
Comparative Analysis of Robust Design Methods

by

Jagmeet Singh

B. Tech., Mechanical Engineering
Indian Institute of Technology at Kanpur, 2001

S.M., Mechanical Engineering
Massachusetts Institute of Technology, 2003

Submitted to the Department of Mechanical Engineering
In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

(2006 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Department of Mechanical Engineering

py-p 2006

Certified by D Fre
Daniel . Frey

Assistant Professor, Department of Mechanical Engineering and Engineering Systems
Thesis Supervisor

Accepted by.

MASSACHUSETTS INSTITUTE,
OF TECHNOLOGY

JUL 1 4 2006

LIBRARIES

Lallit Anand
Chairman, Department Committee on Graduate Studies

BARKER

2

Comparative Analysis of Robust Design Methods

by

Jagmeet Singh

Submitted to Department of Mechanical Engineering

on May 5, 2006 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Mechanical Engineering

Abstract

Robust parameter design is an engineering methodology intended as a cost effective
approach to improve the quality of products, processes and systems. Control factors are
those system parameters that can be easily controlled and manipulated. Noise factors are
those system parameters that are difficult and/or costly to control and are presumed
uncontrollable. Robust parameter design involves choosing optimal levels of the
controllable factors in order to obtain a target or optimal response with minimal variation.
Noise factors bring variability into the system, thus affecting the response. The aim is to
properly choose the levels of control factors so that the process is robust or insensitive to
the variation caused by noise factors. Robust parameter design methods are used to make
systems more reliable and robust to incoming variations in environmental effects,
manufacturing processes and customer usage patterns. However, robust design can
become expensive, time consuming, and/or resource intensive. Thus research that makes
robust design less resource intensive and requires less number of experimental runs is of
great value. Robust design methodology can be expressed as multi-response optimization
problem. The objective functions of the problem being: maximizing reliability and
robustness of systems, minimizing the information and/or resources required for robust
design methodology, and minimizing the number of experimental runs needed. This
thesis discusses various noise factor strategies which aim to reduce number of
experimental runs needed to improve quality of system. Compound Noise and Take-The-
Best-Few Noise Factors Strategy are such noise factor strategies which reduce
experimental effort needed to improve reliability of systems. Compound Noise is made
by combing all the different noise factors together, irrespective of the number of noise
factors. But such a noise strategy works only for the systems which show effect sparsity.
To apply the Take-The-Best-Few Noise Factors Strategy most important noise factors in
system's noise factor space are found. Noise factors having significant impact on system
response variation are considered important. Once the important noise factors are

3

identified, they are kept independent in the noise factor array. By selecting the few most
important noise factors for a given system, run size of experiment is minimized. Take-
The-Best-Few Noise Factors Strategy is very effective for all kinds of systems
irrespective of their effect sparsity. Generally Take-The-Best-Few Noise Factors Strategy
achieves nearly 80% of the possible improvement for all systems. This thesis also tries to
find the influence of correlation and variance of induced noise on quality of system. For
systems that do not contain any significant three-factor interactions correlation among
noise factors can be neglected. Hence amount of information needed to improve the
quality of systems is reduced.

Thesis Supervisor: Daniel D. Frey
Title: Robert N. Noyce Assistant Professor, Department of Mechanical Engineering &
Engineering Systems

Committee Member: Daniel E. Whitney
Title: Senior Research Scientist, Center for Technology, Policy and Industrial
Development and Department of Mechanical Engineering, Senior Lecturer in
Engineering Systems

Committee Member: Warren P Seering
Title: Weber-Shaughness Professor, Department of Mechanical Engineering

4

Acknowledgements

I offer prayer of thanks to GOD for giving me this wonderful opportunity to do research

in one of the premier institutes. I would like to thank my thesis advisor Dan Frey. I am

always short of words for his mentorship, support, guidance, patience and integrity. I

have leamt a lot from him in both research and life. He is one of best advisors that one

could have asked for in research. It was for him that I truly enjoyed my PhD research and

was always excited about it through out my duration of PhD.

Dan Whitney and Warren Seering are the best committee members to have. Their keen

observations and tremendous experience helped me a great deal in shaping path of my

research. They helped me a lot in putting my research results in perspective. I have been

leaming from them since the day I joined MIT. I again find myself short of words to

thank both of them for their support, guidance, mentorship and blessings. I would also

like to thanks Nathan Soderborg, Joe Saleh and Ford-MIT Research Alliance for

supporting this research.

My grandparents, parents, Mr. Yashpal Singh and Mrs. Surjeet Kaur and sister, Jaideep

Kaur provided me with support all throughout my research. And no acknowledgement is

complete without mentioning Rajesh Jugulum. He is part of our research group. His

reviews on research progress, his insights were very helpful in the progress of research. I

would also like to thank my friends for their goodwill and support.

5

6

Table of Contents

A b s tra c t .. 3

Acknowledgements ... 5

L ist o f F ig u re s 11

L is t o f T a b le s ... 15

Chapter 1: Introduction ... 19

1.1 M o tiva tio n 19

1.2 Goal of Research.. 20

1.3 Organization of Thesis.. 21

Chapter 2: Hierarchical Probability Model ... 23

2.1 Regularities in Engineering Systems .. 23

2.2 Hierarchical Probability Model ... 25

2.3 Selecting parameters for Hierarchical Probability Model 30

2.4 Variants of Hierarchical Probability Model.. 31

2.5 Chapter Summary ... 34

Chapter 3: Compound Noise: Evaluation as a Robust Design Method 37

3.1 Introduction and Background.. 37

3.2 Setting up of Compound Noise study .. 41

3.2.1 Generating Response Surface instances.. 42

3.2.2 Algorithm to study Compound Noise... 47

3.2.3 Measures studied.. 49

3.2.4 Results from Compound Noise studies... 50

3.2.5 Conclusions from Probability Model.. 56

3.3 C as e S tu d ies .. . 57

7

3.3.1 Lenth Plots for Case Studies .. 58

3.3.2 Results from Compound Noise Strategy on Case Studies 63

3.4 Effectiveness of Compound Noise in Real scenarios 65

3.5 Conditions for Compound Noise to be completely effective 69

3.5.1 Strong Hierarchy Systems ... 69

3.5.2 Weak Hierarchy Systems .. 72

3.5.3 Conclusions from Case Studies ... 76

3.6 C on clusions ... 77

3.7 Chapter Sum m ary ... 82

Chapter 4: Take-The-Best-Few Strategy: Evaluation as a Robust Design

M e th o d .. 8 5

4.1 Introduction and Background .. 85

4.2 Setting up of TTBF study ... 87

4.2.1 Generating Response Surface instances... 88

4.2.2 Algorithm to study TTBF strategy ... 90

4.2.3 M easures studied .. 93

4.2.4 Results from TTBF Strategy studies... 94

4.2.5 Conclusions from Probability Model .. 99

4.3 Comparison of TTBF strategy and Compound Noise strategy...........100

4.4 Case Studies and effectiveness of TTBF strategy 104

4.4.1 Effectiveness of TTBF strategy in Real scenarios.......................... 107

4.5 H ybrid N oise S trategy .. 109

4.6 C o n clusion s .. 111

4.7 C hap ter S um m ary ... 114

Chapter 5: Analyzing effects of correlation among and intensity of noise

factors on quality of system s ... 117

5.1 Introduction and Background .. 117

5.2 Setting up of correlation and variance study .. 123

5.2.1 Generating Response Surface instances.. 123

8

5.2.2 Algorithm to evaluate noise strategies 130

5.2.3 M easures studied ... 133

5.2.4 Results from model-based analysis ... 133

5.2.5 Significance of results from model-based approach......... 135

5.3 C a s e S tu d ies ... 136

5.3.1 Results from Case Studies.. 137

5.4 C o n clus io n s .. 139

5.5 C hap ter S um m ary ... 142

Chapter 6: Conclusions and Future Work... 145

6.1 O verview of research ... 145

6.2 Algorithms to improve quality of systems ... 149

6.3 Cost-Benefit Analysis of Robust Design Methods................................. 155

6.4 Scope of future research... 159

R E F E R E N C E S ... 16 1

Appendices: MATLAB® and Mathcad-I1 Files .. 165

9

10

List of Figures

Figure 2.1: The hierarchy and heredity among main effects and interactions in a

system with four factors A, B, C, and D. Interactions between factors are

represented by letter combinations such as the two-factor interaction AC. The font

size represents the size of the effect.. 25

Figure 3.1: Algorithm used to evaluate Compound Noise Strategies................... 48

Figure 3.2: Improvement Ratio: Ratio of Realized Reduction to Maximum

R eduction possible... 50

Figure 3.3: Median Improvement Ratio verses Effect Density for Strong Hierarchy

Response Surface Instances.. 54

Figure 3.4: Median Improvement Ratio verses Effect Density for Weak Hierarchy

Response Surface Instances.. 55

Figure 3.5: Median Improvement Ratio verses Effect Density for both Strong and

Weak Hierarchy Response Surface Instances.. 56

Figure 3.6: Lenth Plot of Effect Coefficients for Op Amp, Phadke (1989)............ 59

Figure 3.7: Lenth Plot of Effect Coefficients for Passive Neuron Model, Tawfik

and D urand (1994).. 60

Figure 3.8: Lenth Plot of Effect Coefficients for Journal Bearing: Half Sommerfeld

Solution, H am rock, et al. (2004)... 61

11

Figure 3.9: Lenth Plot of Effect Coefficients for CSTR, Kalagnanam and Diwekar

(199 7)... 62

Figure 3.10: Lenth Plot of Effect Coefficients for Temperature Control Circuit,

Phadke (1989).. 62

Figure 3.11: Lenth Plot of Effect Coefficients for Slider Crank, Gao, et al. (1998)... 63

Figure 3.12: Median Improvement Ratio verses Effect Density for Strong and

Weak Hierarchy Response Surface Instances and Six Case Studies.................... 79

Figure 3.13: Suggested procedure for Compound Noise in Robust Design............ 82

Figure 4.1: Algorithm used to evaluate TTBF strategy................................... 92

Figure 4.2: Median Improvement Ratio verses Effect Density for Strong Hierarchy

Response Surface Instances.. 97

Figure 4.3: Median Improvement Ratio verses Effect Density for Weak Hierarchy

R eponse Surface Instances .. 98

Figure 4.4: Median Improvement Ratio verses Effect Density for both Strong and

Weak Hierarchy Response Surface Instances.. 99

Figure 4.5: Median Improvement Ratio verses Effect Density for Strong and Weak

Hierarchy Response Surface Instances and Six Case Studies............................ 112

Figure 4.6: Suggested procedure for TTBF Strategy and Compound Noise in

R obust D esign .. 114

Figure 5.1: Noise Strategy in Robust Design... 119

12

Figure 5.2: Algorithm used to evaluate Noise Strategies.................................

Figure 5.3: Flowchart to reduce information needed to implement Robust Design

M ethodology ... 14 1

Figure 6.1: Suggested procedure for TTBF Strategy and Compound Noise in

R obu st D esign ... 15 1

Figure 6.2: Flowchart to reduce information needed to implement Robust Design

M ethodolo gy .. 154

Figure 6.3: Cost-Benefit Analysis of Robust Design Methods for reducing

experim ental run s.. 156

Figure 6.4: Cost-Benefit Analysis of Robust Design Methods for minimizing

information regarding noise factor space.. 158

13

132

14

List of Tables

Table 2.1: Parameters for Hierarchical Probability Model...

Table 2.2: Additional parameters for Hierarchical Probability Model.......................

Table 2.3: Parameters for Variants of Hierarchical Probability Model......................

Table 3.1: Hierarchical Probability Model Parameters used for Strong Hierarchy

R esponse Surface instances..

Table 3.2: Hierarchical Probability Model Parameters used for Weak Hierarchy

R esponse Surface instances..

Table 3.3: Hierarchical Probability Model Parameters used for Strong Hierarchy

Response Surface instances, reflecting effect spars ity..

Table 3.4: Hierarchical Probability Model Parameters used for Weak Hierarchy

Response Surface instances, reflecting effect sparsity..

T ab le 3 .5 : M easure 1...

T able 3 .6 : M easure 2 ...

T able 3 .7 : M easure 3...

T ab le 3 .8 : M easure 3 ...

T ab le 3 .9 : M easure 4 ...

15

Table 3.10: M easure 4...

Table 3.11: Results from Full Factorial Control Factor array and Two-Level

Extrem e Compound N oise..

Table 3.12: Results from Resolution III Control and Noise Factor Array............

Table 3.13: Results from Resolution III Control Factor array and Two-Level

Extrem e Compound N oise..

Table 3.14: Average results from Full Factorial Control Factor array and Two-

Level Simple Compound N oise Strategy..

Table 4.1: Hierarchical Probability Model Parameters used for Strong Hierarchy

Response Surface instances..

Table 4.2: Hierarchical Probability Model Parameters used for Weak Hierarchy

Respone Surface instances ..

Table 4.3: M easure 1...

Table 4.4: M easure 2...

Table 4.5: M easure 3...

Table 4.6: M easure 3...

Table 4.7: M easure 4...

Table 4.8: M easure 4...

16

53

T ab le 4 .9 : M easure 1...

T able 4 .10 : M easure 2 ...

T able 4 .11: M easure 3 ...

T able 4 .12 : M easure 3 ...

T able 4 .13: M easure 4 ...

T able 4 .14 : M easure 4 ...

Table 4.15: Results from Full Factorial Control Factor array and TTBF strategy.....

Table 4.16: Results from Resolution III Control and Noise Factor Array............

Table 4.17: Results from Resolution III Control Factor array and TTBF Strategy....

Table 5.1: Parameters for Variants of Hierarchical Probability Model......................

Table 5.2: Median fraction of the maximum possible improvement attained in

hierarchical probability response surface instances..

Table 5.3: Percentage of hierarchical probability response surface instances in

which optimum control factor settings were attained..

Table 5.4: Median fraction of the maximum improvement attained in case study

sim u latio n s..

Table 5.5: Percentage of case study simulations in which optimum control factor

settin gs w ere attained ..

17

101

101

102

102

102

103

105

108

108

129

134

134

137

138

18

Chapter 1: Introduction

1.1 Motivation

Robust parameter design is an engineering methodology intended as a cost effective

approach to improve the quality of products, processes and systems, Taguchi (1987),

Robinson et al. (2004). Taguchi (1987) proposed that inputs to any system can be

classified as control factors and noise factors. Control factors are those system parameters

that can be easily controlled and manipulated. Noise factors are those system parameters

that are difficult and/or costly to control and are presumed uncontrollable. Robust

parameter design involves choosing optimal levels of the controllable factors in order to

obtain a target or optimal response with minimal variation. The challenge arises in

obtaining optimal response due to the influence of the uncontrollable noise factors. Noise

factors bring variability into the system, thus affecting the response. The aim is to

properly choose the levels of control factors so that the process is robust or insensitive to

the variation caused by noise factors.

Robust parameter design is among one of the most important developments in systems

engineering in 20th century, Clausing and Frey (2005). These methods seemed to have

accounted for a significant part of quality differential that made Japanese manufacturing

dominant during 1970s. Robust parameter design enables in smoother system integration,

faster transition to production, and higher field reliability.

19

Taguchi (1987) also proposed techniques of experimental design to identify the settings

of control factors that would achieve robust performance of systems. He used orthogonal

designs where an orthogonal array involving control factors ('inner array') is crossed

with an orthogonal array involving noise factors ('outer array'). The response of the

systems' at each setting of control factors were treated as replicates for the formulation of

a measure that would be indicative of both the mean and variance of response. One of the

weaknesses of these crossed array experiments is that they tend to require large number

of experimental runs.

1.2 Goal of Research

Robust parameter design methods are used to make systems more reliable and robust to

incoming variations in environmental effects, manufacturing processes and customer

usage patterns. However, robust design can become expensive, time consuming, and/or

resource intensive. Thus research that makes robust design less resource intensive and

requires less number of experimental runs is of great value. Robust design methodology

can be expressed as multi-response optimization problem. The objective functions of the

problem being: maximizing reliability and robustness of systems, minimizing the

information and/or resources required for robust design methodology, and minimizing the

number of experimental runs needed. We will present noise strategies for robust design

methods which would reduce the amount of experimental effort needed and information

about noise factors space needed to maximize quality of a system.

20

1.3 Organization of Thesis

The thesis will first present simplest of the noise strategy which minimizes amount of

experimental effort needed. Then it will suggest some alternative, useful and more

efficient noise factor strategies. Chapter 2 will discuss the formulation of hierarchical

probability model. This will form the basis to compare different robust design methods

statistically. First the regularities exhibited by engineering systems will be discussed.

Next those regularities will be put in a mathematical format. The mathematical

formulation will be used to generate response surface instances to analyze different

robust design methods. We will also discuss about selection of various parameters for

hierarchical probability model.

Chapter 3 will introduce Compound Noise. Compound Noise is very effective as a robust

design strategy on the systems which show effect sparsity. We will run two formulations

of compound noise on response surface instances generated using strong and weak

hierarchical probability model. Next these formulations of compound noise will be run on

six different case studies from various engineering domains to verify conclusions from

hierarchical probability model. In the end conditions for compound noise to be

completely effectiveare outlined . We will also device an algorithm to use compound

noise as a robust design method.

Chapter 4 will introduce Take-The-Best-Few Noise Factor Strategy, which is very

effective as a robust design strategy for all kinds of systems. We will run this noise

strategy on response surface instances generated using strong and weak hierarchical

21

probability model and six different case studies from various engineering domains. We

will also compare this noise strategy with compound noise strategy. We will propose

hybrid noise strategy as amalgamation of two noise strategies. We will then device an

algorithm on the use of this noise strategy and compound noise strategy as robust design

methods.

Chapter 5 will explore the influence of correlation among noise factors on robust design

methods. We will see the impact of correlation and variance of induced noise factors on

response surface instances and six different case studies. We will see that if system does

not have any significant three-factor interaction then during robust design experiments

we can neglect correlation and/or exaggerate intensity of induced noise factors. We will

design an algorithm for implementing correlation influence in practice.

Chapter 6 will summarize the key messages from this thesis. It will present cost-benefit

analysis of various robust design methods and the percentage improvement each robust

design method can give for a given system. This cost-benefit analysis can be used by

engineers to find the maximum benefit they can get out of a robust design study based on

their allocated budget. Also it outlines scope of future research in area of robust design.

This will be followed by references and appendices.

22

Chapter 2: Hierarchical Probability Model

2.1 Regularities in Engineering Systems

Experimentation is an important activity in design on systems. Almost every existing

engineering system was shaped by a process of experimentation including preliminary

investigation of phenomenon, sub-system prototyping, and system verification tests.

Based on experience in planning and analyzing many experiments, practitioners and

researchers in system design have identified regularities in the inter-relationships among

factor effects and their interactions, Wu and Hamada (2000). Hamada and Wu (1992),

Box and Meyer (1986), Chipman, Hamada and Wu (1997) and Wu and Hamada (2000)

describe these regularities in detail:

Effect Sparsity Principle - among many effects examined in any system only a

small fraction of those effects are significant in system, Box and Meyer (1986).

This is sometimes called the Pareto principle in Experimental Design based on

analogy with the observations of the 19 th century economist Vilfredo Pareto who

argued that, in all countries and times, the distribution of income and wealth

follows a logarithmic pattern resulting in the concentration of resources in the

hands of a small number of wealthy individuals. Effect sparsity appears to be a

phenomenon characterizing the knowledge of the experimenters more so than the

physical or logical behavior of the system under investigation. Investigating an

effect through experimentation requires an allocation of resources -- to resolve

23

more effects typically requires more experiments. Therefore, effect sparsity is in

some sense an indication of wasted resources. If the important factor effects could

be identified during planning, then those effects might be investigated

exclusively, resources might be saved, and only significant effects would be

revealed in the analysis.

* Hierarchical Ordering Principle - main effects are generally more significant that

two factor interactions, two-factor interactions are generally more significant than

three-factor interactions, and so on, Hamada and Wu (1992). Effects of same

order are likely to have same significance level. This principle is also sometimes

referred as "hierarchy". Effect hierarchy is illustrated in figure 2.1 for a system

with four factors A, B, C and D. Figure 2. lillustrates a case in which hierarchy is

not strict - for example, that some interactions (such as the two-factor interaction

AC) are larger than some main effects (such as the main effect of B).

24

Figure 2.1: The hierarchy and heredity among main effects and interactions in a system with four

factors A, B, C, and D. Interactions between factors are represented by letter combinations such as

the two-factor interaction A C. The font size represents the size of the effect.

Effect Heredity Principle - an interaction effect is likely to be significant when at

least one of its parent factors is significant, Wu and Hamada (2000). It is also

sometimes referred to as "inheritance".

2.2 Hierarchical Probability Model

Hierarchical probability models have been proposed as a means to analyze the results of

experiments with complex aliasing patterns. In any system main effects and interaction

effects present are of interest. There is also a need to predict the relative importance and

25

relationship among these effects. Chipman, Hamada and Wu (1997) have expressed these

properties in mathematical form in a hierarchical prior probability model. The

hierarchical probability model proposed by Chipman, Hamada and Wu (1997) has been

extended here to enable evaluation of noise strategies in robust design. The model

includes both control and noise factors since they are both needed for the present

purposes. The model includes two-factor interactions since control by noise interactions

are required for robust design to be effective. It also includes the possibility of three-

factor interactions since these have been shown to be frequently present, especially in

systems with a large number of factors Li and Frey (2005) and might affect the outcomes

of robust design. The details of the model are in Equations 2.1 through 2.10.

y(x,,x 2 -. ,x))=$ Axi +Z flxix +zzZ/3ixixjxk +6 (2.1

xi - NID(0, w 1
2) i E ... m (2.2)

x e{,-} ie m +1...n (2.3)

e - NID(0,w2
2) (2.4)

f ('1,|5,)=N(0,1) if 3 = 0

N(0, c 2 if g = 1 (2.5)

26

N(0,s l) if (5 = 0r~io) 2
JFIi~j bN(O,c 2

_s 2) if '5=1

N(O,s 2
2) if jk =0

Jf 1ijk izkJ N(0,c 2 -s2) if 5
ijk =1

P(=1) = p

P00
Pr(S5, =1|S,S,)= Pot

LPn1

fp000

Pr(jk =1|SijSk) =Pool
pollI

Lpill

if

if

if

if

15+ +45 =0

45,+ '5 + 05 = 1

i j+ k 2
5,+, + 5=3 (2.10)

This hierarchical probability model allows any desired number of response surface

instances to be created such that population of response surface instances has the desired

properties of sparsity of effects, hierarchy, and inheritance. Equation 2.1 represents the

measured response of the engineering system y. The independent variables x,'s are both

control factors and noise factors. Control and noise factors are not distinguished in this

notation except via indices. Equation 2.2 shows that the first set of x variables (xI, x2,...

27

(2.6)

(2. 7)

if

if

if

(2. 8)

S ,5 =0

i5 +5 =1

9, +S =2
(2. 9)

xm) are regarded as "noise factors" and are assumed to be normally distributed. Equation

2.3 shows that the other x independent variables (xmi, X,±2,... x,) are the "control

factors" which are assumed to be two level factors. The variable represents the pure

experimental error in the observation of the response which is assumed to be normally

distributed. Since the control factors are usually explored over a wide range compared to

the noise factors, the parameter w, is included to set the ratio of the control factors range

to the standard deviation of the noise factors. The intensity of noise factors can be

changed by changing the value of parameter w1 . The parameter w 2 is included to set the

ratio of the standard deviation of the pure experimental error to the standard deviation of

the noise factors.

The generated instance response y is assumed to be a third order polynomial in the

independent variables xi's. The coefficients i's are the main effects. The coefficients i;'s

model two-way interactions including control by control, control by noise and noise by

noise interactions. The coefficients ijk's model three-way interactions including control-

by-control-by-control, control by control by noise, control by noise by noise and noise by

noise by noise. The model originally proposed by Chipman, Wu and Hamada (1997) did

not include three-way interactions. Li and Frey (2005) extended the model to included

three-way interactions.

The values of the polynomial coefficients P's are determined by a random process that

models the properties of effect sparsity, hierarchy, and inheritance. Equation 2.5

determines the probability density function for the first order coefficients. Factors can be

28

either "active" or "inactive" depending on the value (0 or 1 respectively) of their

corresponding parameters i's. The parameter strength of active effects is assumed to be c

times that of inactive effects. Equations 2.6 and 2.7 determine the probability density

function for second order and third order coefficients respectively. In equations 2.6 and

2.7 the hierarchy principle is reflected in the fact that second order effects are only sj

times as strong (on average) as first order effects (sysl) and third order effects are only s 2

times as strong as first order effects.

Equation 2.8 reflects sparsity of effects principle. There is a probability p of any main

effect being active. Equation 2.9 and 2.10 enforce inheritance. The likelihood of any

second order effect being active is low if no participating factor has an active main effect

and is highest if all participating factors have active main effects. Thus generally one sets

pJ>po>poo and so on.

We classified systems and response surface instances based on hierarchical ordering

principle. The classes are:

" Strong hierarchy systems are ones which have only main effects and two-factor

interactions active. Some small three-factor interactions might be present in such

systems but they are not active.

* Weak hierarchy systems are ones which also have active three-factor

interactions.

29

To generate a response surface instance, first the values of the probabilities of given

factor effects being active (next section) are determined. Using them in equations 2.8 to

2.10, active effects for a given response surface instance are determined. Once active

effects are known equations 2.5 to 2.7 are used to find the values of P's. Equations 2.2 to

2.4 are used to find the values of control factor, noise factors and experimental error for

the model. To the find the instance's response, values of xi's, P's and are substituted in

equation 2.1.

2.3 Selecting parameters for Hierarchical Probability Model

Hierarchical Probability Model has several real valued parameters which have significant

effect on the inferences drawn from its use. To provide a balanced view Frey and Li

(2004) in tables 2.1 and 2.2 share six different settings of parameter settings.

C Si S2 WI W2

Basic WH 10 1 1 1 1
Basic low w 10 1 1 0.1 0.1

Basic 2 "d order 10 1 0 1 1
Fitted WH 15 1/3 2/3 1 1

Fitted low w 15 1/3 2/3 0.1 0.1
Fitted 2 "d order 15 1/3 0 1 1

Table 2.1: Parameters for Hierarchical Probability Model

30

Basic WH 0.25 0.25 0.1 0 0.25 0.1 0 0
Basic low w 0.25 0.25 0.1 0 0.25 0.1 0 0

Basic 2 "d order 0.25 0.25 0.1 0 N/A N/A N/A N/A
Fitted WH 0.43 0.31 0.04 0 0.17 0.08 0.02 0

Fitted low w 0.43 0.31 0.04 0 0.17 0.08 0.02 0
Fitted 2 nd order 0.43 0.31 0.04 0 N/A N/A N/A N/A

Table 2.2: Additional parameters for Hierarchical Probability Model

The basic weak heredity model (basic WH) is based on the parameters used in Bayesian

model selection, Chipman, Wu and Hamada (1997). Two variants were developed from

this basic model. The low w variant accounts for the fact that control factors are generally

explored over a wider range than noise factors. The 2 "d order variant zeros out the

coefficients of all the three-factor interactions. The fitted weak heredity model (fitted

WH) was developed by Frey and Li (2004) based on experimental data.

Through out this thesis several different variants of these model parameters will be used.

We will also use other parameter values, different from the ones as given over here to

explore some effects in greater details. This would be done specifically to study the

effectiveness of Compound Noise strategy and Take-The-Best-Few strategy on systems

showing effect sparsity.

2.4 Variants of Hierarchical Probability Model

To study the impact of neglecting correlation among noise factors on Robust Design

Studies, some more variants of Hierarchical Probability Model were developed. In

particular equation 2.2 was modified as:

31

Pot IIPoo Pill IPoll IPoolP Pooo

(2.11)

Equation 2.11 shows that the first set of m input parameters to Hierarchical Probability

Model (xI, X2,..., xm) are regarded as noise factors and are assumed to be normally

distributed with variance-covariance K among noise factors.

Multiple variants of the hierarchical probability model were formed by selecting different

sets of model parameters as described in Table 2.3. As the column headings of Table 2.3

indicate, a key difference between the variants is the assumption concerning effect

hierarchy. A Strong Hierarchy Model assumes that the only active effects in the system

are main effects and two-factor interactions although small three factor interactions are

present as can be seen in Equation 2.7. A Weak Hierarchy Model includes a possibility

for active three-factor interactions. The values for parameters in Table 2.3 such as

p11=0. 2 5 and poJ=0.I are based on the Weak Heredity model proposed by Chipman,

Hamada and Wu (1997). In fact, the Strong Hierarchy model is precisely the Weak

Heredity model published in that paper and used for analyzing data from experiments

with complex aliasing patterns. The Weak Hierarchy model proposed here is an

extension of that model to include higher order effects and therefore relies less on the

assumption of hierarchy.

Additional model variants are based on the options in the last three rows of Table 2.3.

The on-diagonal elements of the covariance matrix were varied among two levels. The

32

xi ~ N(0, K) ic I ... m

covariance matrix was also composed by three different methods inducing different

degrees of correlation. These resulted in off-diagonal elements of the covariance matrix

with different average magnitudes. Given the two model options related to the columns

of Table 2.3 and the additional combinations of options due to the alternatives in the last

three rows, there are 24 different model variants in all.

Table 2.3: Parameters for Variants of Hierarchical Probability Model

K is the variance-covariance matrix for the real noise factors. The modeled noise, in

response surface instance is assumed to have a covariance of an identity matrix. Thus the

more different K is from an identity matrix, the more the noise strategy varies from a

faithful representation of the noises the system will experience in the field.

33

parameters Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two- (active three-factor

factor interactions) interactions also included)
m 5 5
n 12 12
c 10 10

p 0.25 0.25
p11 0.25 0.25

pOI 0.1 0.1
POO 0.0 0.0

pill 0.0 0.25
Poll 0.0 0.1

poo] 0.0 0.0

POOO 0.0 0.0
7 1 or 10 1 or 10

K 1.0 or 1.75 1.0 or 1.75
K I0.01, 0.26, or 0.47 0.01, 0.26, or 0.47
i

The on-diagonal elements of the matrix, Kii, are the variance due to each noise factor xi.

The size of these on-diagonal elements is an indication of the amplitude of the real noise

factors relative to the modeled noise factors. Two options within the model are defined:

one in which the real noise has the same variance as the modeled, and one in which the

real noise has higher variance than the modeled.

The off-diagonal elements of the matrix, Ki;, are the covariance among noise factors xi

and x;. Three options within the model are defined: one with almost no correlation (with

the average absolute value of the correlation coefficients being 0.01), one with relatively

mild correlation (with the average absolute value of the correlation coefficients being

0.26) and one with relatively strong correlation (with the average absolute value of the

correlation coefficients being 0.47). The matrix K was formed so as to ensure the

resulting matrix was positive semi-definite while also having the desired variance and the

desired degree of correlation.

2.5 Chapter Summary

In this chapter the formulation of Hierarchical Probability Model was discussed. This will

form the basis to compare different robust design methods statistically. First the

regularities exhibited by engineering systems were discussed. Next those regularities

were put in a mathematical format. The mathematical formulation would be used to

generate response surface instances to analyze different robust design methods. We also

discussed about selecting various parameters for Hierarchical Probability Model. We can

34

have many variants of Hierarchical Probability Model. We discussed some of these

variants.

In the next chapters some robust design methods will be discussed, which focus on

reducing number of experiments done on systems and reducing amount of information

required about system and still improve robustness of the system. We will use

Hierarchical Probability Model as one of the basis to analyze these robust design

methods.

35

36

Chapter 3: Compound Noise: Evaluation as a Robust

Design Method

3.1 Introduction and Background

In Robust Parameter Design methodology, the effect of noise (variation) is reduced by

exploiting control-by-noise interactions. These control-by-noise interactions can be

captured by using crossed-array approach. The control factor setting that minimizes the

sensitivity of the response to noise factors is called the optimal control factor setting or

the most robust setting for the system. A crossed-array approach is a combination of two

orthogonal arrays, one of control factors and other of noise factors. Exploiting control-by-

noise interactions is just the beginning of reducing sensitivity of the response. For

systems that have active three-factor interactions, control-by-control-by-noise and

control-by-noise-by-noise interactions can also be utilized to reduce the sensitivity of

system's response. But as the complexity of the system increases, use of full factorial

control and noise factor arrays becomes prohibitively expensive. As an attempt to reduce

the run size of this crossed-array approach, Taguchi (1987) proposed a compound noise

factor technique. A compound noise factor is typically formed by combining all the noise

factors of a system into a single factor, which is used instead of noise array.

When we know which noise factor levels cause the output to become large or small they

are compounded so as to obtain one factor with two or three levels. On doing this, our

37

noise factors become a single compounded factor, no matter how many factors are

involved. Taguchi (1987) and Phadke (1989) outlined conditions on the use and

formulation of compound noise. Noise factors can be combined into a single compound

factor based on their directionality on the response. Directionality of effects of noise

factors on the response can be found by running small number of experiments. Phadke

(1989) showed how to construct a compound noise factor using the results from the

Operational Amplifier and Temperature Control Circuit.

Du, et al. (2003, 2004) used percentile performance difference of the system to construct

compound noise. This method is applicable for systems which show unimodal response

characteristics. The compound noise formed this way also carries information about

sensitivity of system's response to noise variables. In this thesis compound noise will be

formed by the algorithm given by Phadke (1989). We will determine directionality of the

effects of noise factors on the system's response and will combine noise factors based on

their directionality.

Hou (2002) studied the conditions that will make compound noise yield robust setting for

systems. Hou said "extreme settings should exist for compound noise to work". We will

later find that compound noise can be effective even when extreme settings do not exist.

The conditions mentioned in "Compound Noise Factor Theory" turn out to be the

sufficient conditions. In later sections the analysis will be extended to determine

conditions under which compound noise will predict a robust setting. Hou's formulation

was limited to systems which had active effects up to two-factor interactions. We will

38

extend the formulation to systems which can have active effects up to three-factor

interactions.

Compound Noise can be considered an extension of supersaturated designs (SSD). This

concept initially originated with a paper by Satterthwaite (1959). SSDs were assumed to

offer a potentially useful way to investigate many factors with few experiments. In some

SSDs the number of factors being investigated may exceed the number of experiments by

a large factor. Holcomb, et al. (2002) discusses the construction and evaluation of SSDs.

Holcomb, et al. (2003) outlines the analysis of SSDs. Compound Noise is an unbalanced

SSD. Allen and Bernshteyn (2003) discuss the advantages of unbalanced SSDs in terms

of performance and affordability. Heyden, et al. (2000) argues SSDs can be used to

estimate variance of response, which can be used as a measure of robustness rather than

using it to find main effects. S SDs "do not allow estimation of the effects of the individual

factors because of confounding between the main effects". But "estimation of the

separate factor effects is not necessarily required" in improving robustness. Using

compound noise as a robust design method we try to estimate robustness of the system at

a given control factor setting. The setting which improves this estimate is taken as the

predicted robust setting.

The main aim of this chapter is to explore the effectiveness of compound noise as a

robust design method. We will first look at the effectiveness of compound noise strategy

on response surface instances generated using Hierarchical Probability Model, Li and

Frey (2005). Two different kinds of response surface instances were generated. One with

39

only main effects and two factor interactions also called as strong hierarchy instances

and other with main effects, two factor interactions and three factor interactions, also

called as weak hierarchy instances.

The conclusions from compound noise studies on response surface instances from

Hierarchical Probability Model were then verified by testing compound noise on six case

studies from different engineering domains. The thesis also provides theoretical

justification for the effectiveness of a compound noise strategy. This thesis also gives an

alternative strategy to formulate a compound noise, distinctly different from Taguchi's

formulation of compound noise. This new compound noise strategy requires no

knowledge about noise factors effect for its formulation. The main take away of this

chapter is that, Compound Noise as a Robust Design Method was very effective on the

response surface instances and case studies for which only few effects accounted for

significant impact on response.

The chapter is organized as: first we will describe setting up of compound noise strategy

on response surface instances, measures we studied, results from compound noise studies

followed by conclusions from Hierarchical Probability Model. Then compound noise

strategy for six case studies from different engineering domains will be formulated. We

will also study the conditions which lead to effectiveness of Compound Noise strategy. In

the end conclusions and summary of the chapter will be given.

40

3.2 Setting up of Compound Noise study

The objective of this chapter is to see the effect of compounding noise on the prediction

of optimal setting of a response surface instance generated by hierarchical probability

model parameters and verify the results by case studies from various engineering

domains. Here two kinds of compounding schemes were studied: simple compounding

of noise factors and extreme compounding of noise factors. In the field when the

direction of a system's response due to changing each of the noise factors is known,

extreme compound noise can be constructed. This formulation of compound noise was

originally proposed by Taguchi (1987) and Phadke (1989). We make a two-level extreme

compound noise factor by combining noise factor levels in such a way that, at the lower

setting of extreme compound noise all the noise factor settings give minimum response

and vice versa. When there is no idea about the direction in which noise factors affect a

system's response, simple compound noise is constructed. In this case noise factor levels

are simply combined to form two-level simple compound noise. For example, we can

select the setting of noise factors randomly to form lower-level compound noise.

To construct extreme compound noise strategy, some knowledge about effect of noise

factors on system's response is needed. Hence it is in some sense more expensive to

construct for a given system. But no such information is required about effect of noise

factors while formulating simple compound noise strategy. Simple compound noise

strategy is less resource intensive as compared to extreme compound noise strategy. We

will apply both of these compound noise strategies to strong and weak hierarchy response

surface instances and analyze robustness gain. We will explore the reasons behind

41

success or failure of compound noise application for response surface instances. The

questions we want to address in this chapter are:

* Why is compound noise effective in achieving robust setting in certain cases, but

ineffective in other cases?

* How can we measure the effectiveness of a compound noise strategy?

* Do we need to know the directionality of noise factors to use compound noise?

(Simple Compound Noise strategy vs. Extreme Compound Noise strategy)

3.2.1 Generating Response Surface instances

To study the effectiveness of compound noise strategy we will generate instances of

response surfaces using Hierarchical Probability Model. The instances of response

surfaces studied had 7 control factors and 5 noise factors. These response surfaces were

generated according to a relaxed weak heredity model. The full third-order response

surface equation is given by

12 12 12 12 12 12

2>*' 2. 12 = Z x + 3xix +ZIJ ijkXiXjXk+(
i=1 i=1 j=1 i=1 =1 k=1

j>i 1>1 k>j

where xI-x5 represent normally distributed random noise variables, x6- x12 represent

control factors, 8's are factor coefficients and e is experimental error.

