:36,2)]; % Stores values for each CF
setting

dummymean=mean(dummy); % Stores the mean for each CF setting

avgM(3,:)=dummymean; % Stores values for RNEM CF
[SumSq(3,:),MeanSq(3,:)]=sumsquare(dummy); % Stores vaiues for Sum of Sgaure and Mean
Sum of Square

% To store the sorted result for CPCS

sortcpes = sortrows([cpcs M],1);

dummy=[sortcpcs(1:12,2) sortcpcs(13:24,2) sortcpes(25:36,2)}; % Stores values for each CF
setting

dummymean=mean(dummy); % Stores the mean for each CF setting

avgM(4,:)=dummymean; % Stores values for CPCS CF
[SumSq(4,:),MeanSq(4,:)]=sumsquare(dummy); % Stores vaiues for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for OCS

sortocs = sortrows([ocs M],1);

dummy=[sortocs(1:12,2) sortocs(13:24,2) sortocs(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting

avgM(5,:)=dummymean; % Stores values for OCS CF
[SumSq(5,:),MeanSq(5,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To find the Total Sum of Square and Total Mean Square for M
[SNtotsum,SNtotmsg] = totalsum(M);

238

% To find Errors DOF, Sum of Square and Mean Square
SSe = SNtotsum - sum(SumSq); % Error Sum of Square
[n a} = size(dummy);

dof_error = n*a - 5*(a-1) - 1;

dof_total=n*a-1;

Msse = SSe/dof_error; % Defining Mean Square for Error

Fratio = MeanSq/Msse; % Defining F Ratio for the CF's
Overall_mean = mean(M);

% Presenting the results in Tabular form
Table = zeros(7,7); % Formatting OUTPUT Table

forj=1:3
Table(:,j) = [avgM(,j)' Inf Inf]’;
end

Table(:,4) = [a-1 a-1 a-1 a-1 a-1 dof_error dof_totall’;
Table(:,5) = [SumSq(:,1)' SSe SNtotsum}’;
Table(:,6) = [MeanSq(:,1)' Msse SNtotmsq]';
Table(:,7) = [Fratio(:,1)" Inf Inf]";

colheads = ['Factor !
‘Avg SN-Level 1 '
‘Avg SN-Level 2
'Avg SN-Level 3
' DOF '
'Sum Of Square '
' Mean Square '
€ F O];

rowheads = ['A. RFM "
'B. RPEM N
‘C. RNEM 5
'‘D. CPCS "
'E. OCS "
"Error "
Total T

% Create cell array version of table
atab = num2cell(Table);
for i=1:size(atab,1)
for j=1:size(atab,2)
if (isinf(atab{i,j}))
atab{i,j} = [;
end
end
end
atab = [cellstr(strjust(rowheads, 'left'}), atab];
atab = [cellstr(strjust(colheads, left'))"; atab];

239

wtitle = 'ANALYSIS of Mean Offset Voitage’;
ttitle = 'TABLE";

digits =[-1-1-1-10110};
statdisptable(atab, wtitle, ttitle, *, digits);

% To plot S/N Ratio graph

h = figure;

TITLE('Mean Offset Voltage Graph’);
XLABEL('Factors’),

YLABEL('Mean Offset Voltage (10e-3 V)');
text(2,min(min(avgM)),'RFM','FontWeight','bold");
text(5,min(min(avgM)), RPEM','FontWeight','bold");
text(8,min{min(avgM)), RNEM','FontWeight','bold');
text(11,min(min(avgM)),'CPCS’,'FontWeight',’bold');
text(14,min(min(avgM)),’OCS','FontWeight','boid");

AXIS([0 16 min(min(avgM))-2 max(max(avgM))+2]);
X =1[0;16]; Y = [Overall_mean;Overall_mean];

h1 = line(X,Y,'Caolor',’k");

get(h1)

for i=1:5
X = [3*i-2;3%i-1;3*i}, Y= (avgM(i,)))';
line(X,Y, LineWidth’,2,'Marker’,"")
end

240

7.8

% To find significant 3 way interactions we need to do regression on the
% results from the run. We will analyze the beta's using both Normal Plots
% and Lenth Method.

% Most of the variables have 3 levels, so we will analyze them in 2 steps.
% We will break 3 levels into 2 - 2 levels and find the betas to analyze.

% INPUT: Variables from the Runs of Madhav's Strategy with Different 1A and
% OA

% OUTPUT: beta values and plotting Normal Plot and finding significant
% factors

% 04/08/2004 by Jagmeet Singh

clear;clc;

load WORKSPACE

t=1; % Index for rows of Regression Variable

fori=1:32
for j=1:64

% Reg_Var = [CF : NF : VOUT]
% Reg_Var =[IA: OA: VOUT]
Reg_Var(t,1:5) = IA(i,:);
Reg_Var(t,6:26) = OA(,:);
Reg_Var(t,27) = VOUT(i,j);
t=t+1;

% To find beta values for main effects, 2 and 3 way interactions
Y(:,1) = Reg_Var(:,27)/1e305;

X(:,1) = ones(32*64,1);

dum_x(:,1:26) = Reg_Var(:,1:26);

% Finding 2way interactions terms
t=1; % Index for storing the results in dum_x
fori=1:5

241

for j=i+1:5
CxC(:,t)=dum_x(:,i).*dum_x(:,j)
t=t+1,
end
end
t=1;
fori=1:5
for j=11:26
CxN(:,t=dum_x(:,i).*dum_x(:,j);
t=t+1,
end
end
t=1;
fori=11:26
for j=i+1:26
NxN(:,t)=dum_x(:,i).*dum_x(:,j);
t=t+1;
end
end

t=1;
% Finding 3way interaction terms
fori=1:5
forj=i+1:5
fork =j+1:5
CxCxC(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
end
end
end
t=1;
fori=1:5
forj=i+1:5
fork =11:26
CxCxN(:,1) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
end
end
end
t=1;
fori=1:5
forj=11:26
for k = j+1:26
CxNxN(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
end
end
end
t=1;
fori=11:26
forj=i+1:26
for k = j+1:26
NXNXN(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);

242

=t+1;
end
end
end

way2 = [CxC CxN NxNJ;
way3 = [CxCxC CxCxN CxNxN NxNxN]J;

X = [X dum_x way2 way3]; % Defining regression coefficients

% Main effects col: 2-27

% 2 way effects col: 28-237 (CxC: 28-37)(CxN: 38-117}{(NxN: 118-237)

% 3 way effects col: 238-1007 (CxCxC: 238-247){CxCxN: 248-407)(CxNxN:
% 408-1007)(NxNxN: 1008-1567)

b1 = regress(Y,X); % Finding the beta's

save WORKSPACE_b1 IA OA Reg_Var VOUT XY dum_x way2 way3 b1, % saving variables
for further use

% implementing Lenth Method
bi = abs(b1);
s0 = 1.5"median(bi);

limit=2.5*s0;
t=1,
for i=1:1567

if bi(i) <= limit

dumm(t)=bi(i);
t=t+1;

end
end
PSE = 1.5*median(dumm);
m=1567,
ME = tinv(0.975,m/3)*PSE;
gamma=(1 + (0.95%(1/m)))/2.0;
SME = tinv(gamma,m/3)*PSE;
hold on;
plot(b1);
xlabel(' Contrasts *);
ylabel(' Estimated Contrasts’);
plot({0 1200],[ME ME],--r');
plot([0 1200],{-ME -ME],"--r");
plot([0 1200],[SME SME],'- k');
plot([0 1200],[-SME -SME];- .k');
piot([27 27],Imax(b1) min(b1)], 'k','LineWidth',2);
plot([238 238],Imax(b1) min(b1)], k','LineWidth',2),
titie('Lenth-Bayes Plot for Verification-1);
text(27,max(b1)/1.2,' Two Way Effects’);
text(400,max(b1)/1.2, Three Way Effects’);

243

text(1100,SME,'SME’);
text(1100,-SME, - SME');
text(1100,ME,"ME");
text(1100,-ME,’- ME");

244

8.1

function varargout=cstr(X,varargin)

%Model's a continuously stired tank reactor designed producing "reactant b”
%INPUTS:

% X = a vector of control parameters for the reaction process

% varargin {optional) = a scalar representing the mean of Rb for the given
%control parameters

%OUTPUTS:

% rb {optional) = the molecular rate of production of reactant b. If
Y%varargin is not empty, then rb is changed to squared error from the mean.
% Ca (optional) = final concentration of reactant A

% Cb (optional) = final concentration of reactant B

% Ra (optional) = steady state temperature of the reacting tank

% F (optional) = volumetric flow rate into reacting tank

% From Goeff Reber

maxiter=1e4;
iter=1;

%Control Parameters:
Cai=X(1); %lnitial concentration of reactant A
Cbhi=X(2); %lnitial concentration of reactant B
Ti=X(3); %Temperature of the mixture entering the reacting tank
Q=X(4); %Heat added to the reacting tank

=X(5); %Steady state volume liquid in the reacting tank
F=X(6); %Volumetric flow rate into the reacting tank

%System Parameters:
k0a=8.4*10"5; %min”-1
kOb=7.6*10"4; %min”-1
Hra=-2.12*10"4; %J/mol
Hrb=-6.36*10%4; %J/mol
Ea=3.64*10"4; %.J/mol
Eb=3.46*10%4; %J/mol
Cp=3.2*10"3; %Jikg/K
R=8.314; %J/mol/K
rho=1180; %kg/m*3

T=Ti; %lInitial gues

t=V/F; %Residence Time

pdT=1; %aillows entry into the loop

iter=0;

while pdT>1e-3
Ca=Cai/(1 + t"kOa*exp(-Ea/R/T));
Ra=-Ca*kOa*exp(-Ea/R/T);
Cb=(Cbi - t*Ra)/(1 + t"kOb*exp(-Eb/R/T));
Rb=-Ra - Cb*kOb*exp(-Eb/R/T);
Tnew=(Q - V*(Ra*Hra+Rb*Hrb) }/F/rho/Cp + Ti;
pdT=100*abs(Tnew-T)/T;

245

T=T+.5*(Tnew-T);
iter=iter+1;
if iter>maxiter
Y% display('Max number of iterations reached in computing T')
break, break, return
end
end

if isempty(varargin)
rb=Rb*V;
else
rb=(Rb*V - varargin{1} Y2, %Variance is requested, input varargin{1} is the mean
end
varargout{1}=rb;
varargout{2}=Ca;
varargout{3}=Cb;
varargout{4}=Ra;
varargout{5}=Rb;
varargout{6}=T,
varargout{7}=F;

246

8.2

% To find significant 3-way interactions in CSTR model. We will run full
% factorial array on both Control Factors and Noise Factors. Control

% Factors base levels are chosen as one given in Diwekar Paper[1997].
% The upper level is chosen to be 20% more than the base level. Noise
% factors are chosen at 5% distance from the Control Factor Setting.

% The betas from the regression are analyzed by both Lenth Method and
% Normal Piots.

% Output: Lenth Plot
% 04/15/2004 by Jagmeet Singh
clear;clc;

Xbase = [3119.8 342.24 309.5 5.0e6 0.05 0.043); % Base Level of CF's
Xup = 1.2*Xbase; % Upper Levels are 20% more than Base Level
CF = [Xbase' Xup']; % Defining Control Factor array

IA = ff2n(6); % Defining fullfactorial Inner Array

OA = ff2n(6); % Fuli Factorial Outer Array

1A = [A+1;

% Finding Response for inner-outer array
h=waitbar(0);
for i=1:size(1A,1)
level = 1A(i,:); % Level for CF to be chosen
CF1 = CF(1, level(1));
CF2 = CF(2, level(2));
CF3 = CF(3, level(3));
CF4 = CF(4, level(4));
CF5 = CF(5, level(5));
CF6 = CF(6, level(6));
cf_level = [CF1 CF2 CF3 CF4 CF5 CF6};

waitbar(i/size(IA,1), h, sprintf(Response for CF setting %d",i));

% Running OA for each Control Factor Setting
for j=1:size(OA,1)
oa_level = OA(j,:); % Level for NF to be chosen
for dummy=1:6
if oa_level(dummy)==
x_level(dummy) = cf_level(dummy)*0.95; % -5% for low setting of NF
else
x_level(dummy) = cf_level(dummy)*1.05; % 5% for higher setting of NF
end
end
rb(i,j) = cstr(x_level); % Each row of rb corresponds to a CF setting

247

% and columns to NF settings
end
end
close(h);

1A =ff2n(6)*2 - 1,
OA = |A; % 1A and OA for regression
t=1; % Index for rows of Regression Variable

for i=1:size(IA,1)
for j=1:size(OA,1)

% Reg_Var = [CF : NF : rb}
% Reg_Var=[IA: OA :rb]
Reg_Var(t,1:6) = 1A(i,:);
Reg_Var(t,7:12) = OA(j,:);
Reg_Var(t,13) = rb(i,j);
t=1t+1,

% To find beta values for main effects, 2 and 3 way interactions
Y(:,1) = Reg_Var(:,13);

X(:,1) = ones(size(lA,1)*size(OA,1),1);

dum_cf(;,1:6) = Reg_Var(:,1:6);

dum_nf(:,1:6) = Reg_Var(:,7:12);

% Finding 2 way interaction terms

t=1;
fori=1:6
for j=i+1:6
CxC(:,t)=dum_cf(:,i).*dum_cf(:,j);
t=t+1;
end
end

t=1;
fori=1.6
for j=7:12
CxN(:,ty=dum_cf(:,i).*dum_nf(:,j-6);
t=t+1;
end
end

% Finding 3 way interaction terms
248

t=1;
for i=1:6
for j=i+1:6
for k=j+1:6
CxCxC(:,t) = dum_cf(:,i).*dum_cf(:,j).*dum_cf(: k);
t=t+1;
end
end
end

t=1;
for i=1:6
for j=i+1:6
for k=7:12
CxCxNC(:,t) = dum_cf(:,i).*dum_cf(:,j). *dum_nf(: ,k-6);
t=t+1;
end
end
end

t=1;
for i=1:6
for j=7:12
for k=j+1:12
CxNxNC(:,t) = dum_cf(:,i).*dum_nf(:,j-6).*dum_nf(:,k-6};
t=t+1;
end
end
end

way2 = [CxC CxN};
way3 = [CxCxC CxCxN CxNxNJ;

X = [X dum_cf way2 way3]; % Defining Regression Coefficients

% Main CF effects col: 2-7

% 2 way effects col: 8-58 (CxC: 8-22)(CxN: 23-58)

% 3 way effects col: §9-258 (CxCxC: 59-78)(CxCxN: 79-168)(CxNxN: 169-258)

b = regress(Y,X); % Finding the beta's

% Implementing Lenth Method
bi = abs(b);
s0 = 1.5*median(bi);

limit=2.5*s0;
t=1;
for i=1:258
if bi(i) <= limit
dummy(t) = bi(i);
t=t+1;

249

end
end
PSE=1.5"median(dumm);
m=258;
ME = tinv(0.975,m/3)*PSE;
gamma=(1 + (0.95"(1/m)))/2.0;
SME = tinv(gamma,m/3)*PSE;
hoid on;
plot(b);
xlabel(’ Contrasts ');
ylabel(* Estimated Contrasts');
plot([0 300],[ME ME],--r");
plot([0 300],[-ME -ME},"--r');
plot([0 300],[SME SME]},-.k");
plot([0 300],[-SME -SME]},- k');
plot([6 6],[max(b) min(b)], 'k','LineWidth',2);
plot([58 58],[max(b) min(b)], 'k’,'LineWidth',2);
title('Lenth-Bayes Plot for Verification'),
text(7,max(b)/1.2, Two Way Effects’);
text(100,max(b)/1.2, Three Way Effects’);
text(300,SME,'SME’);
text(300,-SME,’- SMEY);
text(300,ME,'ME");
text(300,-ME,"- ME');
figure;
normplot(b);

250

9.1

% Passive Neuron Model from "Non-Linear Parameter Estimation by Linear
% Association: Application to a Five-Parameter Passive Neuron Model", IEEE
% Transactions on Biomedical Engineering, Vol. 41, No.5, 1894.