42

In our study, we generated both strong and weak hierarchy response surface instances.

The noises factors were assumed to be uncorrelated. Full factorial array was used for 7

control factors. Table 3.1 and table 3.2 give hierarchy probability model parameter values

used to generate strong and weak hierarchy response surface instances respectively.

parameters values
c 15
s_ 0.33

S2 0.67
W2 1

p 0.43
P11 0.31
POI 0.04

Poo 0

Table 3.1: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances

parameters values
C 15
s_ 0.33

S2 0.67
W2 1

P 0.43
Pi 0.31

POI 0.04

Poo 0.0
pill 0.17

Poll 0.08
poo] 0.02

POOO 0.0

Table 3.2: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances

43

To gaze the impact of effect sparsity on the effectiveness of compound noise strategy, we

changed parameter values for both strong and weak hierarchy response surfaces. The

changed parameters are given in tables 3.3 and 3.4 for strong and weak hierarchy

response surface instances respectively.

parameters values
c 15
s_ 0.33
_S2 0.67
w2 1
P 0.3
pl' 0.15
P01 0.04
P00 0

Table 3.3: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances, reflecting effect sparsity

44

parameters values
c 15
s1 0.33
S2 0.25
W2 1
P 0.3
P11 0.15
POI 0.04

Poo 0.0
pill 0.03

poll 0.03
Poo] 0.02
POOO 0.0

Table 3.4: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances, reflecting effect sparsity

For noise factors we defined 3 different noise strategies. First was a v noise array. This

noise strategy is very close to full factorial noise factor array. Hence it will give almost

perfect results for generated response surface instances. This will form a basis of

comparison for compound noise strategies. Second was simple compound noise, in which

noise factors settings were selected randomly to form two-level simple compound noise.

Third was extreme compound noise, in which noise factors were compounded based on

the sign of their effect coefficient in the response surface instance. The way simple and

extreme compounded noises were formed for the 5 noise factors, is shown below,

equations 3.2 and 3.3.

45

Simple Compounded Noise Factor levels

N 1 N, N, N 4 N5

[random(sign()) ran

Extreme Compounded Noise Factor levels

N1 N, N, N4 N 5

-]F-sign(pI) -sign(2) -sign(8 3)

+ sign(#l) sign(#2) sign(,83)

dom(sign(/p5))j

- sign(/34)

sign(/34)

where 1's are the coefficient of noise factors for a given instance of response surface as

predicted by hierarchy probability model parameters.

For each of the three noise strategies, we generated 200 response surface instances. For

each instance of generated response surface, we used Monte Carlo on noise factors to

find response variance at each level of full-factorial control factor array. The setting of

control factors giving minimum variance of response was the optimal setting for that

instance of response surface.

We analyzed each response surface instance by running a designed experiment using 3

27x 25-1
different robust design crossed arrays: V (Noise Strategy 1), 2' x Simple

Compound Noise strategy and 27 x Extreme Compound Noise strategy. For each crossed

array experiment we predicted optimal setting of control factors of response surface, by

finding minimum response variance for that experiment. This predicted optimal setting of

46

(3.2)

(3.3)
-sign(p,)

sign(18 5)_

response surface under each crossed array experiment was then compared with optimal

setting we got by using Monte Carlo on noise factors. In the next section we will present

this algorithm in a diagrammatic manner.

3.2.2 Algorithm to study Compound Noise

The algorithm used to study noise compounding is shown in figure 3.1. The same

algorithm was used to study both strong and weak hierarchy response surface instances.

For each generated response surface instance, we studied three different robust design

methods as outlined in previous section. Left hand side of the algorithm finds optimal

setting of response surface instance, using Monte Carlo on noise factors. Right hand side

of the algorithm finds optimal setting of response surface instance as predicted by a

27 25-1
chosen robust design method (' (Noise Strategy 1), 27 x Simple Compound Noise

strategy or 27x Extreme Compound Noise strategy). Various measures are finally

compared to compute the effectiveness of a chosen robust design strategy.

47

- .
--I

Relaxed weak heredity
parameters

Generate a response surface
instance; i.e. generate 3's

Use Monte Carlo on noise
factors

Compute variance of
response at each control

factor setting

Find control factor setting
wxith minimum variance

Run a designed experiment
based on one of the 3 robust

design noise strategies

Predict optimal control factor setting
the one which gives minimum variance

of response

Find variance g predicted
optimal setting using Mone

Cado on noise factors

Compare the results for a given robust
design noise strategy

Repeat the process for 200 response
surface instances

Compute median and inter-quartile range of
percent reduction in variance and other

parameters

Figure 3.1: Algorithm used to evaluate Compound Noise Strategies

48

A

. h .1 00

3.2.3 Measures studied

There were number of measures that were derived from the above study. The first was the

percentage number of times a given noise strategy could predict the optimal control

factor setting, as given by running Monte Carlo simulation at each control factor setting

for each generated instance of response surface.

For the second measure we found the predicted optimal settings of the 7 individual

control factors as given by a noise strategy. We compared the predicted optimal setting of

each control factor with the optimal control factor setting as given by Monte Carlo

simulation. We then found number of control factors out the 7, which had same setting as

given by noise strategy and Monte Carlo simulation. The second measure was the mean

of this number for 20instances that were generated.

For the third measure, we first found the predicted optimal control factor setting by using

a given noise strategy. Then we ran Monte Carlo simulation on noise factors at that

predicted optimal control factor setting and calculated the standard deviation labeled

strategy. The minimum standard deviation found by running Monte Carlo simulation at

each control factor setting is called copt. The third measure was the ratio of astrategy to (opt

for each generated instance of response surface. We studied the median and inter-quartile

range of this measure for 200nstances that were generated.

For the fourth measure, we calculated the mean of the standard deviations, as given by

Monte Carlo at each control factor setting. We called this mean as obase. This Gbase was

49

our reference. (abase - opt) is the maximum reduction that is possible in standard deviation

for a given instance of response surface. But by running a given noise strategy the

realized reduction would only be (Gbase - strategy). The fourth meaure was the ratio of

realized reduction to the maximum reduction possible, i.e. ratio of (abase - strategy) to (abase

- opt) for each generated instance. And we studied the median and inter-quartile range of

this measure for 200instances that were generated. Figure 3.2 shows diagrammatic

representation of positive improvement ratio for an instance of generated response

surface.

basem

variance
of

Response

strategy

opt=

Realized Reduction

Maximum Reduction

-0

Figure 3.2: Improvement Ratio: Ratio of Realized Reduction to Maximum Reduction possible

3.2.4 Results from Compound Noise studies

The results from Compound Noise studies on Strong and Weak Hierarchy response

surface instances are presented from tables 3.5 to 3.10.

50

Percent Matching of ALL Control Factors with their Robust Setting

Strong .Weak
Strong Hierarchy Hira y Weak Hierarchy Hierarchy

response surfaces Hierarchy response surfaces resphs

(sparse effects) suspaces (sparse effects) sraesos

oise Strategy 1 72% 70% 63% 61%

Simple 8% 6% 3% 3%
Compoundig

Extreme 10% 8% 4% 4%
Compounding 1 8 4

Table 3.5: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy Strong Weak Hierarchy Weak

response surfaces rsp hs response surfaces rsp hs

(sparse effects) surfaces (sparse effects) surfaces

Noise Strategy 1 93% 90% 82% 80%
Simple 55% 50% 53% 49%

Compounding
Extreme 73% 61% 54% 49%

Compounding 7 6 4

Table 3.6: Measure 2

51

Median "'trategy

opt

Strong Hierarchy Strong Weak Hierarchy Hierarchy

response surfaces Hierarchy response surfaces resphs

(sparse effects) surfaces (sparse effects) sfaces

oise Strategy 1 1.00 1.00 1.00 1.00
Simple 1.12 1.25 1.49 1.56

Compounding
Extreme 1.12 1.36 1.41

Compounding 1.08

Table 3.7: Measure 3

25 th and 7 5th percentile strategy

Strong Hirrcy Weak
Strong Hierarchy Hirarg Weak Hierarchy Hear
response surfaces Hierarchy response surfaces resphs
(sparse effects) surfaces (sparse effects) surfaces

Noise Strategy 1 1.00-1.00 1.00-1.00 1.00-1.03 1.00-1.03
Simple 1.04-1.35 1.12-1.51 1.25-1.79 1.27-1.73

Compounding
Extreme 1.02-1.16 1.13-1.62 1.15-1.64 1.15-1.73

Compounding

Table 3.8: Measure 3

52

Median ('ba:e O straegj

(7base - 7opt)

Strong Hierarchy Strong Weak Hierarchy Hierarchy

response surfaces Hierarchy response surfaces rasphs

(sparse effects) surfaces (sparse effects) surfaces

Noise Strategy 1 1.00 1.00 1.00 1.00
Simple 0.68 0.52 0.33 0.29

Compounding I
Extreme 0.82 0.69 0.54 0.43

Compounding 0.8

Table 3.9: Measure 4

25th and 75th percentile b" astaegy

(base aopt)

Strong Hierarchy Strong Weak Hierarchy Weak
Hierarchy Hierarchy

response surfaces rsp hs response surfaces rsp hs

(sparse effects) surfaces (sparse effects) res

oise Strategy 1 0.99-1.00 0.98-1.00 0.96-1.00 0.95-1.00
Simple 0.24-0.88 0.14-0.75 0.16-0.64 0.11-0.63

Compounding
Extreme 0.53-0.94 0.31-0.87 0.23-0. 80 0.20-0.74

CompoundingI

Table 3.10: Measure 4

As we can see from above tables that as the effects become less sparse (i.e. more dense)

improvement in robustness that can be achieved for both Strong and Weak Hierarchy

response surface instances decreases. To explore this effect further, we varied effect

density over a wide range and plotted median improvement ratio for both Strong and

Weak Hierarchy response surface instances. Figures 3.3 to 3.5 present the results from

the above study.

53

1

0.9

0.8

0.7

* 0.6
E

2 0.5

E 0.4

0.3

0.2

0.1

0I I I I 0 1
0.6 0.7 0.8 0.9 1

Figure 3.3: Median Improvement Ratio verses Effect Density for Strong Hierarchy Response Surface

Instances

54

I I I I I

0.1 0.2 0.3 0.4 0.5
Effect Density

-

-

-

-

-

-

.2

EU

1

0.9

0.8

017

0.6

0.5

0.4

03

0.2

0.1

0 1 1 1 1 I 1 10 0.1 0.2 0.3 0.4 0.5 0!6 07 08 0.9 1
Effect Density

Figure 3.4: Median Improvement Ratio verses Effect Density for Weak Hierarchy Response Surface

Instances

55

1

0.9

0.8

0.7

06

0.5

04

03

0.2

01

0
0

-**

SStrong Hierarchy Response
SSurfaces Instances

Weak Hierarchy Respon seH R
Surfaces Instances

* * *

#*' *~* *

* * * ** 4&. *
*

IIIII I I I I

0.1 0.2 0.3 0.4 0.5
Effect Density

0.6 0.7 0.8 0.9 1

Figure 3.5: Median Improvement Ratio verses Effect Density for both Strong and Weak Hierarchy

Response Surface Instances

3.2.5 Conclusions from Probability Model

The use of compound noise as robust design method leads to reduction in experimental

effort. Up till now we have tried to gage the effectiveness of compound noise as a robust

design method for response surface instances generated using Strong and Weak

Hierarchical Probability Model. As we can see from above tables and figures that

compound noise strategy is very effective for instances which show effect sparsity. We

used two fonnulations of compound noise strategies. One of them was adopted from

56

E

0

E

-

-

-

Taguchi (1987) and Phadke (1989), extreme compound noise. For such a formulation we

need to know the directionality of noise factors on system's response. The other

formulation was simple compound noise. For simple compound noise strategy we

randomly combine the settings of noise factors, and we do not need to know the

directionality of noise factors. We also found that even such a formulation of compound

noise strategy was very effective in obtaining high robustness gains, for response surface

instances showing effect sparsity. The reason why such a formulation of compound noise

is very effective is that active effects in response surface instances are sparse.

As active effects present in response surface instance become more densely populated,

the percentage improvement that can be achieved using compound noise strategies

decreases. This happens for response surface instances generated via both Strong and

Weak Hierarchical Probability Model.

In the next section we will analyze compound noise strategies for six case studies from

various engineering domains. We will explore the reasons for the effectiveness or

ineffectiveness of compound noise strategies.

3.3 Case Studies

In the previous section we have seen that both extreme and simple formulations of

compound noise strategy work good in improving robustness gain for instances of

response surfaces that show effect sparsity. To provide a further check on these results,

we identified and implemented six system simulations, three of them followed strong

57

hierarchy and three followed weak hierarchy. Using these six case study simulations from

various engineering domains, we performed robust design studies using various

compound noise strategies as described in previous sections. The three case studies that

exhibited strong hierarchy are Operational Amplifier (Op Amp), Phadke (1989), Passive

Neuron Model, Tawfik and Durand (1994), and Journal Bearing: Half Sommerfeld

Solution, Hamrock, et al. (2004). The three case studies that exhibited weak hierarchy are

Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),

Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). For

each case study we ran full factorial control and noise factor crossed array experiments.

These runs were used to determine the effect coefficients for main effects, two-factor

interactions and three-factor interactions. Lenth's Method, Lenth (1989), was employed to

determine the active effects. The full factorial results were also used to determine the

most robust setting for all six systems.

3.3.1 Lenth Plots for Case Studies

For each of the six case studies we ran full factorial control and noise factor crossed

array. The results from these robust design experiments were used to determine the effect

coefficients for main effects, two-factor interactions and three-factor interactions. Figures

3.6 to 3.11 give Lenth plots for all six case studies, to determine active main effects

present in them.

58

LenthPlot
5

4

3 - T Waylnteraciom Thme-Maylnterads

C

L1

..

E
-1

ULJ

-2-

-3-

Effects

Figure 3.6: Lenth Plot of Effect Coefficients for Op Amp, Phadke (1989)

59

Lenth Plot

Two-Way Interactions Three-Way Interactions

Figure 3.7: Lenth Plot of Effect Coefficients for Passive Neuron Model, Tawfik and Durand (1994)

60

1.4

1.2-

I
(D

+0
U)

LU

0.8-

0.6-

0.4

0.2-

0

-0.2
Effects

Lenth Plot
6000 -

Two-Way Interactions Three-Way Interactions

4000-

2000
0

0
w

.4D

H k.-2000
.6W

W-- ---------------- -------------- ------ ME- --

-4000

-~~~~ ~ ~ ~ ~ * - --..M E - -

-6000- 1 1 1
0 5 10 15 20 25 30 35

Effects

Figure 3.8: Lenth Plot of Effect Coefficients for Journal Bearing: Half Sommerfeld Solution,

Hamrock, et al. (2004)

61

120

100

80

60

40

0 20
E

-20

-20

Lenth Plot

9

Tvo-way interactians Three-Way Irteractions

Effects

Figure 3.9: Lenth Plot of Effect Coefficients for CSTR, Kalagnanam and Diwekar (1997)

Lenth Plot

U)
*.a'
U)

0

LU

4)
w

-1

-2

To-Way Interactions I Three-Way Interactions

Effects

Figure 3.10: Lenth Plot of Effect Coefficients for Temperature Control Circuit, Phadke (1989)

62

Lenth Plot

Two-Way Interactions IThree-Way Interactions

bf

IIII I I I I

20 40 60 80 1
Effects

00 120 140 160 180

Figure 3.11: Lenth Plot of Effect Coefficients for Slider Crank, Gao, et al. (1998)

3.3.2 Results from Compound Noise Strategy on Case Studies

In order to formulate extreme compound noise for robust design experiments, we found

the directionality of noise factors on the system response for all six systems. For each

system we ran a full factorial design in control factors crossed with two-level compound

noise. Pure experimental error was introduced in the system's response. The error was of

the order of active main effects. From Lenth's Method, we can estimate the average

magnitude of active main effects. Pure experimental error introduced into the system's

response was normally distributed with zero mean and standard deviation as the average

63

6

5

4

3

2

1

0

II:

E
(A

0

-1
0

magnitude of active main effects. Extreme compound noise strategy performed extremely

well for the PNM, Op Amp, Journal Bearing and Slider Crank. Table 3.11 shows results

from robust design experiments.

Percent Percent
Measure Existence of Matching of Matching of

System Hierarch of Extreme Number of All Control Control Improvement
y Sparsity Settings, Replications Factors with Factors with Ratio

of Effects Hou (2002) their Robust their Robust
Setting Setting

Op Amp Strong 0.105 Existed 100 96% 99.2% 99.2%
PNM Strong 0.132 Not-existed 100 98% 99% 99.5%

Jourar Strong 0.28 Existed 100 97.8% 98.8% 98.84%

CSTR Weak 0.647 Not-existed 100 10% 55.17% 58.4%
Temp.
Control Weak 0.725 Not-existed 100 5% 29.25% 30.65%
Circuit
Slider
Crank Weak 0.119 Existed 100 95% 98% 98.5%

Table 3.11: Results from Full Factorial Control Factor array and Two-Level Extreme Compound Noise

The third column of Table 3.11 shows the measure of sparsity of effects, which is the

ratio of active effects in a system to total number of effects that can be present in the

system. The sparsity of effects means that among several experimental effects examined

in any experiment, a small fraction will usually prove to be significant, Box and Meyer

(1986), Hamada and Wu (1992), Wu and Hamada (2000). The sixth column of Table

3.11 shows how well the predicted robust setting from compound noise experiments

matches with the actual robust setting as found by carrying out full factorial control and

noise array experiments. The seventh column of Table 3.11 shows the percent of control

factors whose robust setting matched for full factorial and compound noise experiments.

64

At the predicted robust setting of control factors from compound noise experiments, we

found corresponding variance of system's response from full factorial experiments. Full

factorial experiments yield the optimal variance of the system's response and average

variance of response at all control factor settings. With this knowledge, variance can be

improved from the average value to the optimal value, which is the maximum possible

improvement. For compound noise experiments variance of response can be improved

from the average value to the variance at the predicted robust setting. The ratio of

achieved improvement to maximum possible improvement is called improvement ratio.

The average of this measure for all replicates is shown in the eighth column of Table

3.11.

From Table 3.11 we can see that extreme compound noise strategy works reasonably well

for the Op Amp, PNM, Journal Bearing and Slider Crank, but not nearly as well for the

CSTR, and Temperature Control Circuit.

3.4 Effectiveness of Compound Noise in Real scenarios

In real scenarios it is often not possible to run full factorial inner arrays like those

reported on in Table 3.11. Therefore we also studied the use of fractional factorial arrays

by running robust design experiments which were resolution III in both the control and

noise factor array. We predicted robust settings from such experiments and compared the

results to those from full factorial experiments in Table 3.12. We also ran robust design

experiments which were resolution III in the control factor array combined with two-level

extreme compound noise. Results for these experiments are summarized in Table 3.13.

65

Resolution III experiments formed the basis of comparison for the results we got from

resolution III control factor array crossed with two-level extreme compound noise. Pure

experimental error was introduced into the system's response, for all six case studies. The

error introduced was of the order of active main effects. The control factors were

randomly assigned to Resolution III inner array.

We did not study Passive Neuron Model and Journal Bearing systems because these

systems had only two control factors and thus had no distinct resolution III control factor

array.

Percent Percent
Measure of Number of Matching of All Matching of Improvement

System Hierarchy Sparsity of Replications Control Factors Control Factors Ratio
Effects with their with their

Robust Setting Robust Setting
Op Amp Strong 0.105 100 98% 99.6% 99.91%

CSTR Weak 0.647 100 NONE 76.5% 96.5%
Temp.
Control Weak 0.725 100 28% 55% 87%
Circuit

Crank Weak 0.119 100 91% 95.5% 97.6%

Table 3.12: Results from Resolution III Control and Noise Factor Array

Table 3.12 indicates that the robust setting for the Op Amp and Slider Crank can be

achieved with high probability when a resolution III noise factor array is used. For the

CSTR and Temperature Control Circuit, the high mean improvement ratio means we will

not attain the robust setting but will arrive near the optima. The high improvement ratio

suggests that we will achieve most of the improvement possible in the variance of

system's response.

66

Percent Percent
Matching of Matching Improvement

Measure of Number of All Control of Control Improvement Ratio
System Hierarchy Sparsity of Replications Factors Factors (from

Effects with their with their Ratio Resolution III
Robust Robust Noise Array)
Setting Setting

Op Amp Strong 0.105 100 86% 97.2% 99.37% 99.91%
CSTR Weak 0.647 100 NONE 41.17% 39.8% 96.5%
Temp.
Control Weak 0.725 100 NONE 43.5% 25.2% 87%
Circuit

Crank Weak 0.119 100 89% 94% 96.5% 97.6%

Table 3.13: Results from Resolution III Control Factor array and Two-Level Extreme Compound

Noise

Table 3.13 indicates that even when using a resolution III control factor array, a

compound noise strategy will predict the robust setting for the Op Amp and the Slider

Crank with high probability. The compound noise strategy does not work too well with

resolution III control factor array for the CSTR. The average improvement ratio possible

is only 40%, as opposed to nearly 97% had the resolution III noise factor array been used.

Nor does the compound noise strategy perform well with a resolution III control factor

array for the Temperature Control Circuit. The improvement ratio drops from 87% for

resolution III noise array to 25% for two-level extreme compound noise.

In the formulation of compound noise as suggested by Taguchi (1987) and Phadke

(1989), we need to know the directionality of noise factors on system's response. We

need to run some fractional factorial experiments on the system to gather information

about directionality of noise factors. We tried a different formulation of compound noise.

Noise factor settings can be picked randomly to form a two-level random compound

67

noise (simple compound noise strategy). We ran such a compound noise strategy with

full factorial control factor array for each of the six case studies. Table 3.14 presents the

average results from these experiments.

Percent Percent Improvement

Measure of Matching of Matching of Ratio

System Hierarchy Sparsity of Number of All Control Control Improvement (from

Effects Replications Factors with Factors with Ratio Taguchi's
their Robust their Robust Compound

Setting Setting Noise)
Op Amp Strong 0.105 1000 30.8% 73% 80.2% 99.2%

PNM Strong 0.132 24=16 50% 68.75% 79.9% 99.5%

Bourng Strong 0.28 2' =8 100% 100% 100% 98.84%

CSTR Weak 0.647 26=64 54.69% 70.3% 67.6% 58.4%
Temp.

Control Weak 0.725 2' = 32 68.75% 76.56% 74.75% 30.65%
Circuit

Crank Weak 0.119 2' = 32 50% 70% 55.2% 98.5%

Table 3.14: Average results from Full Factorial Control Factor array and Two-Level Simple

Compound Noise Strategy

The Op Amp has 21 noise factors, so there can be 221 combinations of random compound

noise. Instead we ran 1000 such combinations of random compound noise for the Op

Amp. The Passive Neuron Model has 4 noise factors. Hence there are 24 combinations of

random compound noise for the PNM. The Journal Bearing has three, the CSTR has six

and the Temperature Control Circuit and Slider Crank have five noise factors each. From

Table 3.14 we see that such a formulation of simple compound noise is very effective on

an average. Except for the Slider Crank system, simple compound noise can achieve

improvement ratios greater than 68% on an average, for all systems. For the Slider Crank

system too, half of the replications gave robust setting of the system and half of them led

68

to poor settings. Hence had we used simple compound noise with care for the Slider

Crank system we would have attained robust setting.

3.5 Conditions for Compound Noise to be completely effective

Hou (2002) gave conditions under which a compound noise strategy will predict the

robust setting for a system. One of the conditions for compound noise to work is the

existence of extreme settings. The extreme settings of compound noise are those which

maximize and minimize the system's response to capture noise variations. But we found

that in some systems (for example Passive Neuron Model, Tawfik and Durand (1994))

compound noise strategy would work even if extreme settings do not exist. So the

conditions outlined in Theorem 4, Hou (2002) are sufficient but not necessary conditions

for compound noise to work.

3.5.1 Strong Hierarchy Systems

For strong hierarchy systems the response y can be expressed as

m Il

y = f(xI, x 2 ,---,xI)+ ZIfz + Z y xz (3.4)
j=1 j=1 i=1

where f(x, , x2,..., xj) is a general function in the control factors x,, z1 (j=1 ... m) denotes

noise factors affecting the system, /, denotes effect intensity of noise factor j, and yv

denotes the effect intensities of control-by-noise interactions present in the system.

69

Control factors can have two settings -1 and 1. (Control factor variability can be

represented as separate noise factors.) Noise factors are in the range -1 to 1, and are

independent, with zero mean and variance of 1. Noise factors are symmetric about 0. The

variance of y with respect to z 's is given by

Var,(y)= C+2((fi 7i Y+Xi ± 7ZyYYj k XiXk~xj (3.5)
i=1 j=1 i<k j=1

where C is a constant. The robust setting of the system is one which minimizes the

variance of response with respect to noise factors. It can be represented as

X = arrg min(jYijxi + Z 0Z Y kj JXiXkj (3.6)
i=1 M= i<k j=1

where X is the setting of x 's that minimizes the variance.

If we follow Taguchi's formulation of compound noise, based on the directionality of

noise factors, then responses at two levels of compound noise will be given by

y+ = f (X, x2,-, x1)+ I pq + y x ign(,) (3.7)

y- = f(x, x21---, x1) - 1 jp; + y x~ ign(#y) (3.8)
j=1 i=1

70

The estimated variance with respect to compound noise levels is

Var(y) =(y+ -- y)2 +(y -y)2 ('-Y)2 (3.9)
2

E t j2Ip jsign(I3)y x +

ar(y)= C + 4 = =(3.10)

I(sign fljyijlsign fij 4 xk
i<k j=1 j=1

where C1 is a constant. The estimated robust setting of the system is one which minimizes

the estimated variance of response with respect to compound noise levels. It can be

represented as

1,j1 sign (9, xi +
Xcompound (3 .1 1)1

xar min t i +(J.11)~

sign (y Isigni)kj xix k

< k j=1 j=1

where XCompound is the setting of x 's that minimizes the estimated variance. For

compound noise to be completely effective the control factor setting that minimizes the

estimated variance should be the same as the control factor setting that minimizes the

actual variance of response, i.e.,

71

X = XCompound (3.12)

3.5.2 Weak Hierarchy Systems

For weak hierarchy systems the response can be represented by

In In In I I

y = f(x,,x 2,..., XI) + 8Zj + I YijXZ + ZZZ OikjXiXkZ +

j=1 j=1 i=I j=1 i=1 i<k (3.13)

j=I j<n I'=I

where y denotes system's response, x's represent control factors of the system and there

are 1 control factors present. f(x, x2..., xI) is a general function in the control factors

x 's. 8j's denote effect intensity of noise factors. zj's are noise factors present in the

system and there are m number of noise factors. y,'s are the effect intensities of control-

by-noise interactions present in the system. 0
zkj 's and),fl 's are effect intensities of

control-by-control-by-noise interactions and control-by-noise-by-noise interactions

respectively, present in the system. Control factors can have two settings -1 and 1. Noise

factors are in the range -1 to 1, and are independent, with zero mean and variance of 1.

Noise factors are symmetric about 0. The variance of y with respect to z1 's, Rao (1992),

is given by

72

I / m

ZI31 rijx
i=l j=1

+2

1 m

+ Y kj Xi k +
<k j=l

ZZZ/3]OjkXiXk +L1 j ikj Xk
i=l k~k j=1 j=1 i=1 i=l ikk

LEEOik opj Xi Xk O P+
i<k o< p<o j=I

i=l j=I j<n

j=l j<n i=l

~~Z I 2jn jJj=l j<n i=l

+ Z E ijnnkjn Xi Xn +
i<k j=l j<n

E ik Xi k
i=l ik

where C2 is a constant. The robust setting of the system is one which minimizes the

variance of response with respect to noise factors. It can be represented as

I M

+I ij kj Xi Xk +
k.k j=1

lZZZ'jOikjXiXk
I i<k j=I

m 1 1

jtj iikj ik
1i=I i<k

min OZ9
kjop, iXkXoXP +

i<k o<i p<o j=l

j jn Xi +I n kjn Xi n

i=l j=l j<n k~k j=l j<n

1K
1K

ii

I

Oikj Xi Xk
i=l ik / (3.15)

73

Var y)= C 2
(3.14)

I m

I zj yi
i=l j=l

X =-arg

j=l j<n i=l

M M i

Y I:I:jn
j=l j<1n i=1

where X is the settings of x, 's that minimizes the variance.

If we follow Taguchi's formulation of compound noise, based on the directionality of

noise factors, then responses at two levels of compound noise will be given by

y= f(XI, x 2 ,-, 1 XI)+ E
j=1 \

y =f(x, ,x 2 ,-, x +

j=1

+ yi x
i=1

Y xi
i=1

i1 1k+ 0 z~x,xk
z=I i<k

+ 0ki XiXk
i=1 ick

jjjQU,,xjsign(p jhign(pl.)
j=1 j<n i=1

The estimated variance with respect to compound noise levels is

74

m m I

j=1 j<n i=1

ign (8)+

(3.16)

(3.17)

ign #j)-

: I/ 1 sign(#-,)ix + I (sign,) sign,)y " Xixk +
i=1 j=1 j=1 ikk j=1 j=1

I sign(, ,4AJ)xk +
i=1 i<k j=1 M=

m x (msign x xjk((Esign(31)rj)Jxi snfi kj Xi Xk +

I sign(S
1 ikj f Isin (opj jJ x x x x +

E 1Vpj (Z signfi)sign(pQ x +
i=1 (j=1 (j=1 j<n

)Ni1 +
i<k j=1 j<n f

sign)snig n

Ygn3 ~kjn
i=1 j=1 j<ng

(mmsignfl . ignfl P j

i=1 j=1 j<n

Z Z sign(f/3)sign n kjn
j= j<n

xi~~ ~ I(sg~l~jx +
S i=1 j= i)

xsignfl .k)x x

Si=1 i<k j=1 2)

(3.18)

where C3 is a constant. The estimated robust setting of the system is one which minimizes

the estimated variance of response with respect to compound noise levels. It can be

represented as

75

ar(y)=C3 +4

XCompound =r i
X arg *mi

m=f j=1 j=1 s 8 k j=1 j=1

ly Ign }r j signj ik
i=1 k~k j=1 j=I

sign s X si sign X Xk)+
i=1 j=1 i=1 k~k j=1

Z I(sign (f)sig Em s Xg # sinj Xx)Xgn +
i<k o<i p<o j=1 j=1

In In in
i=1 j=1 j=1 j<n

m sign(J3, ign(Jn3 n n Xign(fln) j Xk +
sk j=1 j<n j=1 j<n

(msign (fl Sign(flpC X) m sign gj y X +

iIIsign(# ign(fln Pkn i JZ I Xk
i=1 j=1 j<n)) i=1 k~k j=1

(3.19)

where XCompound is the setting of x 's that minimizes the estimated variance. For

compound noise to be completely effective X = XCompound.

3.5.3 Conclusions from Case Studies

From the full factorial experiments done on six case studies, we found effect intensities

for noise factors and control-by-noise interactions for strong hierarchy systems. For weak

hierarchy systems we also found intensities of control-by-control-by-noise and control-

by-noise-by-noise interactions. On plugging effect intensities for strong hierarchy

systems in equations 3.6 and 3.11, we found that all three systems satisfied equation 3.12.

76

The effect intensities for weak hierarchy systems were plugged in equations 3.15 and

3.19 and only the Slider Crank satisfied equation 3.12. The PNM is one of the systems

which do not have extreme settings, Hou (2002), but still compound noise works for such

a system.

Compound noise was effective on the systems which showed effect sparsity, Box and

Meyer (1986), Hamada and Wu (1992), Wu and Hamada (2000). For all strong hierarchy

systems there were only few active control-by-noise interactions in each of the systems to

be exploited during robust design experiments. The Slider Crank has only one significant

noise factor to which it needs to be desensitized. The Temperature Control Circuit and

CSTR did not show effect sparsity. These systems have many significant noise factors,

two factor and three-factor interactions.

3.6 Conclusions

The use of compound noise in robust design experiments leads to reduction in

experimental effort. Due to limitations on resources, full factorial or even fractional

factorial on noise factors can't be run. Compound Noise is one of the ways in which all

the noise factors can be combined in a single factor, which can be used to improve

robustness of a system. In this chapter the effectiveness of compound noise as a robust

design method was gaged and compared to other noise strategies. We also built upon

conditions given by Hou (2002) for the complete effectiveness of compound noise. We

modified the conditions to make them more general and encompass a larger set of

77

systems on which compound noises can work. Also those conditions were extended to

include the possibility of three-factor interactions.

Compound noise as a robust design strategy is very effective on response surface

instances and on systems which show effect sparsity. We ran compound noise on strong

and weak hierarchy response surface instances with varying degree of effect sparsity and

on six case studies from different engineering domains. The case studies were:

Operational Amplifier, Passive Neuron Model, Journal Bearing, Continuous-Stirred Tank

Reactor, Temperature Control Circuit and Slider Crank. Compound Noise strategy

predicted robust settings for the systems which showed effect sparsity. It also resulted in

large improvement in robustness for such systems and response surface instances (figure

3.12). The reason for its effectiveness on sparse systems is, in compound noise all the

noise factors are combined. Hence their individual impact on system's response is

confounded. But if effects are sparse then the probability of the impact of two noise

factors being oppositely confounded is extremely low. Hence compound noise is able to

exploit all significant control-by-noise interactions for such systems, leading to its high

effectiveness.

78

Passive Neuron

7 0T At eI * journal Bearing

+ ,+
*+~ **idf da*

+ Sirong Hierarchy Response
SSurfaces

- *

CST

1

0.9

0.8

0.7

0.6

0.5

0.4

*

emperature
ontrol Circuit

*** ***>(*
** *

* * *
*

**

4 -

iiiI I I

0.6 0.7 0.8 0.9 1

Figure 3.12: Median Improvement Ratio verses Effect Density for Strong and Weak Hierarchy Response

Surface Instances and Six Case Studies

The given formulation of compound noise was adopted from Taguchi (1987) and Phadke

(1989). For such a formulation the directionality of noise factors on system's response is

needed to be known. To know the directionality of noise factors fractional factorial

experiments on the system are needed. We tried to measure the effectiveness of simple

compound noise for which the directionality of noise factors is not needed. We found that

79

Weak Hierarchy Response
Surfaces

T
C

02

E
0

E

r-

0.3 -

0.2 -

0.1 -

0
0 0.1 0.2 0.3 0.4 0.5

Effect Density

such a formulation of compound noise can be very effective in obtaining high robustness

gains. The reason why such a formulation of compound noise is very effective is that

active effects in the system are sparse. Even if noise is compounded randomly there is

very low probability that two opposite acting interactions get confounded with each

other.

These results may be used in the overall approach to deploying compound noise as a

robust design strategy. The flowchart in Figure 3.13 presents our suggestion for

implementing these findings in practice. First of all, practicing engineers must define the

scenario including what system is being improved, what objectives are being sought, and

what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding

effect sparsity. It should be noted here that we do not argue that engineers need to make a

factual determination of effect sparsity. The experience on the system should be used to

make decision.

If engineers decide that effects are dense, then they should follow the procedure on the

right hand side of Figure 3.13. In this case, the results in this paper suggest that instead of

using compound noise, a fractional factorial noise factor array should be used as outer

array.

80

If engineers decide that effects are sparse, then they should follow the procedure on the

left hand side of Figure 3.13. At this point, engineers should consider the directionality of

noise factors. If the directionality of noise factors is known, then they should use Taguchi

and Phadke's formulation of compound noise. Otherwise they can formulate simple

compound noise as outer array. From Table 3.14, we can say that the systems for which

effect sparsity holds simple compound noise is effective. However experience, judgment

and knowledge of engineering and science are critical in formulating such a compound

noise. It is hoped that the procedure proposed here in Figure 3.13 will be of value to

practitioners seeking to implement robust design efficiently and using minimum

resources.

81

Use Com
(as define
Phadke) as

Define the Robust Design Scenario

Sparse Asumptions abou I Dense
Efect Sparsity

Use fractionali'full
factorial array as

Yes s the directionality of No Outer Array (instead
noise factors known? of Compound

Noise)

pound Noise Use Random
d by Taguchi, Compound Noise
OuterArray as Outer Array

Carry out Robust Design Using the
Chosen Outer Array

Figure 3.13: Suggested procedure for Compound Noise in Robust Design

3.7 Chapter Summary

Compound Noise as a robust design strategy, is very effective on the systems which show

effect sparsity. The reason for its effectiveness on sparse systems is, in compound noise

all the noise factors are combined. Hence their individual impact on system's response is

confounded. But if effects are sparse then the probability of the impact of two noise

82

factors being oppositely confounded is extremely low. Hence compound noise is able to

exploit all significant control-by-noise interactions for such systems, leading to its high

effectiveness.

We first ran two formulations of compound noise (simple and extreme) on response

surface instances generated using strong and weak hierarchical probability model. This

was done to confirm compound noise effectiveness statistically. Next those formulations

of compound noise were ran on six different case studies from various engineering

domains to verify conclusions we got from hierarchical probability model. In the end

conditions for compound noise to be completely effective for both strong and weak

hierarchy systems were outlined. We engineered an algorithm on the use of compound

noise as a robust design method, based on our conclusions from response surface

instances and case studies.

In later chapters we will look at robust design methods which are slightly more resource

intensive than compound noise, but works good for all systems. These new robust design

methods are highly economical as compared to fractional factorial noise array

experiments.

83

84

Chapter 4: Take-The-Best-Few Strategy: Evaluation as a

Robust Design Method

4.1 Introduction and Background

To counter the effect of noise control-by-noise interactions are exploited in Robust

Parameter Design methodology. These control-by-noise interactions can be captured by

using crossed-array approach. The control factor setting that minimizes the sensitivity of

the response to noise factors is called the optimal control factor setting or the most robust

setting for the system. A crossed-array approach is a combination of two orthogonal

arrays, one of control factors and other of noise factors. But as the complexity of the

system increases, use of full factorial control and noise factor arrays becomes

prohibitively expensive. As an attempt to reduce the run size of this crossed-array

approach, Taguchi (1987) proposed a compound noise factor technique.

One of the prominent reasons why the compound noise factor strategy is so popular is

that it reduces run size of experimentation needed to improve robustness. We set out to

develop a noise factor strategy that retains the attractiveness of reduced run size but is

more effective than the compound noise strategy. The result is the Take-The-Best-Few

Noise Factors strategy (referred to hereafter as the TTBF strategy).