% We will use the Somatic Shunt model of Neuron. We will look at its
% Laplace Transform Z(s) = V(0,sYI(s). We will use the parameters given in
% the model and will determine the order of the system.

% Control Factors in this case are Ts and Tm. Noise factors are L, Rs, Rd,
% Rn.

% By Jagmeet Singh on 02/14/2005

clear;clc;
t = 3e-3; % in secs. It is the time at which response is looked
s = 2*pilt; % Angular Frequency at which the response is looked

% Defining Control Factor Levels.

% Control Factors are Ts, Tm (in secs.)

CF_levels = [3e-3 5e-3; % Ts
5e-3 7e-3];, % Tm

% Defining Control Factor Array
CF_array = ff2n(2) + 1,
[m,n] = size(CF_array);
fori=1:m

forj=1:n

% Defining Inner Array for experiments
Inner_array(i,j) = CF_levels(j,CF_array(i,));
end
end

% Defining Noise Array
% Noise Factors are L, Rs, Rd and Rn. Rs, Rd, Rn are in Ohm.

NF_levels = [0.7 1.1; % L
300e6 320e6; % Rs
120e6 160e6; % Rd
80e6 90e6;]; % Rn

251

% Defining Noise Array
NF_array = ff2n(4) + 1;
[m,n] = size(NF_array);
fori=1m

forj=1:n

% Defining Outer Array Levels for the experiments
Outer_array_levels(i,j) = NF_levels(j, NF_array(i,j));
end
end

% Running Experiements at inner and Outer Array Settings
[iarows, iacols] = size(Inner_array);

[oarows, oacols] = size(Outer_array_levels);

h1= waitbar(0);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprintf("Running Control Factor Experiment # %d',iaruns));

% Setting the Control Factor Levels for Inner Array experiments
Ts = Inner_array(iaruns, 1);
Tm = Inner_array(iaruns,2);

index = 1;

% Setting Outer Array Levels for Outer Array experiments
fori = 1:0arows

L = Outer_array_levels(i,1);

Rs = Outer_array_levels(i,2);

Rd = Outer_array_levels(i,3);

Rn = Quter_array_levels(i,4);

p = Rs/Rd;

Z(iaruns, index) = (Rn* (p + 1))/(((Tm*s + 1)~(0.5)) * tanh(L * ((Tm™*s + 1)*(0.5))) * p * coth(L)
+(1+Ts*s))

index = index + 1;
end
end

close(h1);

IA = CF_array*2 - 3; % To define inner array in -1,1 levels
OA = NF_array*2 - 3; % To define Outer array in -1,1 levels
save WORKSPACE_1;

252

9.2

% To find significant 3-way interactions we need to do regression on the
% resuits from the runs. We will analyze beta's (the regression
% coefficients) using both Normal Plot and Lenth Method.

% INPUT: Variables from the runs of PNM Model with 2-levels factors in both
% CF and NF array.

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

% 2/14/2005 by Jagmeet Singh

clear;clc;
load WORKSPACE_1;
clear X;

t=1; % Index for rows of Regression Variable

fori=1:4
forj=1:16
% Reg_Var = [CF : NF : Z};
% Reg_Var=[IA: OA: Z];
Reg_Var(t,1:2) = tA(i,));
Reg_Var(t,3:6) = OA(j,:);
Reg_Var(t,7) = Z(i,j)/1e7;
t=t+1;
end
end

% %% %0 %o %o %o %o % %o % %0 %0 %o %o % % %o
% ANALYSIS
%o % % %0 Yo % %o Yo %o % %o %6 %0 %o %o % % Yo

% To find beta values for main effects, 2- and 3-way interactions
Y(:,1) = Reg_Var(:,7);

X(:,1) = ones(4*16, 1);

dum_x(:,1:6) = Reg_Var(:,1:6);

% Finding 2-way interaction terms
t=1; % Index for storing results in dum_x
fori=1:2
for j=i+1:2
CxC(:,t)y=dum_x(:,i}.*dum_x(:,j);
t=t+1;
end

253

end
t=1;
fori=1:2
for j=3:6
CxN(:, t)=dum_x(:,i).*dum_x(:,j);
t=t+1,
end
end
t=1;
fori=3:6
for j=i+1:6
NxN(:,t)=dum_x(:,i).*"dum_x(:,j);
t=t+1;
end
end

% Finding 3-way interactions

t=1;
fori=1:2
for j=i+1:2
for k=j+1:2
CxCxC(:,t)=dum_x(:,i).*dum_x(:,j)-*dum_x(:,k);
=t+1;
sprintf(‘Foul Vaiue')
end
end
end
=1,
fori=1:2
for j=i+1:2
for k=3:6
CxCxN(:, t)=dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
end
end
end
t=1;
fori=1:2
for j=3:6
for k=j+1:6
CxNXN(:,t)=dum_x(:,i).*dum_x(:,j).*"dum_x(;,k);
t=t+1;
end
end
end
t=1;
fori=3:6
for j=i+1:6
for k=j+1:6
NXNXN(:, ty=dum_x(:,i).*dum_x(:,j)-*dum_x(:,k);
t=t+1;
end
end

254

end

way2 = [CxC CxN NxNJ;
way3 = [CxCxN CxNxN};

X = [X dum_x way2 way3]; % defining Regression Matrix
% Main Effects col: 2:7

% 2-way Effects col: 8:22 {CxC:8) (CxN:9:16) (NxN: 17:22)

% 3-way Effects col: 23:38 (CxCxN: 23:26) (CxNxN: 27:38)
b_part1 = regress(Y,X); % Finding beta's

save WORKSPACE_partt; % saving the variables for further use

normplot(b_part1); % To plot normal plot for the regression coefficients
titte(Normal Probability Piot -- Part 1);

hgsave('NormaiPiot_part1')

figure;

% Implementing Lenth Method
bi = abs(b_part1);
s0 = 1.5"median(bi);

limit=2.5"s0;
t=1;
[m,n}=size(X);
fori=1:n

if bi(i) <= limit

dumm(t)=bi(i);
t=t+1;

end
end
PSE = 1.5*median(dumm);
ME = tinv(0.975,n/3)*PSE;
gamma=(1 + (0.95%(1/n)))/2.0;
SME = tinv(gamma,n/3)*PSE;
hold on;
bar(b_part1);
xlabel(' Contrasts *);
ylabel(’ Estimated Contrasts’);
plot([0 50),[IME ME],--');
plot([0 50],[-ME -ME],"--r');
plot([0 50},[SME SME],-.k');
plot([0 50],[-SME -SME],"-.k');
plot([7 7],[max(b_part1) min(b_part1)], 'k','LineWidth',2);
plot([23 23],[max(b_part1) min(b_part1)], 'k’,'LineWidth’,2);
titie(Lenth-Bayes Plot for Verification -- Part 1');
text(6,max(b_part1)/1.2," Two Way Effects’);
text(25,max(b_part1)/1.2,'Three Way Effects’);

255

text(45,SME,'SME’);
text(45,-SME,- SME");
text(45,ME,"ME");
text(45,-ME,"- ME");
hgsave('LenthPlot_part1');

256

10.1

% Hydrodynamic Journal Bearings -- Analytical Soiutions is adopted from
% "Fundamentals of Fiuid Film Lubrication", Second Edition, by Hamrock, B.,
% Schmid, S., and Jacobson, B. by Marcel Dekker.

% We will use Half Sommerfeid Solution for Infinitely Wide Journal Bearing.
% We will look at it Wr, which is resultant load per unit width in a

% Journal Bearing and is measured in N/m. We will use the parameters given
% in the solution for Wr and will determine the order of the system.

% Control Factors are: n0 rb
% Noise Factors are: wb ¢ e

% By Jagmeet Singh on 05/24/2005

clear;clc;

% Defining Control Factor Levels.

% Control Factors are n0 and rb

CF_levels =[0.002 0.005; % n0
40e-3 60e-3]; % rb

% Defining Control Factor Array
CF_array = ff2n(2) + 1;
[m, n] = size(CF_array);

fori=1m
forj=1:n

% Defining Inner Array for experiments
Inner_array(i,j) = CF_levels(j, CF_array(i,j));
end
end

% Defining Noise Array

% Noise Factors are wh, cand e

NF_levels = [2*pi*100 2*pi*150; % wb
0.5e-3 0.8e-3; % ¢
0.2 0.7 1; % e

257

% Defining Noise Array
NF_array = ff2n(3) + 1;
[m, n] = size(NF_array);

fori=1m
forj=1:n

% Defining Outer Array Levels for the experiments
Outer_array_levels(i,j) = NF_levels(j, NF_array(i,j));
end
end

% Running Experiments at inner and Outer Array Settings
[iarows, iacols] = size(Inner_array);

[oarows, oacols] =size(Outer_array_levels);

h1 = waitbar(0);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprintf(Running Control Factor Experiment # %d’, iaruns));

% Setting the Control Factor Levels for Inner Array Experiments
n0 = Inner_array(iaruns, 1);
rb = Inner_array(iaruns, 2},

index = 1;

% Setting Outer Array Levels for Outer Array Experiments
fori = 1:.0arows

wb = Outer_array_levels(i,1);

¢ = Outer_array_levels(i,2);

e = Outer_array_levels(i,3);

Wr(iaruns, index) = (n0*wb*rb* ((rb/c)"2))*((6*e* ((pi*2 - ((e2)*(pi*2 - 4)))MO.5))) ((2 +
(e"2)) * (1 -(e"2))))

index = index + 1;

end
end

close(h1);
IA = CF_array*2 - 3; % To define Inner Array in -1, 1 levels
OA = NF_array*2 - 3; % To define Outer Array in -1, 1 levels

save WORKSPACE_1;

258

10.2

% To find significant 3-factor interactions we need to do regression on the
% results from the runs. We will analyze beta's (the regression
% coefficients) using both Normal Plot and Lenth Method.

% INPUT: Variables from the runs of Journal Bearing Half Sommerfeld
% Solution with 2-level factors in both CF and NF array.

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

% 05/25/2005 by Jagmeet Singh

clear;clc;
load WORKSPACE_1;
clear X;

t=1, % Index for rows of Regression Variable

fori=1:4
forj=1:8
% Reg_Var = [CF : NF : Wr];
% Reg_Var = [IA: OA : WrJ;
Reg_Var(t,1:2) = 1A(i,:);
Reg_Var(t,3:5) = OA(j,:);
Reg_Var(t,6) = Wr(i,j);
t=t+1;
end
end

Yo %% Yo %o %o % %o %0 % %o Yo % %o %o %o %o % %o %o %o % % %o Yo
% ANALYSIS
%0 % %o %o %o %o %o %o Yo %o %o %o %o %o Yo %o %o % %o %6 % %o % % Yo

% To find beta values for main effects, 2- and 3- factor interactions
Y(:,1) = Reg_Var(:,6);

X(:,1) = ones(4*8,1);

dum_x(:,1:5) = Reg_Var(:,1:5);

% Finding 2-factor interaction terms
t=1; % Index for storing resuits in dum_x
fori=1:2
forj=i+1:2
CxC(:,t) = dum_x(:,i).*dum_x(: j);
=t+1;
end

259

end
t=1;
fori=1:2
forj=3:5
CxN(:,t) = dum_x(:,i).*dum_x(:,j);
t=t+1;
end
end
t=1;
fori=3:5
forj=i+1:5
NxN(:,t) = dum_x(:,i).*dum_x(:,j);
t=t+1,
end
end

% Finding 3-factor interactions
t=1;
fori=1:2
forj=i+1:2
fork =j+1:2
CxCxC(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(;,k);
=t+1;
sprintf('Foul Vaiue');
end
end
end
t=1;
fori=1:2
forj=i+1:2
fork=3:5
CxCxN(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
end
end
end
t=1;
fori=1:2
forj=3:5
fork=j+1:5
CxNxNC(:,t) = dum_x(:,i).*dum_x(,j). *dum_x(:,k);
=t+1;
end
end
end

way2 = [CxC CxN NxNJ,
way3 = [CxCxN CxNxN};

X = [X dum_x way2 way3]; % Defining Regression Matrix

260

% Main Effects col: 2:6

% 2-factor Interactions col: 7:16 (CxC: 7) (CxN: 8:13)
% (NxN: 14:16)

% 3-factor Interaction col: 17:25 (CxCxN: 1719) {CxNxN:
% 20:25)

b_part1 = regress(Y,X); % Finding beta's
save WORKSPACE_part1; % saving the variables for further use

normplot(b_part1); % To plot normal plot for the regression coefficients
titie(' Normal Probability Plot for Regression Coefficients’);
hgsave('Normal_Plot');

figure;

% Implementing Lenth Method
bi = abs(b_part1);
s0 = 1.5"median(bi);

limit = 2.5*s0;
t=1;
[m, n] = size(X);
fori=1:n
if bi(i} <= limit
dumm(t) = bi(i);
t=t+1;
end
end

PSE = 1.5"median(dumm);

ME = tinv(0.975, n/3) * PSE;

gamma = (1 + (0.95%(1/n))) / 2.0;

SME = tinv(gamma , n/3) * PSE;

hold on;

bar(b_part1);

xlabel('Effects’, 'FontSize', 10, 'FontWeight', 'bold");

ylabel('Estimated Effect Contrasts', 'FontSize', 10, 'FontWeight', 'bold’);

plot([0 35] , [ME ME], -r);
plot([0 35] , [-ME -ME], -r');

plot([0 35] , [SME SME], -.k);
plot([0 35] , [-SME -SME], - k');

261

plot([7 71,[max(b_part1) min(b_part1)], k', LineWidth",2);
plot([17 17],[max(b_part1) min(b_part1)], 'k, LineWidth',2);

title(Lenth Plot ', ‘FontSize', 12, FontWeight', ‘bold’);
text(7+1,max(b_part1)/1.2, Two-Way Interactions', 'FontSize', 7);
text(17+1,max(b_part1)/1.2, Three-Way Interactions’, 'FontSize', 7);

text(30,SME,'SME");
text(30,-SME, - SME');
text(30,ME, ME");
text(30,-ME, - ME?);

hgsave('Lenth_Plot’),

262

11.1

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with smali kinematic adjustments”, Gao,
% J., Chase, K. and Magleby, S., lIE Transactions, 1998, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect

% to Origin. The iocation of slider is U. We will take U as our response

% Variable. We will determine the order of slider crank mechanism wrt U.

% Parameters: A, B, C,D,and E
% By Jagmeet Singh on 05/27/2005

clear;clc;

% Defining Control Factor Levels.
% Control Factors are Ac, Bc, Cc, Dc, and Ec
CF_levels = [20 25; % Ac

12 18; % Bc

10 15; % Cc

30 40; % Dc

5 V4R % Ec

% Defining Control Factor Array
CF_array = ff2n(5) + 1;
[m, n] = size(CF_array);

fori=1m
forj=1:n

% Defining Inner Array for experiments
Inner_array(i,j) = CF_levels(j, CF_array(i,j));
end
end

% Defining Noise Array
% Noise Factors are An, Bn, Cn, Dn, and En
NF_levels = [-0.025 0.025; % An

263

-0.0125 0.0125; % Bn
-0.0125 0.0125; % Cn
-0.03 0.03; % Dn
-0.0025 0.0025]; % En

% Defining Noise Array
NF_array = ff2n(5) + 1;
[m, n] = size(NF_array);

fori=1m
forj=1:n

% Defining Outer Array Levels for the experiments
Outer_array_levels(i,j) = NF_levels(j, NF_array(i,j));
end
end

% Running Experiments at Inner and Outer Array Settings
[iarows, iacols] = size(Inner_array);

[oarows, oacols] =size(Outer_array_levels);

h1 = waitbar(0);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprintf('Running Control Factor Experiment # %d', iaruns));

% Setting the Control Factor Levels for inner Array Experiments
Ac = Inner_array(iaruns, 1);
Bc = Inner_array(iaruns, 2);
Cc = Inner_array(iaruns, 3);
Dc = Inner_array(iaruns, 4);
Ec = Inner_array(iaruns, 5);

index = 1;

% Setting Outer Array Levels for Outer Array Experiments
fori = 1:0arows

An = Outer_array_levels(i, 1);

Bn = Outer_array_levels(i, 2);

Cn = Outer_array_levels(i, 3);

Dn = Outer_array_levels(i, 4);

En = Outer_array_levels(i, 5);

264

% Defining the actual values for Parameters under a given
% experiment

A=Ac+An;
B =Bc + Bn;
C=Cc+Cn;
D =Dc + Dn;
E=Ec+En;

% Calling the subroutine to find Slider Position U
U(iaruns, index) = SliderPosition(A, B, C, D, E);

index = index + 1;
end
end

close(h1);
IA = CF_array*2 - 3; % To define Inner Array in -1, 1 levels
OA = NF_array*2 - 3; % To define Outer Array in -1, 1 levels

save WORKSPACE_1;

265

11.2

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with small kinematic adjustments”, Gao,
% J., Chase, K. and Magleby, S., IIE Transactions, 1998, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect

% to Origin. The location of slider is U. We will take U as our response

% Variable.

% Parameters: A, B, C, D, and E
% To Evaluate: U
% By Jagmeet Singh on 05/27/2005

function U = SliderPosition(A, B, C, D, E)

T = (D*2) - ((A-(0.7071*C)-E)Y2) - ((0.7071*C)Y*2);
U =B +sqgrt(T);
end

266

11.3

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with smali kinematic adjustments”, Gao,
% J., Chase, K. and Magleby, S., IIE Transactions, 1898, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect

% to Origin. The location of slider is U. We will take U as our response

% Variable. We will determine the order of slider crank mechanism wrt U.

% Parameters: A, B, C,D,and E
% By Jagmeet Singh on 05/27/2005

% INPUT: Variables from the runs of Slider Crank Position
% Solution with 2-level factors in both CF and NF array..

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

clear;clc;
load WORKSPACE_1;
clear X;

t=1; % Index for rows of Regression Variable

fori=1:2"5
forj=1:2%5
% Reg_Var = [CF : NF : Wr];
% Reg_Var = [IA : OA : Wr];
Reg_Var(t,1:5) = 1A(i,:);
Reg_Var(t,6:10) = OA(j,:);
Reg_Var(t,11) = U(i,j);
t=t+1;
end
end

%o %o % %o %6 % %o %o %o %o %0 %0 %o %o % %0 %o %o Yo % %o %o %o % %o
% ANALYSIS
%% %0 %o Yo Yo Yo %o % %o %o Yo %o %o %o %o %o %o %o %o %o % %o % Y

% To find beta values for main effects, 2- and 3- factor interactions
Y(:,1) = Reg_Var(:,11),
X(:,1) = ones(275*215,1);
dum_x(:,1:10) = Reg_Var(:,1:10);
267

% Finding 2-factor interaction terms
=1, % Index for storing resuits in dum_x
fori=1:5
forj=i+1:5
CxC(:,t) = dum_x(:,i).*dum_x(:,j);
t=t+1,;
end
end
t=1;
fori=1:5
forj=6:10
CxN(:,t) = dum_x(:,i).*dum_x(:,j);
t=t+1;
end
end
t=1;
fori=6:10
forj=i+1:10
NXN(:,t) = dum_x(:,i).*dum_x(:,j);
t=t+1;
end
end

% Finding 3-factor interactions
t=1;
fori=1.5
forj=i+1:5
fork =j+1:5
CxCxC(:,t) = dum_x(:,i).*dum_x(:,j).*dum_x(:,k);
t=t+1;
sprintf('Foul Value');
end
end
end
t=1;
fori=1:5
forj=i+1:5
fork =6:10
CxCxN(:,t) = dum_x(:,i).*"dum_x(:,j).*dum_x(:,k);
t=t+1,
end
end
end
t=1;
fori=1:5
forj=6:10
fork =j+1:10
CxNxN(:,t) = dum_x(:,i).*"dum_x(;,j}.*dum_x(:,k);
t=t+1;

268

end
end
end

way2 = [CxC CxN NxNJ,
way3 = [CxCxC CxCxN CxNxNJ;

X =[X dum_x way2 way3]; % Defining Regression Matrix
% Main Effects col: 2:11

% 2-factor Interactions col: 12:56 (CxC: 12:21) {CxN: 22:46)
% {NxN: 47:56)

% 3-factor Interaction col: 57:166 {CxCxC: 57:66) (CxCxN:
% 67:116) {CxNxN: 117:166)

b_part1 = regress(Y,X); % Finding beta's
b_part1 = b_part1(2:166);
save WORKSPACE_part1; % saving the variables for further use

normplot(b_part1); % To plot normal plot for the regression coefficients
title(' Normai Probability Plot for Regression Coefficients’);
hgsave('Normal_Plot');

figure;

% Implementing Lenth Method
bi = abs(b_part1);
sO = 1.5*median(bi);

limit = 2.5*s0;
t=1,
[m, n] = size(b_part1");
fori=1:n
if bi(i) <= limit
dumm(t) = bi(i);
t=t+1,;
end
end

PSE = 1.5*median(dumm);

ME = tinv(0.975, n/3) * PSE;
gamma = (1+ (0.95%1/n))) / 2.0;
SME = tinv(gamma , n/3) * PSE;

hold on;
269

bar(b_part1);
xlabel('Effects’, 'FontSize', 10, 'FontWeight', 'bold");
ylabel(‘Estimated Effect Contrasts’, ‘FontSize’, 10, FontWeight', 'bold');

plot([0 170] , [ME ME], "-r);
plot([0 170], [-ME -ME], -r');

plot([0 170] , [SME SME], -.k);
plot([0 170] , [-SME -SME], -.k');

plot([10 10],[max(b_part1) min(b_part1)], 'k','LineWidth',2);
plot([55 55],[max(b_part1) min(b_part1)], 'k','LineWidth',2);

tittle(Lenth Plot ', 'FontSize', 12, 'FontWeight', ‘bold");
text(10+1,max(b_part1)/1.2, Two-Way Interactions’, ‘FontSize', 7);
text(55+1,max(b_part1)/1.2, Three-Way Interactions’, 'FontSize’, 7);

text(167,SME, SME):;
text(167,-SME, - SMEY);
text(167,ME,'ME’);
text(167,-ME,- ME");

hgsave('Lenth_Plot’);

270

121

Working with Hierarchical Probability Model, Weak
Hierarchy for Compound Noise

T R 025 025 01 0025 01 0 0)
0 101 o 0251025 01 07025 04 0.0
025 025 01 0 O 0 g 0
g 1o Table2 ;=
£ 3 043 0.31 004 0 0.17 0.08 0.02 O
- = 1 1
Tablel = - 3 3 043 031 0.04 0 0.17 0.08 002 0
0.43 031 004 0 O 0 0 0
2 g /
33
i) -!— 051 =1
3 J
[Table:= augmen(Tablel, Table2) ~ Defining the Parameters for Hierarchical
Probability Model.
[acf:=7 Number of Control Factors
nnf := 5 Number of Noise Factors
[total;var:= nnf + ncf
[Model_to_be_used:= 1 1 for Basic WH

2 for Basic low w

3 for Basic 20 order
i == Model to be used— | 4 for Fitted WH
5 for Fitted low w

g i
6 for Fitted 20d order

Defining Parameter of the Model

c:= Tablg o sl := Table | s2 := Tablg 7 wl:= Tablg 3 w2 := Tablg 4

p := Tablg 5 pll :=Tablg ¢ pOl:= Tablg 7 p00 := Tablg g plll := Tablg g

p011 := Tablg 1¢ pOOl := Tablg 17 p000 := Tablg |2

Number of Experiments to be peformed

max_expts:= 500 Iexpt = 0..(max_expts— 1)
PNt

1= total_var—1

=1 k=4

8cxpt =

Si.kxpt =

D« 0

for ie0..ncf+ nnf — 1

Dj o« 0 if (Seth)i,O > p

Dj 0« 1 otherwise

D

D« 0

Dj,j« 1
Di,j<—0
Djj«1
Dj,j« 0

Dj,j« 1

Di,j(—O

zeros:= |D« 0

D

Sijkexpt ==

for ie0..k
Dj,0« 0

D« 0

for ie0..k
Dj, 0«0
for ie 0.k
for je0.k

for ie0..(total_var— 2)
for je(i+ 1)..(total_var— 1)

sum 8 « (Sexpt)i,o"' (ﬁexpl)j,o

dummy & « runif(1,0,1)

if [(sum 8 = 0) A (dummy380,0 < p00)]
if L(sum_?) = 0) A (dummy_&o,o > pOO)_‘
if [(sum_ﬁ = 1) A (dummy§0,0 < pOl)]
if [(sum 8 = 0) A (dummy3o,0 > po1)]
if [(sum 8 = 2) A (dummy 9,0 < pl1
(

]

)
if [(sum_S =2) A dummy 8¢, 0 > pll)]

272

(Bijkexpt), ;P

Bijkexpt

For active main effects

For active two-factor
interactions

dijkexpt := |D « 0
A«0
for ie0.k
Dj 0«0
for ie0..k
for je0..k
(aijketh)i~J P For active three-factor
for i€ 0.. (total_var— 3) interactions
for je(i+ 1)..(total_var—2)
for ke (j+ 1)..(total_var—1)
sum 8 < (Sexpl)i‘0+ (Seth)j’g"' (seth)k,O
dummy & « runif{1,0,1)
A« 1 if [(sum = 0) A (dummy 8,0 < p000
A0 1f|: sum_ 8 = 0) A | dummy ¢ ¢ > p000
A1 1f[sum8_ l)/\ dummy 8¢, ¢ < p001

A0 if [(sum& = 2) A (dummydg, o > pO11

(

(

(

A «0 if [(sum = 1) A (dummy8g,0 > poo1

(

(

A1 if [(sum 8 = 3) A (dummy3g,0 < pl11
(

)]
)]
)]
)]
A« 1f[sum_d = 2) A dummy 8¢ o < pOll)]
)]
)]
)]

A 0 if [(sum 8 = 3) A (dummy3g,0 > pl11

[(Sijkcxpt)i’j}k’o «A

Sijkexpt

ti= |t 0
for ie0..k
tj < wl if [i £ (nnf - 1)]

tj < 1 otherwise

273
For Main Effect Coefficients

Biexpt == | Biexpt < 0
for ie0..k
(ﬁiexpt)i « timorm(1,0,1)p, ¢ if (5expl)i =0

(Biexpt)i « ti-rnorm(1,0,¢)p, o otherwise

(B i¢-:xpt)

For Two-Way Interaction Effects

Bilexpt = Bijepo—O
for ie0..k
for je0..k

(Bijexpt)i,j <0

for i€ 0..(total var— 3)

for je(i+ 1)..(total_var—2)
(Bijexpt)i’j «[() 4j-morm(1,0,51)0,0] if (Si_'bxpt)i,j =0

(Bi_'bxpt)i’j “ [(ti) tj-mnorm(1 ,O,c:‘sl)g,o] otherwise

Pilexpt

For Three-Way Interaction Effects

Pijkexpt = |Bijkexpt = 0
D« 0
for ie0..k
Dj 0«0
for ie0..k
for je0..k
(Bikexpt), ; < D

for ie0.. (total var— 3)
for je(i+ 1)..(total_var—2)
for k e (j+ 1)..(total_var— 1)

[(Bijkcxpt)i,j]k 0(_(,i.tj.tk.mom(l,o,sz)o,g) if [[(Bijkexpt)i,j]k O:I =4

[(ﬁijkexpt)i J_]k R (t-tj-tg-morm(1,0,c-s2)g,0) otherwise

Biikexpt

Control Factor Array

275

CF_array := stack(CF_arrayl,CF_array2)

Noise Factor Array

NF_array :=

276

—

e e

—

Yexpt =

Yexpt < 0
for cfrunse 0.. (128 — 1)
for nfrunse 0..(32 - 1)

(cfruns)
Xlexpt < (CF_arrayT)

Wit b 1

T T
Xexpt € augmen{xZexm sXlexpt)

sumlexpt ¢ Z [[(Biexpt) ‘-] xexpt) 0, i]

i=0
sumZexpt ¢ Z Z I:H: ﬁljcxpt :I Xexpt)o !] (xexpt)o’j]
i=0 j=0
11
sum3expt ¢ z Z z |:|: ﬁjkexpt :| (Xexpt)ﬁ‘i‘(xexpt)o’j'(xexpt)o,k]
i=0 j=0 k=0 K

< sumlexpt + sumZexpt + sum3expt + rmorm(1,0,w2)g o

(Yexpt) cfruns, nfruns

Yexpt

277

Finding the Variance of Response at each CF Setting
and finding the robust setting

Variance_yxpt := | for cfrunse 0.. (128 — 1)

T {cfruns)
Yrowsexpt < (Yexpt)