To apply TTBF Strategy, most important noise factors in system's noise factor space are

found. Noise factors having significant impact on system response variation are

85

considered important. Once the important noise factors are identified for a given system,

they are kept independent in the noise factor array. By selecting the few most important

noise factors for a given system, run size of experiments is minimized. The TTBF

strategy builds upon the TTB strategy by Gigerenzer and Goldstein (1996), which gives a

criterion for selecting an alternative under uncertainty and poor information. Under the

TTB strategy, a person picks one characteristic among all the available characteristics;

the option that scores highest with respect to that characteristic becomes the final choice.

In the TTBF strategy, instead of picking just one such characteristic, we try to choose a

few such characteristics (noise factors) and determine a control factor setting that gives

maximum improvement in robustness. As engineers work with a particular class of

system(s), they learn about the important noise factors that affect the system(s), and this

valuable knowledge is used to formulate TTBF strategy.

As in previous chapter, main aim of this chapter is to explore the effectiveness of TTBF

strategy as a robust design method. We will first look at the effectiveness of TTBF

strategy on response surface instances generated using Hierarchical Probability Model, Li

and Frey (2005). Two different kinds of response surface instances were generated. One

with only main effects and two factor interactions also called as strong hierarchy

instances and other with main effects, two factor interactions and three factor

interactions, also called as weak hierarchy instances. We will measure improvement in

robustness while using TTBF strategy and compare it with compound noise strategy.

86

The conclusions from TTBF strategy on response surface instances from Hierarchical

Probability Model would then be verified by testing TTBF strategy on six case studies

from different engineering domains. The main take away of this chapter is that, TTBF

strategy as a Robust Design Method is very effective on all response surface instances

and case studies.

The chapter is organized as: first we will describe the setting up of TTBF strategy on

response surface instances, measures we studied, results from TTBF strategy studies

followed by discussion of these results. Then these results will be compared with the

results from compound noise studies on response surface instances. Then TTBF strategy

will be formulated for six case studies from different engineering domains. We will also

look into the formulation of Hybrid Noise Strategy involving Compound Noise strategy

and TTBF strategy. In the end conclusions and summary of the chapter will be given.

4.2 Setting up of TTBF study

The objective of this chapter is to see the effect of TTBF strategy on the prediction of

optimal setting of a response surface instance generated by hierarchical probability model

parameters and verify the results by case studies from various engineering domains. We

also want to compare the improvement achieved by such a strategy with improvement

achieved by compound noise strategies and full/fractional factorial noise array strategies.

One of the assumptions in setting up of TTBF strategy is that significant noise factors

impacting system's response variance are known. To find significant noise factors for a

87

given system or response surface instance, fractional factorial array of noise factor can be

used on any setting of control factors, Phadke (1989).

4.2.1 Generating Response Surface instances

To study the effectiveness of TTBF strategy instances of response surfaces will be

generated using Hierarchical Probability Model. The instances of response surfaces

studied had 7 control factors and 5 noise factors. These response surfaces were generated

according to a relaxed weak heredity model. The full third-order response surface

equation is given by

12 12 12 12 12 12 (4.1)
S2 ... + X12 i ixx + YIZZj/kxiXjXk + e

i=1 i=1 =i1 j=1 k=1
j .>I j>i k>.j

where Xi-X5 represent normally distributed random noise variables, x6- X12 represent

control factors, B's are factor coefficients and e is experimental error.

In our study, we generated both strong and weak hierarchy response surface instances.

The noises factors were assumed to be uncorrelated. Full factorial array was used for 7

control factors. Table 4.1 and table 4.2 give hierarchy probability model parameter values

used to generate strong and weak hierarchy response surface instances respectively.

88

parameters values
c 15
s1 0.33
S2 0.67
W2 1
P 0.43
P11 0.31
Po0 0.04
POO 0

Table 4.1: Hierarchical Probability Model Parameters used for Strong Hierarchy Response Surface

instances

parameters values
C 15
s1 033
S2 0.67

W2 1
p 0.43
p11 0.31

POI 0.04

Poo 0.0
pill 0.17

poll 0.08

Poo] 0.02

POOO 0.0

Table 4.2: Hierarchical Probability Model Parameters used for Weak Hierarchy Response Surface

instances

2 5-1
For noise factors we defined twcdifferent noise st rategies. First was a v noise array.

This noise strategy is very close to full factorial noise factor array. Hence it will give

almost perfect results for generated response surface instances. This will form a basis of

comparison for TTBF strategy. Second was TTBF strategy. In TTBF strategy for each

generated response surface instance, we prioritized noise factors based on their absolute

89

effect coefficients 1,81's. The two noise factors (out of total five noise factors) having

highest 1p6 were used in TTBF strategy. Those two important noise factors were kept

independent in noise array. Thus the noise array under TTBF strategy had 22=4 runs.

For each of the two noise strategies, we generated 200 response surface instances. For

each instance of generated response surface, we used Monte Carlo on noise factors to

find response variance at each level of full-factorial control factor array. The setting of

control factors giving minimum variance of response was the optimal setting for that

instance of response surface.

We analyzed each response surface instance by running a designed experiment using two

27 x25 1
different robust design crossed arrays: V (Noise Strategy 1) and 27 x TTBF

strategy. For each crossed array experiment we predicted optimal setting of control

factors of response surface, by finding minimum response variance for that experiment.

This predicted optimal setting of response surface under each crossed array experiment

was then compared with optimal setting we got by using Monte Carlo on noise factors. In

the next section we will present this algorithm in a diagrammatic manner.

4.2.2 Algorithm to study TTBF strategy

The algorithm used to study TTBF strategy is shown in Figure 4.1. The same algorithm

was used to study both strong and weak hierarchy response surface instances. For each

generated response surface instance, we studied two different robust design methods as

90

outlined in previous section. Left hand side of the algorithm finds the optimal setting of

response surface instance, using Monte Carlo on noise factors. Right hand side of the

algorithm finds the optimal setting of response surface instance as predicted by a chosen

7x 25-17
robust design method (x (Noise Strategy 1) or 2 x TTBF strategy). Various

measures are finally compared to compute the effectiveness of a chosen robust design

strategy.

91

Relaxed weak heredity
parameters

Ct
Generate a response surface
instance; i.e generate ifs

Use Monte Car00 on noise
factors

Compute variance of
response at each control

factor setting

Find control factor setting
wxith minimum variance

Run a designed experiment
based on one of the two robust

design noise strategies

Predict optimai control factor setting,
the one which gives minimum variance

of response

Find variance , predicted
optimal setting using Monte..

Caro, on noise factors

Compare the results for a given robust
design noise strategy

Repeat the process for 200 response
surface instances

Compute median and inter-quartile range of
percent reduction in variance and other

parameters

Figure 4.1: Algorithm used to evaluate TTBF strategy

92

-2

4.2.3 Measures studied

There were number of measures that were derived from the above study. The first was the

percentage number of times a given noise strategy could predict the optimal control

factor setting, as given by running Monte Carlo simulation at each control factor setting

for each generated instance of response surface.

For the second measure we found the predicted optimal settings of the 7 individual

control factors as given by a noise strategy. We compared the predicted optimal setting of

each control factor with the optimal control factor setting as given by Monte Carlo

simulation. We then found number of control factors out the 7, which had same setting as

given by noise strategy and Monte Carlo simulation. The second measure was the mean

of this number for 200nstances that were generated.

For the third measure, we first found the predicted optimal control factor setting by using

a given noise strategy. Then we ran Monte Carlo simulation on noise factors at that

predicted optimal control factor setting and calculated the standard deviation labeled

strategy. The minimum standard deviation found by running Monte Carlo simulation at

each control factor setting is called copt. The third measure was the ratio of 5strategy to Gopt

for each generated instance of response surface. We studied the median and inter-quartile

range of this measure for 200nstances that were generated.

For the fourth measure, we calculated the mean of the standard deviations, as given by

Monte Carlo at each control factor setting. We called this mean as Ubase. This Gbase was

93

our reference. (abase - opt) is the maximum reduction that is possible in standard deviation

for a given instance of response surface. But by running a given noise strategy the

realized reduction would only be (abase - strategy). The fourth meaure was the ratio of

realized reduction to the maximum reduction possible, i.e. ratio of (abase - strategy) to (abase

- opt) for each generated instance. And we studied the median and inter-quartile range of

this measure for 200nstances that were generated.

4.2.4 Results from TTBF Strategy studies

The results from TTBF strategy study on Strong and Weak Hierarchy response surface

instances are presented from tables 4.3 to 4.8.

Percent Matching of ALL Control Factors with their Robust Setting

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

oise Strategy 1 70% 61%
TTBF Strategy 44% 18%

Table 4.3: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

oise Strategy 1 90% 80%
TTBF Strategy 87.7% 64.3%

Table 4.4: Measure 2

94

Median U"tr"egy

0
opt)

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

oise Strategy 1 1.00 1.00
TTBF Strategy 1.00 1.15

Table 4.5: Measure 3

25 and 75th percentile astralegy

Y opt)

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

oise Strategy 1 1.00-1.00 1.00-1.03
TTBF Strategy 1.00-1.05 1.02-1.33

Table 4.6: Measure 3

Median base strategy

(base opt J

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

doise Strategy 1 1.00 1.00

TTBF Strategy 0.99 0.78

Table 4.7: Measure 4

95

Strong Hierarchy response surfaces Weak Hierarchy response surfaces

Noise Strategy 1 0.98-1.00 0.95-1.00

TTBF Strategy 0.89-1.00 0.58-0.96

Table 4.8: Measure 4

To explore the impact of effect density on improvement in robustness that can be

achieved for both strong and weak hierarchy response surface instances, we varied effect

density over a wide range and plotted median improvement ratio for both strong and

weak hierarchy response surface instances. Figures 4.2 to 4.4 present the results from

such a study.

96

2 5 th and 7 5 th percentile r base - 7strategy

(7base - Copt)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 II II I I I I II

0.6 0.7 0.8 0.9 1

Figure 4.2: Median Improvement Ratio verses Effect Density for Strong Hierarchy Response Surface

Instances

97

.2

0)

0

E

0 1 0.2 0.3 0.4 0.5
Effect Density

0

I I .I I I I I I
0 0.1 0.2 0.3 0.4 0.5

Effect Density
0.6 0.7 0.8 0.9 1

Figure 4.3: Median Improvement Ratio verses Effect Density for Weak Hierarchy Response Surface

Instances

98

0.91-

0

E

CD
0

0.8

0.7

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1

1

** ...

4 4. +

0.9

0.8

0.7

0.6

0&5

0.4

0.3

0.2

0.1

0 I I i I II I I

0.1 0.2 0-3 0.4 0.5
Effect Density

06 0.7 0.8 0.9 1

Figure 4.4: Median Improvement Ratio verses Effect Density for both Strong and Weak Hierarchy

Response Surface Instances

4.2.5 Conclusions from Probability Model

The use of TTBF Strategy as robust design method leads to reduction in experimental

effort. Up till now we have tried to gage the effectiveness of TTBF strategy as a robust

design method for response surface instances generated using Strong and Weak

Hierarchical Probability Model. As we can see from above tables and figures that TTBF

strategy is very effective for both Strong and Weak hierarchical response surface

instances. For both Strong and Weak hierarchical response surface instances we can

99

4 4 ~
*

E

Weak Hierarchy Response
Surface Inslances

0

achieve on average 80% of the total possible improvement (table 4.7 and figure 4.4). In

above study TTBF strategy requires only one-eighth of the experimental effort needed to

run full factorial noise array.

Though to find two most significant noise factors out of total five noise factors, we can

use a fractional factorial array for noise factors under any control factors setting. This

will increase number of outer array runs on an average, but this increase is minimal as

compared to overall experimental effort to run TTBF strategy for full factorial control

factor array.

In the next section we will compare TTBF strategy with Compound Noise strategy.

Strong and Weak hierarchical probability model response surface instances would be

used as the basis for comparison of these two noise factor strategies.

4.3 Comparison of TTBF strategy and Compound Noise strategy

We generated response surface instances as per above equation 4.1 to compare TTBF and

Compound Noise strategies. Each instance of generated response surface had 7 control

factors and 5 noise factors. We used extreme compound noise as one of the noise

strategies (chapter 3), Taguchi (1987) and Phadke (1989). In this strategy noise array was

comprised of 2 runs, which represented lower and higher setting of compound noise. We

made two-level extreme compound noise factor by combining noise factor levels in such

a way that, at lower setting of extreme compound noise all noise factor settings give

minimum response and vice versa. For the TTBF strategy, the two most important noise

100

factors out of the total five were found, for the generated instance of response surface and

kept them independent in the noise array. Under the TTBF strategy, the noise array was

comprised of 4 runs. We estimated the amount of improvement in robustness achieved

using each of these two noise strategies for both strong and weak hierarchy response

surface instances. Tables 4.9 to 4.14 present comparison summary of these two noise

strategies for both strong and weak hierarchy response surface instances.

Percent Matching of ALL Control Factors with their Robust Setting

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces

TTBF Strategy 44% 18%
Compound Noise 8% 4%

Strategy

Table 4.9: Measure 1

Percent Matching of Control Factors with their Robust Setting

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces

TTBF Strategy 87.7% 64.3%
Compound Noise 61% 49%

Strategy

Table 4.10: Measure 2

101

Median

Strong Hierarchy response Weak Hierarchy response

T
surfaces

surfaces

TTBF Strategy 1.00 1.15

Compound Noise 1.12 1.41
Strategy

Table 4.11: Measure 3

25 and 75f percentile stratey

opt

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces

TTBF Strategy 1.00-1.05 1.02-1.33

Compound Noise 1.13-1.62 1.15-1.73
Strategy

Table 4.12: Measure 3

Median r"base 0
strategy

(base ~ Eopt)
Strong Hierarchy response Weak Hierarchy response

surfaces surfaces

TTBF Strategy 0.99 0.78

Compound Noise 0.69 0.43
Strategy

Table 4.13: Measure 4

102

2 5 th and 7 5 ' percentile "base stralegy

(base - opt

Strong Hierarchy response Weak Hierarchy response
surfaces surfaces

TTBF Strategy 0.89-1.00 0.58-0.96
Compound Noise 0.31-0.87 0.20-0.74

Strategy

Table 4.14: Measure 4

The use of Compound Noise and TTBF strategy as robust design methods lead to

reduction in experimental effort. Compound Noise strategy requires less number of

experimental runs than TTBF strategy. But both require much less number of

experimental runs as compared to full/fractional factorial noise strategies. We can

conclude from above tables (4.9 to 4.14) that TTBF strategy is more effective than

Compound Noise strategy for both Strong and Weak hierarchical response surface

instances. With TTBF strategy, for both strong and weak hierarchical response surface

instances on average 80% of the total possible improvement can be achieved but with

Compound Noise strategy only 40% of the total possible improvement can be achieved

(table 4.13).

In the next section TTBF strategy will be analyzed for six case studies from various

engineering domains. We will also explore the reasons for the effectiveness of TTBF

strategy on case studies.

103

4.4 Case Studies and effectiveness of TTBF strategy

In the previous sections we have seen that TTBF strategy works better than Compound

Noise strategy in improving robustness gain for instances of response surfaces generated

via strong and weak hierarchical probability model. To provide a further check on these

results, we identified and implemented six system simulations, three of them followed

strong hierarchy and three followed weak hierarchy. Using these six case study

simulations from various engineering domains, we performed robust design studies using

TTBF strategy as described in previous sections. The three case studies that exhibited

strong hierarchy are Operational Amplifier (Op Amp), Phadke (1989), Passive Neuron

Model, Tawfik and Durand (1994), and Journal Bearing: Half Sommerfeld Solution,

Hamrock, et al. (2004). The three case studies that exhibited weak hierarchy are

Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),

Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). For

each case study we ran full factorial control and noise factor crossed array experiments.

These runs were used to determine the effect coefficients for main effects, two-factor

interactions and three-factor interactions. Lenth's Method, Lenth (1989), was employed to

determine the active effects. The full factorial results were also used to determine the

most robust setting for all six systems. Lenth Plots for case studies were given in section

3.3.1 for chapter 3.

In order to formulate TTBF strategy for robust design experiments, we found two most

important noise factors, having highest impact on system's response variance for all six

systems. For each system we ran a full factorial design in control factors crossed with

104

four run noise array, as per TTBF strategy. The two most important noise factors were

kept independent in noise array and rest of the factor levels were selected randomly under

TTBF strategy. This resulted in four run noise array. Pure experimental error introduced

into the system's response was normally distributed with zero mean and standard

deviation as the average magnitude of active main effects. TTBF strategy performed

extremely well for all case studies. Table 4.15 shows result from robust design

experiments.

Percent Percent
Measure Matching of Matching of

System Hierarchy of Number of All Control Control Improvement
Sparsity Replications Factors with Factors with Ratio

of Effects their Robust their Robust
Setting Setting

Op Amp Strong 0.105 100 98% 99.6% 99.96%
PNM Strong 0.132 100 91.2% 94.6% 96.25%

Journal Strong 0.28 100 100% 100% 100%

CSTR Weak 0.647 100 79% 96.5% 89.74%
Temp.
Control Weak 0.725 100 71% 85.0% 80.58%
Circuit
Slider
Crank Weak 0.119 100 71.4% 88.62% 85.87%

Table 4.15: Results from Full Factorial Control Factor array and TTBF strategy

The third column of Table 4.15 shows the measure of sparsity of effects, which is the

ratio of active effects in a system to total number of effects that can be present in the

system. The sparsity of effects means that among several experimental effects examined

in any experiment, a small fraction will usually prove to be significant, Box and Meyer

(1986), Hamada and Wu (1992), Wu and Hamada (2000). The fifth column of Table 4.15

shows how well the predicted robust setting from TTBF strategy matches with the actual

robust setting as found by carrying out full factorial control and noise array experiments.

105

The sixth column of Table 4.15 shows the percent of control factors whose robust setting

matched for full factorial and TTBF strategy experiments. At the predicted robust setting

of control factors from TTBF strategy experiments, we found corresponding variance of

system's response from full factorial experiments. Full factorial experiments yield the

optimal variance of the system's response and average variance of response at all control

factor settings. With this knowledge, variance can be improved from the average value to

the optimal value, which is the maximum possible improvement. For TTBF strategy

experiments variance of response can be improved from the average value to the variance

at the predicted robust setting. The ratio of achieved improvement to maximum possible

improvement is called improvement ratio. The average of this measure for all replicates is

shown in the seventh column of Table 4.15.

From Table 4.15 we can see that TTBF strategy works reasonably well for all the case

studies and it can achieve at least 80% of the total possible improvement in robustness for

all six systems. TTBF Noise Factor strategy as a robust design strategy is very effective

for all systems, even the ones which do not show effect sparsity. The reason for the

effectiveness of TTBF strategy for all systems is that, it keeps the important noise factors

in the system independent. Hence the individual impact of important noise factors on

system's response is not confounded. TTBF strategy is able to exploit all significant

control-by-noise interactions for such systems with very high probability, leading to its

high effectiveness.

106

4.4.1 Effectiveness of TTBF strategy in Real scenarios

In real scenarios it is often not possible to run full factorial inner arrays like those

reported on in Table 4.15. Therefore we also studied the use of fractional factorial arrays

by running robust design experiments which were resolution III in both the control and

noise factor array. We predicted robust settings from such experiments and compared the

results to those from full factorial experiments in Table 4.16. We also ran robust design

experiments which were resolution III in the control factor array combined with four run

noise array (as per TTBF strategy). Results for these experiments are summarized in

Table 4.17. Resolution III experiments formed the basis of comparison for the results we

got from resolution III control factor array crossed with TTBF noise strategy. Pure

experimental error was introduced into the system's response, for all six case studies. The

error introduced was of the order of active main effects. The control factors were

randomly assigned to Resolution III inner array.

We did not study Passive Neuron Model and Journal Bearing systems because these

systems had only two control factors and thus had no distinct resolution III control factor

array.

107

Percent Percent
Measure of Number of Matching of All Matching of Improvement

System Hierarchy Sparsity of eplications Control Factors Control Factors Ratio
Effects with their with their

Robust Setting Robust Setting
Op Amp Strong 0.105 100 98% 99.6% 99.91%
CSTR Weak 0.647 100 NONE 76.5% 96.5%
Temp.

Control Weak 0.725 100 28% 55% 87%
Circuit

Crank Weak 0.119 100 91% 95.5% 97.6%

Table 4.16: Results from Resolution III Control and Noise Factor Array

Table 4.16 indicates that the robust setting for the Op Amp and Slider Crank can be

achieved with high probability when a resolution III noise factor array is used. For the

CSTR and Temperature Control Circuit, the high mean improvement ratio means we will

not attain the robust setting but will arrive near the optima. The high improvement ratio

suggests that we will achieve most of the improvement possible in the variance of

system's response.

Table 4.17: Results from Resolution III Control Factor array and TTBF Strategy

108

Percent Percent
Matching of Matching Improvement

Measure of Number of All Control of Control Improvement Ratio
System Hierarchy Sparsity of Replications Factors Factors Ratio (from

Effects with their with their Resolution III
Robust Robust Noise Array)
Setting Setting

Op Amp Strong 0.105 100 95% 99% 99.5% 99.91%
CSTR Weak 0.647 100 66% 66% 87.74% 96.5%
Temp.
Control Weak 0.725 100 71% 85% 80.58% 87%
Circuit I

Crank Weak 0.119 100 65% 87.6% 82.71% 97.6%

Table 4.17 indicates that even when using a resolution III control factor array, TTBF

strategy will predict the robust setting for Op Amp, CSTR, Temperature Control Circuit

and Slider Crank with high probability. TTBF strategy along with resolution III control

factor array gives average improvement ratio of more than 80% for all the case studies.

The reason for the effectiveness of TTBF strategy for all case studies is that, it keeps the

important noise factors in the system independent. Hence the individual impact of

important noise factors on system's response is not confounded. TTBF strategy is able to

exploit all significant control-by-noise interactions in case studies with very high

probability, leading to its high effectiveness.

4.5 Hybrid Noise Strategy

In the previous sections we analyzed the effectiveness of TTBF strategy for both

response surface instances and case studies. We also have compared TTBF strategy with

Compound Noise strategy for both response surface instances and case studies (Tables

3.11 and 4.15). We can infer from above sections and previous chapter that TTBF

strategy performed better than Compound Noise strategy for both response surface

instances and case studies. TTBF strategy needs four-run noise array whereas Compound

Noise strategy needs two-run noise array. So in terms of experimental run size

Compound Noise strategy is more economical than TTBF strategy.

Compound Noise as a robust design strategy is very effective on response surface

instances and on systems that show effect sparsity. The reason for its effectiveness on

sparse systems is, in compound noise all the noise factors are combined. Hence their

109

individual impact on system's response is confounded. But if effects are sparse then the

probability of the impact of two noise factors being oppositely confounded is extremely

low. On the other hand TTBF Noise Factor strategy as a robust design strategy is very

effective for all systems, even the ones which do not show effect sparsity. The reason for

the effectiveness of TTBF strategy for all systems is that, it keeps the important noise

factors in the system independent. Hence the individual impact of important noise factors

on system's response is not confounded. TTBF strategy is able to exploit all significant

control-by-noise interactions for such systems with very high probability, leading to its

high effectiveness. But TTBF strategy requires more number of experimental runs than

Compound Noise strategy.

In practice robust design engineer can employ a Hybrid Noise strategy which is

combination of both TTBF strategy and Compound Noise strategy. Since Compound

Noise strategy works well with systems showing effect sparsity, this Hybrid Noise

strategy will be similar to Compound Noise strategy for systems showing effect sparsity.

Hybrid Noise strategy will be similar to TTBF strategy for rest of the systems. Thus

Hybrid Noise strategy not only gives high realized reduction in the variance of system's

response but also deploys noise array runs economically. For systems showing effect

sparsity under Hybrid Noise strategy noise array will comprise of only two runs, while

for rest of the systems it will comprise of four runs. Thus average number of noise array

runs under Hybrid Noise strategy will be less than TTBF strategy and it would capture

most of the benefit in robustness for all sort of systems.

110

4.6 Conclusions

Run size of experiments is one of biggest concerns while running robust design methods

on any system. The reason why compound noise factor strategy is so popular is that it

reduces run size of experimentation needed to improve robustness of system(s). In this

chapter we set out to develop a noise factor strategy that retains the attractiveness of

reduced run size but is more effective than compound noise factor strategy. We called

this strategy Take-The-Best-Few Noise Factors strategy. To apply TTBF strategy most

important noise factors affecting a system were found and those few noise factors were

kept independent in noise factor array. In this chapter the effectiveness of TTBF strategy

as a robust design method was measured and compared it with other noise strategies.

TTBF strategy as a robust design strategy is very effective for all kinds of response

surface instances and systems. We ran TTBF strategy on strong and weak hierarchy

response surface instances and on six case studies from different engineering domains

with varying degree of effect sparsity. The case studies were: Operational Amplifier,

Passive Neuron Model, Journal Bearing, Continuous-Stirred Tank Reactor, Temperature

Control Circuit and Slider Crank. It resulted in large improvement in robustness for all

systems (Table 4.15) and response surface instances (Tables 4.3-4.8 and Figure 4.5). The

reason for the effectiveness of TTBF strategy for all systems is that, it keeps the

important noise factors in the system independent. Hence the individual impact of

important noise factors on system's response is not confounded. TTBF strategy is able to

exploit all significant control-by-noise interactions for such systems with very high

probability, leading to its high effectiveness.

11

1
-0p Amp e Ndrt Journal BearingOAmp+ .P aNv

0.9 +4 *CSTR
A14 * 0 Slider trank +

0.8 *~ * . a .: *Tempbratur

0 0.7 *

M
Weak Hierarchy Response

- 0.6 - Surface Instances

E
)

0.4 -

0.2

E
S0.4 -

0

0.3

0.2

0.1

0 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Effect Density

Figure 4.5: Median Improvement Ratio verses Effect Density for Strong and Weak Hierarchy

Response Surface Instances and Six Case Studies

We compared TTBF strategy with Compound Noise strategy for strong and weak

hierarchy response surface instances. TTBF strategy though deploys more experimental

runs than Compound Noise strategy, but it is more effective. With TTBF strategy, for

both strong and weak hierarchical response surface instances on average 80% of the total

possible improvement can be achieved but with Compound Noise strategy only 40% of

the total possible improvement can be achieved. In practice an engineer can use Hybrid

Noise strategy which is similar to Compound Noise strategy for systems showing effect

112

sparsity and is similar to TTBF strategy for rest of the systems. Hybrid Noise strategy

deploys noise array runs economically and gives high robustness gain for all systems.

The results of this chapter can be used in an overall approach to deploying TTBF strategy

and Compound Noise strategy as a robust design strategy. The flowchart in Figure 4.6

presents our suggestion for implementing these findings in practice. This flowchart is

built upon flowchart given in chapter 3 (Figure 3.13). First of all, practicing engineers

must define the scenario including what system is being improved, what objectives are

being sought, and what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding

effect sparsity. It should be noted here that we do not argue that engineers need to make a

factual determination of effect sparsity. The experience on the system should be used to

make decision. If engineers decide that effects are sparse, then they should follow the

procedure on the left hand side of Figure 4.6. But if they decide that effects are dense,

then they should figure out the most important noise factors for the system under

consideration. In this case they should formulate TTBF strategy by keeping all the

important noise factors independent in outer array and follow the procedure on the right

hand side of Figure 4.6. Figure 4.6 will be of value to practitioners seeking to implement

robust design efficiently.

113

Define the Robust Design Scenario

Sparse Assumpt ons bout Dense

Use TTBF Strategy,,
as Outer Array

Yes s the directionality o (instead of
noise factors known? Compound Noise)

Use Compound Noise Use Random
(as defined by Taguchi, Compound Noise
Phadke) as Outer Array as Outer Array

Carry out Robust Design Using the
Chosen Outer Array

Figure 4.6: Suggested procedure for TTBF Strategy and Compound Noise in Robust Design

4.7 Chapter Summary

TTBF Noise Factor strategy as a robust design strategy is very effective for all systems,

even the ones which do not show effect sparsity. The reason for the effectiveness of

TTBF strategy for all systems is that, it keeps the important noise factors in the system

114

independent. Hence the individual impact of important noise factors on system's response

is not confounded. TTBF strategy is able to exploit all significant control-by-noise

interactions for such systems with very high probability, leading to its high effectiveness.

We ran TTBF strategy on response surfaces generated using strong and weak hierarchical

probability model. This was done to confirm its effectiveness statistically. Next TTBF

Noise Factor strategy was run on six different case studies from various engineering

domains to verify conclusions from hierarchical probability model. We also compared

TTBF strategy with Compound Noise strategy for response surfaces generated using

strong and weak hierarchical probability model. We also proposed a Hybrid Noise

strategy with combines the effectiveness of both TTBF strategy and Compound Noise

strategy. We devised an algorithm on the use of TTBF strategy and Compound Noise

strategy as robust design methods, based on our conclusions from response surface

instances and case studies.

In next chapter we will look at how correlation and variance of noise factors induced

during robust design influences the success of reliability improvement efforts. We will

try to find a class of systems for which we can safely neglect correlation among noise

factors and can amplify the magnitude of induced noise factors.

115

116

Chapter 5: Analyzing effects of correlation among and

intensity of noise factors on quality of systems

5.1 Introduction and Background

Every engineering system is affected by noise factors - uncertain parameters such as

environmental conditions, customer use profiles, and interface variables. Robust design

methods are frequently used in industry to make subsystems and components less

sensitive to noise factors. However, deployment of robust design may become too costly

or time consuming unless there is an appropriate strategy focusing the effort on what is

most important. This chapter documents a study to assess which aspects of noise factors

have the greatest influence on the outcomes of robust parameter design. A model-based

approach is presented and used to evaluate the effects of correlation among noise factors

and the magnitude of noise factors on robust design. It was determined that for systems

having only main effects and two-factor interactions, exaggerating the magnitude of the

noise has a positive effect if pure error is high and that correlation among the noise

factors has a small effect and can be safely neglected for most purposes. By contrast, for

systems having active three-factor interactions, correlation among the noise factors has a

large effect on the control factor settings and should be represented realistically during

robust design. These results are explored through six case studies from various

engineering domains.

117

Robust design is a set of engineering and statistical methods that can improve the

consistency of a system response, Taguchi (1987). Robust design is an important part of

quality/system engineering enabling smoother system integration, faster transition to

production, and higher field reliability. However, robust design can also be expensive,

time consuming, or otherwise resource intensive. Research that makes robust design less

resource intensive is therefore of great value to engineers. As a result, many recent

advances in robust parameter design have sought, for example, to reduce the number of

experiments required, Wu and Hamada (2000).

In order to make a system more robust, it is generally necessary to expose the design to

"noise factors" - variables such as environmental effects, manufacturing process

variations, and customer usage patterns. In order to improve robustness, it is also

necessary to explore alternative designs. Typically, this is done by systematically

varying selected "control factors" - parameters which the designer has the latitude to

change. The goal is to select a set of values of the control factors for which the system

response(s) will exhibit lower variance, where variance is caused due to the noise factors.

"Noise strategy" is a term used to denote the efforts of the quality/system engineering

team to characterize noise factors and to expose system to those noises. Figure 5.1 is a

graphical representation of the robust design process illustrating the need for noise

strategy. In this figure, a distinction is drawn between the real system that is eventually

fielded and the system simulation or prototype used for design. The real system is

represented by a block with two types of inputs - control factors and noise factors. The

118

noises that the system will actually experience in the field are denoted as "real noise". By

contrast, the system simulation or prototype is exposed to "surrogate noise" - a term

coined by practitioners at Ford Motor Company to describe the noises induced in system

simulations or prototypes, Ejakov, Sudjianto and Pieprzak (2004). The robust parameter

design process is represented by a gray box in Figure 5.1. The system simulation or

prototype is exposed to the surrogate noise. Simultaneously, the control factors are

varied to seek improved robustness. The process results in the selection of control factor

settings.

Robust Parameter Design Selected
Control Factor

Control Factors' Settings

System
Simulation or Estimated Real System Realized

Prototype Robustness Robustness

Surrogate Noise T--------------- Real Noise

Noise strategy = Determining which aspects of this
correspondence are important and how noises will be

characterized and represented during product development.

Figure 5.1: Noise Strategy in Robust Design

A key issue in noise strategy is the difference between surrogate noise and real noise.

There are several reasons surrogates are not identical to real noise, of which two are

important to the present investigation:

119

1) The real noise is known only approximately. Engineers are often called on to

estimate the variations due to manufacture, ambient conditions, and customer use

conditions. These variations can be characterized by ranges, standard deviations,

correlations, and probability distributions. These characterizations are all subject to

considerable ambiguity and uncertainty. Reducing that uncertainty by providing more

accurate and more detailed characterization of the noises may be costly. It is particularly

challenging to determine the correlation among noises in large systems. The number of

correlation coefficients in a system with m noise factors is 2 . For example, in a system

subjected to 15 noise factors there are over 100 correlation coefficients and in a system

subjected to 46 noise factors there are over 1,000 correlation coefficients. One is tempted

to neglect these correlations and focus on characterizing the marginal densities of the

variables. Recent literature advises against neglecting correlation among noise factors,

Goldfarb, Borror and Montgomery (2003). It is certainly true that neglecting correlation

will cause some degree of error, but when robust design is applied to complex systems

the costs grow to such a degree that some trade-off between cost and accuracy is likely to

be necessary.

2) The real noise conditions may be deliberately exaggerated. Particularly when pure

experimental error is high, it is often an effective strategy to induce exaggerated levels of

noise so that the changes in sensitivity to noise can be more efficiently detected. This can

be a highly effective strategy for increasing the information provided by a robust design

experiment. For example, Joseph and Wu (2000) list noise factor amplification as one of

120

three feasible means of amplifying failure rates in experiments with categorical responses

and they show that the amount of information from such experiments is maximized when

failure rates are around 50% (which is probably much higher than what would be

experienced in the field). Although the responses considered here are continuous, a

similar principle applies. The efficiency of experiments might be increased by

employing exaggerated noise conditions because the effects of the control factors on

sensitivity are then amplified compared to measurement errors in the laboratory. On the

other hand, the system may respond differently to exaggerated noises, so there is a risk

inherent in this strategy.

The differences between real noise and surrogate noise may not be consequential for

improving quality of a system. Ultimately, the selected control factor settings are

implemented in the fielded system. The system is exposed to the real noise factors and

the realized robustness of the system becomes evident. If the surrogate noise leads to the

best control factor settings, the outcomes will be favorable even if the surrogate noise is

different from the real noise. However, if the differences between the surrogate noise and

the real noise mislead the engineering team into selecting poor control factor settings, the

resulting field reliability will be less than desired.

The considerations discussed in this section led us to a set of questions to be addressed in

thischapter .

0 Which aspects of noise strategy have the largest influence on the realized robustness?

121

" Are there aspects of the real noise that one may safely neglect (at least under some

conditions)?

* More specifically, are there conditions under which one may safely amplify the

magnitude of noise and/or safely neglect correlation?

The main aim of this chapter is to explore the influence of correlation and variance of

noise factors induced during robust design on the improvement in quality achieved for a

system. We will first look at the influence on response surface instances generated using

Hierarchical Probability Model, Li and Frey (2005). Two different kinds of response

surface instances were generated. One with only main effects and two factor interactions

also called as strong hierarchy instances and other with main effects, two factor

interactions and three factor interactions, also called as weak hierarchy instances.

The conclusions from studies on response surface instances from Hierarchical Probability

Model were then verified by testing similar noise strategies on six case studies from

different engineering domains. The main take away from this chapter is that, systems

having no significant three-factor interactions, correlation among noise factors can be

safely neglected and it is often helpful to amplify the magnitude of induced noise.

Otherwise, noise factors should be used that match the true magnitude and correlation in

field conditions.

The chapter is organized as: first we will describe the setting up of correlation and

variance study on response surface instances, measures we studied results from studies

122

and followed by conclusions from Hierarchical Probability Model. Then similar

strategies for case studies from different engineering domains will be formulated. In the

end conclusions and summary of the chapter will be given.

5.2 Setting up of correlation and variance study

The objective of this chapter is to see the influence of neglecting correlation among noise

factors and exaggerating variance (intensity) of induced noise, on the prediction of

optimal setting of a response surface instance. Response surface instance is generated by

hierarchical probability model parameters and the results by case studies from various

engineering domains will be verified. Next subsection describes a brief overview of

hierarchical probability model (from chapter 2), the multiple variants of that model used

in our investigation, and procedure by which the model was used.

5.2.1 Generating Response Surface instances

Hierarchical probability models have been proposed as a means to analyze the results of

experiments with complex aliasing patterns. In any system we are interested in main

effects and interaction effects present in the system. There is also a need to predict the

relative importance and relationship among these effects. Chipman, Hamada and Wu

(1997) have expressed these properties in mathematical form in a hierarchical prior

probability model. The hierarchical probability model proposed by Chipman, Hamada

and Wu (1997) has been extended here to enable evaluation of noise strategies in robust

design. The model includes both control and noise factors since they are both needed for

123

the present purposes. The model includes two-factor interactions since control by noise

interactions are required for robust design to be effective. It also includes the possibility

of three-factor interactions since these have been shown to be frequently present,

especially in systems with a large number of factors Li and Frey (2005) and might affect

the outcomes of robust design. The details of the model are in Equations 5.1 through

5.10.

y(x 1,x 2,-. ,x)=. Z i i jxxj +Z ZXI,3kXiXjXk +6 (5.1)
1 =1 i= 1 = k=

xi ~ N(0,K) i c I ... m (5.2)

x, e 1,1} i e m +1...n (5.3)

e NID(0, a- I) (5.4)

{N(0,1) if J3 =0

~N(0, C if 8i 1(5.5)

fN(0,1) if 5 0

f' 3) = 5u N(0,C2) if 1 (5.6)

124

{ N(0,1) if 9/k =0
JfPjkiik) N(0,c') _ijk 1

Pr(S, =1) = p

P00
Pr(6,, =1|I6,,6)= P0 1

PI1

if 1+6=0

if +,, =1

if 3+5=2

P000 if

p001 if
Pr(, 1 k - 1 ,P if

Po1 if

lPi if

(5.9)

'5, + (5 1+g

'5, + 051+ '5

(51 + '5, + 15k

15, + tSi + 15k

=0

=1

=2

=3
(5.10)

This hierarchical probability model allows any desired number of response surface

instances to be created such that population of response surface instances has the desired

properties of sparsity of effects, hierarchy, and inheritance. Equation 5.1 represents the

measured response of the engineering system y. The independent variables x,'s are both

control factors and noise factors. Control and noise factors are not distinguished in this

notation except via indices. Equation 5.2 shows that the first set of m input parameters to

Hierarchical Probability Model (xj, x2,..., xm) are regarded as noise factors and are

assumed to be normally distributed with variance-covariance K among noise factors.