(Variance _y,xp;) — var(yrowsexpt)

cfruns

Variance_¥xpt

Augmented_Matrigxpt == augmen(Variance _)éxpt,CFmarray)

Actual_Robust_Settingpt == csort(Augmented_Matrigxpt, 0)

(o
Robust_Settingxpt = (Actua]iRobust_Settin@(pt)

Minimum_Varianggpt := (Robust_Settingxpt)O 0

Average_Variancgxpt := mean(Variance _)éxpt)

Robust_Settinggpy := | for ie 1.7

(Aiipy .0 (Robust_Settingxpy),

A

Robust_Setting = | -1

Using Compound Noise to Predict the Robust Setting Yy

Setting up Compound Noise (Extreme)

CN_settingxpt := | for i€ 0..(anf - 1)

1 -1)
Ai,()‘—Sigl{(Bicxpt)i] | -1
Ai,l(——l'SigT{(Biexpt)i} CN_setting =| 1 -1
- % 1
4 1)

Finding Response Under Compound Noise

Y_Compexpt := | Y_COMpexpt
for cfrunse 0.. (128 — l)

for nfrunse 0.. (2 —

{cfruns)
x}expt L om (CF array)
X2expt ¢ (CN_SeHingxpt)(HMS)

T T
Xexpt € augmen{(xZexpt) Xlexpt :I

sumlexpt < Z [[Biexpt] xexpt)o 1]

sumZexpt Z Z [[[Bl_lexpt] Xexpt)o ,] (expt) 0 J]

1010

i=0 j=0 k=0
(v_compexp)

cfruns, nfruns

¥_compexpt

279

sumBexpt < Z Z Z |:|: ﬁllkexpt :] (xﬁxpt)o 1(xexpt) (xﬁth)o k:l

< sumlexpt + sumZexpt + sum3xpt + rnorm(1 ,0,w2)0,0

Finding the Variance of Response at each CF setting under Compound Noise
and Predict the Robust Setting

Variance_y_compxpt =

for cfrunse 0.. (128 — 1)

T {cfruns)
Yrowsexpt < (y_compexpt)

(Variance _y_comgxpt)c i “— var(yrowsexpt)

Variance_y_compypt

Augmented Matrix_comgypt = augmen(Variance _y_comgxpt,CF_array)

Predicted Robust Settingpt := csort(Angmented_Matﬁx_corrgkpt,0)

Robust_Setting_compypt = (PredictedﬁRobust_Settin&pt

Minimum_Variance_conggpt := (Robust_Seuing_comp[)

T)(O)

0,0

Robust_Setting_compxpt := | for ie1..7

(A)(i-l) 0«(—(Rc.bust_Set’cing_comg,q)t)i 0

A

Robust Setting = | 1 Robust Setting_ comp =| 1

Finding the Variance at Predicted Robus{Setting by Compound Noise

Predicted_Variancgxpt := | for cfrunse 0..(128 — 1)
settingxpt < for iel..7

1\{cfruns)
A(i-1),0 (Actual_Robust_Settirl&pt) i.0
A
)\ {cfruns
Var < (Actuai_Robust_Settiﬂ&pt) 0.0

break if (settingxptz Robustjetting_compxp;)

Var

Defining Improvement Ratio

- = . (Average_Variancexpt - Predicted__-Varianchpt)
mprovement = -
. oo (AvcrageﬂVarianchpt = Minimum__Varian@(pt)

H,:= histogran{10, Improvement_Rati)

Histogram Plot of Improvement Ratio

150

z 100
g H(»

N

=1

= 50

HO
Improvement Ratio

lmean(Improvement_Ratﬁ) =0.313
Overall Results

[median(lmprovement_Ratib = 0.407
281

Defining Ratio of Predicted Variance to Minimum Variance

Predicted Variancgxpt

Fractionlexpt := HJ = histogran(10, Fraction1)

Minimum_Varianggpt

Fraction
400 T T

o

Frequency

20 30
o
Fraction Value

[mean(Fraction]) = 2.817 [median(Fraction) = 2.243

282

13.1

Working with Hierarchical Probability Model, Strong
Hierarchy Model for Compound Noise

@25 025 01 D025 0L 0 0)

025 025 01 U025 61 0 O

625 025 01T D i 0 0
Table2 :=

0.43 031 0.04 0 0.17 0.08 0.02 0

043 031 0.04 0 0.17 0.08 0.02 0

043031004 00 @9 o 0

[Table = augmen(Tablel,Table) ~ Defining the Parameters for Hierarchical

Probability Model.
[nef:= 7 Number of Control Factors
[nf =5 Number of Noise Factors EET e
[Model_to_be_used:= 3 1 for Basic WH

2 for Basic low w

3 for Basic 204 order
i := Model to be used— 1 4 for Fitted WH
5 for Fitted low w

ji=1
6 for Fitted 20d order

Defining Parameter of the Model

c:= Tablg o sl := Table | s2:= Tablg 2 wl := Tablg 3 w2 := Tablg 4
p = Tablg 5 pll := Tablg ¢ pOl := Tablg 7 p00 := Tablg g plll = Tablg g

p011 := Tablg 1¢ p001 := Tablg 17 p000 := Tablg 12

Number of Experiments to be peformed

max_expts:= 500 expt := 0..(max_expts— 1)

Tablel :=

10

10

15

15

15

—_—

W= W= W=

Wl wln o

<

284

1= total_var—1 L=i k=]

Sexpt = runifinef + nnf, ﬁ’l)

Bexp[= D «— 0

for ie0..nef+ nnf -1 For active main effects
Dj 0«0 if (és,:,q,t)i P
Dj 0 « 1 otherwise

D

(ﬁijcx;)t)i_j =10

dijexpt = |D« 0
for i€0..(total_var—2)
for je(i+ 1)..(total_var— 1)
sum 8 < (Sexpt)i’o*' (Se’q’t)j,o
dummy § < runif(1,0,1)
Dj j« 1 if [(sum_ﬁ =0) A dummy 39,0 < p00 :|
Dj,j« 0 if [{sumd = 0) A dummy 8¢, ¢ > p00 J

()
(()
1D T (sum_& = 1) A (dummy 00,0 £ pOl)] il;otl(’::acct:iv‘fni;wo-factor
Dj j« 0 if (sum_& =0) A (durnmy_&o,g > pOl):|
Dj j« 1 if [(sum8 = 2) A (dummy3g,0 < p11)]
D j« 0 if [(sum 8 = 2) A (dummy3o,0 > p11)]
D
zeros:= | D« 0
for ie0..k
Dj,o« 0

D

Sijkexpti= [D <0

for ie0..k
Di,0«0

for ie0..k
for je0..k

(Sijkespt), ;D

Bij kexpt

285

Sijkexpt:i= |D« 0

A0

for ie 0.k
Di g« 0
for ie0..k
for je0..k

Sijkexpt). . < D .
(. xm)”l For active three-factor
for ie0..(total_var— 3) interactions

for je(i+ 1)..(total_var—2)

for k e (j+ 1)..(total_var— 1)
sum 8 « (Bexpt)i’o"" (5expt)j’0+ (Beth)k,O
dummy 8 < runif{1,0,1)
A« 1 if [(sumj = 0) A (dummy 8¢ o < p000
A <0 if [(sum 8 = 0) A (dummy38,0 > p000
A« 1 if [(sum = 1) A (dummy38g,0 < p001

()]
()]
()]
A« 0 if [(sum_B = 1) A (dummy_&o,o > pOOl)J
A« 1 if [(sum 8 = 2) A (dummy38g,o < po11)]
A «0 if [(sum 5 = 2) A (dummy30,0 > pol1)]
A« 1 if [(sum_& = 3) A (dummy_ﬁo,o < plll)
A« 0 if [(sum8 = 3) A (dummy3g,0 > p111)]
[(aijkexm)i,ﬂk’o “A

Sijkexpt

ti= |t<0
for ie0..k
tj < wl if [i £ (nnf - 1)]

tj « 1 otherwise

286
For Main Effect Coefficients

Biexpt = | PBiexpt < 0

for ie 0.k

(Biexpt)

For Two-Way Interaction Effects

Bliexpt == |Bliexpt <~ 0
for ie 0.k
for je0..k
(Biiexp); ; <0
for i€ 0.. (total_var- 3)
for je(i+ 1)..(total_var— 2)

Plexpt

For Three-Way Interaction Effects

Pijkexpt = Bijkexpt < 0
D« 0
for ie0..k
Dj, 0«0
for ie0.k
for je0..k
(Bifkexpd); | D

for ie0..(total_var—3)
for je(i+ 1)..(total_var—2)
for ke (j+ 1)..(total_var—1)

Pijkexpt

(Biexpt)i « timorm(1,0,1)g,0 if (éSe,(pt)i =0

(ﬁiexpt)i « ti-rnorm(1,0,¢)p, o otherwise

(Biexpt), . < [(t)tjrmorm(1,0,51)0,0] if (ilexpt);
L) 1,

(Bi.iexpt)i,j © [(ti) tj-rnorm(1 ,O,C-SI)O,()] otherwise

c=10

%= 0.00000000001

[(Bijkexpl)i,j]k : o (li‘tj‘tk'morm(] ,0,82)0,0) if [[(Sijkexpt)i,j]k 0i| =i

[(Bi}kexpt)i Jk . « (ttj-t-rorm(1,0,c52)9,0) otherwise

total var= 12

Control Factor Array 11

$2=1x10

288

y := stack(CF_arrayl,CF_array2)

CF_arra

-1 -1 -1 -1 -1)

-1 -1 -1 -1

1
-1

1
1

-1 -1 -1
-1 -1 -1

-1 -1
-1

1

-1 -1

-1 -1

-1 -1

-1 -1 -1

1

-1

-1 -1

1

-1

-1 -1 -1 ~1
-1 -1 -1
-1 -1

-1 -1

1

1
~1

-1 -1

1

-1 -1 ~1

-1 -1

-1 ~1

y =

NF_arra

Noise Factor Array

289

Yexpt = | Yexpt < 0
for cfrunse 0..(128 — 1)

for nfrunse 0..(32 - 1)

(cfruns)
Xlexpt ¢ (CF array)

X2expt (NF_a"aYT)<nﬂuns>

ik T
Xexpt € augmen(x%xpt »Xlexpt)

sum lexpt Z [[(ﬁiexpt)i:l -(Xexpt)o,i]

i=0

s 3 3 [[[(0d, ol oy

10]0

sum%xpt*—z Z Z [[B‘Jkexpt :] (xcxpt)o,i‘(xexpt)ogj'(xcxpt)o,k]

i=0 j=0 k=0
(chpt) almE L « sumlexpt + sumZexpt + sum3expt + rnorm(1 ,0,w2)o,0

Yexpt

290

Finding the Variance of Response at each CF Setting
and finding the robust setting

Variance_yxpt := | for cfrunse 0.. (128 — 1)

T {cfruns)
YrOoWsexpt < (chpt)

(Variance _)éxpt) s «— var(yrowsexpt)

Variance_¥xpt

Augmented_Matrigypt = augmen(Variance _)expt,CFiarray)

Actual_Robust_Settingept = csort(Augmented_Matrigxpt, 0)

o
Robust_Settingxpt = (Actual_RobLlst_Setting(ptT)

Minimum_Varianggpt = (Robust_Settingxpt) 0.0

Average Variancgxpt = mean(Variance _y:xpt)

Robust_Settingxpt = | for iel..7
(A)(Fl) 0 (Robust_Scttingxpt)i 0

A

Robust_Setting = | —1

Using Compound Noise to Predict the Robust Setting

Settine in Comnonund Noise (Extreme)

CN_settin&xpt = | for 1€0..(onf - 1) _— \
Rl Sig{(ﬂie"l")i] 1 -1
Aj 1 < —l.sig{(ﬁiexpt)i] CN setting =| 1 -1
-1 1
A
-1 1)

Finding Response Under Compound Noise

y_Compexpt := |Y_COMPexpt
for cfrunse 0..(128 — 1)
for nfrunse0..(2 - 1)

(cfruns)
T
xlexpt «— (CF_a.[Tay)
- fru
xzexpt = (CN_SEmn&xpt)(n l'lS)

T) T
Xexpt < aug'men[(x%xpt sxlexpt]

sumlexpt ¢ Z LL ﬁlexpt)] xexpt)g ,]

somespt ¢ 3 z [[[(Biexed; - (xexpy ;] (rexpdy ;]

i=0 j=0

sumZexpt < Z Z Z |:[ﬁ]kexpl]k O(Xexpt) (Xexpt)o (xexpt)o,k}
=0 j=0lk=0

(y_compexpy)

cfruns, nfruns < sum lexpt + SUm?expt * SUm3expt + morm(1,0,w2)qg .0

¥_compexpt

292

Finding the Variance of Response at each CF setting under Compound Noise
and Predict the Robust Setting

Variance_y_compxpt := | for cfrunse 0.. (128 - 1)

1\{cfruns)
YIOWsexpt < (Y_Comlbxpt)

(Variancc _yicomgxpt) . <« var(yrowsexpt)

Variance_y_compxpt

Augmented Matrix_comgxpt = augmen(Variance _y_comgxpt,CF_array)

Predicted_Robust_Settingpt = csort(Augmented_Matrix_comﬁpl, 0)

(o)
Robust_Setting_compypt := (Predicted_Robust_Settin&m)

Minimum_Variance_comgpt = (Robust_Setting_con@,‘pt) 0.0

Robust_Setting compypt = | for ie 1.7
(A)(= e (Robu's,t_Sf:tting_'comp,(p[)i 0

A

-1 -1)
1 1
~1 -1

Robust_Setting = | 1 Robust_Setting_comp = | —1
1 -1
=] 1
1) -1)

Finding the Variance at Predicted Robusf;Setting by Compound Noise

for cfrunse 0..(128 — 1)
settingypt « | for ie1..7

Predicted_Variancgxpt =

T {cfruns)
A(i-1),0 < (Actual_Robust_Settin&pt) i0
A
T {cfruns)
Var « (Actual_Robust_Settin@;pt) 0.0

break if (settingxpt = Robust_Settingﬁcom&pt)

Var

Defining Improvement Ratio
! (Average_Vaﬁanc@xpt = Predicned_Vaﬁanchpt)
Improvement Ratigypt := : .. -
(Average_Vananchpt - Mlmmum__Vanaan(pt)

H,:= histogran(10, Improvement_Ratj)

Histogram Plot of Improvement Ratio

200

{0

P

100

Frequency

Improvement Ratio

[mean(lmprovement_Ratfp = 0.479
Overall Results

median(Improvement_Ratip = 0.599
294

Defining Ratio of Predicted Variance to Minimum Variance

Predicted Variancgxpt

Fractionlexpt :i= —— ;
*P Minimum_Varianegpt
Fraction
600 T T T
a\ —
=
2
o
o
£ _
0 1 |]
0 5 10 15 20

Hl(o)
Fraction Value

[rnean(FractionI) = 2.031

[median(Fraction]) = 1.561

Hl. = histogran{ 10, Fraction])

295

14.1

% function surrogation()

% We first assume the model parameters we want to use in Fitted WH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% Base Standard Deviation is taken as the average of standard deviations at
% all CF settings.

% We will find optimal control factor setting for surrogated model using

% Transmitted Variance Model. And compare that with optimal control factor

% setting got from using Monte Carlo to generate noise factor seftings. We

% will run this for 200 models. Each model has 7 CF's and 5 NF's and Fitted WH
% model determines how active they are.

% Fitted WH for 200 models for Strong Hierarchy Fitted WH Model

% 09/29/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsetting]=fracfact('a b c d e f g'); % defining 2(7) Fuil Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact('a b cd e'); % defining 2(5) Full Factorial Array for NF's

modelpara=4; % Defining which model parameters we would be using for Strong Hierarchy
model

% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted

% low order(5); Fitted 2nd order(6}

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
wi=modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); pO1=modelparameter(1,8); p00=modelparameter(1,9);% defining
parameters

ncf=7; % # of CF's
nnf=5; % # of NF's

296

counter_OCF_1 = 0; % To increment when OCF from MC is same as from Noise Surrogation

MU=[0 O 0] 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates ldentity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

% % % %o %o %o %o %o %o Yo %o %o %o %o %o % Yo %o %o %o %o %o Yo Yo %o %o %o %o Yo Yo %o %o % Yo % %o % % %o
maxmodels = 200; % The number of models to be tested

%% % %o %o %o %o %o Yo % %o %o Yo %o %o Yo %o %o %o %o %o %o % %o %o Yo Yo %o % %o Yo %o Yo % %o % Yo % Yo

h1 = waitbar(0,'Running Models');

for modeicounter=1:maxmodels % To run a given number of models
[bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00); % Finding beta values for a given

modeil

[main_noises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale
% 4th and 5th element of indices will give the indices of main 2 noises

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end

y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2});
ResponseMatrix1({index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns));
index_resp_matrix = index_resp_matrix + 1, % For Storing Response Matrix
end
end

297

% Changing ResponseMatrix1 to [N1 N2 C1:C7 Y] where N1 and N2 are two
% main noises and C1:C7 are control Factors and Y is the response we
% got from above and naming it ResponseMatrix_NS

ResponseMatrix_NS = [ResponseMatrix1(:,indices(4)) ResponseMatrix1(:,indices(5))
ResponseMatrix1(:,6:13)};

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1' for 2 main noises

nxc=1; % Counter for Control by Noise Interactions
for nf=1:2
for cf=3:9
NxC(:,nxc)=ResponseMatrix_NS(;,nf).*ResponseMatrix_NS(:,cf);
nxc=nxc+1;
end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:2
for nf2=nf1+1:2
NxN(:,nxn)=ResponseMatrix_NS(:,nf1).*ResponseMatrix_NS(:,nf2);
nxn=nxn+1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise interaction
for nf1=1:2
for nf2=nf1+1:2
for cf = 3:9

CxNxN(:,cxnxn)=ResponseMatrix_NS(:,cf).*ResponseMatrix_NS(:,nf1).*ResponseMatrix_NS(:,nf
2);
cxnxn = cxnxn + 1;
end
end
end
cxexn=1; % Counter for Control X Control X Noise Interaction
for nf=1:2
for cf1=3:9
for cf2=cf1+1:9

CxCxN(:,cxexn)=ResponseMatrix_NS(:,cf1).*ResponseMatrix_NS(:,cf2).*ResponseMatrix_NS(:,n
)
cXcxn = cxexn + 1;
end
end
end

298

% To find the fitted model for Transmitted Variance Model

inputs = [ones(4096,1) ResponseMatrix_NS(:,1:9) NxC NxN CxNxN CxCxN]};
[b,bint,r,rint,stats]=regress(ResponseMatrix_NS(:,10),inputs);

% bO(1) bi's(2:10) CxN({11:24) NxN(25:25) CxNxN(26:32) CxCxN(33:74) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =1ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:9) = b(2:10),
Bij(2,9) = 0;

index=11; % CxN
fori=1:2
for j=3:9
Bij(i,j) = b(index);
index = index + 1;
end
end

fori=1:2 % NxN
for j=i+1:2
Bij(i,j) = b(index);
index = index + 1;
end
end

Bijk(9,9,9) = 0;

fori=1:2 % CxNxN
for j=i+1:2
for k=3:9
Bijk(i,j,k) = b(index);
index = index + 1;
end
end
end

fori=1:2 % CxCxN
for j=3:9
for k=j+1:9
Bijk(i,j,k) = b(index);
index = index + 1;
end
end
end

299

% Fitting Transmitted Variance Model
forcf=1:128
sum1=0;sum2=0;
fornf=1:2 % First term in Variance Model
sum_a=Bi(nf);
sum_b=0;
for j=3:9
sum_b=sum_b+Bij(nf,j)*X(cf,j-2);
end
sum_c=0;
for j=3:9
for k=j+1:9
sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-2)*X(cf,k-2);
end
end
sum1 = sum1 + (sum_a + sum_b +sum_c)*2;
end

fornf=1:2 % Second term in Variance Model
for j=nf+1:2
sum_d=0;
for k=3:9
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-2);
end
sum2 = sum2 + (Bij(nf,j) + sum_d)*2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.?0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1),

op_std_1 =min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);

OCF_NS = PredMin_1(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y's_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma_uncorrelated);

STDev_MC = varianc.”0.5; % Stdev for each CF setting

300

%std_base_MC = STDev_MC(1,1);
std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of all STDev's

op_std_MC = min(STDev_MC); % Finding least Stdev
PredMin_MC = sortrows([STDev_MC X],1);
OCF_MC = PredMin_MC(1,2:8);

if OCF_MC == OCF_NS
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)(V) Noise Array
end

cf_NS=0; % To find number of Control factors whose settings are predicted correctly

for matching_cf = 1:7
if OCF_NS(1,matching_cf) == OCF_MC(1,matching_cf)
cf_NS =cf NS + 1,
end
end

matching_surrogate(modelcounter) = cf_NS; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Cario
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC),

% Determining the Optimali Standard Deviation from Noise Surrogation
Opt_NS = std_for_cfsetting(ResponseMatrix_MC, OCF_NS),

std_base = std_base_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_NS / Opt_MC);

% Storing Improvement Ratios for Noise Surrogation
std_fraction2(modelcounter) = ((std_base - Opt_NS)/(std_base - Opt_MC + 1e-10));

Y(modelcounter) = (std_base - Opt_NS)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modeicounter/maxmodels,h1,sprintf(Running Model #%d’,modelcounter))
end
close(h1); % Close waitbar

301

% saving workspace
save variables;

output;

302

14.2

function vector=models(modelpara)

% It defines the parameters that we would be using for Relaxed-Weak

% Heredity model

% Reference Chipman, Hamada and Wu paper 1997 and Li and Frey 2005 paper
% 03/04/2005 by Jagmeet Singh

Tablet=[10 1 1 1 1
10 1 1 01 0.1
10 1 0 1 1
15 13 2/3 1 1
15 13 2/3 04 0.1
15 13 0 1 1]

Table2 =[0.25 0.25 01 O 0.25 01 O 0
025 0.25 01 O 0.25 01 O 0
025 025 01 O 0 0 0 0
0.43 0.31 004 O 0.17 0.08 0.02 O
0.43 0.31 004 O 0.17 0.08 0.02 O
043 0.31 0.04 O 0 0 0 0};

Table1= [Table1 Table2]; % for input to Main Model
vector=Table1(modelpara,:);

303

14.3

function [bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00)

% Developing 2nd order RWH Model (without ERROR)
% INPUTS: # of CF's, # of NF's, c, s1, wil, p,
% p00, pO1, p11

% OUTPUT: bi's and bij's
% Developed on 03/03/2004 by Jagmeet Singh

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf
t(i)=w1,
else
t(i)=1,
end
end

delta=unifrnd(0,1,[1 nnf+ncf]); % Defining delta
for i=1:nnf+ncf % Prob (delta_i=1)=p
if delta(1,i) <=p
delta(1,i)=1,;
else
delta(1,i)=0;
end
end

deltaij(1:(nnf+ncf}),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining deita-ij [0,1]

if sum_deltas == % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j}=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when one of the factors is active
if deltaij(i,j) <= p01
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when both the factors are active
304

if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i)==0
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if dettaij(i,j) ==
bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else
bij(i,j)=t(i)*t()*normrnd(0,c*s 1),
end
end
end

305

14.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting
% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmest Singh
function [std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7);
std_dev = std(ysetting);

end
end

306

14.5

% Function Var_cf_setting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% it then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor setting for full model

% 03/16/2004 by Jagmeet Singh
function [ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar,;

X =1f2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = Ihsnorm(MU, sigma, maxnoisevar),
for cfruns = 1:size(X,1)
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1.j);
end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + normrnd(0,w2);
end
end

ResponseMatrix_MC =[Xy MC]; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC"))"; % Finding the Variance for each CF setting

307

14.6

% Function to plot the outputs of the response
% 03/04/2005 by Jagmeet Singh

function output()

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCF_MC is same as OCF_N1

figure; success=[(counter_OCF_1) (maxmodels-counter_OCF_1)];

explode = [1 0}; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type','text’); oldstr = get(textobjs,{'String'});

Names = {'Same CF levels: '|'Diff CF levels: '}; newstr = strcat(Names, oidstr);
set(textobjs,{'String’},newstr);

pos = get(textobjs,{’Position’}); pos{1,:} =[-0.28 -0.61 .35],
set(textobjs,{'Position'},pos);

title(['Success in prediction of OCF._M_CfromOCF._n o i s e s urrogation
for',num2str(maxmodels),’ modeis);

hgsave('piet’),

% Plotting Histograms

figure;

hist(std_fraction1);

title(['Histogram for Fraction of OPT.8TD_s_u_r r 0. g a t i o nto OPT.STD_M C for

,num2str(maxmodels),' modeis);

colormap cool; iq = prctile(std_fraction1,[25 50 75]); tmax = max(hist(std_fraction1));

line(fig(1) iq(1)1,[0 tmax], LineStyte','--"); line([ig(3) iq(3)],[0 tmax], LineStyle','--','Color',r');

line([ig(2) iq(2)1,[0 tmax], LineWidth',2,'Color','m"); legend(['25_t_h Percentile = ',num2str(iq(1))]...
[75_t_h Percentile =',num2str(iq(3))],['Median = ',num2str(iq(2))],’ Frequency');

xlabel("OPT.STD.NSurrogation / OPT.STD.MC");

ylabel(' number of systems '),

hgsave('fig1');

figure;

hist(std_fraction2);

title(['Histogram for Fraction of (STD_b a s e -

OPT.8STD_s_u_r.r o g a_ t i o n/(STD_b_a_s_e-OPT.STD_M_C) for ',num2str(maxmodels),’

models');

colormap cool; iq = prctile(std_fraction2,[25 50 75]); tmax = max(hist(std_fraction2));

line(flig(1) ig(1)1.[0 tmax], LineStyle',"--'); line(fig(3) iq(3)],[0 tmax], LineStyle','--,'Color',T");

line([ig(2) ig(2)].[0 tmax], LineWidth',2,'Color','m'); legend(['25_t_h Percentile = ',num2str(iq(1))]...
[75_t_h Percentite = ",num2str(iq(3))),[Median = ",num2str(iq(2))]," Frequency'),

xlabel('(STD.Base-OPT.STD.NSurrogation)/(STD.Base-OPT.STD.MC));

ylabel(" number of systems ');

hgsave('fig2');

308

figure;

plot(X1,Y,™, 'color','t');

X2 = [ones(size(X1')) X1,

a = X2\Y";

Y2 =a*Xx2'

B =[X1'Y27,

i0 = regress(Y',X1");

B = sortrows(B,1);

hold on;

line([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Coior','g’, 'LineWidth', 0.5),
line([0;B(maxmodels,1)],[0;i0*B(maxmodels,1)],'LineWidth',1.5);

title(['For 2”*n~d Order Model : Plotting (STD_b_a_s_e -
STDsurrogationySTD b as evs(STD b a_s_e-STD_o_p_tySTD_b_a_s_e
and slope = ', num2str(a(2,1))1);

xlabel({STD_b_a s_e-STD_o_p_t)/STD_b_a_s_e');

ylabel('(STD_b a s e-STD_s v r r o g a_ t i o n)ySTD_b_a_s_e')
hgsave('fig3");

prob_pos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels
if Y(1,index) >= 0.00
prob_pos = prob_pos + 1;
end
end

% Printing the resuits

sprintf(['mean(Number of OCF matched for Noise Surrogation) =
',num2str(mean(matching_surrogate))])

sprintf([' Probability that Noise Surrogation will Yield Positive Improvement =
,num2str(prob_pos/maxmodeis)])

309

15.1

% function surrogation()

% We first assume the model parameters we want to use in Fitted WH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% Base Standard Deviation is taken as the average of standard deviations at
% all CF settings.

% We will find optimal control factor setting for surrogated model using

% Transmitted Variance Model. And compare that with optimal control factor

% setting got from using Monte Carlo to generate noise factor settings. We

% will run this for 200 models. Each model has 7 CF's and 5 NF's and Fitted WH
% model determines how active they are.

% RWH for 200 models for Weak Hierarchy Fitted WH Model

% 09/29/2004 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf_cfsetting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact(a b cde’); % defining 2(5) Full Factorial Array for NF's

modelpara=4; % Defining which model parameters we would be using for Weak Hierarchy
modei

% Basic WH(1), Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted

% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
w1i=modelparameter(1,4); w2=modelparameter(1,5); p=modeiparameter(1,6);
p11=modelparameter(1,7); pO01=modelparameter(1,8); p00=modelparameter(1,9);
p111=modelparameter(1,10); p011=modelparameter(1,11); p001=modelparameter(1,12);
pO00=modelparameter(1,13),% defining parameters

ncf=7; % # of CF's
310

nnf=5; % # of NF's

counter_ OCF_1 = 0; % To increment when OCF from MC is same as from Noise Surrogation

MU=[0 O 0 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function

% generates identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

% % % %o %o %o %o %o %o Yo %o Yo %o % %o %o Yo %o Yo %o %o Yo %o Yo %o %o Yo %o Yo %o Yo %o %6 %o %o %o Yo %o %o
maxmodels = 200; % The number of models to be tested

% %o % %o Yo %o Yo %o %o Yo Yo % %o Yo %o Yo % Yo %o Yo %o %o Yo %o % %o %o %o %o %o Yo %o %o %o %o %o %o Yo Yo

h1 = waitbar(0,'Running Modeis");
for modelcounter=1:maxmodels % To run a given number of models

[bi, bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000); %
Finding beta values for a given mode!