Equation 5.3 shows that the other input variables (xm+i, xm+2, ... x,) are the control factors

which are assumed to be two-level factors. The variable represents the pure

125

(5.7)

(5.8)

experimental error in the observation of response which is assumed to be normally

distributed.

The model response y is assumed to be a third order polynomial of the input variables xi.

The values of the polynomial coefficients (fl's) are determined by a process implemented

with pseudo-random number generators. Equation 55 determines the probability density

function for the first order coefficients. Factors can be either "active" or "inactive"

depending on the value (0 or 1 respectively) of their corresponding parameters . The

strength of active effects is assumed to be c times that of inactive effects. Equations 56

and 57 determine the probability density function for second order and third order

coefficients respectively.

Equation 58 sets the probability p of any main effect being active. Equation 59 and 510

enforce inheritance. If the parameters are set so that pJI>poj>poo and so on, then the

likelihood of any second order effect being active is lowest if no participating factor has

an active main effect and is highest if all participating factors have active main effects.

Given the model in Equations 51 through 510, some inferences about noise strategy can

be made based on probability theory. The following formula adapted from Siddall (1983)

gives the transmitted variance in y (as given in Equation 51) assuming all terms of the

form ijk=O

126

m(A j j ±ii +2ZY + kk j + jkk KY +
i=j =m+ J i=1 j=1 k=m+i k=m+l

m m m n mmmn

2YI1 A p+ 1: i,X, P)3kKii+ Kik2ZIX 'n 6+ j,'x,)A p(Ki +Kik)
i=I j=l kI p=m+I i=1 j= = p=m+

j>i k>j ikj

M M M n

+ 2±_ 8k+ lkpx, pj/,JKk + Kjk
i=1 j1k=1 p=m+l

j>i k>j

(5.11)

This equation shows that off-diagonal terms in the covariance matrix (terms of the form

K;) do influence transmitted variance in a response due to noise. However, these terms

will not be a function of the control factors if all the noise by noise interactions are zero

(if terms of the form jk7=0 where j and k are less than or equal to m). Therefore,

probability theory suggests that if three-factor interactions can be neglected and noise by

noise interactions are small, then robust design will not be strongly affected by

correlation among noise factors. No similar statement can be made if three-factor

interactions might be large. Closed form equations can only provide these rather

qualitative statements; therefore further results will be pursued via simulations.

Multiple variants of the hierarchical probability model were formed by selecting different

sets of model parameters as described in Table 5.1. As the column headings of Table 5.1

indicate, a key difference between the variants is the assumption concerning effect

hierarchy. A Strong Hierarchy Model assumes that the only active effects in the system

are main effects and two-factor interactions although small three factor interactions are

127

present as can be seen in Equation 5.7. A Weak Hierarchy Model includes a possibility

for active three-factor interactions. The values for parameters in Table 5.1 such as

pjj=0.2 5 and poI=O.l are based on the Weak Heredity model proposed by Chipman,

Hamada and Wu (1997). In fact, the Strong Hierarchy model is precisely the Weak

Heredity model published in that paper and used for analyzing data from experiments

with complex aliasing patterns. The Weak Hierarchy model proposed here is an

extension of that model to include higher order effects and therefore relies less on the

assumption of hierarchy.

Additional model variants are based on the options in the last three rows of Table 5.1.

The on-diagonal elements of the covariance matrix were varied among two levels. The

covariance matrix was also composed by three different methods inducing different

degrees of correlation. These resulted in off-diagonal elements of the covariance matrix

with different average magnitudes. Given the two model options related to the columns

of Table 5.1 and the additional combinations of options due to the alternatives in the last

three rows, there are 24 different model variants in all.

128

Table 5.1: Parameters for Variants of Hierarchical Probability Model

K is the variance-covariance matrix for the real noise factors. The modeled noise, in

response surface instance is assumed to have a covariance of an identity matrix. Thus the

more different K is from an identity matrix, the more the noise strategy varies from a

faithful representation of the noises the system will experience in the field.

The on-diagonal elements of the matrix, Kii, are the variance due to each noise factor xi.

The size of these on-diagonal elements is an indication of the amplitude of the real noise

factors relative to the modeled noise factors. Two options within the model are defined:

one in which the real noise has the same variance as the modeled, and one in which the

real noise has higher variance than the modeled.

129

parameters Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two- (active three-factor

factor interactions) interactions also included)
m 5 5
n 12 12
c 10 10

p 0.25 0.25
p11 0.25 0.25
Po0 0.1 0.1

POO 0.0 0.0

pill 0.0 0.25
poll 0.0 0.1

Poo] 0.0 0.0

POOO 0.0 0.0
l or 10 1 or 10

Kii 1.0 or 1.75 1.0 or 1.75
Ki.(K~I ~ 0.01, 0.26, or 0.47 0.01, 0.26, or 0.47

i: j

The off-diagonal elements of the matrix, Ki;, are the covariance among noise factors xi

and x;. Three options within the model are defined: one with almost no correlation (with

the average absolute value of the correlation coefficients being 0.01), one with relatively

mild correlation (with the average absolute value of the correlation coefficients being

0.26) and one with relatively strong correlation (with the average absolute value of the

correlation coefficients being 0.47). The matrix K was formed so as to ensure the

resulting matrix was positive semi-definite while also having the desired variance and the

desired degree of correlation.

5.2.2 Algorithm to evaluate noise strategies

The different variants of the hierarchical probability model were used to evaluate noise

strategies as described in Figure 52. The first step in the algorithm is to generate 1000

instances of the Strong Hierarchy Model and 200 instances of the Weak Hierarchy

Model. Fewer instances of the Weak Hierarchy Model are used because that model takes

much longer to run given that it contains 220 (12 choose 3) extra polynomial terms to

evaluate for each observation of the response. For all of these model instances, a full

factorial experiment is crossed with Latin Hypercube sampling assuming the variance-

covariance matrix is an identity matrix. The control factor settings that minimize the

transmitted variance are recorded. This simulates the choice of control factor settings

under a noise factor surrogate. The same process is repeated for six different versions of

the variance-covariance matrix K. For each generated instance of this matrix K, the

average transmitted variance, the minimum transmitted variance, and the control factor

130

settings that minimize the transmitted variance are recorded. In addition, the previously

recorded control factor settings that minimize the transmitted variance assuming I, are

used to look up the transmitted variance assuming K. This step simulates a confirmation

experiment under the real noise conditions given the settings selected under the surrogate

noise conditions.

131

Generate 200 instances of response surfaces using the Weak Hierarchy Model

Generate 1000 instances of response surfaces using the Strong Hierarchy Model

For each of the 1200 response surface instances

For each control factor setting in a full factorial array 27

I Estimate the transmitted variance using Latin Hypercube Sampling

Select and record the control factor setting that minimizes the transmitted
variance assuming the variance-covariance matrix equals i

Generate six variants of K as indicated in Table 5-1

For each variant of K

For each control factor setting in a full factorial array 27

Estimate the transmitted variance using Latin Hypercube
Sampling

Compute the average transmitted variance assuming K

Compute the minimum transmitted variance assuming K

Look up the transmitted variance assuming K at the control factor
settings minimizing the transmitted variance assuming I

Compute the percentage of possible improvement achieved by
assuming I

Select and record the control factor setting that minimizes the
transmitted variance assuming K

Check if the control factor settings minimizing transmitted variance
assuming K match those minimizing transmitted variance
assuming I and record a match if all seven control factor settings
are equal

For all 24 model variants

Compute the percentage of times the control factor settings selected using the
given noise strategy matched the optimum control factor settings

Compute the median percentage of possible improvement achieved

Figure 5.2: Algorithm used to evaluate Noise Strategies

132

5.2.3 Measures studied

Through the algorithm in Figure 52, two different performance measures are computed:

1) Median fraction of possible reduction in standard deviation. At any particular setting

of the control factors, a response surface will exhibit a given amount of variance due

to variation of the input noise factors. The most robust of all the control factor

settings will exhibit the least variance and have the lowest standard deviation of the

response. The possible reduction in standard deviation is the difference between the

minimum standard deviation and the average standard deviation throughout the

possible settings of the control factors. A robust design process will rate 1.0 if it

always attains the lowest standard deviation possible. Selection of control factor

settings at random would rate 0.0. Most robust design strategies will earn a rating in

between these two extremes.

2) Percent of systems for which optimum control factor settings matched. A goal of

robust design is to select the best settings of the control factors. However, any robust

design method is likely to occasionally miss the optimal setting of at least one factor.

The average number of cases in which the exact optimum settings are attained is

another performance measure for a noise strategy.

5.2.4 Results from model-based analysis

The procedure described in the previous section was carried out. Table 5.2 presents the

results with the performance metric defined as the median fraction of maximum

133

improvement attained. Table 53 presents the results with the performance metric defined

as the probability of attaining the optimum control factors.

Strong Hierarchy Model
(active main effects and two-factor

interactions)

Weak Hierarchy Model
(active main effects, two-factor, and

three-factor interactions)

Correlation Correlation

None Mild Strong None Mild Strong

Large error Matching 0.97 0.89 0.81 Matching 0.94 0.84 0.70

c~NID(0,10 2) Z Amplified 1.00 0.92 0.86 Z Amplified 0.90 0.81 0.56

Matching 1.00 0.96 0.90 Matching 1.00 0.89 0.72
Small error

e -NID(0,1 2) Z Amplified 1.00 0.96 0.90 Z Amplified 0.92 0.82 0.57

Table 5.2: Median fraction of the maximum possible improvement attained in hierarchical

probability response surface instances

Strong Hierarchy Model Weak Hierarchy Model
(active main effects and two-factor (active main effects, two-factor, and

interactions) three-factor interactions)

Correlation Correlation

None Mild Strong None Mild Strong

Large error Matching 36% 20% 13% Matching 38% 21% 9%

-NID(0,10 2 Z Amplified 49% 26% 13% Amplified 32% 16% 11%

Matching 81% 32% 13% Matching 57% 36% 21%
Small error

ZNID(0,12) Amplified 72% 18% 11% Z Amplified 40% 35% 18%

Table 5.3: Percentage of hierarchical probability response surface instances in which optimum

control factor settings were attained

134

5.2.5 Significance of results from model-based approach

Both Tables 52 and 53 suggest that increased correlation in the noise f actors adversely

affects performance of robust design if that correlation is not represented in the noise

strategy. It is also salient that correlation among the noise factors has a much stronger

effect on robust design if the Weak Hierarchy Probability model is assumed than if the

Strong Hierarchy Probability model is assumed. It is also noteworthy that increased

correlation generally had a milder effect on the median fraction of the optimum reduction

in standard deviation than it did on percentage matching control factor settings. There is

only one optimum setting of the control factors, but there can be many settings that

provide results nearly as good as the optimum. It appears that lack of fidelity in

modeling correlation leads to selection of settings that are only slightly sub-optimal.

Conclusions about the need to model correlation in noise strategy depend critically on the

goals of the project. One is more likely to be able to neglect correlation if improved

consistency of the response is the goal and failing to attain the optimum settings of

control factors can be tolerated.

The magnitude of the noise factors has a mild effect on the performance of robust design,

except when the system has active three factor interactions and the correlation is

moderate or high. Note also that the effect of amplifying the noise is positive if the pure

experimental error is high and strong hierarchy can be assumed. However, if only weak

hierarchy can be assumed, then the response to the noise depends on the amplitude of the

noise and it is probably better to induce noises typical of field levels rather than

exaggerated. However, if those levels are not known, exaggerating the noise amplitude

135

will have only mild negative effects on the design process. To summarize, under most

conditions, it appears to be safe to amplify the noise and under selected conditions

amplifying noise can have a beneficial effect.

In next section we will analyze correlation and variance effect of induced noise on six

case studies from various engineering domains. We will compare results from case

studies with results we got from hierarchical probability response surface instances.

5.3 Case Studies

In the previous section we inferred that the choice of noise strategy depends on

assumptions about hierarchy - that is, whether three-factor interactions can be assumed to

be small. To provide a further check on these results, we identified and implemented six

system simulations; three that contain significant three-factor interactions and three that

do not. Three case studies that do not contain significant three-factor interactions are

Operational Amplifier (Op Amp), Phadke (1989), Passive Neuron Model (PNM), Tawfik

and Durand (1994), and Journal Bearing: Half Sommerfeld Solution, Hamrock, et al.

(2004). Three case studies that contain significant three-factor interactions are

Continuous-Stirred Tank Reactor (CSTR), Kalagnanam and Diwekar (1997),

Temperature Control Circuit, Phadke (1989) and Slider Crank, Gao, et al. (1998). Using

these six case studies, we performed simulated robust design studies using various noise

strategies as described in the last section. By this means, we were able to create results

similar in structure to those in Tables 5.2 and 5.3 but for case studies rather than for a

hierarchical probability model response surface instance.

136

In case studies pure experimental error was comparable to that of one-tenth of largest

noise factor intensity. We can gage noise factor intensities for case studies from Lenth

Plots (Figures 3.6 to 3.11). Each noise strategy was replicated in order to assess the

repeatability of the results.

5.3.1 Results from Case Studies

Tables 5.4 and 5.5 describe the results we obtained from case studies.

System Hierarchy
[Correlation I

Noise Matching 1.00 1.00 1.00
Op Amp Strong Intensity Amplified 1.00 1.00 1.00

PNM Strong Noise Matching 1.00 1.00 1.00
Intensity Amplified 1.00 1.00 1.00

Journal Noise Matching 1.00 1.00 1.00
Bearing Strong Intensity Amplified 1.00 1.00 1.00

CSTR Weak Noise Matching 0.99 0.96 0.70
Intensity Amplified 0.71 0.51 0.35

Temperature Noise Matching 1.00 0.96 0.92
Control Weak Intensity Amplified 0.95 0.85 0.73
Circuit

Slider Crank Weak Noise Matching 1.00 0.99 0.99
Intensity Amplified 1.00 0.98 0.96

Table 5.4: 'Median fraction of the maximum improvement attained in case study simulations

With replications

137

None HighMild

I Correlation I

Noise Matching 100% 100% 100%
Op Amp Strong Intensity Amplified 100% 100% 100%

Noise Matching 100% 100% 100%
Intensity Amplified 100% 100% 100%

Journal Noise Matching 100% 100% 100%
Bearing Strong Intensity Amplified 100% 100% 100%

CSTR Weak Noise Matching 75% 50% 25%
Intensity Amplified 25% 12.5% 0%

Temperature Nois Matching 100% 89% 84%
Control Weak
Circuit Intensity Amplified 87% 74% 66%

Slider Crank Weak Noise Matching 100% 95% 94.7%
Intensity Amplified 100% 92.5% 86%

Table 5.5: Percentage of case study simulations in which optimum control factor settings were

attained

The second column of tables 5.4 and 5.5 shows whether case study follow strong

hierarchy model (i.e. no significant three-factor interactions are present)v or follow weak

hierarchy model. The third and fourth column show whether induced noise intensities

matched with actual noise levels or were amplified as compared to actual noise levels.

The last three columns capture the impact of correlation among actual noise and the error

we will make in neglecting that correlation for induced noises. We can infer from these

tables that correlation among the noise factors has a much stronger effect on robust

design if case studies follow weak hierarchy model than if they follow strong hierarchy

model. Also increased correlation generally has milder effect on the median fraction of

HighNone Mild

138

System Hierarchy

the optimum reduction in standard deviation than it did on percentage matching of

optimal control factor settings. There is only one optimum setting of the control factors,

but there can be many settings that provide results nearly as good as the optimum.

5.4 Conclusions

Carrying out robust design requires, either implicitly or explicitly, a noise strategy. One

must decide how to represent the noise factors the product is likely to encounter during

its lifecycle. Only then can the product be exposed to those noise factors while searching

for design changes that improve robustness. Designers often have only a rough estimate

of the conditions the product will actually encounter and therefore must make

assumptions. It is useful therefore to understand what assumptions can be made safely

and which assumptions, if violated, will lead to disappointing results.

Using a hierarchical probability model response surface instances and following up with

case studies, we found that:

* With a strong assumption of hierarchy, surrogate noises can safely be used in robust

design that neglect correlation and/or exaggerate the intensity of noise factors.

* With a strong assumption of hierarchy and in the presence of large experimental

errors, surrogate noises that exaggerate the intensity of noise factors may improve the

results of robust design.

* Absent a strong assumption of hierarchy, correlation should not be neglected in the

noise strategy and noise factors should not be amplified.

139

These results may influence one's strategy in deploying robust design in product

development. The flow chart in Figure 53 presents our suggestion for implementing

these findings in practice. First of all, the engineering team must define the scenario

including what system is being improved, what objectives are being sought, and what

design variables may be altered. After defining the parameters of the scenario, it should

be possible to assess the assumptions can be made regarding effect hierarchy. We are not

suggesting that the team needs to make a factual determination of the existence of three-

factor interactions. The experience of the team should be used to make an assessment

which will necessarily be made under uncertainty.

If the team decides that only weak hierarchy can be assumed, that is, that three-factor

interactions might be present, then the team should choose the procedure on the right

hand side of Figure 5.3. In this case, the team must decide whether it is possible or

advisable to take measures that eliminate or reduce the possibility of three-factor

interactions. In some cases, reformulation of the response, or the input variables, or

redesign of the system can be effective. It is possible that formulating responses related

to the energy transformations in the system will greatly reduce the likelihood of high

order interactions. If the team finds it difficult to avoid the possibility of such

interactions, the results in this chapter suggest that the noise strategy should seek to

accurately represent both the intensity and correlations of the noises.

140

Define the Robust Design Scenario

Strong Assumptions Weak
about Effect
Hierarchy

Can the Yes
possibility of three-

factor interactions be
eliminated?

Roughly
approximate No

intensities of real
noises

Carry out Robust Design Using the
Chosen Surrogate Noises

Figure 5.3: Flowchart to reduce information needed to implement Robust Design Methodology

If the type of system under consideration, the type of response, and the design variables

are judged as unlikely to exhibit three-factor interactions, then the team may choose the

141

With substantial fidelity,
assess the intensities of

real noises and the
correlation among noise

factors

Use surrogate noises with
matched/amplified noise
factors, correlation may

be neglected

Use surrogate noises
with nearly the same

intensities and
correlatins as real

noises

procedure on the left hand side of Figure 53. The op tions on the left side offer

significant efficiencies, however, it should be noted that a recent meta-study of over 100

full factorial data sets suggests that in systems with five variables, one significant three-

factor interactions is likely to be present and in systems with 10 variables, an average of

five significant three-factor interactions are likely to be present, Li and Frey (2005). The

noise strategies on the left of Figure 53 may save time and money but there have to be

good reasons to believe that three-factor interactions are unlikely to arise.

Experience, judgment, and knowledge of engineering and science are critical formulating

a noise strategy. These can be supplemented by effective processes guiding the work of a

quality engineering team. It is hoped that the procedure proposed here (Figure 53) will

be of value to practitioners seeking to implement robust design efficiently as part of their

product development process.

5.5 Chapter Summary

Correlation among the noise factors has a much stronger effect on robust design if the

Weak Hierarchy model is assumed than if the Strong Hierarchy model is assumed. Since

the systems which follow strong hierarchy there is no significant three factor interactions.

Impact of correlation among noise factors is pronounced when control-by-noise-by-noise

interactions are present. Control-by-noise-by-noise interactions are present only in Weak

Hierarchy Systems hence correlation has stronger effect on robust design is the system

follows Weak Hierarchy.

142

The magnitude of the noise factors has a mild effect on the performance of robust design,

except when the system has active three factor interactions and the correlation is

moderate or high. In the presence of moderate or high correlation among noise, and

active three factor interactions, control-by-noise and control-by-noise-by-noise

interaction having same common control factor get confounded. This leads to sub-

optimal selection of control factor settings.

In this chapter we first saw the impact of correlation and variance of induced noise

factors on response surface instances generated via strong and weak hierarchy probability

model. Next we ran similar noise strategies on six different case studies from various

engineering domains to verify conclusions from hierarchical probability model. We saw

that if system follows strong hierarchy then during robust design experiments we can

neglect correlation and/or exaggerate the intensity of induced noise factors. We also

designed an algorithm for implementing research findings in this chapter in practice to

reduce amount of information needed to implement robust design methodology.

In the next chapter we will provide a brief summary and findings of all main chapters in

this thesis. We will also present scope of future research in the area of reliability and

robust design applied to complex systems.

143

144

Chapter 6: Conclusions and Future Work

6.1 Overview of research

Robust parameter design methods are used to make systems more reliable and robust to

incoming variations in environmental effects, manufacturing processes and customer

usage patterns. However, robust design can become expensive, time consuming, and/or

resource intensive. Thus research that makes robust design less resource intensive and

requires less number of experimental runs is of great value. Robust design methodology

can be expressed as multi-response optimization problem. The objective functions of the

problem being: maximizing reliability and robustness of systems, minimizing the

information and/or resources required for robust design methodology, and minimizing the

number of experimental runs needed.

Robust parameter design is an engineering methodology intended as a cost effective

approach to improve the quality of products, processes and systems, Taguchi (1987),

Robinson et al. (2004). Taguchi (1987) proposed that inputs to any system can be

classified as control factors and noise factors. Control factors are those system parameters

that can be easily controlled and manipulated. Noise factors are those system parameters

that are difficult and/or costly to control and are presumed uncontrollable. Robust

parameter design involves choosing optimal levels of the controllable factors in order to

145

obtain a target or optimal response with minimal variation. The challenge arises in

obtaining optimal response due to the influence of the uncontrollable noise factors. Noise

factors bring variability into the system, thus affecting the response. The aim is to

properly choose the levels of control factors so that the process is robust or insensitive to

the variation caused by noise factors.

Robust parameter design is among one of the most important developments in systems

engineering in 20 century, Clausing and Frey (2005). These methods seemed to have

accounted for a significant part of quality differential that made Japanese manufacturing

dominant during 1970s. Robust parameter design enables in smoother system integration,

faster transition to production, and higher field reliability.

In chapter 1 we saw that robust parameter design process is crucial in improving the

quality and reliability of any system/process. The main aim of this thesis is to find

algorithms which will make robust design process a cost effective approach to

implement. We explored noise strategies which make robust design processes require less

number of experimental runs and less information about noise factor space to attain high

quality improvement. We proposed random compound noise over compound noise since

it does not require the knowledge of directionality of noise factors to be known. We also

proposed TTBF strategy over compound noise for systems and processes in which factors

effects were dense. TTBF strategy provides more resolution over compound noise hence

is able to utilize all important interactions to improve the quality. We also proposed that

146

for the systems which have no active three-factor interactions correlation among noise

factors can safely be neglected and/or intensity of noise factors can be exaggerated and

still high robustness improvement will be achieved.

In chapter 2 the formulation of Hierarchical Probability Model was discussed. This will

form the basis to compare different robust design methods statistically. First the

regularities exhibited by engineering systems were discussed. Next those regularities

were put in a mathematical format. The mathematical formulation would be used to

generate response surface instances to analyze different robust design methods. We also

discussed about selecting various parameters for Hierarchical Probability Model. We can

have many variants of Hierarchical Probability Model. We discussed some of these

variants.

In chapter 3 it was seen that Compound Noise as a robust design strategy is very effective

on the systems which show effect sparsity. The reason for its effectiveness on sparse

systems is, in compound noise all the noise factors are combined. Hence their individual

impact on system's response is confounded. But if effects are sparse then the probability

of the impact of two noise factors being oppositely confounded is extremely low. Hence

compound noise is able to exploit all significant control-by-noise interactions for such

systems, leading to its high effectiveness. We first ran two formulations of compound

noise (simple and extreme) on response surface instances generated using strong and

weak hierarchical probability model. This was done to confirm compound noise

147

effectiveness statistically. Next those formulations of compound noise were run on six

different case studies from various engineering domains to verify conclusions from

hierarchical probability model. In the end conditions for compound noise to be

completely effective for both strong and weak hierarchy systems were outlined. We

engineered an algorithm on the use of compound noise as a robust design method, based

on our conclusions from response surface instances and case studies.

In chapter 4 it was found that TTBF Noise Factor strategy as a robust design strategy is

very effective for all systems, even the ones which do not show effect sparsity. The

reason for the effectiveness of TTBF strategy for all systems is that, it keeps the

important noise factors in the system independent. Hence the individual impact of

important noise factors on system's response is not confounded. TTBF strategy is able to

exploit all significant control-by-noise interactions for such systems with very high

probability, leading to its high effectiveness. We ran TTBF strategy on response surfaces

generated using strong and weak hierarchical probability model. This was done to

confirm its effectiveness statistically. Next TTBF Noise Factor strategy was run on six

different case studies from various engineering domains to verify conclusions from

hierarchical probability model. We also compared TTBF strategy with Compound Noise

strategy for response surfaces generated using strong and weak hierarchical probability

model. We also proposed a Hybrid Noise strategy with combines the effectiveness of

both TTBF strategy and Compound Noise strategy. We devised an algorithm on the use

148

of TTBF strategy and Compound Noise strategy as robust design methods, based on our

conclusions from response surface instances and case studies.

In chapter 5 the impact of correlation and variance of induced noise factors on response

surface instances generated via strong and weak hierarchy probability model was seen.

Next similar noise strategies were run on six different case studies from various

engineering domains to verify conclusions from hierarchical probability model. We saw

that if system follows strong hierarchy then during robust design experiments correlation

can be neglected and/or the intensity of induced noise factors can be exaggerated. We

also designed an algorithm for implementing research findings in this chapter in practice

to reduce amount of information needed to implement robust design methodology.

6.2 Algorithms to improve quality of systems

In this section we will revisit two important flowcharts which define algorithms that

should be used to deploy experimental runs efficiently in robust design practices. These

algorithms also promise to reduce the amount of information required to improve the

quality of systems/processes.

The results of this thesis can be used in an overall approach to deploying TTBF strategy

and Compound Noise strategy as a robust design strategy. The flowchart in Figure 6.1

presents our suggestion for implementing these findings in practice. This flowchart is

same as flow chart given in chapter 4, figure 4.6. First of all, practicing engineers must

149

define the scenario including what system is being improved, what objectives are being

sought, and what design variables can be altered.

At this point, it may be possible to consider what assumptions can be made regarding

effect sparsity for a given system/process. It should be noted here that we do not argue

that engineers need to make a factual determination of effect sparsity. The experience on

the system should be used to make decision. If engineers decide that effects are sparse,

then they should follow the procedure on the left hand side of Figure 6.1. But if they

decide that effects are dense, then they should figure out the most important noise factors

for the system under consideration. In this case they should formulate TTBF strategy by

keeping all the important noise factors independent in outer array and follow the

procedure on the right hand side of Figure 6.1. Figure 6.1 will be of value to practitioners

seeking to implement robust design efficiently and will reduce the amount of

experimental runs required in order to improve the quality of a system/process.

150

Defne the Robust Design Scenario

Sparse s tio abDense
Effect Sparsit~y

Use TTBF Strate gy
as Outer Array

Yes s the dire ction alityv N (instead of
oise factors known. Compound Noise)

Use Compound Noise Use Random
(as defined by Taguchi. Compound Noise
Phadke) as Outer Array as Outer Array

Carry out Robust Design U sing the
Chosen Outer Array

Figure 6.1: Suggested procedure for TTBF Strategy and Compound Noise in Robust Design

In order to minimize the information needed about noise factor space to run robust design

process, flow chart in figure 6.2 presents our suggestions. First of all, the engineering

team must define the scenario including what system is being improved, what objectives

are being sought, and what design variables may be altered. After defining the
151

parameters of the scenario, it should be possible to assess the assumptions can be made

regarding effect hierarchy. We are not suggesting that the team needs to make a factual

determination of the existence of three-factor interactions. The experience of the team

should be used to make an assessment which will necessarily be made under uncertainty.

If the team decides that only weak hierarchy can be assumed, that is, that three-factor

interactions might be present, then the team should choose the procedure on the right

hand side of Figure 6.2. In this case, the team must decide whether it is possible or

advisable to take measures that eliminate or reduce the possibility of three-factor

interactions. In some cases, reformulation of the response, or the input variables, or

redesign of the system can be effective. It is possible that formulating responses related

to the energy transformations in the system will greatly reduce the likelihood of high

order interactions. If the team finds it difficult to avoid the possibility of such

interactions, the results in this chapter suggest that the noise strategy should seek to

accurately represent both the intensity and correlations of the noises. If the type of

system under consideration, the type of response, and the design variables are judged as

unlikely to exhibit three-factor interactions, then the team may choose the procedure on

the left hand side of Figure 6.2. The options on the left side offer significant efficiencies,

however, it should be noted that a recent meta-study of over 100 full factorial data sets

suggests that in systems with five variables, one significant three-factor interactions is

likely to be present and in systems with 10 variables, an average of five significant three-

factor interactions are likely to be present, Li and Frey (2005). The noise strategies on

the left of Figure 6.2 may save time and money but there have to be good reasons to

152

believe that three-factor interactions are unlikely to arise. Experience, judgment, and

knowledge of engineering and science are critical formulating a noise strategy. These

can be supplemented by effective processes guiding the work of a quality engineering

team. It is hoped that the procedure proposed here (Figure 6.2) will be of value to

practitioners seeking to implement robust design efficiently as part of their product

development process.

153

Define the Robust Design Seenario

Stang Assumptions Weak
about Effect
Hierardhy

Can theye

pisbilit of three
factor interactions be

eliminated?
Roughly

approxunate No
intensities of real

noises

With substantial fidelity,
assess the intensities of

real noises and the
correlation among noise

factors
Use surrogate noises with
matchediamplified noise Use surrogate noises
factors, correlation may with nearly the same

be neglected intensities and
correlations as real

noises

Carry out Robust Design Using the
Chosen Surrogate Noises

Figure 6.2: Flowchart to reduce information needed to implement Robust Design Methodology

154

6.3 Cost Benefit Analysis of Robust Design Methods

In this section we will present Cost-Benefit analysis of robust design methods discussed

in this thesis. The results presented in this section are based on response surface instances

generated using strong and weak hierarchy probability model and six case studies taken

from various engineering domains. The case studies are Operational Amplifier (Op

Amp), Phadke (1989), Passive Neuron Model (PNM), Tawfik and Durand (1994),

Journal Bearing: Half Sommerfeld Solution, Hamrock, et al. (2004), Continuous-Stirred

Tank Reactor (CSTR), Kalagnanam and Diwekar (1997), Temperature Control Circuit,

Phadke (1989) and Slider Crank, Gao, et al. (1998).

We assume that a system contains N noise factors in its noise factor space and each of the

noise factors is considered at two factor levels. Figure 6.3 shows the benefit that can be

achieved for each of the robust design strategy out of the total maximum benefit that can

be achieved for a given system. It orders the robust design methods in terms of increasing

cost to implement them, from right to left. We try to characterize systems in figure 6.3,

based on prior knowledge about noise factor space that an engineer has about systems.

The percentages given in figure 6.3 are shows the amount of improvement that can be

achieved for a given system statistically out of total possible improvement that could

have been achieved using full factorial noise factor array. The * denotes that we will

approximately achieve that much improvement for systems, if we run a given robust

design process a number of times. The variance of response after running a given robust

design method is shown at the bottom of the tree. With no improvement the spread of

155

response is wide, with 50% improvement the spread reduces and at optimal (or near

optimal) setting of the system, spread of response is minimum.

Systems
Ct

Response Variance

No prior Prior Prior No prior No prior
knowledge knowledge knowledge knowledge knowledge

about about noise

important effects
12N (or less) noise factors directionZ_ .o es experiments No

experiments (in noise array) experiments
(in noise (in noise

array) 4 experiments 2 experiments array)
(n nfLs-e arrac) (n noisrr N

Full Fractional
factorial noise

strategy

-100%
improvement

for most
systems

I1
TTBF

strategy

~100%*
improvement

for most
systems

y

Compound
Noise

Random
Compound

Noise

I
>50%

improvement
~1L00%* for most

improvement systems
for sparse

systems

No change

0%
improvement

Cost

Figure 6. 3: Cost-Benefit Analysis of Robust Design Methods for reducing experimental runs

156

Figure 6.4 shows the benefit thatcan be achieved for each of the robust design strategy

out of the total maximum benefit that can be achieved for a given system. It orders the

robust design methods in terms of increasing cost to implement them, from right to left.

We try to characterize systems in figure 6.4, based on highest order of active interaction

present in the system, whether system follows strong hierarchy or weak hierarchy. We

assume that noise factors to be correlated. We try to gage the error by neglecting

correlation among noise factors and by amplifying the intensity of induced noise. The

assumptions that require least amount of information are mentioned at extreme right of

figure 6.4. As we go from right to left in figure 6.4 amount of information required about

noise factor space of a given system increases. The percentages given in figure 6.4 are

shows the amount of improvement that can be achieved for a given system statistically

out of total possible improvement that could have been achieved using full factorial noise

factor array at their actual intensities and including correlation among noise factors. The

* denotes that we will approximately achieve that much improvement for systems, if a

given robust design processis run a number of times.

157

Systems

Noises are
correlated

No active 3-fac
Active 3-factor interactions

Active 3- factor No active 3-factor interactions

interactions interactions
6 Strrnia HierrWeak Hierarchy

WeA Hierarchy
CZ te s

Strong Hierarchy
Systems

Weak msierarchy
systems

tor

Systems4 11

Neglect Neglect CorrelationSu cr t n c orrelation

tudy correlation Study correlation
stnucture among --- structure among 100%

noise factors noise factors improvement7 nprovement
Amplify Noise

100% Amplify Noise Factors (no need
--- improvement Factors (no need to match exact Noi

improvementAmplify Noise match exact Noise Setting)
FActors (Noie t Setting)IF Factors (no need to

Amplify Noise
Factors (no need to
match exact Noise

Setting)

1
>50%

improvement

match exact Noise
Setting)

100%
improvement

i o>3 5 % n

improvement

to
se

100%
improvement

Cost

Figure 6. 4: Cost-Benefit Analysis of Robust Design Methods for minimizing information regarding

noise factor space

158

h

S

6.4 Scope of future research

The algorithms presented in this thesis can be extremely helpful while designing new

products and processes. These algorithms can be used to efficiently allocate resources

among various sub-systems in a given complex system. Sub-systems which follow strong

hierarchy would require fewer resources to improve quality as compared to sub-systems

which follow weak hierarchy.

This would present a chance to incorporate robust design methods into product

development cycle at very early stages. There can a platform study done in one of the

design courses at MIT, where the improvement in quality that can be achieved in product

by incorporating robust design methods at very early stages of product development cycle

and allocating some resources for robust design methods can be gaged. We can document

the improvement in quality for those products and can compare it with products where no

such initiative was under taken.

Usually while working on legacy systems or prototypes, engineers learns a lot about the

inherent properties of systems. This knowledge can be extremely helpful in devising

specific robust design strategies for a particular class of systems which require less

number of experimental run and less newer information about the actual system. These

strategies can be even better than TTBF strategy and other noise strategies mentioned in

this thesis. We can explore such noise strategies for each class of system, where

deployment of robust design method is expensive affair.

159

160

REFERENCES

1. Allen, T. T., Bernshteyn, M., "Supersaturated Designs that maximize the probability
of identifying active factors", Technometrics, Vol. 45, No. 1, 2003.

2. Box, G.E.P. and Meyer, R.D., "An Analysis for Unreplicated Fractional Factorials",
Technometrics, 28, 11-18, 1986.

3. Chipman, H., Hamada, M. and Wu, C.F.J., "A Bayesian Variable-Selection Approach
for Analyzing Designed Experiments with Complex Aliasing", Technometrics, 39,
372 381, 197.

4. Clausing, D., Frey, D., "Improving System Reliability by Failure-Mode Avoidance
Including Four Concept Design Strategies", Systems Engineering, Vol. 8, No. 3,
2005.

5. Du, Xiaoping, Sudjianto, Agus, Chen, Wei, "An Integrated Framework for
Probabilistic Optimization using Inverse Reliability Strategy", ASME, DETC, 2003,
pp. 25-34.

6. Du, Xiaoping, Sudjianto, Agus, Chen, Wei, "An Integrated Framework for
Optimization Under Uncertainty Using Inverse Reliability Strategy", Journal of
Mechanical Design, July 2004.

7. Ejakov, Mikhail; Sudjianto, Agus; Pieprzak, John. Robustness and Performance
Optimization of an IC Engine Using Computer Model and Surrogate Noise, ASME
Design Automation Conference, Salt Lake City, Utah, USA, September 28 - October
2, 2004; DETC2004-57327.

8. Frey, D.D.; Li, X., "Validating robust parameter design methods", ASME Design
Engineering Technical Conference 2004, Salt Lake City, Utah; DETC2004-57518.

9. Gao, J., Chase, K., Magleby, S., "Generalized 3-D tolerance analysis of mechanical
assemblies with small kinematic adjustments", IE Transactions, Vol. 30, No. 4,
1998.

10. Gigerenzer, G. and Goldstein, D., "Reasoning the Fast and Frugal Way: Models of
Bounded Rationality", Psychological Review, 103(4), pp. 650-69, 1996.

11. Goldfarb, H.; Borror, C.; Montgomery, D. Mixture-process variable experiments with
noise variables. Journal of Quality Technology, 35(4), 393-405, 2003.

161

12. Hamada, M. and Wu, C.F.J., "Analysis of Designed Experiments with Complex
Aliasing", Journal of Quality Technology, 24, 130-137, 1992.

13. Hamrock, B., Schmid, S., Jacobson, B., "Fundamentals of Fluid Film Lubrication",
2nd edition, Marcel Dekker, 2004.

14. Heyden, Y. V., Kuttathatmmakul, S., Smeyers-Verbeke, J., Massart, D. L.,
"Supersaturated Designs for Robustness Testing", Analytical Chemistry, Vol. 72, No.
13, July, 2000.

15. Holcomb, D. R., Carlyle, W. M., "Some notes on the construction and evaluation of
supersaturated designs", Quality and Reliability Engineering International, 18: 299-
304, 2002.

16. Holcomb, D. R., Montgomery, D. C., Carlyle, W. M., "Analysis of supersaturated
designs", Journal of Quality Technology, Vol. 35, No. 1, 2003.

17. Hou, X. Shirley, "On the use of compound noise factor in parameter design
experiments", Applied Stochastic Models in Business and Industry, Vol. 18, pp. 225-
243, 2002.

18. Joseph, V. R., and C. F. J. Wu, "Failure Amplification Method: An Information
Maximization Approach to Categorical Response Optimization," Technometrics, Vol.
46, no. 1, pp.4 12, 2004.

19. Kalagnanam, Jayant R., and Diwekar, Urmila, M., "An Efficient Sampling Technique
for Off-line Quality Control", Technometrics, Vol. 39, No. 3, pp. 308-319, August,
1997.