[main_noises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale
% 4th and 5th element of indices will give the indices of main 2 noises

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1.j);
end
end
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)];

311

index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

% Changing ResponseMatrix1 to [N1 N2 C1:C7 Y] where N1 and N2 are two
% main noises and C1:C7 are control Factors and Y is the response we
% got from above and naming it ResponseMatrix_NS

ResponseMatrix_NS = [ResponseMatrix1(:,indices(4)) ResponseMatrix1(:,indices(5))
ResponseMatrix1(;,6:13)];

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1’ for 2 main noises

nxc=1; % Counter for Control by Noise Interactions
for nf=1:2
for cf=3:9
NxC(:,nxc)=ResponseMatrix_NS(:,nf).*ResponseMatrix_NS(:,cf);
nxc=nxc+1;
end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:2
for nf2=nf1+1:2
NxN(:,nxn)=ResponseMatrix_NS(:,nf1).*ResponseMatrix_NS(:,nf2);
nxn=nxn+1;
end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:2
for nf2=nf1+1:2
forcf=3:9

CxNxN(:,cxnxn)=ResponseMatrix_NS(:,cf). “ResponseMatrix_NS(:,nf1).*ResponseMatrix_NS(:,nf
2);
cxXnxn = cxnxn + 1;
end
end
end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:2
for ¢f1=3:9
for cf2=cf1+1:9

312

CxCxN(:,cxcxn)=ResponseMatrix_NS(:,cf1).*ResponseMatrix_NS(:,cf2).*ResponseMatrix_NS(:,n
)
cXcxn = cxexn + 1;
end
end
end

% To find the fitted model for Transmitted Variance Modei

inputs = [ones(4096,1) ResponseMatrix_NS(:,1:9) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_NS(:,10),inputs);

% bO(1) bi's(2:10) CxN(11:24) NxN(25:25) CxNxN({26:32) CxCxN(33:74) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X =1f2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:9) = b(2:10);
Bij(2,9) = 0;

index=11; % CxN
fori=1:2
for j=3:9
Bij(i,j) = b(index);
index = index + 1;
end
end

fori=1:2 % NxN
for j=i+1:2
Bij(i,j) = b(index});
index = index + 1;
end
end

Bijk(9,9,9) = 0;

fori=1:2 % CxNxN
for j=i+1:2
for k=3:9
Bijk(i,j,k) = b(index);
index = index + 1;
end
end
end

fori=1:2 % CxCxN
313

for j=3:9
for k=j+1:9
Bijk(i,j,k) = b(index);
index = index + 1;
end
end
end

% Fitting Transmitted Variance Model
for cf = 1:128
sum1=0;sum2=0;
fornf=1:2 % First term in Variance Model
sum_a=Bi(nf);
sum_b=0;
for j=3:9
sum_b=sum_b+Bij(nf,jy*X(cf,j-2);
end
sum_c=0;
for j=3:9
for k=j+1:9
sum_c=sum_c+Bijk(nf,j,k)*X(cf,j-2)*X(cf k-2);
end
end
sum?1 =sum1 + (sum_a + sum_b +sum_c)*2;
end

fornf=1:2 % Second term in Variance Model
for j=nf+1:2
sum_d=0;
for k=3:9
sum_d=sum_d+Bijk(nf,j,k)*X(cf,k-2);
end
sum2 = sum2 + (Bij(nf,j) + sum_d)*2;
end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1),

OCF_NS = PredMin_1(1,2:8);

314

% Doing Monte Cario for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y's_for_CFsetting]
[ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij,bijk, MU, sigma_uncorrelated);

STDev_MC = varianc.”0.5; % Stdev for each CF setting

%std _base MC = STDev_MC(1,1);
std_base_MC = mean(STDev_MC); % Base Stdev is taken as mean of all STDev's

op_std_MC = min(STDev_MC);, % Finding least Stdev
PredMin_MC = sortrows([STDev_MC X],1);
OCF_MC = PredMin_MC(1,2:8),

if OCF_MC == OCF_NS
counter_OCF_1 = counter_OCF_1 + 1; % When same Optimal CF setting is predicted by
Monte Carlo and 2(5-1)(V) Noise Array
end

cf NS=0; % To find number of Control factors whose settings are predicted correctly

for matching_cf = 1:7
if OCF_NS(1,matching_cf) == OCF_MC(1,matching_cf)
cf NS =cf NS +1;
end
end

matching_surrogate(modelcounter) = cf_NS; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
Opt_MC = std_for_cfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Surrogation
Opt_NS = std_for_cfsetting(ResponseMatrix_MC, OCF_NS),

std_base = std_base_MC; % Base Stdev is taken as mean of all STDev's
% Storing and Analysing Results
std_fraction1(modelcounter) = (Opt_NS / Opt_MC};

% Storing Improvement Ratios for Noise Surrogation
std_fraction2(modelcounter) = ((std_base - Opt_NS)/(std_base - Opt_MC + 1e-10));

315

Y(modelcounter) = (std_base - Opt_NS)/std_base;
X1(modelcounter) = (std_base - Opt_MC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf(‘'Running Model #%d',modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

316

15.2

function vector=models(modelpara)

% It defines the parameters that we would be using for Relaxed-Weak

% Heredity model

% Reference Chipman, Hamada and Wu paper 1997 and Li and Frey 2005 paper
% 03/04/2005 by Jagmeet Singh

Table1 ={10 1 1 1 1
10 1 1 01 041
10 1 0 1 1
15 13 213 1 1
15 13 2/13 01 01
15 13 0 1 11;

Table2 =[0.25 0.25 01 O 0.25 01 O 0
025 0.25 01 O 0.25 01 O 0
025 0.25 01 O 0 0 0 0
043 0.31 004 0 0.17 0.08 002 O
043 0.31 0.04 0 0.17 0.08 002 0
0.43 0.31 004 O 0 0 0 0];

Table1= [Table1 TableZ2]; % for input to Main Model
vector=Table1(modelpara,:);

317

15.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000)

% Developing 3rd order RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: #of CF's, #ofNF's, ¢, s1, s2, wl, p,
% p00, pO1, pi1, p111, p011, p001 p0OO

% OUTPUT: bi's, bij's,and bijk's
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (w1)
w1 =1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf
t(i)=w1;
else
t(i=1;
end
end

delta=unifrnd(0,1,[1 nnf+ncf]); % Defining deita
for i=1:nnf+ncf % Prob (deita_i=1)=p
if delta(1,i) <= p
delta(1,i)=1;
else
delta(1,i)=0;
end
end

deltaij(1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + deita-j
deltaij(i,j)=unifrnd(0,1), % Defining delta-ij [0,1]

if sum_deitas == % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == 1 % Defining delta-ij when one of the factors is active
318

if deltaij(i,j) <= p01
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when both the factors are active
if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

end
end

% Defining delta-ijk
deltaijk(1:(nnf+ncf),1:(nnf+ncf), 1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j)+delta(1,k); % Finding the sum of delta’s
deltaijk(i,j,k)=unifrnd(0,1), % Defining deita-ijk [0,1]

if sum_deltas == % Defining delta-ijk when all 3 main effects are inactive
if deltaijk(i,j,k) <= p000
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas == % Defining delta-ijk when all 2 main effects are inactive
if deitaijk(i,j,k) <= p001
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas == % Defining delta-ijk when all 2 main effects are active
if deltaijk(i,j,k) <= p011
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deitas == 3 % Defining delta-ijk when all 3 main effects are active
if deltaijk(i,j,k) <= p111
319

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

end
end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i) ==
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if deltaij(i,j) ==
bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else
bij(i,j)=t(iy*t()* normrnd(0,c*s1);
end
end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:nnf+ncf
for k=j+1:nnf+ncf
if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,s2);
else
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,c*s2);
end
end
end
end

320

15.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting
% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmeet Singh
function [std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7);
std_dev = std(ysetting);

end
end

321

15.5

% Function Var_cf_setting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor setting for full model

% 08/10/2004 by Jagmeet Singh
function [ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, bijk, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar,

X =1f2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = Ihsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end
end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(0,w2);
end
end

ResponseMatrix_MC = [X y_MC]; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC"))'; % Finding the Variance for each CF setting

322

15.6

% Function to plot the outputs of the response
% 09/29/2004 by Jagmeet Singh

function output()

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCF_MC is same as OCF_N1

figure; success=[(counter_OCF_1) (maxmodels-counter_OCF_1)];

explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type','text’); oldstr = get(textobjs,{'String'});

Names = {"Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String’},newstr),

pos = get(textobjs,{’Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position’},pos);

title(['Success in prediction of OCF._M_Cfrom OCF._n_ o_i_s e_s urrogation
for',num2str(maxmodels),’ models);

hgsave('pie1’);

% Plotting Histograms

figure;

hist(std_fraction1);

titie([Histogram for Fraction of OPT.STD_s_u_r r 0_g a_t i o nto OPT.STD_M_C for

" num2str(maxmodels),’ modelsT);

colormap cool; iq = prctile(std_fraction1,[25 50 75]); tmax = max(hist(std_fraction1));

line(fig(1) ig(1)],[0 tmax], LineStyle','--"); line([iq(3) iq(3)],[0 tmax], LineStyle',--,'Color’,'r');

line([iq(2) iq(2)],[0 tmax], LineWidth',2,'Color','m’); legend(['25_t_h Percentiie = ',num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],[Median = ",num2str(iq(2))],' Frequency');

xlabel('OPT.STD.NSurrogation / OPT.STD.MC');

ylabel(’ number of systems ');

hgsave('fig1');

figure;

hist(std_fraction2);

title(['Histogram for Fraction of (STD_b_a_s_e -

OPT.8TD s urrogation)(STD b a s e-OPT.STD_M_C) for’,num2str(maxmodels),’

modeis');

colormap cool; iq = pretile(std_fraction2,[25 50 75]); tmax = max(hist(std_fraction2});

line(lig(1) ig(1)].[0 tmax],'LineStyle’,'--"); line([iq(3) iq(3)},[0 tmax], LineStyle','--','Color','r');

line([iq(2) ig(2)],[0 tmax],'LineWidth',2,'Color','m"); legend(['25_t_h Percentile = ',num2str(iq(1))]...
J75_t_h Percentile = ',num2str(iq(3))],[Median = ",num2str(iq(2))],' Frequency'");

xlabel('(STD.Base-OPT.STD.NSurrogation)/(STD.Base-OPT.STD.MCY);

ylabel(' number of systems);

hgsave(fig2');

323

figure;

plot(X1,Y,™" 'color','r');

X2 = [ones(size(X1")) X117,

a = X2\Y"

Y2 = a*Xx2',

B =[X1'Y27;

i0 = regress(Y',X1");

B = sortrows(B,1);

hold on;

line([B(1,1);B(maxmodels, 1)}, [B(1,2);B(maxmodels,2)],'Color’,'g’, 'LineWidth', 0.5);
line([0;B(maxmodels,1)],[0;i0*B(maxmodels, 1)],'LineWidth',1.5);

title(['For 3~r"d Order Model : Plotting (STD_b a_s_e -

STD_s urrogation)/STD b as evs(STD b as e-STD o p tySTD b a s e
and slope =, num2str(a(2,1))]);

xlabel('(STD_b_a_s e-STD_o p t)/STD b a s _e');

ylabel((STD_b_a_ s e-STD_s_u_r r o g a ti o n)y/STD b _a s e');
hgsave('fig3');

prob_pos =0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels
if Y(1,index) >= 0.00
prob_pos = prob_pos + 1;
end
end

% Printing the results

sprintf(['mean{Number of OCF matched for Noise Surrogation) =
,num2str(mean(matching_surrogate))))

sprintf([' Probability that Noise Surrogation will Yield Positive Improvement =
',num2str(prob_pos/maxmodels)])

324

16.1

% We first assume the model parameters we want to use in RWH 2nd order
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation (TTBF) is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% We will find optimal control factor setting for TTBF noise strategy.

% And compare that with optimal control factor

% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF’s and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p11, p01, p00 from 0.01 to 1.00.
% The p (prob. of active main effects) = 0.95. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% RWH for 200 models for 2nd order RWH Model
% 02/11/2006 by Jagmeet Singh

clear; clc;
global cfsetting w2 ncf nnf maxnoisevar,

[cfsetting,conf_cfsetting]=fracfact(a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf_nfsetting]=fracfact(a b c d e'); % defining 2(5) Fuli Factorial Array for NF's
[reference,conf_referencel=fracfact('a b'); % defining 2(2) Full Factorial for TTBF strategy

modelpara=6; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
wi=modelparameter(1,4); w2=modelparameter(1,5); p = 0.95;% defining parameters and
Changing 'p'

ncf=7; % # of CF's
nnf=5; % # of NF's

325

%% % %o %o %6 %0 %o %o Yo %o %o %o %o %o %e %6 Yo Yo % Yo %o %o % %o %o %o %o Yo Yo Yo Yo %o %o Yo Yo %o %o Yo
maxmodels = 200; % The number of models to be tested
% % %o % %o %o Yo %o %o %o %o % Yo Yo Yo %o %o %o Yo %o % %o Yo %o %o Yo %o Yo %o Yo %o %o Yo %o Yo % % %o Yo

counter_p11 =1,

for p11 =0.01: 0.01: 1.00

X2(counter_p11) = p11, % Store p11 values for final plot
p01 = p11; % defining new probability parameters

p00 = p11;

h1 = waitbar(0,’Running Models');
for modelcounter=1:maxmodels % To run a given number of models
[bi,bijl=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00); % Finding beta values for a given
model

[main_noises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale
% 4th and 5th element of indices will give the indices of main 2 noises

% Filling nfsetting_ttbf according to discussed strategy
for nfruns = 1:nnf
for nfrows = 1:4
dummy = randperm(2)*2 - 3;
nfsetting_ TTBF(nfrows, nfruns) = dummy(1,1);
end
end
nfsetting_TTBF(:, indices(4))= reference(:,1);
nfsetting_TTBF(:, indices(5))= reference(:,2);

nfsetting_TTBF

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]}
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1.));
end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index_resp_matrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
y1(cfruns,nfruns)];

326

index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

varianc = var(y1')"

STDev_1 = varianc.”0.5; % Stdev for each CF setting
std_base_1 = STDev_1(1,1);

op_std_1 =min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting],1);

OCF_N1 = PredMin_1(1,2:8);

% For TTBF Noise Strategy at 4 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index_resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128
for nfruns = 1:4
x(1,1:5)=nfsetting_TTBF(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,jy*x(1,i)*x(1,j);
end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix_c(index_resp_matrix,:)=[reference(nfruns,:) cfsetting(cfruns,:)
y_c(cfruns,nfruns)];
index_resp_matrix = index_resp_matrix + 1; % For Storing Response Matrix
end
end

varianc = var(y_c')

STDev_c =varianc.”0.5; % Stdev for each CF setting
std_base_c = STDev_c(1,1);

op_std_c =min(STDev_c); % Finding Least STDev_1
PredMin_c = sortrows([STDev_c cfsetting],1});

OCF_c = PredMin_c(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise
for cfruns = 1:128

327

if OCF_c == PredMin_1(cfruns, 2:8);
Opt_c = PredMin_1(cfruns,1);
end
end

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1=op_std_1;

std_base = mean(STDev_1); % Base Stdev is taken as mean of all STDev's

% Storing Improvement Ratios for Compound Noise
std_fraction4(modelcounter) = ((std_base - Opt_c)/(std_base - Opt_1 + 1e-10));

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d for p11, p01, p00 =
%.2f,modelcounter, p11))
end
close(h1); % Close waitbar

improvement_ratio_mean(counter_p11) = mean(std_fraction4); % Finding Improvement
Ratio for given p11

improvement_ratio_median(counter_p11) = median(std_fraction4); % Finding Improvement
Ratio for given p11
counter_p11 = counter_p11 +1; % Increasing the Counter

end

% saving workspace
save variables;

clear; clc;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00

t2 = polyfit(X2, improvement_ratio_mean, 3); % Fitting a 3rd order polynomial
y2 = polyval(t2,X2);

hold on;

plot(X2, improvement_ratio_mean, .");

328

plot(X2, y2,'k’,’LineWidth',1, 'Marker', '+, "MarkerEdgeColor','k’,...
'MarkerFaceColor','k,...
'MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0_0', 'FontSize', 11);

ylabel("Mean Iimprovement Ratio, 'FontSize', 11);

title('Mean Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);

ylim([0 1]);

hgsave('mean_improvement_ratio');

hold off;

figure;

% Plotting Improvement Ratio Median vs P11, P01, P00

t3 = polyfit(X2, improvement_ratio_median, 3); % Fitting a 3rd order polynomial

y3 = polyval(t3,X2);

hold on;

plot(X2, improvement_ratio_median, ".");

plot(X2, y3,k’,'LineWidth',1, '‘Marker', '+, '"MarkerEdgeColor',’k’, ...
‘MarkerFaceColor','k,...
‘MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0_0', 'FontSize', 11);

ylabel("Median Improvement Ratio’, 'FontSize', 11),

title('Median Improvement Ratio vs Density of Effects for RWH Modef', 'FontSize',12);

ylim([0 1]);

hgsave('median_improvement_ratio');

hold off;

329

16.2

function vector=models(modelpara)

% It defines the parameters that we would be using for Relaxed-Weak

% Heredity model

% Reference Chipman, Hamada and Wu paper 1997 and Prof. Frey's paper
% 03/04/2004 by Jagmeet Singh

Table1=[10 1 1 1 1
10 1 1 01 01
10 1 O 1 1
15 13 213 1 1
15 13 2/3 01 041
1% 1/3 0 1 13

Table2 =[0.25 0.25 01 O 0.25 01 O 0
025 0.25 01 O .
025 0.25 01 0 0 0 0 0
043 0.31 0.04 0 0.17 0.08 002 O
043 0.31 004 O 0.17 0.08 002 O
043 0.31 0.04 O 0 0 0 0];

Table1= [Table1 Table2]; % for input to Main Model
vector=Table1(modelpara,:);

330

16.3

function [bi,bij]l=RWH_2ndorder(ncf,nnf,c,s1,w1,p,p11,p01,p00)

% Developing 2nd order RWH Model (without ERROR)
% INPUTS: #of CF's, #ofNF's, ¢ s1, wi, p,
% p00, pO1, pi1

% OUTPUT: bi's and bij's
% Developed on 03/03/2004 by Jagmeet Singh

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
ifi <= nnf
t(i)=w1;
else
t(i)=1;
end
end

delta=unifrnd(0,1,[1 nnf+ncf]); % Defining deita
for i=1:nnf+ncf % Prob (delta_i=1)=p
if delta(1,i) <=p
delta(1,i)=1;
else
deilta(1,i)=0;
end
end

deltaij(1:(nnf+ncf), 1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + deita-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1]}

if sum_deltas == % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when one of the factors is active
if deltaij(i,j) <= p0O1
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when both the factors are active
331

if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i) == 0
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0
bij(i,j)=t(i)*t()*normrnd(0,s 1);
else
bij(i,j)=t(i)*t(j)* normrnd(0,c*s1);
end
end
end

332

16.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting

% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmeet Singh
function [std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7),
std_dev = std(ysetting);

end
end

333

16.5

% Function Var_cf_setting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% it then generates the Response for 1000 Noise factors settings and finds

% the variance at each control factor setting for fuli model

% 03/16/2004 by Jagmeet Singh
function [ResponseMatrix_MC, varianc] = Var_cf_setting(bi, bij, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar,

X =ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + normrnd(0,w2);
end
end

ResponseMatrix_MC = [Xy_MC]; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC"))’; % Finding the Variance for each CF setting

334

171

% function effectcorrelation{): To check the impact of correlation and
% variance of noise factors

% We first assume the model parameters we want to use in RWH 3rd order
% model. We call that set of parameters from modeiparameters.m. Then we
% find betas for a given model. We run 2 kinds of analysis on the beta

% values.

% One is the Assumed model in which noise factors are independent and the

% other one is Actual model in which noise factors are correlated. We find

% optimal CF setting in both cases. And the respective standard deviations

% at the optimal CF setting in both the cases. We runs this for 200

% models. Each model has 7 CF's and 5 NF's and RWH model determines how
% active they are. We will use MONTE CARLO method to find variance for each
% control factor setting

% BASIC WH for 200 models for 3rd order RWH Model
% 04/21/2005 by Jagmeet Singh

clear;clc;
global cfsetting w2 ncf nnf maxnoisevar,;

cfsetting = ff2n(7)*2 - 1; % Defining Full Factorial Design for the 7 Control Factors

modelpara=1; % Defining which model parameters we would be using for 2nd order mode!
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4), Fitted

% low order(5); Fitted 2nd order(8)

modelparameter=models(modelpara); % To get the values of ¢, s1, p's etc for the given
model

c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
wi=modelparameter(1,4); w2=10.0 ; p=modelparameter(1,6);
p11=modelparameter(1,7); pO1=modelparameter(1,8); p00=modelparameter(1,9);
p111=modelparameter(1,10); p011=modelparameter(1,11); p001=modelparameter(1,12);
p000=modelparameter(1,13);% defining parameters

ncf=7; % # of CF's

nnf=5; % # of NF's

counter_per_dev_op =0; % To increment when (std_actual - op_std_actual)/op_std_actual <
5%

counter_per_dev_base = 0; % To increment when (std_actual - op_std_actual)/std_base_actual
<5%

counter_OCF = 0; % To increment when OCF_actual == OCF_assumed for a given model
run

MU=[0 O 0 0 0]; % Defines the means of the Noise Variables been used
sigma_assumed = eye(5); % Define the covariance matrix for the assumed model

% the on diagonal elements are ones and rest all zero. EYE function

% generates [dentity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings

335

%% %o % %o %o %o Yo Yo %o %o %o %o %o Yo %o %o %o %o %o %o %o %o Yo Yo %a Yo %o Yo %o %o Yo %o %o % % %o Yo Yo
maxmodels = 200; % The number of models to be tested
%% %o %o %o % %o %o Yo % %o %o %o %o Yo %o %o %o %o %6 % Yo % Yo Yo %o Y% % Y% %o Yo Yo Yo %o % % %o Yo Yo

h1 = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models
modelcounter
[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000); %
Finding beta values for a given model

% For Assumed Model with all independent noise factors
clear ResponseMatrixAssumed; % Response Matrix = [CF Yassumed's_for_CFsetting]
[ResponseMatrixAssumed, varianc] = Assumedmodel(bi, bij, bijk, MU, sigma_assumed);

STDev_assumed = varianc.*0.5; % Stdev for each CF setting
std_base_assumed = STDev_assumed(1,1);

op_std_assumed = min(STDev_assumed); % Finding least Stdev
PredMin_assumed = sortrows([STDev_assumed cfsetting],1);
OCF_assumed = PredMin_assumed(1,2:8);

%o % % %o %o % % Yo %o %o %o %o %o %o Yo Yo %o %o Yo % Yo Yo %o Yo Yo %o Yo Yo Yo %o %o Y Yo %o %o %o Yo %o Yo % Yo %o Yo %o %o Yo %o Yo
%% %o %o %o %o % Yo %o %o %o %o Yo % %o %o %o % %o % %o

% For Actual Model with correlated noise factors

clear ResponseMatrixActual; % Response Matrix = [CF Yactual's_for_CFsetting}

% To generate Sigma_actual Matrix (Covariance Matrix) which has Correlation among
% the noise variables and Has the same on diagonal elements as
% sigma_assumed. And Sigma_Actual is Positive Semi Definite and
% Symmetric.
r = normrnd(0,0.01,[10 1]); % To generate random correlation coefficients
sigma_actual = eye(5); % Inital Matrix
dummy_t=1;
fori=1:5
for j=i+1:5
sigma_actual(i,j) = r(dummy_t,1);
sigma_actual(j,i) = r(dummy_t,1);
dummy_t = dummy_t+1;
end
end
sigma_actual = corrcoef(sigma_actual); % Gives PSD Covariance Symmetric Matrix
fori=1:5
for j=i+1:5
sigma_actual(i,j) = sigma_actual(i,j)/25;
sigma_actual(j,i) = sigma_actual(j,i)/25;
end
end
% To reduce the correlation among noise factors

[ResponseMatrixActual, varianc_actual] = Actualmodel(bi, bij, bijk, MU, sigma_actual),

336

STDev_actual = varianc_actual.*0.5; % Stdev for each CF setting
std_base_actual = STDev_actual(1,1),

op_std_actual = min(STDev_actual); % Finding least Stdev
PredMin_actual = sortrows({STDev_actual cfsetting],1);

OCF_actual = PredMin_actual(1,2:8);

% Determining the Std_actual at OCF_assumed
Std_actual = std_for_cfsetting(ResponseMatrixActual, OCF_assumed);

% We might select control factor settings randomiy. So any
% setting of CF can be chosen to act as a base. Here we
% will find Standard deviation of a cf setting which is
% chosen at random and we will take it as one of the base
% standard deviation and we will work on the results
base_cfsetting = unifrnd(-1,1,[1 71);
for index_cf=1:7
if base_cfsetting(1,index_cf) <= 0.00
base_cfsetting(1,index_cf)=-1;
else
base_cfsetting(1,index_cf)=1;
end
end
std_base_actual_1 = std_for_cfsetting(ResponseMatrixActual, base_cfsetting);

% Storing and Analysing Results
per_dev_op(modeicounter) = ((Std_actual - op_std_actual)/op_std_actual)*100.;
if per_dev_op(modelcounter) < 5.000
counter_per_dev_op = counter_per_dev_op + 1; % When the difference is small
end
per_dev_base(modelcounter) = ((Std_actual - op_std_actual)/std_base_actual)*100.;
if per_dev_base(modeicounter) < 5.000
counter_per_dev_base = counter_per_dev_base + 1; % When the difference is small
end

if OCF_actual == OCF_assumed
counter_OCF = counter_OCF + 1; % When same CF setting is predicted in both cases
end

% Storing Optimal Standard Deviation and STD.Actual
OP_STD_ACTUAL(modelcounter) = op_std_actual,
STD_ACTUAL(modelcounter) = Std_actual,

% Storing % Improvement in Assumed Model is OCF_assumed are selected

improv_assumed(modelcounter) = ((std_base_assumed -
op_std_assumed)/std_base_assumed)*100.;

% Storing % Improvement in Actual Model if OCF_assumed are selected

improv_actual1(modelcounter) = ((std_base_actual - Std_actual)/std_base_actual)*100.;

% Storing % Improvement in Actual Model if OCF_actual are selected

337

improv_actual2(modelcounter) = ((std_base_actual - op_std_actual)/std_base_actual)*100.;

% Storing % Improvement in Actual Model if OCF_assumed are selected and

% STD.Actual .1

improv_actual3(modelcounter) = ((std_base_actual_1 - Std_actual)/std_base_actual_1)*100.;

% Storing % Improvement in Actual Model if OCF_actual are selected and

% STD.Actual.1

improv_actual4(modelcounter) = ((std_base_actual_1 -
op_std_actual)/std_base_actuai_1)*100;

% Storing Fractions of std_dev ratios for actual model

std_fraction1(modeicounter) = (Std_actual/std_base_actual);

% Storing Fractions of STD_Actual to Op_Std_Actual ratios of actual

% model

std_fraction2(modelcounter) = (Std_actual/op_std_actual),

% Some Other important fractions

std_fraction3(modelcounter) = ((Std_actuai - std_base_actual_1)/(op_std_actual -
std_base_actual_1 + 1e-10));

% To avoid division by zero

std_fraction4(modelcountgr) = ((Std_actual - std_base_actual)/(op_std_actual -
std_base_actual + 1e-10));
% To avoid division by zero

% Storing Fractions of std_dev ratios for actual model
std_fraction5(modelcounter) = (Std_actual/std_base_actual_1);

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d’,modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

338

17.2

function vector=models(modeipara)

% It defines the parameters that we would be using for Relaxed-Weak

% Heredity model

% Reference Chipman, Hamada and Wu paper 1997 and Prof. Frey's paper
% 03/04/2004 by Jagmeet Singh

Tablet=[10 1 1 1 1
10 1 1 0.1 0.1
10 1 O 1 1
15 1/3 2/3 1 1
15 1/3 2/3 01 01
15 13 0 1 15

Table2 =[0.25 0.25 01 O 0.25 01 O 0
025 025 01 O 0.25 01 O 0
025 025 01 O 0 0 0 0
0.43 0.31 004 0 0.17 0.08 002 O
043 0.31 004 O 0.17 0.08 0.02 O
043 0.31 004 O 0 0 o 0];

Table1= [Table1 Table2]; % for input to Main Model
vector=Table1(modelpara,:);

339

17.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,w1,p,p11,p01,p00,p111,p011,p001,p000)

% Developing 3rd order RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: # of CF's, # of NF's, c, s, s2, wil, p,
% p00, pO1, pit, p111, p011, p001 pOOO

% OQUTPUT: bi's, bij's,and bijk's
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (w1)
w1 =1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf
t(i)=w1;
else
t(i)=1;
end
end

deita=unifrnd(0,1,[1 nnf+ncfl); % Defining delta
for i=1:nnf+ncf % Prob (delta_ i=1)=p
if delta(1,i) <= p
delta(1,i)=1;
else
delta(1,i)=0;
end
end

deltaij(1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sum_deltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1]

if sum_deltas == 0 % Defining delta-ij when both main factors are inactive
if deltaij(i,j) <= p00
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end
end

if sum_deltas == % Defining delta-ij when one of the factors is active
340

if deltaij(i,j) <= p01
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end

end

if sum_deltas == % Defining delta-ij when both the factors are active

if deltaij(i,j) <= p11
deltaij(i,j)=1;
else
deltaij(i,j)=0;
end

end

% Defining delta-ijk
deltaijk(1:(nnf+ncf), 1:(nnf+ncf), 1:(nnf+ncf))=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sum_deltas=delta(1,i)+delta(1,j)+deilta(1,k); % Finding the sum of delta’s
deltaijk(i,j,k)=unifrnd(0,1); % Defining delta-ijk [0, 1]

if sum_deltas == 0 % Defining delta-ijk when all 3 main effects are inactive
if deltaijk(i,j,k) <= p000
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas == % Defining delta-ijk when all 2 main effects are inactive
if deltaijk(i,j,k) <= p001
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas == % Defining delta-ijk when ali 2 main effects are active
if deltaijk(i,j,k) <= p011
deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

if sum_deltas == % Defining delta-ijk when ali 3 main effects are active
if deltaijk(i,j,k) <= p111
341

deltaijk(i,j,k)=1;
else
deltaijk(i,j,k)=0;
end
end

end
end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF'’s
if delta(1,i) ==
bi(1,i)=t(i)*normrnd(0,1);
else
bi(1,i)=t(i)*normrnd(0,c);
end
end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0
bij(i,j)=t(i)*t(j)* normrnd(0,s1);
else
bij(i,j)=t(i)*t(j)*normrnd(0,c*s 1);
end
end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf
for j=i+1:nnf+ncf
for k=j+1:nnf+ncf
if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,s2);
else
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,c*s2);
end
end
end
end

342

17.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting
% Inputs: Response Matrix and Required CF setting
% Output: Standard Deviation of Response for the given CF setting
% 03/24/2004 by Jagmeet Singh
function [std_dev] = std_for_cfsetting(ResponseMatrix, setting)
global cfsetting w2 ncf nnf maxnoisevar;
clear ysetting;
fori=1:128
if setting == ResponseMatrix(i,1:7)
ysetting = ResponseMatrix(i,8:maxnoisevar+7);
std_dev = std(ysetting);

end
end

343

17.5

% Function Actual Model takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are correlated.