20. Lenth, R., "Quick and Easy Analysis of Unreplicated Factorials", Technometrics,
Vol. 31, No. 4, November, 1989.

21. Li, X., Frey, D., "Regularities in Data from Factorial Experiments", Complexity,
2005.

22. Phadke, Madhav S., "Quality Engineering Using Robust Design", Prentice Hall PTR,
Englewood Cliffs, NJ, 1989.

23. Rao, S. S., "Reliability-Based Design", McGraw-Hill, Inc., 1992.

24. Robinson, T., Borror, C., Myers, R., "Robust Parameter Design: A Review", Quality
and Reliability Engineering International, Vol. 20:81-101, 2004.

162

25. Satterthwaite, F. E., "Random balanced experimentation (with discussion)",
Technometrics, 1(2): 111-137, 1959.

26. Siddall, J. N., "Probabilistic Engineering Design", Marcel Dekker, New York, 1983.

27. Taguchi, G., "System of Experimental Design: Engineering Methods to Optimize

Quality and Minimize Costs", translated by Tung, L. W., Quality Resources: A
Division of Kraus Organization Limited, White Plains, NY; and American Supplier
Institute, Inc., Dearborn, MI, Vols. I and 2, 1987.

28. Twafik, B. and Durand, D., "Nonlinear Parameter Estimation by Linear Association:
Application to a Five-Parameter Passive Neuron Model", IEEE Transactions on

Biomedical Engineering, Vol. 41, No. 5, pp. 461-469, May, 1994.

29. Wu, C.F.J. and Hamada, M., "Experiments: Planning, Analysis, and Parameter

Design Optimization", Wiley & Sons, Inc., NY, 2000.

163

164

Appendices: MATLAB@ and Mathcad-11 Files

MATLAB@ and Mathcad-i 1 files used in the thesis are given here.

1.1

% function compounding()

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Strong Hierarchy RWH Model

% 09/24/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf-cfseting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf-nfsetting]=fracfact('a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); sI =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11 =modelparameter(1,7); p01 =modelparameter(1,8); p00=modelparameter(1,9);% defining
parameters

165

ncf=7; % #of CF's
nnf=5; % #of NF's

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Strategy 1
counterOCFc = 0; % To increment when OCF from MC is same as from Compounded Noise

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigma uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%O/o%%%%%%%O/o%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wlp,p11,pOl,pOO); % Finding beta values for a given
model

nfsettingl = [-1*sign(bi(1:5));
sign(bi(1:5))]; % defining compounded noise based on b-values as described above

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

% For 2(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index respmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
yl(cfruns,nfruns) = bi*x'+ sumij + sumijk + normrnd(0,w2);
ResponseMatrixl(indexrespmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

166

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'yl for 2(5-1)(V) Noise Array
nxc=l; % Counter for Control by Noise Interactions
for nf=l:nnf % Defining Control by Noise Interactions terms for Transmitted Variance

Model
for cf=nnf+1:nnf+ncf

NxC(:,nxc)=ResponseMatrixl (:,nf).*ResponseMatrixl (:,cf);
nxc = nxc + 1;

end
end
nxn=1; % Counter for Noise by Noise Interactions
for nfl=1:nnf

for nf2=nfl+1:nnf
NxN(:,nxn)=ResponseMatrixl(:,nf1).*ResponseMatrixl(:,nf2);
nxn = nxn + 1;

end
end
cxnxn=l; % Counter for Control X Noise X Noise Interaction
for nfl=l:nnf

for nf2=nfl+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrixl (:,cf).*ResponseMatrixl (:,nf1).*ResponseMatrixl (:,nf2);
cxnxn = cxnxn + 1;

end
end

end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf

for cfl=nnf+1:nnf+ncf
for cf2=cf1 +1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrixl (:,cf 1).*ResponseMatrixl (:,cf2).*ResponseMatrixl (:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(2048,1) ResponseMatrixl(:,1:12) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix1 (:, 1 3),inputs);
% bO(1) bi's(2:13) CxN(14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:12) = b(2:13);

167

Bij(5,12) = 0;

index=14; % CxN
for i=1:5

for j=6:12
Bij(i,j) = b(index);
index=index+1;

end
end

for i=1:5 % NxN
for j=i+1:5

Bij(i,j) = b(index);
index = index+1;

end
end

Bijk(12,12,12)=0; % CxNxN
for i=1:5

for j=i+1:5
for k=6:12

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

for i=1:5 % CxCxN
for j=6:12

for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:nnf % First term in Variance Model

suma=Bi(nf);
sum_b=0;
for j=6:12

sumb=sum-b+Bij(nf,j)*X(cf,j-5);
end
sum_c=O;
for j=6:12

for k=j+1:12
sumc=sum-c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end

168

end
sum1 = sumi + (sum_a + sumb +sum-c)A2;

end

for nf = 1:nnf % Second term in Variance Model
for j=nf+1:5

sumd=O;
for k=6:12

sumd=sumd+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sumd)A2;

end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
opstd_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);
OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrixc NxC NxN CxCxN CxNxN; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_c(cfruns,nfruns) = bi*x'+ sumij + sumijk + normrnd(O,w2);
ResponseMatrix c(indexrespmatrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
indexrespmatrix = indexrespmatrix + 1; % For Storing Response Matrix

end
end

clear NxC NxN; % Clearing the History
% Fitting Response Model to 'yl' for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

169

for nf=l:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor

for cf=2:8
NxC(:,nxc)=ResponseMatrixc(:, nf).*ResponseMatrix c(:,cf);
nxc = nxc + 1;

end
end

cxcxn=l; % Counter for Control X Control X Noise Interaction
for nf=l:1

for cf1=2:1+ncf
for cf2=cf1+1 :1+ncf

CxCxN(:,cxcxn)=ResponseMatrix-c(:,cf1).*ResponseMatrix-c(:,cf2).*ResponseMatrix c(:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix c(:,9),inputs);
% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x CompoundedNoise

Bijk(8,8,8) = 0;
index = 17;
for i = 1:1 % CxC x CompoundedNoise

for j = 2:8
for k = j+1:8

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:1 % First Term in Variance Model

sum a=Bi(nf);

170

sum_b=0;
for j = 1:7

sum_b=sum_b + Bij(j)*X(cf,j);
end
sum_c=0;
for j = 2:8

for k = j+1:8
sumc = sum-c + Bijk(l,j,k)*X(cf,j-1)*X(cf,k-1);

end
end
sum1 = sum1 + (suma + sumb + sumc)A2;

end

varianc(cf,1) = suml+sum2;
end

STDev c = varianc.A0.5; % Stdev for each CF setting
stdbasec = STDevc(1,1);
op std c = min(STDevc); % Finding Least STDev_1
PredMinc = sortrows([STDev c X],1);
OCFc = PredMinc(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y'sforCFsetting]
[ResponseMatrixMC, varianc] = Varcfsetting(bi, bij, MU, sigma uncorrelated);

STDevMC = variancA0.5; % Stdev for each CF setting

%stdbaseMC = STDev_MC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

op stdMC = min(STDevMC); % Finding least Stdev
PredMinMC = sortrows([STDevMC X],1);
OCFMC = PredMin_MC(1,2:8);

if OCFMC == OCF_N1
counterOCF_1 = counterOCFI + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

if OCFMC == OCF_c
counterOCFc = counterOCFc + 1; % When same Optimal CF setting is predicted by

Monte Carlo and Compounded Noise Factor
end

171

cf_1 = 0; cfc = 0; % To find number of Control factors whose settings are predicted
correctly

for matching_cf = 1:7
if OCF_Ni (1,matching_cf) == OCF_MC(1,matching_cf)

cf_1 = cf_1 + 1;
end
if OCF c(1,matchingcf) == OCF_MC(1,matching_cf)

cf_c = cf_c + 1;
end

end

matchingnoise1(modelcounter) = cfl; % To store # of OCF Matched
matchingcompound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdfor cfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Strategy I
Opt_1 = stdforcfsetting(ResponseMatrix_MC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Optc = stdforcfsetting(ResponseMatrixMC, OCFc);

stdbase = stdbase_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfractionl(modelcounter) = (Opt_1 / OptMC);
stdfraction2(modelcounter) = (Opt_c / OptMC);

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
stdfraction3(modelcounter) = ((stdbase - Opt_1)/(std_base - OptMC + 1e-10));
stdfraction4(modelcounter) = ((stdbase - Optc)/(std_base - OptMC + 1e-10));

Y(modelcounter) = (stdbase - Optc)/std_base;
X1 (modelcounter) = (stdbase - OptMC)/stdbase;

waitbar(modelcounter/maxmodels,hI,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

% saving workspace
save variables;

output;

172

1.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
0/ Heredity model
% Reference Chipman, Hamada and Wu (1997) and Li and Frey (2005)
% 03/04/2004 by Jagmeet Singh

Tablel = [10 1 1 1 1
10 1 1 0.1 0.1
10 1 0 1 1
15 1/3 2/3 1 1
15 1/3 2/3 0.1 0.1
15 1/3 0 1 1];

TabIe2 = [0.25 0.25 0.1 0 0.25 0.1 0 0
0.25 0.25 0.1 0 0.25 0.1 0 0
0.25 0.25 0.1 0 0 0 0 0
0.43 0.31 0.04 0 0.17 0.08 0.02 0
0.43 0.31 0.04 0 0.17 0.08 0.02 0
0.43 0.31 0.04 0 0 0 0 0];

Tablel= [Table1 Table2]; % for input to Main Model
vector=Tablel (modelpara,:);

173

1.3

function [bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,w1,p,p1 1,p0l,p00)

% Developing Strong Hierarchy RWH Model (without ERROR)
%INPUTS: #of CF's, #ofNF's, c, s1, w1, p,
% p00, p01, p11

% OUTPUT: bi's and bij's
% Developed on 03/03/2004 by Jagmeet Singh

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=w1;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1
for i=1:nnf+ncf

if delta(1,i) <= p
delta(1,i)=1;

else
delta(1,i)=0;

end
end

nnf+ncfj); % Defining delta
% Prob (deltai = 1) = p

deltaij(1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(i,j) <= p00

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sumdeltas == 1
if deltaij(i,j) <= p01

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sumdeltas == 2

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

% Defining delta-ij when both the factors are active
174

if deltaij(i,j) <= p11
deltaij(i,j)=1;

else
deltaij(i,j)=O;

end
end

end
end

for i=1:nnf+ncf % Defining bi's for the CFs and NF's
if delta(1,i) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1 ,i)=t(i)*normrnd(0,c);
end

end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*toj)* norm rnd (0,s 1)
else

bij(i,j)=t(i)*t(j)*normrnd(0,c*s1);
end

end
end

175

1.4

% Function to find the variance of the response once it is given the
% Control Factor (CF) setting and the Matrix with contains the response and
0% cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = stdforcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

176

1.5

% Function Varcfsetting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 03/16/2004 by Jagmeet Singh

function [ResponseMatrixMC, varianc] = Var-cfsetting(bi, bij, MU, sigma)

global cfsetting w2 nof nnf maxnoisevar;

X = ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = Ihsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_MC(cfruns,nfruns)=bi*x'+ sumij + normrnd(O,w2);

end
end

ResponseMatrixMC = [X yMC]; % Storing CF setting and Yassumed for that setting
varianc = (var(y_MC'))'; % Finding the Variance for each CF setting

177

1.6

% Function to plot the outputs of the response

% 03/16/2004 by Jagmeet Singh

function outputo

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCF_MC is same as OCF_N1
figure; success=[(counterOCF_1) (maxmodels-counterOCF_1)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCF_M_C from OCF_n_o i s_e _s t r a_t e_g_y _1
for', num2str(maxmodels),' response surface instances']);
hgsave('piel');

% Pie Chart when OCFMC is same as OCF_c
figure; success=[(counterOC Fc) (maxmodels-counterOCF_c)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCF_M_C from OCF_e_x t r e _m e c o m_po_u_n-d
_n_o i s_e for', num2str(maxmodels),' response surface instances']);
hgsave('pie2');

% Plotting Histograms
figure;
hist(std-fractionl);
title(['Histogram for Fraction of OPT.STD_n o i s e_1 to OPT.STD_M_C for
',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction1,[25 50 75]); tmax = max(hist(std fraction1));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)1,[0 tmax],'LineWidth',2,'Color','m'); legend(['25_ t _h Percentile = ',num2str(iq(1))]

,['75_th Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('OPT.STD.N1 / OPT.STD.MC');
ylabel(' number of instances of response surface ');
hgsave('figl');

figure;

178

hist(std fraction2);
title([Histogram for Fraction of OPT.STD_c_o_m_p_ou n_d to OPT.STD_M_C for
,num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction2,[25 50 75]); tmax = max(hist(stdfraction2));
line([iq(1) iq(1)],[O tmnax],'LineStyle',--'); line([iq(3) iq(3)],[O tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color',m'); legend(['25 t h Percentile = ',num2str(iq(1))]...

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('OPT.STD.Compd / OPT.STD.MC');
ylabel(' number of instances of response surface ');
hgsave('f ig2');

figure;
hist(std-fraction3);
title(['Histogram for Fraction of (STD_b_a_s_e - OPT.STD_n o is e_1)/(STD_b-a s-e -
OPT.STDM_C) for ',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction3,[25 50 75]); tmax = max(hist(stdfraction3));
line([iq(1) iq(1)],[O tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25 t h Percentile = ',num2str(iq(1))]...

,['75_th Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.N1)/(STD.Base-OPT.STD.MC)');
ylabel(' number of instances of response surface ');
hgsave('fig3');

figure;
hist(std fraction4);
title(['Histogram for Fraction of (STD b a s e - OPT.STD-c-o-m_p_o_u_n_d)/(STDbase -
OPT.STD M_C) for ',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction4,[25 50 75]); tmax = max(hist(stdfraction4));
line([iq(1) iq(1)],[O tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t_h Percentile = ',num2str(iq(1))]...

,[*75_t h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.Compd)/(STD.Base-OPT.STD.MC)');
ylabel(' number of instances of response surface ');
hgsave('fig4');

figure;
plot(X1,Y,'*','color','r');
X2 = [ones(size(X1')) X1'];
a = X2\Y';
Y2 = a'*X2';
B = [Xl' Y2'];
iO = regress(Y',X1');
B = sortrows(B,1);
hold on;
line([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Color','g', 'LineWidth', 0.5);
line([0;B(maxmodels,1)],[0;i0*B(maxmodels,1)],'LineWidth',1.5);
title(['For 2AnAd Order Response Surfaces : Plotting (STD-b_a_s_e -
STD_c_o_m_pd)/STD-b_a_s_e vs (STD-b-a_s_e - STD_o_p_t)/STD_b_a_s_e and slope =',
num2str(a(2,1))]);
xlabel('(STD-b_a_s_e - STD o p t)/STDb-ase');
ylabel('(STD-b_a_s_e - STD_c_o_m_p_d)/STD-b-a-s_e');
hgsave('fig5');

179

probpos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels

if Y(1,index) >= 0.00
probpos = prob_pos + 1;

end
end

% Printing the results
sprintf(['mean(Number of OCF matched for Noise Strategy 1) =
',num2str(mean(matchingnoise1))])
sprintf(['mean(Number of OCF matched for Compounded Noise) =
',num2str(mean(matchingcompound))])
sprintf([' Probability that Compounding will Yield Positive Improvement =
',num2str(probpos/maxmodes)])

180

2.1

% function compounding()

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of bs for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using
/0 Transmitted Variance Model. And compare that with optimal control factor

% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Strong Hierarchy RWH Model

% 09/24/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf-cfseting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf-nfseting]=fracfact('a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for Strong Hierarchy
model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); s1=modelparameter(1,2); s2=modelparameter(1,3);
wI =modelparameter(1,4); w2=modelparameter(1, 5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); pOO=modelparameter(1,9);% defining
parameters

ncf=7; % #of CF's
nnf=5; % #of NF's

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Strategy 1

181

counterOCFc = 0; % To increment when OCF from MC is same as from Compounded Noise

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigmauncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%/(%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,w1,p,pl1,p01,p00); % Finding beta values for a given
model

nfsettingl = [-1 -1 -1 -1 -1;
1 1 1 1 1]; % defining simple compound noise

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

0 For 2(5-1)(V) Noise Array
clear ResponseMatrix 1; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y1(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1 (index respmatrix,:)=[nfsetting(nf runs,:) cfsetting(cfruns,:)

y1 (cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'yl' for 2(5-1)(V) Noise Array
nxc=1; % Counter for Control by Noise Interactions

182

for nf=1:nnf
Model

% Defining Control by Noise Interactions terms for Transmitted Variance

for cf=nnf+1:nnf+ncf
NxC(:,nxc)=ResponseMatrix1 (:,nf).*ResponseMatrixl (:,cf);
nxc = nxc + 1;

end
end
nxn=l; % Counter for Noise by Noise Interactions
for nfl=1:nnf

for nf2=nfl+1:nnf
NxN(:,nxn)=ResponseMatrixl (:,nf 1).*ResponseMatrixl (:,nf2);
nxn = nxn + 1;

end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf

for nf2=nf1+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrix1 (:,cf).*ResponseMatrix1 (:,nfl).*ResponseMatrixl(:,nf2);
cxnxn = cxnxn + 1;

end
end

end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf

for cf1 =nnf+1:nnf+ncf
for cf2=cf1 +1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrixl (:,cf1).*ResponseMatrixl (:,cf2).*ResponseMatrixl (:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(2048,1) ResponseMatrixl(:,1:12) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix1 (:, 13),inputs);
% bO(1) bi's(2:13) CxN(14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:12) = b(2:13);
Bij(5,12) = 0;

index=14; % CxN

183

for i=1:5
for j=6:12

Bij(i,j) = b(index);
index=index+1;

end
end

for i=1:5 % NxN
for j=i+1:5

Bij(i,j) = b(index);
index = index+1;

end
end

Bijk(12,12,12)=O; % CxNxN
for i=1:5

for j=i+1:5
for k=6:12

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

for i=1:5 % CxCxN
for j=6:12

for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1 0;sum2=0;
for nf = 1:nnf % First term in Variance Model

suma=Bi(nf);
sum_b=O;
for j=6:12

sumb=sum-b+Bij(nf,j)*X(cf,j-5);
end
sum_c=O;
for j=6:12

for k=j+1:12
sumc=sum-c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end
end
sum1 = sum1 + (sum a + sumb +sum-c)^2;

end

184

for nf = 1:nnf % Second term in Variance Model
for j=nf+1:5

sumd=O;
for k=6:12

sumd=sum-d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sum d)A2;

end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
op std 1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDevI X],1);
OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrixc NxC NxN CxCxN CxNxN; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsettingl(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(O,w2);
ResponseMatrixc(index respmatrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
indexrespmatrix = indexrespmatrix + 1; % For Storing Response Matrix

end
end

clear NxC NxN; % Clearing the History
% Fitting Response Model to 'yl' for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

for nf=l:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor

185

for cf=2:8
NxC(:,nxc)=ResponseMatrix-c(:,nf).*ResponseMatrix_c(:,cf);
nxc = nxc + 1;

end
end

cxcxn=l; % Counter for Control X Control X Noise Interaction
for nf=1:1

for cf1=2:1+ncf
for cf2=cf1+1 :1+ncf

CxCxN(:,cxcxn)=ResponseMatrix c(:,cf1).*ResponseMatrix-c(:,cf2).*ResponseMatrix-c(:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(256,1) ResponseMatrix c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix-c(:,9),inputs);
% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x CompoundedNoise

Bijk(8,8,8) = 0;
index = 17;
for i = 1:1 % CxC x CompoundedNoise

for j = 2:8
for k = j+1:8

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1 0;sum2=0;
for nf = 1:1 % First Term in Variance Model

sum a=Bi(nf);
sum_b=0;

186

for j = 1:7
sum_b=sum_b + Bij(j)*X(cf,j);

end
sum_c=0;
for j = 2:8

for k = j+1:8
sum c = sum-c + Bijk(1,j,k)*X(cf,j-1)*X(cf,k-1);

end
end
sum1 = sum1 + (suma + sumb + sumc)A2;

end

varianc(cf,1) = suml+sum2;
end

STDev c = varianc.A0.5; % Stdev for each CF setting
stdbase_c = STDev_0(1,1);
op std c = min(STDev_c); % Finding Least STDev_1
PredMinc = sortrows([STDev c X],1);
OCFc = PredMin-c(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y'sforCFsetting]
[ResponseMatrixMC, varianc] = Varcfsetting(bi, bij, MU, sigma uncorrelated);

STDevMC = varianc.A0.5; % Stdev for each CF setting

%stdbaseMC = STDevMC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

op stdMC = min(STDevMC); % Finding least Stdev
PredMinMC = sortrows([STDev MC X],1);
OCFMC = PredMin_MC(1,2:8);

if OCFMC == OCFN1
counterOCF_1 = counterOCF_1 + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

if OCFMC == OCF_c
counterOCFc = counterOCFc + 1; % When same Optimal CF setting is predicted by

Monte Carlo and Compounded Noise Factor
end

187

cf_1 = 0; cf_c = 0; % To find number of Control factors whose settings are predicted
correctly

for matching_cf = 1:7
if OCF_N1(1,matching_cf) == OCF_MC(1,matching_cf)

Cf_1 = cf_1 + 1;
end
if OCF c(1,matching_cf) == OCFMC(11,matchingcf)

Cf_C = Cf_C + 1;

end
end

matchingnoise1 (modelcounter) = cf_1; % To store # of OCF Matched
matching_compound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdfor cfsetting(ResponseMatrixMC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = stdforcfsetting(ResponseMatrix_MC, OCFN1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt-c = stdforcfsetting(ResponseMatrix_MC, OCF c);

stdbase = stdbase_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfraction1(modelcounter) = (Opt1 / OptMC);
stdfraction2(modelcounter) = (Opt_c / OptMC);

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
stdfraction3(modelcounter) = ((stdbase - Opt_1)/(std_base - OptMC + le-10));
stdfraction4(modelcounter) = ((stdbase - Opt_c)/(std_base - OptMC + 1 e-1 0));

Y(modelcounter) = (stdbase - Opt c)/std_base;
X1 (modelcounter) = (stdbase - OptMC)/stdbase;

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

% saving workspace
save variables;

output;

188

3.1

% function compounding()

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Weak Hierarchy RWH Model

% 09/24/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf-cfseting=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf-nfseting]=fracfact('a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for Weak Hierarchy
model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1, 1); s1 =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); pOO=modelparameter(1,9);
pll=modelparameter(1,10); pOll=modelparameter(1,11); pOO1 =modelparameter(1, 12);
pOOO=modelparameter(1,13);% defining parameters

ncf=7; % #of CF's
nnf=5; % # of NF's

189

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Strategy 1
counterOCF_c = 0; % To increment when OCF from MC is same as from Compounded Noise

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigmauncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% %%%% %

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,pl1,pOl,pOO,pll1,pOl1,pOO1,pOO0); %
Finding beta values for a given model

nfsettingl = [-1*sign(bi(1:5));
sign(bi(1:5))]; % defining compounded noise based on b-values as described above

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

% For 2(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=o;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
yl(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);

190

ResponseMatrix1(index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)
yl (cfruns,nfruns)];

indexrespmatrix = index_respmatrix + 1; % For Storing Response Matrix
end

end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1 for 2(5-1)(V) Noise Array
nxc=1; % Counter for Control by Noise Interactions
for nf=l:nnf % Defining Control by Noise Interactions terms for Transmitted Variance

Model
for cf=nnf+1:nnf+ncf

NxC(:,nxc)=ResponseMatrixl (:,nf).*ResponseMatrixl (:,cf);
nxc = nxc + 1;

end
end
nxn=1; % Counter for Noise by Noise Interactions
for nfl=1:nnf

for nf2=nfl+1:nnf
NxN(:,nxn)=ResponseMatrix1 (:,nf 1).*ResponseMatrix1 (:,nf2);
nxn = nxn + 1;

end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf

for nf2=nfl+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrixl (:,cf).*ResponseMatrix1 (:,nf 1).*ResponseMatrixl (:,nf2);
cxnxn = cxnxn + 1;

end
end

end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=l:nnf

for cf1=nnf+1:nnf+ncf
for cf2=cf1 +1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrixl (:,cf1).*ResponseMatrixl (:,cf2).*ResponseMatrixl (:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(2048,1) ResponseMatrixl(:,1:12) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix1 (:, 13),inputs);
% bO(1) bi's(2:13) CxN(14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

191

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:12) = b(2:13);
Bij(5,12) = 0;

index=14; % CxN
for i=1:5

for j=6:12
Bij(i,j) = b(index);
index=index+1;

end
end

for i=1:5 % NxN
for j=i+1:5

Bij(i,j) = b(index);
index = index+1;

end
end

Bijk(12,12,12)=0; % CxNxN
for i=1:5

for j=i+1:5
for k=6:12

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

for i=1:5 % CxCxN
for j=6:12

for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:nnf % First term in Variance Model

sum a=Bi(nf);
sum_b=0;
for j=6:12

192

sumb=sumb+Bij(nf,j)*X(cf,j-5);
end
sum_c=0;
for j=6:12

for k=j+1:12
sum_c=sum-c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end
end
sum1 = sumi + (sum_a + sumb +sumc)A2;

end

for nf = 1:nnf % Second term in Variance Model
for j=nf+1:5
sumd=0;
for k=6:12

sum_d=sumd+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sum d)A2;

end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
op std 1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);
OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix-c; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsetting1(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);

193

end
end

end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(O,w2);
ResponseMatrix-c(index-resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

clear NxC NxN CxNxN CxCxN; % Clearing the History
% Fitting Response Model to 'y' for 2 level Compound Noise

nxc=1; % Counter for Control by Noise Interactions

for nf=l:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor

for cf=2:8
NxC(:,nxc)=ResponseMatrix_c(:,nf).*ResponseMatrix-c(:,cf);
nxc = nxc + 1;

end
end

cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:1

for cf1=2:1+ncf
for cf2=cf1+1 :1+ncf

CxCxN(:,cxcxn)=ResponseMatrix-c(:,cf 1).*ResponseMatrix-c(:,cf2).*ResponseMatrix-c(:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(256,I) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrixc(:,9),inputs);
% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % C x CompoundedNoise

Bijk(8,8,8) = 0;

194

index = 17;
for i = 1:1 % CxC x CompoundedNoise

for j = 2:8
for k = j+1:8

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sumi=0;sum2=0;
for nf = 1:1 % First Term in Variance Model

suma=Bi(nf);
sumb=O;
for j = 1:7

sumb=sum_b + Bij(j)*X(cf,j);
end
sumc=O;
for j = 2:8

for k = j+1:8
sumc = sumc + Bijk(1,j,k)*X(cf,j-1)*X(cf,k-1);

end
end
sum1 = sumi + (suma + sumb + sum c)A2 ;

end

varianc(cf,1) = suml+sum2;
end

STDev c = varianc.AO.5; % Stdev for each CF setting
stdbase_c = STDevc(1,1);
op std-c = min(STDev c); % Finding Least STDev_1
PredMinc = sortrows([STDev c X],1);
OCFc = PredMin-c(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y'sforCFsetting]
[ResponseMatrixMC, varianc] = Varcfseting(bi, bij,bijk, MU, sigmauncorrelated);

STDevMC = varianc.AO.5; % Stdev for each CF setting

%stdbaseMC = STDevMC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

195

opstdMC = min(STDevMC); % Finding least Stdev
PredMinMC = sortrows([STDevMC X],1);
OCFMC = PredMinMC(1,2:8);

if OCFMC == OCF_N1
counterOCF_1 = counterOCF_1 + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

if OCFMC == OCF_c
counterOCFc = counterOCFc + 1; % When same Optimal CF setting is predicted by

Monte Carlo and Compounded Noise Factor
end

cf 1 = 0; cfc = 0; % To find number of Control factors whose settings are predicted
correctly

for matchingcf = 1:7
if OCFN 1(1,matchingcf) == OCF_MC(1,matchingcf)

cf_1 = cf_1 + 1;
end
if OCF c(1,matchingcf) == OCF_MC(1,matchingcf)

cf_c = cf_c + 1;
end

end

matchingnoise1(modelcounter) = cf_1; % To store # of OCF Matched
matchingcompound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdfor cfsetting(ResponseMatrixMC, OCFMC);

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = stdforcfsetting(ResponseMatrixMC, OCFN1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt-c = stdfor_cfsetting(ResponseMatrixMC, OCF_c);

stdbase = stdbase_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfractionl(modelcounter) = (Opt_1 / OptMC);
stdfraction2(modelcounter) = (Optc / OptMC);

196

% Storing Improvement Ratios for Noise Strategy I and Compound Noise
stdfraction3(modelcounter) = ((std_base - Opt_1)/(std base - OptMC + 1e-10));
stdfraction4(modelcounter) = ((std_base - Optc)/(std base - OptMC + le-10));

Y(modelcounter) = (std base - Opt c)/stdbase;
XI(modelcounter) = (stdbase - OptMC)/std_base;

waitbar(modelcounter/maxmodels,h1,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

% saving workspace
save variables;

output;

197

3.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
/6 Heredity model
% Reference Chipman, Hamada and Wu (1997) and Li and Frey (2005)
% 03/04/2004 by Jagmeet Singh

Tablel =[10 1 1
10 1 1
10 1 0
15 1/3 2/3
15 1/3 2/3
15 1/3 0

1 I
0.1 0.1
1 1

1
0.1
1

1
0.1

1];

Table2 = [0.25 0.25
0.25 0.25
0.25 0.25
0.43 0.31
0.43 0.31
0.43 0.31

Tablel= [Tablel Table2j;
vector=Tablel (modelpara,:);

0.1 0 0.25 0.1 0
0.1 0 0.25 0.1 0 0
0.1 0 0 0 0 0
0.04 0 0.17 0.08 0.02
0.04 0 0.17 0.08 0.02
0.04 0 0 0 0 0];

0

0
0

% for input to Main Model

198

3.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,pI ,pOl,pOO,pl 11 ,pOl ,p00l,p000)

% Developing Weak Hierarchy RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: # of CF's, # of NF's, C, s1, s2,
% pOO, pp, p1 1, pll, poll, p001

w1,
p000

% OUTPUT: bi's, bij's,and bijk's
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (w1)
WI = 1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=w1;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1 nnf+ncfl); % Defining delta
for i=1:nnf+ncf % Prob (deltai = 1) = p

if delta(1,i) <= p
delta(1,i)=1;

else
delta(1,i)=0;

end
end

deltaij(1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-
deltaij(ij)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(ij) <= p00

deltaij(i,j)=1;
else

deltaij(ij)=0;
end

end

if sumdeltas == 1

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

199

if deltaij(i,j) <= p01
deltaij(i,j)=1;

else
deltaij(i,j)=0;

end
end

if sumdeltas == 2
if deltaij(i,j) <= p11

deltaij(i,j)=1;
else

deltaij(i,j)=O;
end

end

end
end

% Defining delta-ij when both the factors are active

% Defining delta-ijk
deltaijk(1:(nnf+ncf),1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumdeltas=delta(1,i)+delta(1,j)+delta(1,k); % Finding the sum of delta's
deltaijk(i,j,k)=unifrnd(0,1); % Defining delta-ijk [0,1]

if sumdeltas == 0
if deltaijk(i,j,k) <= p000

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == I
if deltaijk(i,j,k) <= p001

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 2
if deltaijk(i,j,k) <= pOl1

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 3
if deltaijk(i,j,k) <= p111

% Defining delta-ijk when all 3 main effects are inactive

% Defining delta-ijk when all 2 main effects are inactive

% Defining delta-ijk when all 2 main effects are active

% Defining delta-ijk when all 3 main effects are active

200

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=O;
end

end

end
end

end

for i=1:nnf+ncf
if delta(1,i) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1,i)=t(i)*normrnd(O,c);
end

end

% Defining bi's for the CF's and NF's

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else

bij(i,j)=t(i)*t(j)*normrnd(O,c*s 1);
end

end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:nnf+ncf
for k=j+1:nnf+ncf

if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,s2);

else
bijk(ij,k)=t(i)*t(j)*t(k)*normrnd(0,c*s2);

end
end

end
end

201

3.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = stdforcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

202

3.5

% Function Varcfsetting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 08/10/2004 by Jagmeet Singh

function [ResponseMatrixMC, varianc] = Var cf setting(bi, bij, bijk, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

X = ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=o;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(O,w2);

end
end

ResponseMatrixMC = [X yMC]; % Storing CF setting and Yassumed for that setting
varianc = (var(yMC'))'; % Finding the Variance for each CF setting

203

3.6

% Function to plot the outputs of the response

/0 03/16/2004 by Jagmeet Singh

function outputo

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCF_MC is same as OCF_N1
figure; success=[(counterOCF_1) (maxmodels-counterOCF_1)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position')); pos{1,:} = [-0.28 -0.61 .351;
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCF_M_C from OCF_n_o i s_e _s t r a t e_gy _1
for',num2str(maxmodels),' response surface instances']);
hgsave('piel');

% Pie Chart when OCFMC is same as OCF_c
figure; success=[(counterOCF-c) (maxmodels-counter OCF c)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCF_M_C from OCF_e_x t r e_m e c_o_m_po-u-n-d
_n_o i s_e for', num2str(maxmodels),' response surface instances']);
hgsave('pie2');

% Plotting Histograms
figure;
hist(std fraction 1);
title(['Histogram for Fraction of OPT.STD_n o i s e_1 to OPT.STD_M_C for
',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction1,[25 50 75); tmax = max(hist(std fraction 1));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))]j'Median = ',num2str(iq(2))],' Frequency');
xlabel('OPT.STD.N1 / OPTSTD.MC');
ylabel(' number of instances of response surface ');
hgsave('figl');

figure;

204

hist(std fraction2);
title([Histogram for Fraction of OPT.STD c o m_p_o_u_nd to OPT.STD_M_C for
,num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction2,[25 50 75]); tmax = max(hist(stdfraction2));
line([iq(1) iq(1)],[O tmax],'LineStyle','-'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--',Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('OPT.STD.Compd / OPT.STD.MC');
ylabel(' number of instances of response surface ');
hgsave('f ig2');

figure;
hist(std fraction3);
title(['Histogram for Fraction of (STD_b_a_s_e - OPT.STD_n oise_1)/(STD_b_a s-e -
OPT.STD_MC) for ',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction3,[25 50 75]); tmax = max(hist(stdfraction3));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_th Percentile = ',num2str(iq(1))]...

,['75_th Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.N1)/(STD.Base-OPT.STD.MC)');
ylabel(' number of instances of response surface ');
hgsave('fig3');

figure;
hist(std fraction4);
title(['Histogram for Fraction of (STD_b_a_s_e - OPT.STDc-o_m_p_ound)/(STD_b_a_s e -
OPT.STD_MC) for ',num2str(maxmodels),' response surface instances']);
colormap cool; iq = prctile(std fraction4,[25 50 75]); tmax = max(hist(stdfraction4));
line([iq(1) iq(1)]J0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t_h Percentile =',num2str(iq(1))]...

,['75_t-h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.Compd)/(STD.Base-OPT.STD.MC)');
ylabel(' number of instances of response surface ');
hgsave('fig4');

figure;
plot(X1,Y,'*,'color','r');
X2 = [ones(size(X1')) X1'];
a = X2\Y';
Y2 = a'*X2';
B = [X1' Y2'1;
iO = regress(Y',X1');
B = sortrows(B,1);
hold on;
Iine([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Color','g', 'LineWidth', 0.5);
line([0;B(maxmodels,1)],[0;i0*B(maxmodels,1)],'LineWidth',1.5);
title(['For 2AnAd Order Response Surfaces : Plotting (STD base -
STD_c_o_mpd)/STD b_a_s_e vs (STD-b_ a_s_e - STD_o_pt)/STD_base and slope
num2str(a(2,1))]);
xlabel('(STD-b_a_s_e - STD o_pt)/STD b ase');
ylabel('(STD-base - STD_c_o_m_p_d)/STD-b-a-s-e');
hgsave('fig5');

205

probpos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels

if Y(1,index) >= 0.00
probpos = probpos + 1;

end
end

% Printing the results
sprintf(['mean(Number of OCF matched for Noise Strategy 1) =
,num2str(mean(matchingnoisel))])
sprintf(['mean(Number of OCF matched for Compounded Noise) =
',num2str(mean(matchingcompound))])
sprintf([' Probability that Compounding will Yield Positive Improvement =
',num2str(probpos/maxmodes)])

206

4.1

% function compounding()

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% WH for 200 models for Weak Hierarchy RWH Model

% 09/24/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf-cfseting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf-nfseting]=fracfact('a b c d abcd); % defining 2(5-1)(V) Array for NF's

modelpara=1; % Defining which model parameters we would be using for 3rd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); s1 =modelparameter(1,2); s2=modelparameter(1,3);
wi =modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); pOO=modelparameter(1,9);
pll=modelparameter(1,10); pOll=modelparameter(1,11); pOO1 =modelparameter(l,12);
pOOO=modelparameter(1,13);% defining parameters

ncf=7; % #of CF's
nnf=5; % #of NF's

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Strategy 1

207

counterOCFc = 0; % To increment when OCF from MC is same as from Compounded Noise

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigmauncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hI = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,p11,pOl,pOO,p111,p011,pOO1,pOO0); %
Finding beta values for a given model

nfsettingl = [-1 -1 -1 -1 -1;
1 1 1 1 1]; % defining simple compounded noise

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

% For 2(5-1)(V) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:16
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
for i= 1:(nnf+ncf)

for j=i+ 1:(n nf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
yl(cfruns,nfruns) = bi*x'+ sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];

208

index respmatrix = indexrespmatrix + 1; % For Storing Response Matrix
end

end

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1 for 2(5-1)(V) Noise Array
nxc=1; % Counter for Control by Noise Interactions
for nf=l:nnf % Defining Control by Noise Interactions terms for Transmitted Variance

Model
for cf=nnf+1:nnf+ncf

NxC(:,nxc)=ResponseMatrixl (:,nf).*ResponseMatrixl (:,cf);
nxc = nxc + 1;

end
end
nxn=1; % Counter for Noise by Noise Interactions
for nfl=1:nnf

for nf2=nfl+1:nnf
NxN(:,nxn)=ResponseMatrixl (:,nfl).*ResponseMatrixl (:,nf2);
nxn = nxn + 1;

end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:nnf

for nf2=nfl+1:nnf
for cf = nnf+1:nnf+ncf

CxNxN(:,cxnxn)=ResponseMatrix1 (:,cf).*ResponseMatrix1 (:,nf1).*ResponseMatrixl (:,nf2);
cxnxn = cxnxn + 1;

end
end

end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:nnf

for cf1 =nnf+1:nnf+ncf
for cf2=cfI+1:nnf+ncf

CxCxN(:,cxcxn)=ResponseMatrixl (:,cf1).*ResponseMatrixl (:,cf2).*ResponseMatrixl (:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(2048,1) ResponseMatrixl(:,1:12) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix1 (:,13),inputs);
% bO(1) bi's(2:13) CxN(14:48) NxN(49:58) CxNxN(59:128) CxCxN(129:233) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

209

% Defining B's for the ease
Bi(1:12) = b(2:13);
Bij(5,12) = 0;

index=14; % CxN
for i=1:5

for j=6:12
Bij(i,j) = b(index);
index=index+1;

end
end

for i=1:5 % NxN
for j=i+1:5

Bij(i,j) = b(index);
index = index+1;

end
end

Bijk(12,12,12)=0; % CxNxN
for i=1:5

for j=i+1:5
for k=6:12

Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

for i=1:5 % CxCxN
for j=6:12

for k=j+1:12
Bijk(i,j,k) = b(index);
index=index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:nnf % First term in Variance Model

sum a=Bi(nf);
sum_b=0;
for j=6:12

sumb=sumb+Bij(nf,j)*X(cf,j-5);
end

210

sum_c=0;
for j=6:12

for k=j+1:12
sumc=sum-c+Bijk(nf,j,k)*X(cf,j-5)*X(cf,k-5);

end
end
sum1 = sumi + (suma + sumb +sum_c)A2;

end

for nf = I:nnf % Second term in Variance Model
for j=nf+1:5

sumd=O;
for k=6:12

sumd=sum-d+Bijk(nf,j,k)*X(cf,k-5);
end
sum2 = sum2 + (Bij(nf,j) + sum d)A2;

end
end

varianc(cf,1) = sum1 + sum2;
end

STDevI = varianc.AO.5; /0 Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
op std 1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDevI X],1);
OCFNI = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsettingl(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

211

end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(O,w2);
ResponseMatrix-c(index-resp_matrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
indexrespmatrix = indexrespmatrix + 1; % For Storing Response Matrix

end
end

clear NxC NxN CxNxN CxCxN; % Clearing the History
% Fitting Response Model to 'yl' for 2 level Compound Noise

nxc=l; % Counter for Control by Noise Interactions

for nf=l:1 % Defining Control by Noise Interactions terms for Transmitted Variance Model
% Since only one compounded noise factor

for cf=2:8
NxC(:,nxc)=ResponseMatrix-c(:,nf).*ResponseMatrix-c(:,cf);
nxc = nxc + 1;

end
end

cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:1

for cf1=2:1+ncf
for cf2=cf1 +1:1 +ncf

CxCxN(:,cxcxn)=ResponseMatrix c(:,cf1).*ResponseMatrix-c(:,cf2).*ResponseMatrix-c(:,nf);
cxcxn = cxcxn + 1;

end
end

end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(256,1) ResponseMatrix_c(:,1:8) NxC CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix c(:,9),inputs);
% bO(1) bi's(2:9) CxN(10:16) CxCxN(17:37) The way b's are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:8) = b(2:9); % Main Effects
Bij(1:7) = b(10:16); % Cx CompoundedNoise

Bijk(8,8,8) = 0;
index = 17;

212

for i = 1:1 % CxC x CompoundedNoise
for j = 2:8

for k = j+1:8
Bijk(i,j,k) = b(index);
index = index+1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:1 % First Term in Variance Model

suma=Bi(nf);
sum_b=0;
for j = 1:7

sumb=sum_b + Bij(j)*X(cf,j);
end
sum_c=O;
for j = 2:8

for k = j+1:8
sumc = sum-c + Bijk(1,j,k)*X(cf,j-1)*X(cf,k-1);

end
end
sum1 = sumi + (suma + sumb + sum c)A2;

end

varianc(cf,1) = suml+sum2;
end

STDev c = varianc.AO.5; % Stdev for each CF setting
stdbasec = STDev_c(1,1);
op std c = min(STDevc); % Finding Least STDev_1
PredMinc = sortrows([STDev c X],1);
OCFc = PredMinc(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y's_forCFsetting]
[ResponseMatrixMC, varianc] = Varcf_setting(bi, bij,bijk, MU, sigma_uncorrelated);

STDevMC = varianc.AO.5; % Stdev for each CF setting

%stdbaseMC = STDevMC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

213

opstdMC = min(STDevMC); % Finding least Stdev
PredMinMC = sortrows([STDevMC X],1);
OCFMC = PredMin_MC(1,2:8);

if OCF_MC == OCF_N1
counterOCF_1 = counterOCF_1 + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

if OCFMC == OCF_c
counterOCFc = counterOCFc + 1; % When same Optimal CF setting is predicted by

Monte Carlo and Compounded Noise Factor
end

cf 1 = 0; cfc = 0; % To find number of Control factors whose settings are predicted
correctly

for matching cf = 1:7
if OCF_N 1(1,matchingcf) == OCF_MC(1,matchingcf)

cf_1 = cf_1 + 1;
end
if OCF c(1,matchingcf) == OCFMC(1,matchingcf)

cf_c = cf_c + 1;
end

end

matchingnoise1(modelcounter) = cf_1; % To store # of OCF Matched
matchingcompound(modelcounter) = cf_c; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdfor cfsetting(ResponseMatrixMC, OCFMC);

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = stdforcfsetting(ResponseMatrixMC, OCF_N1);

% Determining the Optimal Standard Deviation from Compound Noise
Opt-c = stdfor_cfsetting(ResponseMatrixMC, OCFc);

stdbase = stdbase_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfractionl(modelcounter) = (Opt_1 / OptMC);
stdfraction2(modelcounter) = (Optc / OptMC);

214

% Storing Improvement Ratios for Noise Strategy 1 and Compound Noise
stdfraction3(modelcounter) = ((std_base - Opt_1)/(std base - OptMC + 1e-10));
stdfraction4(modelcounter) = ((std_base - Opt c)/(stdbase - OptMC + le-10));

Y(modelcounter) = (std_base - Opt c)/std base;
X1(modelcounter) = (std_base - OptMC)/std_base;

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

% saving workspace
save variables;

output;

215

5.1

% We first assume the model parameters we want to use in RWH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
/0 find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise.
% And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p11, p01, p00 from 0.01 to 1.00.
% The p (prob. of active main effects) = 1.00. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% RWH for 200 models for Strong Hierarchy RWH Model

% 09/26/2005 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsettingconfcfsetting}=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsettingconfnfsetting]=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's

modelpara=6; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); si=modelparameter(1,2); s2=modelparameter(1,3);
w1=modelparameter(1,4); w2=modelparameter(1,5); p = 1.00;% defining parameters and
Changing 'p'

ncf=7; % #of CF's
nnf=5; .% # of NF's

216

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

counter-p11 = 1;

for p11 = 0.01: 0.01: 1.00
X2(counterpl 1) = p11; % Store p11 values for final plot
p01 = p11; % defining new probability parameters
p00 = p11;

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wl,p,p11,pOl,pOO); % Finding beta values for a given
model

nfsettingl = [-1*sign(bi(1:5));
sign(bi(1:5))]; % defining compounded noise based on b-values as described above

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
yl (cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1 (index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

varianc = var(yl')';
STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
op std_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting],1);
OCF_N1 = PredMin_1(1,2:8);

217

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsettingl(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfseting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(O,w2);
ResponseMatrix-c(index-resp_matrix,:)=[nfseting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
indexrespmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

varianc = var(yc')';
STDev c = varianc.AO.5; % Stdev for each CF setting
stdbasec = STDev-c(1,1);
opstdc = min(STDev c); % Finding Least STDev_1
PredMinc = sortrows([STDevc cfsettingl,1);
OCFc = PredMin-c(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise
for cfruns = 1:128

if OCFc == PredMin_1(cfruns, 2:8);
Opt c = PredMinl(cfruns,1);

end
end

218

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = opstdl;

stdbase = mean(STDev_1); % Base Stdev is taken as mean of ail STDev's

% Storing Improvement Ratios for Compound Noise
stdfraction4(modelcounter) = ((stdbase - Optc)/(std_base - Opt_1 + le-10));

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d for p11, p01, p00
%.2f',modelcounter, p11))

end
close(h1); % Close waitbar

improvementratiomean(counterp 11) = mean(std-fraction4);
Ratio for given p11

improvementratiomedian(counterp 11) = median(std-fraction4);
Ratio for given p11

counter-p1 1 = counter p11 + 1; % Increasing the Counter

end

% saving workspace
save variables;

% Finding Improvement

% Finding Improvement

clear; cic;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00

t2 = polyfit(X2, improvementratio_mean, 3);
y2 = polyval(t2,X2);
hold on;

% Fitting a 3rd order polynomial

plot(X2, improvementratiomean, '.');
plot(X2, y2,'k','LineWidth',1, 'Marker', '+', 'MarkerEdgeColor','k',...

'MarkerFaceColor','k',...
'MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0 _0', 'FontSize', 11);
ylabel('Mean Improvement Ratio', 'FontSize', 11);
title('Mean Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([0 1]);
hgsave('mean_im provement ratio');
hold off;
figure;

219

% Plotting Improvement Ratio Median vs P11, P01. P00

t3 = polyfit(X2, improvementratiomedian, 3); % Fitting a 3rd order polynomial
y3 = polyval(t3,X2);
hold on;
plot(X2, improvementratiomedian, ');
plot(X2, y3,'k','LineWidth',1, 'Marker', +', MarkerEdgeColor','k',...

'MarkerFaceColor','k',...
'MarkerSize', 2);

xiabel('p_1_1, p_0_1, p_0_0', 'FontSize', 11);
ylabel('Median Improvement Ratio', 'FontSize', 11);
title('Median Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([O 1]);
hgsave('medianimprovementratio');
hold off;

220

6.1

% We first assume the model parameters we want to use in RWH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Compounding is done by first finding the signs of b's for noise variables
% and low level of noise is set as the ones having signs opposite to that
% of their b-values and vice-versa for high setting. (INDEPENDENT NOISES).

% We will find optimal control factor setting for compounded noise using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p1 1, p01, p00, p111, pOl1
% p001 and p000 from 0.01 to 1.00
% The p (prob. of active main effects) = 0.95. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% BASIC WH for 200 models for Weak Hierarchy RWH Model

% 10/16/2005 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf.cfseting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf-nfseting=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's

modelpara=1; % Defining which model parameters we would be using for Weak Hierarchy
model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); si =modelparameter(1,2); s2=modelparameter(1,3);
wi =modelparameter(1,4); w2=modelparameter(1,5); p=0.9 5 ;% defining parameters and
Changing 'p'
% defining parameters

ncf=7; % #of CF's
nnf=5; % # of NF's

221

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%)%%%%%%%%%%

counter_p11 = 1;

for p1I = 0.01: 0.01: 1.00
X2(counter_pl 1) = p11; % Store p11 values for final plot
p01 = p11; % defining new probability parameters
pOOp= p1; p111=p11; p011=p11; p001=p11; p000=p11;

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,pl1,pOl,pOO,p11,pOll,pOO1,pOO0);
Finding beta values for a given model

nfsettingl = [-1*sign(bi(1:5));
sign(bi(1:5))]; % defining compounded noise based on b-values as described above

nfsetting2 = [-1;
1]; % defining low and high setting of compounded noise

% For 2(5) Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index respmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=o; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
yl(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1 (index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];
indexrespmatrix = index respmatrix + 1; % For Storing Response Matrix

222

end
end

varianc = var(yl')';
STDev_1 = varianc.^0.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
opstd_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting],1);
OCF_N1 = PredMin_1(1,2:8);

% For Compound Noise at 2 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:2
x(1,1:5)=nfsettingl(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(Ii)*x(1,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
y_c(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(O,w2);
ResponseMatrix-c(indexrespmatrix,:)=[nfsetting2(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

varianc = var(y_c')';
STDev c = variancA0.5; % Stdev for each CF setting
stdbasec = STDev c(1,1);
op std c = min(STDev-c); % Finding Least STDev_1
PredMinc = sortrows([STDev c cfsetting],1);
OCFc = PredMinc(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise

223

for cfruns = 1:128
if OCFc == PredMin_1(cfruns, 2:8);

Opt c = PredMinl(cfruns,1);
end

end

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = opstd_1;

stdbase = mean(STDev_1); % Base Stdev is taken as mean of all STDev's

% Storing Improvement Ratios for Compound Noise
stdfraction4(modelcounter) = ((std base - Optc)/(std base - Opt_1 + le-10));

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d for all p =
%.2f',modelcounter, p11))

end
close(hl); % Close waitbar

improvementratiomean(counterp1 1) = mean(std-fraction4);
Ratio for given p11

improvementratio median(counter_p1 1) = median(stdfraction4);
Ratio for given p11

counter-p11 = counter p11 + 1; % Increasing the Counter

% Finding Improvement

% Finding Improvement

end

% saving workspace
save variables;

clear; cdc;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00, P111, P011, POO1, P000

t2 = polyfit(X2, improvementratiomean, 3); % Fitting a 3rd order polynomial
y2 = polyval(t2,X2);
hold on;
plot(X2, improvementratiomean, '.');

plot(X2, y2,'LineWidth',1, 'Marker', +', 'MarkerEdgeColor,'k',...
'MarkerFaceColor','k',...
'MarkerSize', 2);

224

xlabel('p_1_1. p_0_1, pO_O, p___1 , p-0_1, p0_ p00_1, p_0_0_0 (Effect Density)', 'FontSize',
11);
ylabel('Mean Improvement Ratio', 'FontSize', 11);
title('Mean Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([O 1]);
hgsave('meanim provement ratio');
hold off;
figure;

0 Plotting Improvement Ratio Median vs P11, P01, P00

t3 = polyfit(X2, improvementratio_median, 3); % Fitting a 3rd order polynomial
y3 = polyval(t3,X2);
hold on;
plot(X2, improvementratiomedian, ');
plot(X2, y3,'LineWidth',1, 'Marker', '+', 'MarkerEdgeColor','k',...

'MarkerFaceColor','k,...
'MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0_0, p_1_1_i, p_0_1_1, p_0_0_1, p_0_0_0 (Effect Density)', 'FontSize',
11);
ylabel('Median Improvement Ratio', 'FontSize', 11);
title('Median Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([O 1]);
hgsave('median rimprovementratio');
hold off;

225

7.1

function [M,V,VOUT]=opamplA
% This matlab code is used to Vout for the OpAmp for all the control factor
/o settings given in Phadke table 8.4 and table 8.5. Here each setting of
% control factor is being fed to opampnoiseOA.m and the calculation
% proceeds from there. -Rest of the Code is provided by Goeff Reber

% There is no input for this. And the output for the code is Vout for each
% noise factor setting for a given control factor setting and the results
% are stored in file.

% OUTPUT: Vout(CFsetting, NFsetting)
% [Mean,Variance,Voffset-output]=opamplA

% Changed for Verification of RWH Model
% 04/08/2004 by Jagmeet Singh

clear;
cdc;

% Defining the Control Factor Setting for the differential Op-Amp Circuit
CFlevel=[35.5e3 71e3;

7.5e3 15e3;
1.25e3 2.5e3;
1Oe-6 20e-6;
1Oe-6 20e-6;];

% Defining full factorial Inner Array
IA=ff2n(5)+1;

% Running experiments for each control factor settings

for i=1:32

% Determine control factor settings for the current experiment
for j=1:5

CF(j)=CFlevel(j,IA(i,j));
end

% Defining the variable for control factor setting with is being passed
% to opampnoiseOA.m
Xc=CF;

[Vmean, Vvariance, Vout]=opampnoiseOA(Xc,i);

% Variables to store values for each CF setting
MEANofV(i,1)=Vmean;
VARIANCEofV(i,1)=Vvariance;

226

SNRatio(i,1)=(-1 0)*(Iogl 0(Vvariance/1 000000));
VOUTforCF(i,:)=Vout';

end

% save('VoutCF.xls','VOUTforCF','-tabs','-ascii');
% save('nean.xs','MEANofV','-ascii');
0 save('variance.xIs'VARIANCEofV','-ascii');

% Saving mean, variance and Vout variables
M = MEANofV;
V = VARIANCEofV;

% The rows of VOUT are for a given control factor setting
VOUT = VOUTforCF;

% To save the workspace so as to work on it later on
IA = IA*2 - 3;
OA=fracfact('a b c d e f abc abd acd bcd abe ace bce ade abf adf bdf aef cef def bcdef');
OA=(OA+3)./2;
OA = OA*2 - 3;

save WORKSPACE IA M V SNRatio VOUT OA
end

227

7.2

function varargout=opampnoiseOA(Xc,innerarray)
%Uses an L36 orthogonal array to compute the variation in offseet voltage
%for the opamp problem at a given control factor setting.
%INPTUS:
% Xc = control factor settings to test at
%OUTPUTS:
% mean = average offset voltage for the given control factors settings
% variance (optional) = variance in offset voltage for the given control factors
% eta (optional) = S/N ratio (signed-target type) for the given Xc

% Changed for Verification of RWH Model
% 04/08/2004 by Jagmeet Singh

X=zeros(21,1); %The entries of X change for different experiments

% if isempty(Xc) %No control parameter settings supplied
% Xc(1,1)=71e3; Xc(2,1)=15e3; Xc(3,1)=2.5e3;
% Xc(4,1)=20e-6; Xc(5,1)=20e-6;

% end

Xn=Xc;
%Non control parameters
Xn(11)=.9817; Xn(13)=.971; Xn(15)=.975;
Xn(16)=3e-13; Xn(18)=6e-13; Xn(20)=6e-13;
Xn(21)=298;
%The entries of Xn are static and needed to compute X

%Define Testing Levels: the 1st 10 factors have 2 levels
N=[.9967 1.0033;

.93 1.07;

.93 1.07;

.98 1.02;

.98 1.02;

.9933 1.0067;

.9933 1.0067;

.9933 1.0067;

.9933 1.0067;

.9933 1.0067;

.99 1;

.998 1;

.99 1;

.998 1;

.99 1;

.45 1;

.92 1;

.45 1;

.92 1;

.67 1;

.94 1;];

228

%Create the 64 run 2(IV)21-15 Othogonal Array
OA=fracfact('a b c d e f abc abd acd bcd abe ace bce ade abf adf bdf aef cef def bcdef');
OA=(OA+3)./2;

%Begin experiments
h=waitbar(0,'Running Experiments in Outer Array');
for i=1:size(OA,1)

%Determine factor levels for current experiment
for j=1:5

X(j)=Xn(j)*N(j, OA(ij));
end
j=6; X(j)=X(1)*N(j, OA(ij)); %
j=7; X(j)=X(1)*N(j, OA(ij))/3.55; %
j=8; X(j)=X(1)*N(j, OA(ij))/3.55; %
j=9; Xj)=X(2)*N(j, OA(ij)); %
j=10; X0j)=X(3)*N(j, OA(ij));%
j=1 1; Xj)=Xn(j)*N(j, OA(ij));
j=12; X(j)=X(11)*N(j, OA(ij));%
j=1 3; X(j)=Xn(j)*N(j, OA(ij));
j=14; X(j)=X(13)*N(j, OA(ij)); %
j=1 5; X(j)=Xn(j)*N(j, OA(ij));
j=1 6; X(j)=Xn(j)*N(j, OA(ij));
j=17; X(j)=X(16)*N(j, OA(ij)); %
j=1 8; X(j)=Xn(j)*N(j, OA(ij));
j=19; X(j)=X(18)* N(j, OA(ij)); %
j=20; X(j)=XnO)*N(j, OA(ij));
j=21; X(j)=Xn(j)*N(j, OA(ij));
waitbar(i/(size(OA,1)), h, sprintf('Running Inner array experiment %d for outer array %d',

innerarray,i))
Voff(i,1)=opampred(X)*1e3; %Runs the experiment

end
close(h) %Close the waitbar

%Compute the mean, variance, and eta
mean = mean(Voff);
variance = var(Voff);
if nargout == 3

eta = 10*loglO(variance);
end

varargout{1}=mean;
t(1)=mean;
varargout{2}=variance;
t(2)=variance;
varargout{3}=Voff;
%varargout{3}=eta;

229

7.3

function [vout,converged]=opamp_red(X)
%This function computes the offset voltage of an operational amplifier used
%in coin-operated telephones. The amplifier is described in Phadke's
%"Quality Engineering Using Robust Design". The governing equations for
%the circuit were determined by Dr. Frey. The input X is a 21-element
%vector of inputs describing 20 circuit elements and the ambient
%temperature, which are used to solve a reduced non-linear set of
%equations to determine voltage offset.
%OUTPUT:
% vout = offset voltage in Volts
% converged = boolean indicating whether the governing equations where
%satisfactorially solved.

% From Goeff Reber

%Constants
K=1.380658e-23; %Boltzmann's Constant
q=1.602177e-19; %Electron charge

%Unpack the elements of X
Rrfm=X(1); Rrpem=X(2); Rrnem=X(3); lcpcs=X(4); locs=X(5);
Rrfp=X(6); Rrim=X(7); Rrip=X(8); Rrpep=X(9); Rrnep=X(10);
Afpm=X(11); Afpp=X(12); Afnm=X(13); Afnp=X(14); Afno=X(15);
Siepm=X(16); Siepp=X(17); Sienm=X(18); Sienp=X(19); Sieno=X(20);
T=X(21);

%Determine the voltage values V which solve the reduced set of equations
v(1)=.4190; v(2)=.4370; v(3)=.4380;
% v=.4*ones(3,1);
%V = newtsearch(@opampgoveq_red, 'true', v, le-12, 1500, [], X); %home-made minimizer
opts = optimset('Display','off,'ToIX',le-12,'Maxiter',1500,'TolFun',le-12);
exitflag = 0 ;
maxiter = optimget(opts,'Maxlter');
while exitflag==0 & maxiter<1e5 %Make sure optimizer converges to an answer

home
[v,Fval,exitflag] = fsolve(@opampgoveqred,v,opts,X);
maxiter = optimget(opts,'Maxlter');
opts = optimset(opts,'Maxter',maxiter*1.25);

end
if exitflag==0

converged=false;
else

converged='true';
end
V=v; %Use the current guess to find Voffset

%Unpack elements of V
Vbe4=V(1); Vbe1=V(2); Vbe3=V(3);

230

%Find the offset voltage, vout (long equation broken into several terms)
termO=Icpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbel*q/K/T) -
2*Siepm*exp(Vbel*q/K/T);
termO=Siepp*(termO/(2*Siepp - Siepp*Afpp) - 1);
terml=Rrfp*((termO-Sienp*(exp(Vbe4*q/K/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm*(
exp(Vbe1*q/K/T) - 1) - (1-Afpp)*termO);
term2=Rrip*((termO-Sienp*(exp(Vbe4*q/K/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm*(
exp(Vbe1*q/K/T) - 1));
term3=Rrim*term2/Rrip;
term4=Rrfm*((termO-Sienp*(exp(Vbe4*q/K/T) - 1))/(1-Afno) - locs);
vout= term1 + term2 + term3 + term4;
vout=-vout;

231

7.4

function F=opampgoveqred(V, X) %Reduced Set
%This function provides the governing equations for the differential opamp
%problem described in function "opamp". The equations are non-linear.
%lnput vector V (length=3) contains three circuit voltages, X is 21 element
%vector describing circuit paramaters. This function is meant to be called
%by a minimization routine which will select the values of V to minimize
%the sum of squares of three equations (in which X are parameters and V are
%variables whose values need to be determined)

% From Goeff Reber

%Constants
K=1.380658e-23; %Boltzmann's Constant
q=1.602177e-19; %Electron charge

%Unpack the elements of V
Vbe4=V(1); Vbe1=V(2); Vbe3=V(3);

%Unpack the elements of X
Rrfm=X(1); Rrpem=X(2); Rrnem=X(3); Icpcs=X(4); locs=X(5);
Rrfp=X(6); Rrim=X(7); Rrip=X(8); Rrpep=X(9); Rrnep=X(10);
Afpm=X(11); Afpp=X(12); Afnm=X(13); Afnp=X(14); Afno=X(15);
Siepm=X(16); Siepp=X(17); Sienm=X(18); Sienp=X(19); Sieno=X(20);
T=X(21);

F(1,1)= (1-Afnm)*Sienm*(exp(Vbe3*q/K/T) -1)- Siepm*(exp(Vbel*q/K/T) - 1)
+ Sienm*(exp(Vbe3*qK/T) -1) + (1-Afnp)*Sienp*(exp(Vbe4*q/K/T) - 1);

F(2,1)= Rrnem*(Sienm*(exp(Vbe3*qK/T) - 1) + (1-Afnm)*Sienm*(exp(Vbe3*q/K/T) - 1))
-Rrnep*(Sienp*(exp(Vbe4*q/K/T) - 1) + (1-Afnp)*Sienp*(exp(Vbe4*q/K/T) - 1))
- Vbe4 + Vbe3;

%The third equation is really large, so it's broken up into several terms
termO=Icpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbel*q/K/T) -
2*Siepm*exp(Vbel*qlK/T);
termO=Siepp*(termO/(2*Siepp - Siepp*Afpp) - 1);
term1=Rrip*((termO-Sienp*(exp(Vbe4*qK/T) - 1))/(1-Afno) - locs - (1-Afpm)*Siepm*(
exp(Vbe1*q/K/T) - 1));
term2=Rrim*(term1/Rrip);
term3=-Vbel - Rrpem*(Siepm*(exp(Vbel*q/K/T) - 1) + (1-Afpm)*Siepm*(exp(Vbel*qK/T) - 1)

term4=Rrpep*(termO + (1-Afpp)*termO);
term5=lcpcs - Siepm*Afpm + 2*Siepp - Siepp*Afpp + 2*Siepm + Siepm*Afpm*exp(Vbel*q/K/T) -
2*Siepm*exp(Vbel*q/K/T);
term5=K*T*Iog(term5/(2*Siepp-Siepp*Afpp))/q;
% if -isreal(term5)
% disp('Imaginary value found, press any key to continue')
% pause
% end
F(3,1)= term1 + term2 + term3 + term4 + abs(term5);

232

7.5

function [sumsq, meansumsq]=sumsquare(obs)
% This program finds the Sum of Square and Mean Sum of Square for Control
% Factor Setting for Opamp.

% INPUT is a matrix in which the observations are sorted according to the
% treatments. Each treatment constitutes a column.

% OUTPUT contains the Sum of Squares and Mean Sum of Squares for the
% treatments

% 02/07/2004 - Jagmeet Singh

[n a]=size(obs); % Find the size of the observation matrix
ytreatments = sum(obs); % Find the sum of observation for each treatment
ytotal = sum(ytreatments); % Find the sum of all obervations

sum1=0;
for i=1:a

sum1=suml+ (ytreatments(i)A2);
end

sumsq = (1/n)*suml - (1/(n*a))*(ytotaA2);
meansumsq = sumsq/(a-1);

233

7.6

function [totsumsq, totmeansumsq]=totalsum(obs)
% This program finds the Total Sum of Square and Total Mean Sum of Square for Control
% Factor Setting for Opamp.

% INPUT is a matrix in which the observations all the observations are given (eg: SNRatio and
Mean)

% OUTPUT contains the Total Sum of Squares and Total Mean Sum of Squares for the
% treatments

% 02/07/2004 - Jagmeet Singh

[m]=size(obs); % Find the size of the observation matrix
ytotal = sum(obs); % Find the sum of all obervations

sum1=0;
for i=1:m

sum1=sum1+ (obs(i)A2);
end

totsumsq = sum1 - (1/m(1,1))*(ytotalA2);
totmeansumsq = totsumsq/(m(1,1)-1);

234

7.7

% This program takes input from the opamplA.m and plots the graphs and the
% tables to find the optimal setting of the Control Factors for the Opamp
% for a given Noise Factor Strategy
% 02/07/2004 - Jagmeet Singh

clear
clc

load WORKSPACE;

% To get the setting for the control factors given by IA
rfm=IA(:,1);
rpem=IA(:,2);
rnem=IA(:,3);
cpcs=IA(:,4);
ocs=IA(:,5);

%--------------------------------
%-----------------------------
% Doing analysis for SN Ratio
% Matrix avgSN contains the averages for each setting of a given Control
% Factor

% To store the sorted result for RFM
sortrfm = sortrows([rfm SNRatio],1);
dummy=[sortrfm(1:12,2) sortrfm(13:24,2) sortrfm(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(1,:)=dummymean; % Stores values for RFM CF
[SumSq(1,:),MeanSq(1,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RPEM
sortrpem = sortrows([rpem SNRatio],1);
dummy=[sortrpem(1:12,2) sortrpem(13:24,2) sortrpem(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(2,:)=dummymean; % Stores values for RPEM CF
[SumSq(2,:),MeanSq(2,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RNEM
sortrnem = sortrows([rnem SNRatio],1);
dummy=[sortrnem(1:12,2) sortrnem(13:24,2) sortrnem(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(3,:)=dummymean; % Stores values for RNEM CF
[SumSq(3,:),MeanSq(3,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

235

% To store the sorted result for CPCS
sortcpcs = sortrows([cpcs SNRatio],1);
dummy=[sortcpcs(1:12,2) sortcpcs(13:24,2) sortcpcs(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(4,:)=dummymean; % Stores values for CPCS CF
[SumSq(4,:),MeanSq(4,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for OCS
sortocs = sortrows([ocs SNRatio],l);
dummy=[sortocs(1:12,2) sortocs(13:24,2) sortocs(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgSN(5,:)=dummymean; % Stores values for OCS CF
[SumSq(5,:),MeanSq(5,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To find the Total Sum of Square and Total Mean Square for SNRatio
[SNtotsum,SNtotmsq] = totalsum(SNRatio);

% To find Errors DOF, Sum of Square and Mean Square
SSe = SNtotsum - sum(SumSq); % Error Sum of Square
[n a] = size(dummy);
doferror = n*a - 5*(a-1) - 1;
doftotal = n*a - 1;
Msse = SSe/doferror; % Defining Mean Square for Error

Fratio = MeanSq/Msse; % Defining F Ratio for the CF's
Overallmean = mean(SNRatio);

% Presenting the results in Tabular form
Table = zeros(7,7); % Formatting OUTPUT Table

for j=1:3
Table(:,j) [avgSN(:,j)' Inf Inf]';

end

Table(:,4) = [a-1 a-1 a-1 a-1 a-1 doferror dof total]';
Table(:,5) = [SumSq(:,1)' SSe SNtotsum]';
Table(:,6) = [MeanSq(:,1)' Msse SNtotmsq]';
Table(:,7) = [Fratio(:,1)' Inf Inf]';

colheads = ['Factor
'Avg SN-Level 1
'Avg SN-Level 2
'Avg SN-Level 3
' DOF '
'Sum Of Square
'Mean Square
' F '1;

236

rowheads = ['A. RFM
'B. RPEM
'C. RNEM
'D. CPCS
'E. OCS
'Error
'Total

% Create cell array version of table
atab = num2cell(Table);
for i=1:size(atab,1)

for j=1:size(atab,2)
if (isinf(atab{i,j}))

atab{i,j} = [;
end

end
end
atab = [cellstr(strjust(rowheads, 'left')), atab];
atab = [cellstr(strjust(colheads, 'left'))'; atab];

wtitle = 'ANALYSIS of S/N Ratio';
ttitle = 'TABLE';

digits = [-1 -1 -1 -1 0 1 1 0];
statdisptable(atab, wtitle, ttitle, ", digits);

% To plot S/N Ratio graph
h = figure;
TITLE('S/N Ratio Graph');
XLABEL('Factors');
YLABEL('S/N Ratio, in dB');

h2 = text(2,min(min(avgSN)),'RFM','FontWeight','bold')
text(5,min(min(avgSN)),'RPEM','FontWeight','bold');
text(8,min(min(avgSN)),'RNEM','FontWeight','bold');
text(1 1,min(min(avgSN)),'CPCS','FontWeight','bod');
text(14,min(min(avgSN)),'OCS','FontWeight','bold');

AXIS([0 16 min(min(avgSN))-2 max(max(avgSN))+2]);
X = [0;16]; Y = [Overallmean;Overall mean];
hi = line(X,Y,'Color','k');
get(h1)

for i=1:5
X = [3*i-2;3*i-1;3*i];Y= (avgSN(i,:))';
line(X,Y,'LineWidth',2,'Marker','* ')

end

237

%------- -- 0- ----
%------------ - -
% Doing analysis for Mean
% Matrix avgM contains the averages for each setting of a given Control
% Factor

% To store the sorted result for RFM
sortrfm = sortrows([rfm M],1);
dummy=[sortrfm(1:12,2) sortrfm(13:24,2) sortrfm(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgM(1,:)=dummymean; % Stores values for RFM CF
[SumSq(1,:),MeanSq(1,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RPEM
sortrpem = sortrows([rpem M],1);
dummy=[sortrpem(1:12,2) sortrpem(13:24,2) sortrpem(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgM(2,:)=dummymean; % Stores values for RPEM CF
[SumSq(2,:),MeanSq(2,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for RNEM
sortrnem = sortrows([rnem M],1);
dummy=[sortrnem(1:12,2) sortrnem(13:24,2) sortrnem(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgM(3,:)=dummymean; % Stores values for RNEM CF
[SumSq(3,:),MeanSq(3,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for CPCS
sortcpcs = sortrows([cpcs M],1);
dummy=[sortcpcs(1:12,2) sortcpcs(13:24,2) sortcpcs(25:36,2)]; % Stores values for each CF
setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgM(4,:)=dummymean; % Stores values for CPCS CF
[SumSq(4,:),MeanSq(4,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To store the sorted result for OCS
sortocs = sortrows([ocs M],1);
dummy=[sortocs(1:12,2) sortocs(13:24,2) sortocs(25:36,2)]; % Stores values for each CF setting
dummymean=mean(dummy); % Stores the mean for each CF setting
avgM(5,:)=dummymean; % Stores values for OCS CF
[SumSq(5,:),MeanSq(5,:)]=sumsquare(dummy); % Stores values for Sum of Sqaure and Mean
Sum of Square

% To find the Total Sum of Square and Total Mean Square for M
[SNtotsum,SNtotmsq] = totalsum(M);

238

% To find Errors DOF, Sum of Square and Mean Square
SSe = SNtotsum - sum(SumSq); % Error Sum of Square
[n a] = size(dummy);
doferror = n*a - 5*(a-1) - 1;
doftotal =n*a - 1;
Msse = SSe/doferror; % Defining Mean Square for Error

Fratio = MeanSq/Msse; % Defining F Ratio for the CF's
Overallmean = mean(M);

% Presenting the results in Tabular form
Table = zeros(7,7); % Formatting OUTPUT Table

for j=1:3
Table(:,j) = [avgM(:,j)' Inf Inf]';

end

Table(:,4) = [a-1 a-1 a-1 a-1 a-1 doferror doftotal]';
Table(:,5) = [SumSq(:,1)' SSe SNtotsum]';
Table(:,6) = [MeanSq(:,1)' Msse SNtotmsq]';
Table(:,7) = [Fratio(:,I)' Inf Inf]';

colheads = ['Factor
'Avg SN-Level 1
'Avg SN-Level 2
'Avg SN-Level 3
' DOF '
'Sum Of Square
'Mean Square
I F '];

rowheads = ['A. RFM
'B. RPEM
'C. RNEM
'D. CPCS
'E. OCS
'Error
'Total

% Create cell array version of table
atab = num2cell(Table);
for i=1:size(atab,1)

for j=1:size(atab,2)
if (isinf(atab{ij}))

atab{i,j} = [];
end

end
end
atab = [cellstr(strjust(rowheads, 'left')), atab];
atab = [cellstr(strjust(colheads, 'left'))'; atab];

239

wtitle = 'ANALYSIS of Mean Offset Voltage';
ttitle = 'TABLE';

digits = [-1 -1 -1 -1 0 1 1 0];
statdisptable(atab, wtitle, ttitle, ", digits);

% To plot S/N Ratio graph
h = figure;
TITLE('Mean Offset Voltage Graph');
XLABEL('Factors');
YLABEL('Mean Offset Voltage (10e-3 V)');
text(2,min(min(avgM)),'RFM','FontWeight','bold');
text(5,min(min(avgM)),'RPEM','FontWeight',bold');
text(8,min(min(avgM)),'RNEM','FontWeight','bold');
text(11 ,min(min(avgM)),'CPCS','FontWeight','bold');
text(14,min(min(avgM)),'OCS','FontWeight','bold');

AXIS([0 16 min(min(avgM))-2 max(max(avgM))+2]);
X = [0;16]; Y = [Overallmean;Overall_mean];
h1 = line(X,Y,'Color','k');
get(hl)

for i=1:5
X = [3*i-2;3*i-1;3*i];Y= (avgM(i,:))';
line(X,Y,'LineWidth',2,'Marker','*')

end

240

7.8

% To find significant 3 way interactions we need to do regression on the
% results from the run. We will analyze the beta's using both Normal Plots
% and Lenth Method.

% Most of the variables have 3 levels, so we will analyze them in 2 steps.
% We will break 3 levels into 2 - 2 levels and find the betas to analyze.