% It then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor setting for full model

% 03/24/2004 by Jagmeet Singh
function [ResponseMatrixActual, varianc] = Actualmodel(bi, bij, bijk, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar;

nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:128
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,.); % Defining CF Settings

sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end

sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk + bijk(i,j,k)*x(1,iy*x(1,j)*x(1,k);
end
end
end

yactual(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(0,w2);
end :
end

ResponseMatrixActual = [cfsetting yactuall; % Storing CF setting and Yactual for that setting
varianc = (var(yactual'))’; % Finding the Variance for each CF setting

344

17.6

% Function Assumed Model takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.

% It then generates the Response for 200 Noise factors settings and finds

% the variance at each control factor setting for full model

% 03/24/2004 by Jagmeet Singh
function [ResponseMatrixAssumed, varianc] = Assumedmodel(bi, bij, bijk, MU, sigma)
global cfsetting w2 ncf nnf maxnoisevar;

nfsetting = Ihsnorm(MU, sigma, maxnoisevar),
for cfruns = 1:128
for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Settings

sumij=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);
end
end

sumijk=0;
for i=1:(nnf+ncf)
for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)
sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end
end
end

yassumed(cfruns,nfruns)=bi*x’ + sumij + sumijk + normrnd(0,w2);
end
end

ResponseMatrixAssumed = [cfsetting yassumed]; % Storing CF setting and Yassumed for that
setting
varianc = (var(yassumed"))’; % Finding the Variance for each CF setting

345

17.7

% Function to plot the outputs of the response
function output()

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when Std_actual is close to op_std_actual based on Optimal
% Stdev

figure; success=[(counter_per_dev_op) (maxmodels-counter_per_dev_op)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type','text’); oldstr = get(textobjs,{'String'});

Names = {'Success: ;> 5%: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String’},newstr);

pos = get(textobjs,{'Position’}); pos{1,:} =[-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);

title(['Success in reducing ST_d_e_v to 5% error (based on OP.STD_d_e v)of OP.STD d e v
for ',num2str(maxmodels),’ modeis');

hgsave('piet’),

% Plotting histogram for per_dev_op
figure;
hist(per_dev_op);

colormap cool; iq = prctile(per_dev_op,[25 50 75]); tmax = max(hist(per_dev_op));
line(fiq(1) iq(1)1.[0 tmax],'LineStyle','--"); line([iq(3) iq(3)],[0 tmax], LineStyle’,"--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color’,'m’); legend(['25_t h Percentile =
",num2str(ig(1))]...

JL75_t_h Percentile = ',num2str(iq(3))],[Median = ',num2str(iq(2))], Frequency’);
xlabel('((STD.Actual - OP.STD.Actual)/OP.STD.Actual) *100");
ylabel(' number of systems ');
hgsave('fig-pie1');

% Pie Chart when Std_actual is close to op_std_actual based on base
% Stdev

figure; success=[(counter_per_dev_base) (maxmodels-counter_per_dev_base)];
explode = [1 0]; colormap cooi; hp = pie3(success,explode);

textobjs = findobj(hp, Type’,'text’); oldstr = get(textobjs,{'String?});
Names = {'Success: ';'’> 5%: }; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr),

pos = get(textobjs,{’Position’}); pos{1,:} =[-0.28 -0.61 .35);
set(textobjs,{'Position’},pos);

OP.STD_d_e_v for ,num2str(maxmodels),' modeis');

hgsave('pie2’);

% Pie Chart when OCF_Actual is same as OCF_Assumed
346

figure; success=[(counter_OCF) (maxmodels-counter_OCF)];

explode = [1 0); colormap cool; hp = pie3(success,explode);

textobjs = findobj(hp, Type’,'text’); oldstr = get(textobjs,{'String'}),

Names = {'Same CF levels: ';'Diff CF levels: }; newstr = strcat(Names, oldstr),
set(textobjs,{'String’},newstr);

pos = get(textobjs,{'Position’}); pos{1,:} =[-0.28 -0.61 .35};

set(textobjs,{'Position’},pos);

title(['Success in prediction of OCF Actual from OCF.Assumed ‘,num2str(maxmodels),” models’]);
hgsave('pied');

% Plotting Histograms

figure;

hist(std_fraction1);

title(['Histogram for Fraction of ST_d_e_v.Actual to STD.Base.Actual for ',num2str(maxmodels),’

modeis'l);

colormap cool; iq = prctile(std_fraction1,[25 50 75]); tmax = max(hist(std_fraction1));

line(fiq(1) iq(1)],[0 tmax], LineStyle',--"); line([iq(3) ig(3)],[0 tmax], LineStyle','-','Color’,'r’),

line([ig(2) ig(2)],[0 tmax], LineWidth',2,'Color’,'m'); legend(['25_t_h Percentile = ",num2str(iq(1))]...
J[75_t_h Percentile = ',num2str(iq(3))},['Median = ",num2str(iq(2))]," Frequency');

xlabel('STD.Actual/STD.Base Actual');

ylabel(' number of systems ');

hgsave(fig1');

figure;

hist(std_fraction2);

title(['Histogram for Fraction of ST_d_e_v.Actual to OP.STD.Actual for ‘,num2str(maxmodeis),’

modeis');

colormap cool; iq = prctile(std_fraction2,[25 50 75]); tmax = max(hist(std_fraction2));

line([ig(1) ig(1)],[0 tmax], LineStyle’,~-); line([iq(3) iq(3)1,[0 tmax], LineStyle',--','Color','r’);

line([iq(2) i9(2)],[0 tmax],'LineWidth',2,'Color','m’); legend(['25_t_h Percentile = ',num2str(iq(1))]...
J[75_t_h Percentile = ',num2str(iq(3))],['Median = ,num2str(iq(2))],’ Frequency');

xlabel('STD.Actual/OP.STD.Actual');

ylabel(' number of systems);

hgsave(fig2");

figure;
hist(std_fraction3);

colormap cool; ig = prctile(std_fraction3,[25 50 75]); tmax = max(hist(std_fraction3));

line(fig(1) ig(1)},[0 tmax], LineStyle','--"); line([iq(3) ig(3)},[0 tmax], LineStyle',--','Color’,'r");

line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m’); legend(['25_t_h Percentile = ",num2str(iq(1))]...
,L[75_t_h Percentile = ",num2str(iq(3))],['Median = ",num2str(iq(2))],' Frequency');

xlabel('{STD.Actual-STD.Base.Actuai1)/(OP.STD.Actual-STD.Base.Actual1));

ylabel(' number of systems '),

hgsave('fig3’);

figure;
hist(std_fraction4);

o
(¢
-
s
o]
=
o
0
w
el
|w)
V]
O
o
jo]
T
2]
-
@)
o
o8]
w
0]
oo}
O
—
o)
B
-
c
3
[
(2]
~—
=
3
QO
X
3
Q
[«
@
[
bt

modeis']);

347

colormap cool; iq = prctile(std_fraction4,[25 50 75]); tmax = max(hist(std_fraction4));

line(fig(1) ig(1)1,[0 tmax],'LineStyle’,--"); line([iq(3) iq(3)],[0 tmax], LineStyie','--','Color','r");

line([ia(2) iq(2)},[0 tmax],'LineWidth',2,'Color’,'m"); legend(['25_t_h Percentile = ',num2str(iq(1))]...
['75_t_h Percentile = ',num2str(iq(3))],[Median =',num2str(iq(2))],’ Frequency");

xlabel('(STD.Actual-STD.Base.Actual)/(OP.STD.Actual-STD.Base.Actual)");

ylabel(' number of systems ');

hgsave('fig4’);

figure;

hist(std_fraction5);

title(['Histogram for Fractionof STD_a_ ¢t u a /STD b as e _actual 1for

',num2str(maxmodels),’ models1);

colormap cool; iq = prctile(std_fraction5,[25 50 75]); tmax = max(hist(std_fraction5));

line([ig(1) iq(1)},[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax], LineStyie','--','Color’,'r');

line([iq(2) ig(2)],[0 tmax], LineWidth',2,'Color,'m'); legend(['25_t_h Percentile = ',num2str(iq(1))}...
[75_t_h Percentile = ',num2str(iq(3))],[Median = ',num2str(iq(2))],’ Frequency');

xlabel('(STD.Actual)/(STD.Base.Actual.1)');

ylabel(’ number of systems ');

hgsave('fig5');

figure;

hist(improv_actuall);

title(['Histogram for % Improv. in ST_d_e_v(based on OCF Assumed) for Actual Model for

',num2str(maxmodels),’ models1);

colormap cool; iq = prctile(improv_actual1,[25 50 75]); tmax = max(hist(improv_actual1));

line([iq(1) iq(1)],[0 tmax], LineStyle',--'); line([iq(3) iq(3)],[0 tmax], LineStyie','--','Color’,'r');

line([iq(2) iq(2)},[0 tmax],'LineWidth',2,'Color’,'m"); legend([25_t_h Percentiie = ',num2str(iq(1))]-..
L 75_t_h Percentile = ',num2str(iq(3))],[Median = ",num2str(iq(2))],' Frequency'),

xlabel('((STD.Base.Actual - STD.Actual)/STD.Base.Actual)*100");

ylabel(' number of systems ');

hgsave('fig6’);

figure;

hist(improv_actual2);

title(['Histogram for % Improv. in ST_d_e_v(based on OCF.Actual) for Actual Model for

',num2str(maxmodels),’ models);

colormap cool; iq = prctile(improv_actual2,[25 50 75]); tmax = max(hist(improv_actual2));

line(fig(1) ig(1)],[0 tmax],'LineStyle’,'--"); line([iq(3) iq(3)],[0 tmax], LineStyle',--",'Color','r");

line([iq(2) iq(2)],[0 tmax], LineWidth',2,'Color’,'m’); legend(['25_t_h Percentile = ',num2str(ig(1))]...
L 75_t_h Percentile =’,num2str(iq(3))],[Median = ",;num2str(iq(2))},’ Frequency');

xlabel('({(STD.Base.Actual - OP.STD.Actual)/STD.Base.Actual)*100");

ylabel(' number of systems ');

hgsave('fig7');

figure;

hist(improv_actual3),

title([Histogram for % Improv. in ST_d_e_v{based on OCF.Assumed) for Actuai Mode! for

',num2str(maxmodels),’ modeis");

colormap cool; iq = prctile(improv_actual3,[25 50 75]); tmax = max(hist(improv_actuail3));

line(fig(1) iq(1)],[0 tmax],'LineStyle',--"); line([iq(3) iq(3)],[0 tmax], LineStyle',--",'Color’,'r');

line([ia(2) iq(2)],[0 tmax], LineWidth’,2,'Color','m'); legend(['25_t_h Percentile = ",num2str(ig(1))]...
JL75_t_h Percentile = ,num2str(iq(3))},[Median = ',num2str(iq(2))],’ Frequency');

348

xlabel('({STD.Base.Actual.1 - STD.Actual)/STD.Base.Actual.1) *100";
ylabel(' number of systems ');
hgsave(’fig8");

figure;

hist(improv_actual4);

title([Histogram for % Improv. in ST_d_e_v(based on OCF .Actual) for Actual Mcdel for

", num2str(maxmodels),’ modeis1);

colormap cool; iq = prctile(improv_actual4,[25 50 75]); tmax = max(hist(improv_actual4));

line([ig(1) ig(1)],[0 tmax], LineStyle',--); line([iq(3) iq(3)1,[0 tmax], LineStyle',"--','Color’,’r");

line(fiq(2) iq(2)},[0 tmax], LineWidth',2,'Color','m’); legend(['25_t_h Percentile = ",num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],[Median = ',num2str(iq(2))],' Frequency');

xlabel('((STD.Base.Actual.1 - OP.STD.Actual)/STD.Base.Actual.1) *1007),

ylabel(' number of systems *);

hgsave('fig9');

figure;

hist(improv_assumed);

title(['Histogram for % Improv. in ST_d_e_v for Assumed Model for ',num2str(maxmodels),’

modeis);

colormap cool; iq = prctile(improv_assumed,[25 50 75]); tmax = max(hist(improv_assumed));

line([ig(1) iq(1)],[0 tmax], LineStyle’,'-"); line([iq(3) iq(3)],[0 tmax], LineStyle','--",'Color','r");

line([iq(2) iq(2)1,[0 tmax], LineWidth',2,'Color','m’); legend(['25_t_h Percentile = ’,num2str(iq(1))]...
[75_t_h Percentile = ',num2str(iq(3))],['Median = ",num2str(iq(2))}],’ Frequency’);

xlabel('((STD.Base.Assumed - OP.STD.Assumed)/STD.Base.Assumed)*100;

ylabel(' number of systems *);

hgsave('fig10");

% Printing the resulfs

sprintf(['mean{OP.STD.Actual) = ',num2str(mean(OP_STD_ACTUAL))," std(OP.STD.Actual) =
,num2str(std(OP_STD_ACTUAL))])

sprintf(['mean(STD.Actual) = ',num2str(mean(STD_ACTUAL))," std(STD.Actual) =

" num2str(std(STD_ACTUAL))])

sprintf([' (M[Std.Actual] - M[OP.STD.Actuai])yM[OP.STD.Actual] * 100 = ‘,num2str(
((mean{(STD_ACTUAL) - mean(OP_STD_ACTUAL))mean(OP_STD_ACTUAL))*100),"%%"])

349