% INPUT: Variables from the Runs of Madhav's Strategy with Different IA and
% OA

% OUTPUT: beta values and plotting Normal Plot and finding significant
% factors

% 04/08/2004 by Jagmeet Singh

clear;clc;

load WORKSPACE

t = 1; % Index for rows of Regression Variable

for i=1:32
for j=1:64

% RegVar = [CF: NF : VOUT]
% RegVar = [IA: OA: VOUT]
RegVar(t,1:5) = IA(i,:);
RegVar(t,6:26) = OAj,:);
RegVar(t,27) = VOUT(ij);
t = t + 1;

end
end

% ANALYSIS

% To find beta values for main effects, 2 and 3 way interactions
Y(:,1) = RegVar(:,27)/1e305;
X(:,1) = ones(32*64,1);
dum-x(:,1:26) = RegVar(:,1:26);

% Finding 2way interactions terms
t=1; % Index for storing the results in dumx

for i=1:5

241

for j=i+1:5
CxC(:,t)=dum-x(:,i).*dum-x(:,j);
t=t+1;

end
end
t=1;
for i=1:5

for j=11:26
CxN(:,t)=dum-x(:,i).*dum-x(:,j);
t=t+1;

end
end
t=1;
for i=11:26

for j=i+1:26
NxN(:,t)=dum-x(:,i).*dum-x(:,j);
t=t+1;

end
end

t=1;
% Finding 3way interaction terms

for i = 1:5
for j = i+1:5

for k = j+1:5
CxCxC(:,t) = dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t = t+1;

end
end

end
t=1;
for i = 1:5

forj = i+1:5
for k = 11:26

CxCxN(:,t) = dumx(:,i).*dum-x(:,j).*dumx(:,k);
t = t+1;

end
end

end
t=1;
for i = 1:5

for j = 11:26
for k = j+1:26

CxNxN(:,t) = dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t = t+1;

end
end

end
t=1;
for i = 11:26

forj = i+1:26
for k = j+1:26

NxNxN(:,t) = dum-x(:,i).*dum-x(:,j).*dum-x(:,k);

242

t = t+1;
end

end
end

way2 = [CxC CxN NxN];

way3 = [CxCxC CxCxN CxNxN NxNxN];

X = [X dum-x way2 way3]; % Defining regression coefficients
% Main effects col: 2-27
% 2 way effects col: 28-237 (CxC: 28-37)(CxN: 38-117)(NxN: 118-237)
% 3 way effects col: 238-1007 (CxCxC: 238-247)(CxCxN: 248-407)(CxNxN:
% 408-1007)(NxNxN: 1008-1567)

b1 = regress(Y,X); % Finding the beta's

save WORKSPACE_b1 IA OA RegVar VOUT X Y dumx way2 way3 b1; % saving variables
for further use

% Implementing Lenth Method
bi = abs(bl);
sO = 1.5*median(bi);

limit=2.5*sO;
t=1;
for i=1:1567

if bi(i) <= limit
dumm(t)=bi(i);
t=t+1;

end
end
PSE = 1.5*median(dumm);
m=1567;
ME = tinv(0.975,m/3)*PSE;
gamma=(1 + (0.95A(1/m)))/2.0;
SME = tinv(gamma,m/3)*PSE;
hold on;
plot(bl);
xlabel(' Contrasts ');
ylabel(' Estimated Contrasts');
plot([0 1200],[ME ME],'--r');
plot([O 12001,[-ME -ME],'--r');
plot([0 1200],[SME SME],'-.k');
plot([O 1200],[-SME -SME]'- .k);
plot([27 27],[max(bl) min(b1)], 'k,'LineWidth',2);
plot([238 238],[max(bl) min(b1)], 'k',LineWidth',2);
title('Lenth-Bayes Plot for Verification-i');
text(27,max(bl)/1.2,'Two Way Effects');
text(400,max(bl)/1.2,'Three Way Effects');

243

text(1100,SME,'SME');
text(l1100,-SME,'- SME');
text(1100,ME,'ME');
text(1100,-ME,'- ME');

244

8.1

function varargout=cstr(X,varargin)
%Model's a continuously stired tank reactor designed producing "reactant b"
%INPUTS:
% X = a vector of control parameters for the reaction process
% varargin (optional) = a scalar representing the mean of Rb for the given
%control parameters
%OUTPUTS:
% rb (optional) = the molecular rate of production of reactant b. If
%varargin is not empty, then rb is changed to squared error from the mean.
% Ca (optional) = final concentration of reactant A
% Cb (optional) = final concentration of reactant B
% Ra (optional) = steady state temperature of the reacting tank
% F (optional) = volumetric flow rate into reacting tank

% From Goeff Reber

maxiter=1 e4;
iter=1;

%Control Parameters:
Cai=X(1); %Initial concentration of reactant A
Cbi=X(2); %Initial concentration of reactant B
Ti=X(3); %Temperature of the mixture entering the reacting tank
Q=X(4); %Heat added to the reacting tank
V=X(5); %Steady state volume liquid in the reacting tank
F=X(6); %Volumetric flow rate into the reacting tank

%System Parameters:
k0a=8.4*10A5; %minA1
k0b=7.6*10A4; %minA-1
Hra=-2.12*1 0A4; %J/mol
Hrb=-6.36*10A4; %J/mol
Ea=3.64*10A4; %J/mol
Eb=3.46*10A4; %J/mol
Cp=3. 2*1OA3; %J/kg/K
R=8.314; %J/mol/K
rho=1 180; %kg/mA3

T=Ti; %Initial gues
t=V/F; %Residence Time
pdT=1; %allows entry into the loop
iter=0;
while pdT>le-3

Ca=Cai/(I + t*k0a*exp(-Ea/R/T));
Ra=-Ca*kOa*exp(-Ea/R/T);
Cb=(Cbi - t*Ra)/(1 + t*k0b*exp(-Eb/R/T));
Rb=-Ra - Cb*k0b*exp(-Eb/R/T);
Tnew=(Q - V*(Ra*Hra+Rb*Hrb))/F/rho/Cp + Ti;
pdT=1 00*abs(Tnew-T)/T;

245

T=T+.5*(Tnew-T);
iter=iter+1;
if iter>maxiter

% display('Max number of iterations reached in computing T')
break, break, return

end
end

if isempty(varargin)
rb=Rb*V;

else
rb=(Rb*V - varargin{1})A2; %Variance is requested, input varargin{1} is the mean

end
varargout{1}=rb;
varargout{2}=Ca;
varargout{3}=Cb;
varargout{4}=Ra;
varargout{5}=Rb;
varargout{6}=T;
varargout{7}=F;

246

8.2

% To find significant 3-way interactions in CSTR model. We will run full
% factorial array on both Control Factors and Noise Factors. Control
% Factors base levels are chosen as one given in Diwekar Paper[19971.
% The upper level is chosen to be 20% more than the base level. Noise
% factors are chosen at 5% distance from the Control Factor Setting.

% The betas from the regression are analyzed by both Lenth Method and
% Normal Plots.

% Output: Lenth Plot

% 04/15/2004 by Jagmeet Singh

clear;clc;

Xbase = [3119.8 342.24 309.5 5.0e6 0.05 0.043]; % Base Level of CFs
Xup = 1.2*Xbase; % Upper Levels are 20% more than Base Level
CF = [Xbase' Xup']; % Defining Control Factor array
IA = ff2n(6); % Defining fullfactorial Inner Array
OA = ff2n(6); % Full Factorial Outer Array

IA = IA+1;

% Finding Response for inner-outer array
h=waitbar(0);
for i=1:size(IA,1)

level = IA(i,:); % Level for CF to be chosen
CF1 = CF(1, level(1));
CF2 = CF(2, level(2));
CF3 = CF(3, level(3));
CF4 = CF(4, level(4));
CF5 = CF(5, level(5));
CF6 = CF(6, level(6));
cf level = [CF1 CF2 CF3 CF4 CF5 CF6];

waitbar(i/size(IA,1), h, sprintf('Response for CF setting %d',i));

% Running OA for each Control Factor Setting
for j=1:size(OA,1)

oalevel = OA(j,:); % Level for NF to be chosen
for dummy=1:6

if oalevel(dummy)==0
x_level(dummy) = cf Ievel(dummy)*0.95; % -5% for low setting of NF

else
x_level(dummy) = cf level(dummy)*1.05; % 5% for higher setting of NF

end
end
rb(i,j) = cstr(xlevel); % Each row of rb corresponds to a CF setting

247

% and columns to NF settings
end

end
close(h);

IA = ff2n(6)*2 - 1;
OA = IA; % IA and OA for regression
t = 1; % Index for rows of Regression Variable

for i=1:size(IA,1)
forj=1:size(OA,1)

% RegVar = [CF: NF: rb]
% RegVar = [IA: OA: rb]
RegVar(t,1:6) = IA(i,:);
RegVar(t,7:12) = OAj,:);
RegVar(t,13) = rb(ij);
t = t+1;

end
end

%===================
% ANALYSIS

% To find beta values for main effects,
Y(:,1) = RegVar(:,13);
X(:,1) = ones(size(IA,1)*size(OA,1),1);
dum cf(:,1:6) = RegVar(:,1:6);
dum-nf(:,1:6) = RegVar(:,7:12);

% Finding 2 way interaction terms

t=1;
for i=1:6

for j=i+1:6
CxC(:,t)=dumcf(:,i).*dum-cf(:,j);
t=t+e;

end
end

t=1;
for i=1:6

for j=7:12
CxN(:,t)=dum_cf(:,i).*dum_nf(:,j-6);
t=t+1;

end
end

% Finding 3 way interaction terms

2 and 3 way interactions

248

t=1;
for i=1:6

for j=i+1:6
for k=j+1:6

CxCxC(:,t) = dum-cf(:,i).*dumcf(:,j).*dumcf(:,k);
t=t+1;

end
end

end

t=1;
for i=1:6

for j=i+1:6
for k=7:12

CxCxN(:,t) = dum cf(:,i).*dumcf(:,j).*dumnf(:,k-6);
t=t+1;

end
end

end

t=1;
for i=1:6

for j=7:12
for k=j+1:12

CxNxN(:,t) = dum cf(:,i).*dumnf(:,j-6).*dumnf(:,k-6);
t=t+1;

end
end

end

way2 = [CxC CxN];
way3 = [CxCxC CxCxN CxNxN];

X = [X dumcf way2 way3]; % Defining Regression Coefficients
% Main CF effects col: 2-7
% 2 way effects col: 8-58 (CxC: 8-22)(CxN: 23-58)
% 3 way effects col: 59-258 (CxCxC: 59-78)(CxCxN: 79-168)(CxNxN: 169-258)

b = regress(Y,X); % Finding the beta's

% Implementing Lenth Method
bi = abs(b);
sO = 1.5*median(bi);

limit=2.5*sO;
t=1;
for i=1:258

if bi(i) <= limit
dumm(t) = bi(i);
t=t+1;

249

end
end
PSE=1.5*median(dumm);
m=258;
ME = tinv(0.975,m/3)*PSE;
gamma=(1 + (0.95A(l/m)))/2.0;
SME = tinv(gamma,m/3)*PSE;
hold on;
plot(b);
xlabel(' Contrasts ');
ylabel(' Estimated Contrasts');
plot([O 300],[ME ME],'--r');
plot([O 300],[-ME -ME],'--r');
plot([O 300],[SME SME],'-.k');
plot([6 300],[-SME -SME],'-.k');
plot([6 6],[max(b) min(b)], 'k',LineWidth',2);
plot([58 58],[max(b) min (b)], 'k','LineW idth',2);
title('Lenth-Bayes Plot for Verification');
text(7,max(b)/1.2,'Two Way Effects');
text(100,max(b)/1.2,'Three Way Effects');
text(300,SME,'SME');
text(300,-SME,'- SME');
text(300,ME,'ME');
text(300,-ME,'- ME');
figure;
normplot(b);

250

9.1

% Passive Neuron Model from "Non-Linear Parameter Estimation by Linear
% Association: Application to a Five-Parameter Passive Neuron Model", IEEE
0 Transactions on Biomedical Engineering, Vol. 41, No.5. 1994.

% We will use the Somatic Shunt model of Neuron. We will look at its
% Laplace Transform Z(s) = V(0,s)/I(s). We will use the parameters given in
% the model and will determine the order of the system.

% Control Factors in this case are Ts and Tm, Noise factors are L, Rs, Rd,
% Rn.

% By Jagmeet Singh on 02/14/2005

clear;clc;
t = 3e-3;
s = 2*pi/t;

% in secs. It is the time at which response is looked
% Angular Frequency at which the response is looked

% Defining Control Factor Levels.
% Control Factors are Ts, Tm (in secs.)
CF levels = [3e-3 5e-3; % Ts

5e-3 7e-3]; % Tm

% Defining Control Factor Array
CFarray = ff2n(2) + 1;
[m,n] = size(CFarray);
for i=1:m

for j=1:n

% Defining Inner Array for experiments
Innerarray(ij) = CFlevels(j,CFarray(i,j));

end
end

0/ Defining Noise Array
% Noise Factors are L,
NF-levels = [0.7

300e6
120e6
80e6

Rs, Rd and Rn. Rs, Rd, Rn are in Ohm.
1.1; % L

320e6; % Rs
160e6; % Rd
90e6;]; % Rn

251

% Defining Noise Array
NF array = ff2n(4) + 1;
[m,n] = size(NFarray);
for i = 1:m

for j = 1:n

% Defining Outer Array Levels for the experiments
Outer arraylevels(i,j) = NF_Ievels(j, NF-array(i,j));

end
end

% Running Experiements at Inner and Outer Array Settings
[iarows, iacols] = size(Inner array);
[oarows, oacols] = size(Outer arraylevels);
h1= waitbar(O);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprinff('Running Control Factor Experiment # %d',iaruns));

% Setting the Control Factor Levels for Inner Array experiments
Ts = Inner array(iaruns,1);
Tm = Inner array(iaruns,2);

index = 1;

% Setting Outer Array Levels for Outer Array experiments
for i = 1:oarows

L = Outer arraylevels(i,1);
Rs = Outerarraylevels(i,2);
Rd = Outerarraylevels(i,3);
Rn = Outerarray_levels(i,4);

p = Rs/Rd;

Z(iaruns, index) = (Rn * (p + 1))/(((Tm*s + 1)^(0.5)) * tanh(L * ((Tm*s + 1)A(O.5))) * p * coth(L)
+ (1 + Ts * s));

index = index + 1;
end

end

close(hl);
IA = CFarray*2 - 3; % To define Inner array in -1,1 levels
OA = NFarray*2 - 3; % To define Outer array in -1,1 levels

save WORKSPACE_1;

252

9.2

% To find significant 3-way interactions we need to do regression on the
% results from the runs. We will analyze beta's (the regression
0/ coefficients) using both Normal Plot and Lenth Method.

% INPUT: Variables from the runs of PNM Model with 2-levels factors in both
% CF and NF array.

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

% 2/14/2005 by Jagmeet Singh

clear;cc;
load WORKSPACE_1;
clear X;

t = 1; % Index for rows of Regression Variable

for i = 1:4
forj = 1:16

% RegVar = [CF: NF : Z;
% RegVar = [IA: OA: Z];
RegVar(t,1:2) = IA(i,:);
RegVar(t,3:6) = OAO,:);
RegVar(t,7) = Z(i,j)/1e7;
t = t + 1;

end
end

%%%%%%%%%%%%%%%%%%
% ANALYSIS
%%%%%%%%%%%%%%%%%%

% To find beta values for main effects, 2- and 3-way interactions
Y(:,1) = RegVar(:,7);
X(:,1) = ones(4*16, 1);
dum-x(:,1:6) = RegVar(:,1:6);

% Finding 2-way interaction terms
t=1; % Index for storing results in dum_x

for i=1:2
for j=i+1:2

CxC(:,t)=dum-x(:,i).*dum x(:,j);
t=t+1;

end

253

end
t=1;
for i=1:2

for j=3:6
CxN(:,t)=dum x(:,i).*dum-x(:,j);
t=t+1;

end
end
t=1;
for i=3:6

for j=i+1:6
NxN(:,t)=dum-x(:,i).*dum-x(:,j);
t=t+1;

end
end

% Finding 3-way interactions
t=1;
for i=1:2

for j=i+1:2
for k=j+1:2

CxCxC(:,t)=dum-x(:,i).*dumx(:,j).*dum-x(:,k);
t=t+1;
sprintf(Foul Value')

end
end

end
t=1;
for i=1:2

for j=i+1:2
for k=3:6

CxCxN(:,t)=dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t=t+e;

end
end

end
t=1;
for i=1:2

for j=3:6
for k=j+1:6

CxNxN(:,t)=dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t=t+1;

end
end

end
t=1;
for i=3:6

for j=i+1:6
for k=j+1:6

NxNxN(:,t)=dumx(:,i).*dum x(:,j).*dum-x(:,k);
t=t+1;

end
end

254

end

way2 = [CxC CxN NxN];
way3 = [CxCxN CxNxN];

X = [X dumx way2 way3]; % defining Regression Matrix
% Main Effects col: 2:7

% 2-way Effects col: 8:22 (CxC: 8) (CxN: 9:16) (NxN: 17:22)

% 3-way Effects col: 23:38 (CxCxN: 23:26) (CxNxN: 27:38)

b_partl = regress(Y,X); % Finding beta's

save WORKSPACE part1; % saving the variables for further use

normplot(bpartl); % To plot normal plot for the regression coefficients
title('Normal Probability Plot -- Part 1');
hgsave('NormalPlot part 1')
figure;

% Implementing Lenth Method
bi = abs(bpartl);
sO = 1.5*median(bi);

limit=2.5*sO;
t=1;
[m,n]=size(X);
for i=1:n

if bi(i) <= limit
dumm(t)=bi(i);
t=t+1;

end
end
PSE = 1.5*median(dumm);
ME = tinv(0.975,n/3)*PSE;
gamma=(1 + (0.95A(l/n)))/2.0;
SME = tinv(gamma,n/3)*PSE;
hold on;
bar(bpartl);
xlabel(' Contrasts ');
ylabel(' Estimated Contrasts');
plot([O 50],[ME ME],'--r');
plot([0 50],[-ME -ME],'--r');
plot([Q 50],[SME SME],'-.k');
plot([O 50],[-SME -SME],'-.k');
plot([7 7],[max(bpart) min(bpart1)], 'k','LineWidth,2);
plot([23 23],[max(b_part1) min(b _part1)], 'k,'LineWidth',2);
title('Lenth-Bayes Plot for Verification -- Part 1');
text(6,max(bpartl)/1.2,'Two Way Effects');
text(25,max(bpart1)/1.2,'Three Way Effects');

255

text(45,SME,'SME');
text(45,-SME,'- SME');
text(45,ME,'ME');
text(45,-ME,'- ME');
hgsave('LenthPlot-part1');

256

10.1

% Hydrodynamic Journal Bearings - Analytical Solutions is adopted from
% "Fundamentals of Fluid Film Lubrication", Second Edition, by Hamrock, B.,
0/0 Schmid, S., and Jacobson, B. by Marcel Dekker.

% We will use Half Sommerfeld Solution for Infinitely Wide Journal Bearing.
% We will look at it Wr, which is resultant load per unit width in a
% Journal Bearing and is measured in N/m. We will use the parameters given
% in the solution for Wr and will determine the order of the system.

% Control Factors are: nO rb
% Noise Factors are: wb c e

% By Jagmeet Singh on 05/24/2005

clear;cc;

% Defining Control Factor Levels.
% Control Factors are nO and rb
CF levels = [0.002 0.005;

40e-3 60e-3];

% Defining Control Factor Array
CFarray = ff2n(2) + 1;
[m, n] = size(CF array);

for i = 1:m
for j = 1:n

% nO
% rb

% Defining Inner Array for experiments
Innerarray(i,j) = CFlevels(j, CF-array(ij));

end
end

% Defining Noise Array
% Noise Factors are wb,
NF-levels [2*pi*100

0.5e-3
0.2

c and e
2*pi*150;

0.8e-3;
0.7];

% wb
% c
% e

257

% Defining Noise Array
NF array = ff2n(3) + 1;
[in, n] = size(NF array);

for i = 1 :m
for j = 1:n

% Defining Outer Array Levels for the experiments
Outer array_levels(i,j) = NF_levels(j, NF-array(i,j));

end
end

% Running Experiments at Inner and Outer Array Settings
[iarows, iacols] = size(Inner array);
[oarows, oacols] =size(Outer arraylevels);
hi = waitbar(O);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprintf('Running Control Factor Experiment # %d', iaruns));

% Setting the Control Factor Levels for Inner Array Experiments
nO = Inner array(iaruns, 1);
rb = Inner array(iaruns, 2);

index = 1;

% Setting Outer Array Levels for Outer Array Experiments
for i = 1:oarows

wb = Outerarraylevels(i,1);
c = Outer arraylevels(i,2);
e = Outer arraylevels(i,3);

Wr(iaruns, index) = (nO*wb*rb*
(eA2)) * (1 - (eA2))));

index = index + 1;
end

end

close(hl);
IA = CFarray*2 - 3;
OA = NFarray*2 - 3;

save WORKSPACE_1;

((rb/c)A2))*((6*e* ((piA2 - ((eA2)*(piA2 - 4)))A(0.5)))/ ((2 +

% To define Inner Array in -1, 1 levels
% To define Outer Array in -1, 1 levels

258

10.2

% To find significant 3-factor interactions we need to do regression on the
% results from the runs. We will analyze beta's (the regression
% coefficients) using both Normal Plot and Lenth Method.

% INPUT: Variables from the runs of Journal Bearing Half Sommerfeld
% Solution with 2-level factors in both CF and NF array.

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

% 05/25/2005 by Jagmeet Singh

clear;clc;
load WORKSPACE_1;
clear X;

t = 1; % Index for rows of Regression Variable

for i = 1:4
for j = 1:8

% RegVar = [CF: NF : Wr];
% RegVar = [IA: OA : Wr];
RegVar(t,1:2) = IA(i,:);
RegVar(t,3:5) = OAj,:);
RegVar(t,6) = Wr(ij);
t = t + 1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%
% ANALYSIS
%%%%%%%%%%%%%%%%%%%%%%%%%

% To find beta values for main effects, 2- and 3- factor interactions
Y(:,1) = RegVar(:,6);
X(:,1) = ones(4*8,1);
dum-x(:,1:5) = RegVar(:,1:5);

% Finding 2-factor interaction terms
t = 1; % Index for storing results in dum_x
for i = 1:2

for j = i+1:2
CxC(:,t) = dum-x(:,i).*dum-x(:,j);
t = t + 1;

end

259

end
t = 1;
for i = 1:2

for j = 3:5
CxN(:,t) = dum-x(:,i).*dum-x(:,j);
t = t + 1;

end
end
t = 1;
for i = 3:5

for j = i+1:5
NxN(:,t) = dum-x(:,i).*dum-x(:,j);
t = t + 1;

end
end

% Finding 3-factor interactions
t= 1;
for i = 1:2

for j = i+1:2
for k = j+1:2

CxCxC(:,t) = dum-x(:,i).*dum-x(:,j).*dumx(:,k);
t=t+ 1;
sprintf('Foul Value');

end
end

end
t = 1;
for i = 1:2

forj = i+1:2
for k = 3:5

CxCxN(:,t) dum-x(:,i).*dumx(:,j).*dum-x(:,k);
t = t + 1;

end
end

end
t= 1;
for i = 1:2

for j = 3:5
for k = j+1:5

CxNxN(:,t) = dum x(:,i).*dumx(:,j).*dum-x(:,k);
t = t + 1;

end
end

end

way2 = [CxC CxN NxN];
way3 = [CxCxN CxNxN];

X = [X dumx way2 way3]; % Defining Regression Matrix

260

% Main Effects col: 2:6

% 2-factor Interactions col: 7:16 (CxC: 7) (CxN: 8:13)
% (NxN: 14:16)

% 3-factor Interaction col: 17:25 (CxCxN: 1719) (CxNxN:
% 20:25)

b_parti = regress(Y,X); % Finding beta's

save WORKSPACEpart1; %A saving the variables for further use

normplot(bpart1l); % To plot normal plot for the regression coefficients
title(' Normal Probability Plot for Regression Coefficients');
hgsave('NormalPlot');
figure;

% Implementing Lenth Method
bi = abs(bpartl);
sQ = 1.5*median(bi);

limit = 2.5*s0;
t = 1;
[m , n] = size(X);
for i = 1:n

if bi(i) <= limit
dumm(t) = bi(i);
t=t+ 1;

end
end

PSE = 1.5*median(dumm);
ME = tinv(0.975, n/3) * PSE;
gamma = (1 + (0.95A(1/n))) / 2.0;

SME = tinv(gamma, n/3) * PSE;

hold on;

bar(bpartl);
xlabel ('Effects', 'FontSize', 10, 'FontWeight', 'bold');
ylabel('Estimated Effect Contrasts', 'FontSize', 10, 'FontWeight', 'bold');

plot([0 35] , [ME ME], '--r');
plot([0 35] , [-ME -ME], '-r');

plot([O 35] , [SME SME], '-.k);
plot([O 35] , [-SME -SMEJ, '-Xk);

261

plot([7 7],[max(bpart1) min(bparti)], 'k','LineWidth',2);
plot([17 17],[max(bpart1) min(bpart1)], 'k','LineWidth',2);

title('Lenth Plot', 'FontSize', 12, 'FontWeight', 'bold');
text(7+1,max(bpart1)/1.2,'Two-Way Interactions', 'FontSize', 7);
text(17+1,max(bpart1)/1.2,'Three-Way Interactions', 'FontSize', 7);

text(30,SME,'SME');
text(30,-SME,'- SME');
text(30,ME,'ME');
text(30,-ME,'- ME');

hgsave('LenthPlot');

262

11.1

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with small kinematic adjustments", Gao,
% J., Chase, K. and Magleby, S., lIE Transactions, 1998, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect
% to Origin. The location of slider is U. We will take U as our response
% Variable. We will determine the order of slider crank mechanism wrt U.

% Parameters: A, B, C, D, and E

% By Jagmeet Singh on 05/27/2005

clear;clc;

% Defining Control Factor Levels.
% Control Factors are Ac, Bc, Cc, Dc, and Ec
CF levels = [20 25; % Ac

12 18; % Bc
10 15; % Cc
30 40; % Dc
5 7]; % Ec

% Defining Control Factor Array
CFarray = ff2n(5) + 1;
[m , n] = size(CF array);

for i = 1 :m
for j = 1:n

% Defining Inner Array for experiments
Innerarray(i,j) = CFlevels(j, CFarray(i,j));

end
end

% Defining Noise Array
% Noise Factors are An,
NF-levels = [-0.025

Bn, Cn, Dn, and En
0.025; % An

263

-0.0125 0.0125; % Bn
-0.0125 0.0125; % Cn
-0.03 0.03; % Dn
-0.0025 0.0025]; % En

% Defining Noise Array
NF array = ff2n(5) + 1;
[m, n] = size(NF array);

for i = 1:m
for j = 1:n

% Defining Outer Array Levels for the experiments
Outer array_levels(i,j) = NFIevels(j, NF-array(i,j));

end
end

% Running Experiments at Inner and Outer Array Settings
[iarows, iacols] = size(Inner array);
[oarows, oacols] =size(Outer arraylevels);
hi = waitbar(O);

for iaruns = 1:iarows
waitbar(iaruns/iarows, h1, sprintf('Running Control Factor Experiment # %d', iaruns));

% Setting the Control Factor Levels for Inner Array Experiments
Ac = Inner array(iaruns, 1);
Bc = Inner array(iaruns, 2);
Cc = Inner array(iaruns, 3);
Dc = Inner array(iaruns, 4);
Ec = Inner array(iaruns, 5);

index = 1;

% Setting Outer Array Levels for Outer Array Experiments
for i = 1:oarows

An = Outerarray_levels(i, 1);
Bn = Outerarray_levels(i, 2);
Cn = OuterarrayIevels(i, 3);
Dn = OuterarrayIevels(i, 4);
En = Outerarray_levels(i, 5);

264

% Defining the actual values for Parameters under a given
% experiment
A = Ac + An;
B = Bc + Bn;
C = Cc + Cn;
D = Dc + Dn;
E = Ec + En;

% Calling the subroutine to find Slider Position U
U(iaruns, index) = SliderPosition(A, B, C, D, E);

index = index + 1;
end

end

close(h1);
IA = CFarray*2 - 3;
OA = NFarray*2 - 3;

save WORKSPACE_1;

% To define Inner Array in -1, 1 levels
% To define Outer Array in -1, 1 levels

265

11.2

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with small kinematic adjustments", Gao,
% J., Chase, K. and Magleby, S., lE Transactions, 1998, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect
% to Origin. The location of slider is U. We will take U as our response
% Variable.

% Parameters: A, B, C, D, and E

% To Evaluate: U

% By Jagmeet Singh on 05/27/2005

function U = SliderPosition(A, B, C, D, E)

T = (DA2) - ((A - (0.7071*C) - E)A2) - ((0.7071*C)A2);

U = B + sqrt(T);

end

266

11.3

% Slider Crank Mechanism Case Study from "Generalized 3-D tolerance
% analysis of mechanical assemblies with small kinematic adjustments", Gao,
% J., Chase, K. and Magleby, S., lIE Transactions, 1998, 30, 367-377.

% We will have five variables defined by the designer. They are A, B, C, D,
% and E. There are manufacturing variations coming on to these variables.
% Together all five of them define the location of the slider with respect
% to Origin. The location of slider is U. We will take U as our response
% Variable. We will determine the order of slider crank mechanism wrt U.

% Parameters: A, B, C, D, and E

% By Jagmeet Singh on 05/27/2005

% INPUT: Variables from the runs of Slider Crank Position
% Solution with 2-level factors in both CF and NF array..

% OUTPUT: beta values and plotting of Normal and Lenth Plot and finding
% significant factors.

clear;clc;
load WORKSPACE_1;
clear X;

t = 1; % Index for rows of Regression Variable

for i = 1:2A5
forj = 1:2A5

% RegVar = [CF: NF: Wr};
% RegVar = [IA: OA : Wr];
RegVar(t,1:5) = IA(i,:);
RegVar(t,6:10) = OA(j,:);
RegVar(t, 11) = U(i,j);
t = t + 1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%
% ANALYSIS
%%%%%%%%%%%%%%%%%%%%%%%%%

% To find beta values for main effects, 2- and 3- factor interactions
Y(:,1) = RegVar(:,11);
X(:,1) = ones(2^5*2A5,1);
dumx(:,1:10) = RegVar(:,1:10);

267

% Finding 2-factor interaction terms
t = 1; % Index for storing results in dum_x
for i = 1:5

for] = i+1:5
CxC(:,t) = dumx(:,i).*dumx(:,j);
t = t + 1;

end
end
t = 1;
for i = 1:5

for j = 6:10
CxN(:,t) = dum-x(:,i).*dumx(:,j);
t = t + 1;

end
end
t = 1;
for i = 6:10

for] = i+1:10
NxN(:,t) = dum-x(:,i).*dum-x(:,j);
t = t + 1;

end
end

% Finding 3-factor interactions
t = 1;
for i = 1:5

for j = i+1:5
for k = j+1:5

CxCxC(:,t) = dum-x(:,i).*dum-x(:,j).*dumx(:,k);
t = t + 1;
sprintf('Foul Value');

end
end

end
t = 1;
for i = 1:5

for j = i+1:5
for k = 6:10

CxCxN(:,t) = dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t = t + 1;

end
end

end
t = 1;
for i = 1:5

for j = 6:10
for k = j+1:10

CxNxN(:,t) = dum-x(:,i).*dum-x(:,j).*dum-x(:,k);
t = t + 1;

268

end
end

end

way2 = [CxC CxN NxN];
way3 = [CxCxC CxCxN CxNxN];

X = [X dumx way2 way3]; % Defining Regression Matrix

% Main Effects col: 2:11

% 2-factor Interactions col: 12:56 (CxC: 12:21) (CxN: 22:46)
% (NxN: 47:56)

% 3-factor Interaction col: 57:166 (CxCxC: 57:66) (CxCxN:
% 67:116) (CxNxN: 117:166)

b_part1 = regress(Y,X); % Finding beta's

b_part1 = b-partl(2:166);

save WORKSPACEpart1; % saving the variables for further use

normplot(bpartl); % To plot normal plot for the regression coefficients
title(' Normal Probability Plot for Regression Coefficients');
hgsave('NormalPlot');
figure;

% Implementing Lenth Method
bi = abs(bpartl);
sO = 1.5*median(bi);

limit = 2.5*s0;
t = 1;
[m , n] = size(bpartl');
for i = 1:n

if bi(i) <= limit
dumm(t) = bi(i);
t = t + 1;

end
end

PSE = 1.5*median(dumm);
ME = tinv(0.975, n/3) * PSE;
gamma = (1 + (0.95A(I/n))) / 2.0;

SME = tinv(gamma, n/3) * PSE;

hold on;

269

bar(bpartl);
xiabel('Effects', 'FontSize', 10, 'FontWeight', 'bold');
ylabel('Estirmated Effect Contrasts', 'FontSize', 10, 'FontWeight', 'bold');

plot([0 170] , [ME ME], '--r');
plot([0 170], [-ME -ME], '--r');

plot([0 170], [SME SME], '-.k');
plot([O 170] , [-SME -SME], '-k');

plot([10 10],[max(bpart1) min(bpart1)], 'k','LineWidth',2);
plot([55 55],[max(b _part1) min(b_part1)], 'k','LineWidth',2);

title('Lenth Plot ', 'FontSize', 12, 'FontWeight', 'bold');
text(10+1,max(bpart1)/1.2,'Two-Way Interactions', 'FontSize', 7);
text(55+1,max(bpart1)/1.2,'Three-Way Interactions', 'FontSize', 7);

text(167,SME,'SME');
text(167,-SME,'- SME');
text(167,ME,'ME');
text(167,-ME,'- ME');

hgsave('LenthPlot');

270

12.1

Working with Hierarchical Probability Model, Weak
Hierarchy for Compound Noise

10 1 1 1 1
10 1 1 0.1 0.1

10 1 0 1 1

1 2
15-- 1 1

Table 1 3 3

15 1 0.1 0.1
3 3

I
15 - 0 1 1

3)
ITable:= augmen(Table1,Table2)

0.25 0.25

0.25 0.25

0.25 0.25

0.43 0.31

0.43 0.31

0.43 0.31

0.1 0 0.25 0.1

0.1 0 0.25 0.1

0.1 0 0 0

0 0)
0 0
0 0

0.04 0 0.17 0.08 0.02 0

0.04 0 0.17 008 0.02 0

0.04 0 0 0 0 0)

Defining the Parameters for Hierarchical
Probability Model.

Incf 7

Inn f 5

|Model to-be use

Number of Control Factors

Number of Noise Factors

d:= I 1 for Basic WH
2 for Basic low w

3 for Basic 2 nd order
i:= Modeltobeused- I

j :

Itotalvar:= nnf+ ncf

4 for Fitted WH
5 for Fitted low w

6 for Fitted 2 nd order

Defining Parameter of the Model

c Tablq,a sI := Tableii

p Tablq,5 p1 Tablq,6

s2 := Tablq,2

pO= Tablq,

wl := Tablq,3 w2 := Tablq,4

p00 =Tablq,8 pll1 := Tablq,9

pOll TablqIC pooI:= Tablq, I I p00 Tablq,12

Number of Experiments to be peformed

lexpt 0.. (max_expts- 1)|max-expts:= 500

I:= i k := j

§91pt := runjncf+ nnf,0,1)

8expt := D +- 0

for i e 0.. ncf + nnf - 1

Di,0 - 0 if (8expt)i, 0 >

Di,0 +- 1 otherwise

D

6 ijexpt :=

For active main effects

D (- 0

for i e 0.. (total var- 2)

for j e (i+ 1).. (total_var- 1)

sum_6 +- (8expt)i,0 + (5 expt)j, 0

dummy6 +- runif(1,0, 1)

Dij +- 1 if [(sum_6 = 0) A (dummy0,0 Po)]

Di,j +- 0 if [(sum 6 = 0) A (dummyo0,> p00)]

Di,j +- 1 if [(sum 6 = 1) A (dummy 60,0 p01)]

Dij +- 0 if [(sum 6 = 0) A (dummy_6 0,> P01)]

Di,j +- 1 if [(sum_ = 2) A (dummyo 0 P11)]

Dij <- 0 if [(sum _ = 2) A (dummyO,0> P11)]

D

zeros:= D +- 0
for i e 0.. k

Di,o +- 0

D

8ijkexpt: D +- 0

for ie0..k

Di,< +- 0

for i e 0..k

for j e 0.. k

(6ijkexpt) +- D

6ijkexpt

For active two-factor
interactions

272

:=total var- I

6 ijkexpt:=

t:= t +- 0

for i r 0..k

ti +- wl if [i 5 (nnf - 1)]

ti <- 1 otherwise

t

273
For Main Effect Coefficients

D <-0

A +-0

for i e 0.. k

Di,0 <- 0

for i e 0.. k

for j e 0.. k

(6jkxpt), +' <- D

for i e 0.. (total var- 3)

for j e (i + 1).. (total var- 2)

for k e (j+ 1).. (total var- 1)

sums <- (6expt)i, 0 + (expt)j,0 + (expt)k,0

dummyi <- runiI(1,0,1)

A +- 1 if [(sums = 0) A (dummy0,O P000)]

A <- 0 if [(sum 6 = 0) A (dummy§O,o > p000)]

A +- 1 if [(sum_6 = 1) A (dummy_0,0 p001)]

A +-0 if (sum_ 6= 1) A (dummy §0,o > po1)]

A <- 1 if [(sum 6 = 2) A (dummyO,O pOl1)]

A <- 0 if [(sum _ = 2) A (dummyo,0 > pOll)]

A +- 1 if (sumi = 3) A (dummy o,o p Il)]

A +- 0 if [(sum_5 = 3) A (dummyo, 0 > pil l)]

[(6ijkexpt) ik,0 - A

8ijkexpt

For active three-factor
interactions

__ r ___77 --- - - - - - - __111!1 -111, . I

Piexpt : Plexpt <- 0

for i EO.. k

(0iexpt) ,+-tinmorm(,0,1)0, 0 if (5 expt)j 0

(IPiexpt)1 <- ti-mormi(1,0,c)O,O otherwise

(jPiexpt)

For Two-Way Interaction Effects

Pijexpt := Piiexpt <- 0

for i c=0.. k

for j EO.. k

for i E 0.. (total var- 3)

for jE=-(i± 1).. (total-var- 2)

(p3iiexpt)ij~ <-[6ti)jorm(1 ,0,0] if (6iiexp) ij 0

(hjexpt).. <- [(ti) .tj-mnorm(1 ,0, c-s1)0, 0] otherwise

P ikexpt

For Three-Way Interaction Effects

Pijkexpt Pijkexpt <- 0

for i e0.. k

Di,O <- 0

for i E 0.. k

for j c0.. k

for i e 0.. (total var- 3)

for j E(I + 1).. (total -var- 2)

for k E(j + 1).. (total -var-i1)

[(0iikexpt)j] k, <- (ti-tj-tcmormn(1,0,s2)O,O) if [[(&jkexpti .ik] I=0
[(O3ijke,t), j]k, <- (t1.tj tk.rorm(I, 0, cs2)0, o) otherwise

P ijkexpt

Control Factor Array

275

CFarray:= stack(CFarrayl, CF array2)

NFarray :=

Noise Factor Array

276

-1 -1 -1 -1 -r)
-1 -1 -1 -1 1

-1 -1 -1 1 -1

-1 -1 -1 1 1

-1 -1 1 -1 -1

-1 -1 1 -1 1

-1 -1 1 1 -1

-1 -1 1 1 1

-1 1 -1 -1 -1

-1 1 -1 -1 1

-1 1 -1 1 -1

-1 1 -1 1 1

-1 1 1 -1 -1

-1 1 1 -1 1

-1 1 1 1 -1

-1 1 1 1 1

1 -1 -1 -1 -1

1 -1 -1 -1 1

1 -1 -1 1 -1

1 -1 -1 1 1

1 -1 1 -1 -1

1 -1 1 -1 1

1 -1 1 1 -1

1 -1 1 1 1

1 1 -1 -1 -1

1 1 -1 -1 1

1 1 -1 1 -1

1 1 -1 1 1

1 1 1 -1 -1

1 1 1 -1 1

1 1 1 1 -1

1 1 1 1 i)

Yexpt Yexpt <- 0

for cfrunsE-0.. (128 -1)

for nftunsE 0.. (32 -1)

Xlexpt <- (CFaay)Cr~l

xpt- (NF array T) (nfrun

Xexpt <- augmen xxt ,Xlexpt/

11

Sum lexpt <- [[(Piexpt)j}-(Xexpt) 0i]

Sum~~expt <-LLV'[(P xt ilk, 0(Xexpt)0, i(xexpt)0~j (Xexpt)0,kJ

i=0O j=Ok0

cfruns n umlens Se~xt+Sfxpt± rnorm(l ,0,w2)O,O

Yexpt

277

Finding the Variance of Response at each CF Setting
and finding the robust setting

Varianceyxpt for cfrunse 0.. (128 - 1)

yrowexpt <- y T)(cfru

(Variance- yxpt)fruns <- var(yrowsexpt)

Variance__yxpt

AugmentedMatritxpt:= augmen(Variance-)xpt, CF-array)

ActualRobustSettii&pt:= csort(Augmented Matrixpt,O)

RobustSettingxpt := kActualRobustSettin&pt

MinimumVarianpt:= (RobustSettingxpt) 0 ,0

Average Varianctxpt:= mean(VarianceMxpt)

RobustSettingxpt for i e 1.. 7

(A) (i-l), <- (RobustSettingxpt),.
0

A

-3

-1)

-1

RobustSetting = -1

-1

Using Compound Noise to Predict the Robust Setting

Setting up Compound Noise (Extreme)

CN-settinlxpt := for i e 0.. (nnf - 1)

|Ai, 0 +- sigr (piexpt~

Ai, I <- -1 -sigpiexpt~ CNsetting 1 -1

A-1 1)

Finding Response Under Compound Noise

Y-commlxpt :=YeConmlxpt

for cfrunsE 0..(128 - 1)

for nfrunsE 0.. (2 - 1)

() T(cfrunis)
Xlexpt <- (CFarrayT)

x2expt <- (CN_settinexpt

xexpt +- augmen[(x2expt ,Xlexpt]

sulxpt <-- Y e xpti -xexpt)0, i]
i=0

11 11

sum 2expt+- <[ijxpt (xexpt),](xexpt),j

i=0 j0

*i1 11 11 (xt)k

sumexpt Z[(ijkexpt)j , 0-(xexpt)0 , (xexpt) 0 (xexpt),k
i=0 j=0 k=O

(y-comlxpt) fruns, nfruns +- sumlexpt + sum 2expt + sum3xpt + rnorm(1 ,0, w2)0, 0

y-comxpt

279

Finding the Variance of Response at each CF setting under Compound Noise
and Predict the Robust Setting

Variance_y_comrxpt for cfrunse 0.. (128 - 1)

yrowsexpt +- y-comiexpt

(Variance_y_comxpt)cfruns - var(yrowexpt)

Variance_y_comnxpt

AugmentedMatrix conlkpt:= augmen(Variance_y_compxpt,CFarray)

PredictedRobustSettin&pt:= csort(AugmentedMatrixconkpt,O)

Robust Setting compxpt (Predicted RobustSettingxpt

Minimum_VarianceconiRpt:= (RobustSettingcomPxpt) 0,0

Robust Setting comnxpt for i e 1.. 7
(A)(i- 1) ,0 +-(Robust Settingconlpxpt). 0

A

1 -1)

-1 -1

RobustSetting = 1 RobustSettingcomp = 1

1 -1

1 1

s-1) i 1)

Finding the Variance at Predicted RobitySetting by Compound Noise

PredictedVariancgxpt := for cfrunse 0.. (128 -1)

settinexpt <- for i e L..7

A(i1) ,0 - [(ActualRobustSettin&pt)]
A

T (cfru]

Var +- [ActualRobustSettin&pt) 0,0

break if (settin&xpt = RobustSetting-comnxpt)

Var

Defining Improvement Ratio

a:= histogran(10, ImprovementRati)

150

H

Histogram Plot of Improvement Ratio
I F

-1 0

H(0)
Improvement Ratio

Overall Results

281

100-

50 -

0 '
-2

Imean(ImprovementRati = 0.313

Imedian(ImprovementRatib = 0.407

I

Defining Ratio of Predicted Variance to Minimum Variance

PredictedVariancexpt

MinimumVarianrexpt

Fraction

o 10 20 30

HI(o)
Fraction Value

UL:= histogran(10, Fraction1)

mean(FractionD = 2.817
Imedian(Fraction1) 2.243

282

Fractionlexpt :=

HlI

400

200

0

13.1

Working with Hierarchical Probability Model, Strong
Hierarchy Model for Compound Noise

0.25 0.25 0.1 0 0.25 0.1 0 0)

0.25 0.25 0.1 0 0.25 0.1 0 0

0.25 0.25 0.1 0 0 0 0 0

0.43 0.31 0.04 0 0.17 0.08 0.02 0

0.43 0.31 0.04 0 0.17 0.08 0.02 0

0.43 0.31 0.04 0 0 0 0 0)

jTable:= augmen(Tablel,Table2)

|ncf := 7

nnf:= 5

Modeltobeuse

Defining the Parameters for Hierarchical
Probability Model.

Number of Control Factors

Number of Noise Factors

d:- 3 1 for Basic WH
2 for Basic low w
3 for Basic 2 nd order

i Modeltobeused- 1

j

total var:= nnf+ ncf

4 for Fitted WH
5 for Fitted low w

6 for Fitted 2nd order

Defining Parameter of the Model

c Tablq,0 si := Tablei, i

p Tablq,5 p11 Tablq,6

s2 := Tablq,2

p0:= Tablq,7

wI := Tablq,3

p00 := Tablq,

w2 := Tablq,4

p 11 := Tablq,9

pOll := TablqIC pOO: Tablqi p00= Tablq,12

Number of Experiments to be peformed

imax expts:= 500 lexpt := 0.. (maxexpts- 1)
At).)

Table2:=

10 1 1 1 1

10 1 1 0.1 0.1
10 1 0 1 1

1 2
15 - 1 1

Table := 3 3

15 2 2 0.1 0.1
3 3

1
15 - 0 1 1

3

284

i:= total-var- I =i k := j

x runifncf + nnf,0, 1)

D <- 0

for i e 0..ncf+ nnf - 1

Di,0 <- 0 if (8expt)i,>

Di,0 <- 1 otherwise

D

For active main effects

(6ijexpt) := 0

6 ijexpt := D +- 0

for i e 0.. (total var- 2)

for j e (i+ 1).. (total var- 1)

sum_6 +- (6expt)i,0 + (8expt)j, 0

dummy_§ +- runiK(1,0,1)

Dij +- 1 if [(sum6 = 0) A (dummyO,o <

Di, j <- 0 if [(sum 8 = 0) A (dummy§O,0 >

Dij +- 1 if L(sum 8 = 1) A (dummy_0,0 s

Dij -0 if [(sum_6 = 0) A (dummyO,0 >

Dij- 1 if [(sumf = 2) A (dummy_§O,O:

Dij- 0 if [(sum_ = 2) A (dummyo,o >

D

zeros:= D+--0

for i e 0.. k

Di, +- 0

D

6ijkexpt:= D <- 0
for ie 0..k

Di,0 <- 0

for i E 0.. k

for j e 0.. k

(6ijkexpt) +- D

6 ijkexpt

P00)]

Poo)]

p01)]

p01)]

p11)]

P11)]

For active two-factor
interactions

285

8expt :=

6 ijkexpt:= D<-0

A <(-0

for ie0..k

Di,0 <-0

for ie0..k

for je0..k

for i E 0.. (total var- 3)

for j e (i + 1).. (total var- 2)

for k e (j+ 1).. (total var- 1)

sum_6 <- (8expti,o + (5expt)j, + (6expt)k,o

dummy_§ +- runif(1,0,1)

A <- 1 if [(sum 6 = 0) A (dummy 6oo P000)]

A <- 0 if (sum 6 = 0) A (dummy0,0 > P000)]

A +- 1 if [(sum 6 = 1) A (dummyO,O P001)]

A <- 0 if (sum 6 = 1) A (dummy0,o > p001)]

A <- 1 if [(sum 6 = 2) A (dummyo0 ,0 pOl l)]

A +- 0 if [(sum6 = 2) A (dummy§o,0 > pol1)]

A <- 1 if (sum_6 = 3) A (dummyO,O i 1 1)]

A <- 0 if [(sum 6 = 3) A (dummy_0,O > P11)]

[Sijkexpt),j k,O +- A

6 ijkexpt

t:= t<-0

for i e 0.. k

ti +- wl if [i !5 (nnf - 1)]

ti <- 1 otherwise

t

286

For Main Effect Coefficients

For active three-factor
interactions

Piexpt := iexpt +- 0

for iE 0.. k

(fiexpt)<-ti-rnorm(1,0,1)0,0 if (5expt)= 0

(Iiexpt) <- ti-rnorm(1 ,0,c)0,0 otherwise

(Piexpt) C 10

total var= 12

For Two-Way Interaction Effects

fhjexpt Piexpt +- 0

for i e 0.. k

for j e 0..k

(p ijexpt) <,j- 0

for i e 0.. (total var- 3)

for j e (i+ 1).. (total var- 2)

(expt) +- [(ti)-tjrnorm(1 ,0,s1)0,0] if (69iexpt) i~j 0

(I0iiexpt) <-[(ti) -tj.rmorm(1,0,c-sl)0,o] otherwise

P iJexpt

: 0.00000000001

For Three-Way Interaction Effects

P@ijkexpt = ijkexpt <- 0

D <-0

for i e 0.. k

Di,0 <- 0

for ie0..k

for je0..k

(pijkexptij <- D

for i E 0.. (total var- 3)

for j e (i + 1).. (total var- 2)

for k e (j+ 1).. (total var- 1)

[(pijkexpt)j k,0 <- (ti-tj tkmorm(1,Os2)0,0) if [[(6ijkexpt)i j]k,0] 0

[(Piikexpt)j k',O <- (ti-tj-tk-.morm(1,0, c-s2)0, 0) otherwise

p iikexpt

Control Factor Array
s2 = I x 10

288

CFarray:= stack(CFarray1, CF array2)

Noise Factor Array

-1 -1 -1 -1 --1N)

-1 -1 -1 --1 1

-1 --1 -1 1 --1

-1 -1 -1 1 1

-1 -1 1 -1 --1

-1 -1 1 -1 1

-1 -1 1 1 --1

-1 --1 1 1 1

-1 1 -1 -1 --1

-1 1 -1 --1 1

-1 1 -1 1 --1

-1 1 -1 1 1

-1 1 1 -1 --1

-1 1 1 -1 1

--1 1 1 1 --1

-1 1 1 1 1
NFarray :

1 -1 -1 -1 --1

1 -1 -1 -1 1

1 --1 -1 1 -1

1 -1 -1 1 1

1 -1 1 -1 -1

1 -1 1 -1 1

1 -1 1 1 --1

1 -1 1 1 1

1 1 -1 -1 --1

1 1 -1 -1 1

1 1 -1 1 --1

1 1 -1 1 1

1 1 1 -1 --1

1 1 1 -1 1

1 1 1 1 -1

1 1 1 1 i)

289

Yexpt Yexpt +- 0

for cfrunse 0..(128 - 1)

for nfrunse 0..(32 - 1)

T (Cfruns)
xlexpt +- (CF-array)

x 2 expt +- NF array

Xexpt <- augmen~x2expt xlexpt

sum lexpt < [[(Piexpt)](xexpt)oi]
0

sum2expt +- y (ijexpt)ij '(xexpt)o,i j]'Xep , j
i=0 j=O

11 11 21

i=0 j=O k=0

(Yexpt)cfruns,nfruns +- sumlexpt + sum 2expt+ sum3expt+ morm(1,O,w2)0,0

Yexpt

290

Finding the Variance of Response at each CF Setting
and finding the robust setting

Variance .3xpt for cfrunse 0.. (128 - 1)

(T\ Wruns)
yrow~xpt < (yexpt)

(Variancej xpt) cfruns <- var(yrow$xpt)

Variance_ xpt

AugmentedMatriSxpt:= augmen(Variancebxpt, CF-array)

ActualRobustSettinmpt := csort(AugmentedMatrixxpt, 0)

T(0)
RobustSettingxpt := (ActualRobustSettin&pt)

MinimumVarianvdpt:= (RobustSettingxpt) 0 ,0

AverageVariancqxpt := mean(Varianceixpt)

RobustSettingxpt for i e 1.. 7

(A)(i-1),0 <- (RobustSettingxpt)i,
0

A

RobustSetting =

1

-1

-1

-1)

Using Compound Noise to Predict the Robust Setting

CN_setting =

Finding Response Under Compound Noise

mp1xpt := y_comcxpt

for cfrunsE O..(128 - 1)
for nfrunse 0.. (2 - 1)

(1

1L5
-1

-1

-1

1

1

)

(r T\(cfruns)Xlexpt + CF _aay

x2expt - (CN_settinxpt)(f's

xexpt +- augmen[(x2expt) x iexptT

i =0

11 11

sumn2expt <- e[(ixpt ij-(Xexpt)o, i]'(Xexpt)o,j I
i=0 j=0

11 11 11

sum 3expt +- [[(Pijkexpt)i 'ik 0'(xexpt),0 i.(xexpt)o, j.(xexPt)Ok
i=0 j=0 k=0

(y-comxpt) cfruns,nfruns +- sumlexpt + sum 2expt+ sumexpt+ morm(1 ,0, w2)0,0

y-Comfxpt

292

y-co

Finding the Variance of Response at each CF setting under Compound Noise
and Predict the Robust Setting

Variance_y_compxpt for cfrunse 0.. (128 - 1)

() W~runs)
yrowexpt <- (ycomlIxpt

(Varianceycomxpt)cfruns <- var(yrowsxpt)

Variance_y_comxpt

Augmented Matrixcongkpt:= augmen(Variancey-comxpt, CFarray)

PredictedRobustSettin&pt:= csort(Augmented Matrixsconmkpt,O)

RobustSettingcompxpt:= PredictedRobust_ Settin&pt T

MinimumVariancecoriRpt:= (RobustSettingcomxpt)
0 ,0

RobustSetting compxpt for i e 1.. 7

(A)(i-), 0 (RobustSettingcomxpt)._o

A

-1) -1

1 1

-1 -1

Robust_Setting = 1 RobustSetting come -1

1 -1

-1 1

S1) --1)

Finding the Variance at Predicted Robi$3Setting by Compound Noise

PredictedVarianc§xpt:= for cfrunse 0.. (128 - 1)

settin&xpt *- for i E 1.. 7

A(i-1) , +- [(Actual RobustSettin&ptJ) -i 0

A

Var +- LkActualRobustSettin&ptT)i
0 0

break if (settinexpt = RobustSettingcomxpt)

Var

Defining Improvement Ratio

(AverageVariancqxpt - PredictedVariancqxpt)
mprovementRatixpt (

,a:= histograng10, ImprovementRati)

200

H10
I. 100

Histogram Plot of Improvement Ratio

-2 0

H(0)
Improvement Ratio

Overall Results

294

mean(ImprovementRatip = 0.479

Imedian(ImprovementRatiO = 0.599

I

Defining Ratio of Predicted Variance to Minimum Variance

PredictedVarianc§xpt

MinimumVarianrexpt

Fraction

.U:= histogran 10,Fractionl)

400
HI1

200

0
0 5 10 15 20

H 1(0)
Fraction Value

mean(Fraction) = 2.031

Imedian(Fractionl) = 1.561

295

Fractionlexpt :=

II

fA t If .

14.1

% function surrogation()

% We first assume the model parameters we want to use in Fitted WH Strong Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% Base Standard Deviation is taken as the average of standard deviations at
% all CF settings.

% We will find optimal control factor setting for surrogated model using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and Fitted WH
% model determines how active they are.

% Fitted WH for 200 models for Strong Hierarchy Fitted WH Model

% 09/29/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsettingconfcfsetting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsettingconfnfsetting]=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's

modelpara=4; % Defining which model parameters we would be using for Strong Hierarchy
model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); sI =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01 =modelparameter(1,8); pOO=modelparameter(1,9);% defining
parameters

ncf=7; % #of CF's
nnf=5; % #of NF's

296

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Surrogation

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigma_uncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wl,p,p11,pOl,pOO); % Finding beta values for a given
model

[mainnoises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale

% 4th and 5th element of indices will give the indices of main 2 noises

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix 1; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end

yl(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

297

% Changing ResponseMatrix1 to [N1 N2 C1:C7 Y] where N1 and N2 are two
% main noises and C1:C7 are control Factors and Y is the response we
% got from above and naming it ResponseMatrixNS

ResponseMatrixNS = [ResponseMatrix1(:,indices(4)) ResponseMatrix1(:,indices(5))
ResponseMatrix1 (:,6:13)];

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'yl'for 2 main noises

nxc=1; % Counter for Control by Noise Interactions
for nf=1:2

for cf=3:9
NxC(:,nxc)=ResponseMatrixNS(:,nf).*ResponseMatrixNS(:,cf);
nxc=nxc+1;

end
end
nxn=1; % Counter for Noise by Noise Interactions
for nfI=1:2

for nf2=nfl+1:2
NxN(:,nxn)=ResponseMatrixNS(:,nfl).*ResponseMatrixNS(:,nf2);
nxn=nxn+1;

end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nfl=1:2

for nf2=nfl+1:2
for cf = 3:9

CxNxN(:,cxnxn)=ResponseMatrixNS(:,cf).*ResponseMatrixNS(:,nf1).*ResponseMatrixNS(: ,nf
2);

cxnxn = cxnxn + 1;
end

end
end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:2

for cf1=3:9
for cf2=cf1 +1:9

CxCxN(:,cxcxn)=ResponseMatrix_NS(:, cf1).*ResponseMatrixNS(:,cf2).*ResponseMatrixNS(: ,n
f);

cxcxn = cxcxn + 1;
end

end
end

298

% To find the fitted model for Transmitted Variance Model
inputs = [ones(4096,1) ResponseMatrixNS(:,1:9) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_NS(:,10),inputs);
% bO(1) bi's(2:10) CxN(11:24) NxN(25:25) CxNxN(26:32) CxCxN(33:74) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:9) b(2:10);
Bij(2,9) = 0;

index=11; % CxN
for i=1:2

for j=3:9
Bij(i,j) = b(index);
index = index + 1;

end
end

for i=1:2 % NxN
for j=i+1:2

Bij(i,j) = b(index);
index = index + 1;

end
end

Bijk(9,9,9) = 0;

for i=1:2 % CxNxN
for j=i+1:2

for k=3:9
Bijk(i,j,k) = b(index);
index = index + 1;

end
end

end

for i=1:2 % CxCxN
for j=3:9

for k=j+1:9
Bijk(i,j,k) = b(index);
index = index + 1;

end
end

end

299

% Fitting Transmitted Variance Model
for cf = 1:128

sum1 =O;sum2=0;
for nf = 1:2 % First term in Variance Model

sum a=Bi(nf);
sum_b=O;
for j=3:9

sumb=sumb+Bij(nf,j)*X(cf,j-2);
end
sum_c=0;
for j=3:9

for k=j+1:9
sumc=sumc+Bijk(nf,j,k)*X(cf,j-2)*X(cf,k-2);

end
end
sum1 = sum1 + (sum a + sumb +sum c)2;

end

for nf = 1:2 % Second term in Variance Model
for j=nf+1:2
sumd=O;
for k=3:9

sum d=sum-d+Bijk(nf,j,k)*X(cf,k-2);
end
sum2 = sum2 + (Bij(nf,j) + sum d)A2;

end
end

varianc(cf,1) = sum1 + sum2;
end

STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
opstd_1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);
OCFNS = PredMin_1(1,2:8);

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrixMC; % Response Matrix = [CF Y's for CFsetting]
[ResponseMatrixMC, varianc] = Varcf setting(bi, bij, MU, sigma_uncorrelated);

STDevMC = varianc.AO.5; % Stdev for each CF setting

300

%stdbaseMC = STDevMC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

opstdMC = min(STDevMC); % Finding least Stdev
PredMinMC = sortrows([STDevMC X],1);
OCFMC = PredMinMC(1,2:8);

if OCF_MC == OCFNS
counterOCF_1 = counterOCF_1 + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

cfNS = 0; % To find number of Control factors whose settings are predicted correctly

for matchingcf = 1:7
if OCF_NS(1,matchingcf) == OCFMC(1,matchingcf)

cfNS = cfNS + 1;
end

end

matchingsurrogate(modelcounter) = cfNS; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdforcfsetting(ResponseMatrix_MC, OCF_MC);

% Determining the Optimal Standard Deviation from Noise Surrogation
OptNS = stdforcfsetting(ResponseMatrixMC, OCF_NS);

stdbase = stdbase_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfractionl(modelcounter) = (OptNS / OptMC);

% Storing Improvement Ratios for Noise Surrogation
stdfraction2(modelcounter) = ((std_base - OptNS)/(stdbase - Opt_MC + le-10));

Y(modelcounter) = (stdbase - OptNS)/stdbase;
X1(modelcounter) = (stdbase - OptMC)/std_base;

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

301

% saving workspace
save variables;

output;

302

14.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model
% Reference Chipman, Hamada and Wu paper 1997 and Li and Frey 2005 paper
% 03/04/2005 by Jagmeet Singh

Tablel = [10 1 1 1
10 1 1 0.1 0.1
10 1 0 1 1
15 1/3 2/3 1 1
15 1/3 2/3 0.1 0.
15 1/3 0 1 1];

1

1

Table2 = [0.25 0.25
0.25 0.25
0.25 0.25
0.43 0.31
0.43 0.31
0.43 0.31

0.1
0.1 0
0.1 0
0.04 0
0.04 0
0.04 0

Tablel= [Tablel Table2];
vector=Tablel (modelpara,:);

0 0.25 0.1 0
0.25 0.1 0 0
0 0 0 0
0.17 0.08 0.02
0.17 0.08 0.02
0 0 0 0];

% for input to Main Model

303

0

0
0

14.3

function [bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wl,p,p1 1,p01,p00)

% Developing 2nd order RWH Model (without ERROR)
% INPUTS: # of CF's, # of NF's, C, S1, W1, p,
% pOO, p01, p11

% OUTPUT: bi's and bij's
% Developed on 03/03/2004 by Jagmeet Singh

for i=l:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=w1;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1
for i=1:nnf+ncf

if delta(1,i) <= p
delta(1,i)=1;

else
delta(1,i)=0;

end
end

nnf+ncf]); % Defining delta
% Prob (delta i = 1) = p

deltaij(1:(nnf+ncf),1:(nnf+ncf))=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(i,j) <= p00

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sum deltas == 1
if deltaij(i,j) <= p01

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sumdeltas == 2

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

% Defining delta-ij when both the factors are active

304

if deltaij(i,j) <= p1 1
deltaij(i,j)=1;

else
deltaij(i,j)=O;

end
end

end
end

for i=1:nnf+ncf
if delta(1,i) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1,i)=t(i)*normrnd(0,c);
end

% Defining bi's for the CF's and NF's

end

bij(1:nnf+ncf,1 :nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else

bij(i,j)=t(i)*t(j)*normrnd(0,c*s1);
end

end
end

305

14.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = stdforcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

306

14.5

% Function Varcfsetting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 03/16/2004 by Jagmeet Singh

function [ResponseMatrixMC, varianc] = Var cf setting(bi, bij, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

X = ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + normrnd(O,w2);

end
end

ResponseMatrix MC = [X yMC]; % Storing CF setting and Yassulmed for that setting
varianc = (var(yMC'))'; % Finding the Variance for each CF setting

307

14.6

% Function to plot the outputs of the response

% 03/04/2005 by Jagmeet Singh

function outputo

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCFMC is same as OCF_N1
figure; success=[(counterOCF_1) (maxmodels-counterOCF_1)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title([Success in prediction of OCF._MC from OCF._no-i-s-e _s_u_r_r_o_g_a_t_i_o_n
for',num2str(maxmodels),' models']);
hgsave('piel');

% Plotting Histograms
figure;
hist(std-fractionl);
title([Histogram for Fraction of OPT.STD_s-u-r-r-o_g_a t i o n to OPT.STDMC for
',num2str(maxmodels),' models]);
colormap cool; iq = prctile(std fraction1,[25 50 75]); tmax = max(hist(std fraction 1));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[O tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xiabel('OPT.STD.NSurrogation / OPT.STD.MC');
ylabel(' number of systems ');
hgsave('figl');

figure;
hist(std-fraction2);
title(['Histogram for Fraction of (STD_b_a_s_e -
OPT.STD s u r-r_o_g_ation)/(STD b_a_s_e - OPT.STD_MC) for ',num2str(maxmodels),'
models']);
colormap cool; iq = prctile(std fraction2,[25 50 75]); tmax = max(hist(std fraction2));
line([iq(1) iq(1)],[0 tmax],'LineStyle','-'); line([iq(3) iq(3)],[O tmax],'LineStyle','-','Color','r');
line([iq(2) iq(2)],[O tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_t_h Percentile = ',num2str(iq(3))],['Median =',num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.NSurrogation)/(STD.Base-OPT.STD.MC)');
ylabel(' number of systems ');
hgsave('fig2');

308

figure;
plot(X1 Y,'*','color','r);
X2 = [ones(size(X1')) X1'];
a = X2\Y';
Y2 = a'*X2';
B = [X1' Y2'];
10 = regress(Y',X1');
B = sortrows(B,1);
hold on;
Iine([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Color','g', 'LineWidth', 0.5);
line([0;B(maxmodels,1)],[0;iO*B(maxmodels,l)],'LineWidth',1.5);
title(['For 2AnAd Order Model : Plotting (STD-b-a_s_e -
STD_s_u r r-o-g_a t i_o_n)/STD_b_a_s_e vs (STD-b-a_s_e - STD_o_pt)/STD_b_a_s_e
and slope = ', num2str(a(2,1))]);
xlabel('(STD-b_a_s_e - STD-o_p_t)/STD b-a-s-e');
ylabel('(STD-b_a_s_e - STD_s_u_rr-o_g_ati_on)/STD_b_a_s_e');
hgsave('fig3');

probpos = 0; % To find the probability that compounding will yield positive improvement
for index 1:maxmodels

if Y(1,index) >= 0.00
probpos = probpos + 1;

end
end

% Printing the results
sprintf(['mean(Number of OCF matched for Noise Surrogation) =
',num2str(mean(matchingsurrogate))])
sprintf([' Probability that Noise Surrogation will Yield Positive Improvement =

',num2str(probpos/maxmodels)])

309

15.1

% function surrogationo

% We first assume the model parameters we want to use in Fitted WH Weak Hierarchy
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% Base Standard Deviation is taken as the average of standard deviations at
% all CF settings.

% We will find optimal control factor setting for surrogated model using
% Transmitted Variance Model. And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and Fitted WH
/0 model determines how active they are.

% RWH for 200 models for Weak Hierarchy Fitted WH Model

% 09/29/2004 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsettingconf_cfsetting]=fracfact(a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsettingconfnfsetting]=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's

modelpara=4; % Defining which model parameters we would be using for Weak Hierarchy
model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modelpara); % To get the values of c, si, p's etc for the given
model
c=modelparameter(1,1); s1 =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=modelparameter(1,5); p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); p00=modelparameter(1,9);
p11 =modelparameter(1,10); p011=modelparameter(1,11); pOO1 =modelparameter(1,12);
pOOO=modelparameter(1,13);% defining parameters

ncf=7; % #of CF's

310

nnf=5; % #of NF's

counterOCF_1 = 0; % To increment when OCF from MC is same as from Noise Surrogation

MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigmauncorrelated = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix

maxnoisevar = 200; % Maximum number of Noise Factor settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%/o/(%%%%%%%%%%%%

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,pl1,p0l,p00,p111,pOl1,p001,p000); %
Finding beta values for a given model

[mainnoises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale

% 4th and 5th element of indices will give the indices of main 2 noises

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
index resp_matrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:32
x(1,1:5)=nfseting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(l,j);

end
end
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk+bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
yl(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrix1(index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

y1 (cfruns,nfruns)];

311

index respmatrix = index respmatrix + 1; % For Storing Response Matrix
end

end

% Changing ResponseMatrix1 to [N1 N2 C1:C7 Y] where N1 and N2 are two
% main noises and C1:C7 are control Factors and Y is the response we
% got from above and naming it ResponseMatrixNS

ResponseMatrix_NS = [ResponseMatrix1 (:,indices(4)) ResponseMatrix1 (:,indices(5))
ResponseMatrix1 (:,6:13)];

clear NxC NxN CxCxN CxNxN; % Clearing the History
% Fitting Response Model to 'y1 for 2 main noises

nxc=1; % Counter for Control by Noise Interactions
for nf=1:2

for cf=3:9
NxC(:,nxc)=ResponseMatrixNS(:,nf).*ResponseMatrix_NS(:,cf);
nxc=nxc+1;

end
end
nxn=1; % Counter for Noise by Noise Interactions
for nf1=1:2

for nf2=nfl+1:2
NxN(:,nxn)=ResponseMatrixNS(:,nfl1).*ResponseMatrixNS(: ,nf2);
nxn=nxn+1;

end
end
cxnxn=1; % Counter for Control X Noise X Noise Interaction
for nf1=1:2

for nf2=nfl+1:2
for cf = 3:9

CxNxN(:,cxnxn)=ResponseMatrixNS(:,cf).*ResponseMatrixNS(:,nf1).*ResponseMatrixNS(:,nf
2);

cxnxn = cxnxn + 1;
end

end
end
cxcxn=1; % Counter for Control X Control X Noise Interaction
for nf=1:2

for cf1=3:9
for cf2=cfl1+ 1:9

312

CxCxN(:,cxcxn)=ResponseMatrix_NS(:,cf1).*ResponseMatrixNS(:,cf2).*ResponseMatrix_NS(:,n
f);

cxcxn = cxcxn + 1;
end

end
end

% To find the fitted model for Transmitted Variance Model
inputs = [ones(4096,1) ResponseMatrixNS(:,1:9) NxC NxN CxNxN CxCxN];
[b,bint,r,rint,stats]=regress(ResponseMatrix_NS(:, 10),inputs);
% bO(1) bi's(2:10) CxN(11:24) NxN(25:25) CxNxN(26:32) CxCxN(33:74) The way b's
% are defined

% To Determine the variance under each CF setting for Transmitted
% Response Model

X = ff2n(7)*2 - 1; % Defining x's for Response Model

% Defining B's for the ease
Bi(1:9) = b(2:10);
Bij(2,9) = 0;

index=11; % CxN
for i=1:2

for j=3:9
Bij(i,j) = b(index);
index = index + 1;

end
end

for i=1:2 % NxN
for j=i+1:2

Bij(i,j) = b(index);
index = index + 1;

end
end

Bijk(9,9,9) = 0;

for i=1:2 % CxNxN
for j=i+1:2

for k=3:9
Bijk(i,j,k) = b(index);
index = index + 1;

end
end

end

for i=1:2 % CxCxN

313

for j=3:9
for k=j+1:9

Bijk(i,j,k) = b(index);
index = index + 1;

end
end

end

% Fitting Transmitted Variance Model
for cf = 1:128

sum1=0;sum2=0;
for nf = 1:2 % First term in Variance Model

suma=Bi(nf);
sum_b=O;
for j=3:9

sumb=sumb+Bij(nf,j)*X(cf,j-2);
end
sum_c=O;
for j=3:9

for k=j+1:9
sum_c=sum-c+Bijk(nf,j,k)*X(cf,j-2)*X(cf,k-2);

end
end
sum1 = sumi + (sum a + sumb +sum-c)A2;

end

for nf = 1:2 % Second term in Variance Model
for j=nf+1:2

sumd=O;
for k=3:9

sum_d=sum-d+Bijk(nf,j,k)*X(cf,k-2);
end
sum2 = sum2 + (Bij(nf,j) + sum d)A2;

end
end

varianc(cf,1) = sumi + sum2;
end

STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
opstd 1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 X],1);
OCFNS = PredMin_1(1,2:8);

314

% Doing Monte Carlo for each setting of Control Factors
clear ResponseMatrix_MC; % Response Matrix = [CF Y's_forCFsetting]
[ResponseMatrixMC, varianc] = Varcfsetting(bi, bij,bijk, MU, sigma_uncorrelated);

STDevMC = variancA0.5; % Stdev for each CF setting

%stdbaseMC = STDev_MC(1,1);
stdbaseMC = mean(STDevMC); % Base Stdev is taken as mean of all STDev's

opstdMC = min(STDev_MC); % Finding least Stdev
PredMinMC = sortrows([STDevMC X],1);
OCFMC = PredMinMC(1,2:8);

if OCF_MC == OCF_NS
counterOCF_1 = counterOCF_1 + 1; % When same Optimal CF setting is predicted by

Monte Carlo and 2(5-1)(V) Noise Array
end

cfNS = 0; % To find number of Control factors whose settings are predicted correctly

for matchingcf = 1:7
if OCF_NS(1,matchingcf) == OCFMC(1,matchingcf)

cfNS = cfNS + 1;
end

end

matchingsurrogate(modelcounter) = cfNS; % To store # of OCF Matched

% Determining the Optimal Standard Deviation from Monte Carlo
OptMC = stdforcfsetting(ResponseMatrix_MC, OCFMC);

% Determining the Optimal Standard Deviation from Noise Surrogation
OptNS = stdfor_cfsetting(ResponseMatrixMC, OCFNS);

std base = std base_MC; % Base Stdev is taken as mean of all STDev's

% Storing and Analysing Results
stdfractionl(modelcounter) = (OptNS / OptMC);

% Storing Improvement Ratios for Noise Surrogation
std_fraction2(modelcounter) = ((std_base - OptNS)/(stdbase - Opt_MC + 1e-10));

315

Y(modelcounter) = (stdbase - OptNS)/std_base;
X1 (modelcounter) = (stdbase - OptMC)/stdbase;

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d',modelcounter))
end
close(h1); % Close waitbar

% saving workspace
save variables;

output;

316

15.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model
% Reference Chipman, Hamada and Wu paper 1997 and Li and Frey 2005 paper
% 03/04/2005 by Jagmeet Singh

Tablel = [10 1
10 1
10 1
15 1/3
15 1/3
15 1/3

1
0
2/3
2/3
0

1 1 1
0.1 0.1
1 1

1 1
0.1 0.1

1 1];

Table2 = [0.25 0.25
0.25 0.25
0.25 0.25
0.43 0.31
0.43 0.31
0.43 0.31

0.1
0.1 0
0.1 0
0.04 0
0.04 0
0.04 0

Table1= [Table1 Table2];
vector=TableI (modelpara,:);

0 0.25 0.1 0
0.25 0.1 0 0
0 0 0 0
0.17 0.08 0.02
0.17 0.08 0.02
0 0 0 0];

% for input to Main Model

317

0

0
0

15.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,s1,s2,wl,p,p1 1,pO1,pOO,pl 11 ,p01 1,p001,p000)

% Developing 3rd order RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: # of CF's, # of NF's, c, s1, s2,
% pOO, p01, p1 1, pll, poll, p001

w1,
p000

% OUTPUT: bi's, bij's,and bijk's
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (wI)
W1 = 1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=wl;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1
for i=1:nnf+ncf

if delta(1,i) <= p
delta(1,i)=1;

else
delta(1,i)=0;

end
end

nnf+ncf]); % Defining delta
% Prob (deltai = 1) = p

deltaij(1:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(ij)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(i,j) <= p00

deltaij(i,j)=1;
else

deltaij(ij)=0;
end

end

if sumdeltas == 1

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

318

if deltaij(i,j) <= p01
deltaij(i,j)=1;

else
deltaij(i,j)=0;

end
end

if sumdeltas == 2
if deltaij(i,j) <= p11

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

end
end

% Defining delta-ij when both the factors are active

% Defining delta-ijk
deltaijk(1:(nnf+ncf),I:(nnf+ncf),1:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumdeltas=delta(1,i)+delta(1,j)+delta(1,k); % Finding the sum of delta's
deltaijk(i,j,k)=unifrnd(0,1); % Defining delta-ijk [0,1]

if sumdeltas == 0
if deltaijk(i,j,k) <= p000

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 1
if deltaijk(i,j,k) <= pOO1

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 2
if deltaijk(i,j,k) <= pO11

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 3
if deltaijk(i,j,k) <= p111

% Defining delta-ijk when all 3 main effects are inactive

% Defining delta-ijk when all 2 main effects are inactive

% Defining delta-ijk when all 2 main effects are active

% Defining delta-ijk when all 3 main effects are active

319

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

end
end

end

for i=1:nnf+ncf
if delta(1,i) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1,i)=t(i)*normrnd(0,c);
end

% Defining bi's for the CF's and NF's

end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else

bij(i,j)=t(i)*t(j)*normrnd(O,c*s1);
end

end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:nnf+ncf
for k=j+1:nnf+ncf

if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,s2);

else
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(0,c*s2);

end
end

end
end

320

15.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = std forcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

321

15.5

% Function Varcfsetting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 08/10/2004 by Jagmeet Singh

function [ResponseMatrixMC, varianc] = Varcfsetting(bi, bij, bijk, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

X = ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(O,w2);

end
end

ResponseMatrixMC = [X yMC]; % Storing CF setting and Yassumed for that setting
varianc = (var(yMC'))'; % Finding the Variance for each CF setting

322

15.6

% Function to plot the outputs of the response

% 09/29/2004 by Jagmeet Singh

function outputo

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when OCFMC is same as OCF_N1
figure; success=[(counter OCF 1) (maxmodels-counterOCF_1)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .351;
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCF._MC from OCF._n-o-i-s-e _s-u r-r-o_g_at_i-o-n
for',num2str(maxmodels),' models']);
hgsave('piel');

% Plotting Histograms
figure;
hist(std fraction1);
title(['Histogram for Fraction of OPT.STD_s_ur_ro_g_a-t i o_n to OPT.STD_M_C for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(std fraction1,[25 50 75]); tmax = max(hist(stdfraction1));
line([iq(1) iq(l)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],LineStyle','--','Color','r');
line([iq(2) iq(2)J,[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_th Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('OPT.STD.NSurrogation / OPT.STD.MC');
ylabel(' number of systems ');
hgsave('fig ');

figure;
hist(std-fraction2);
title('Histogram for Fraction of (STD_b_a_s_e -
OPT.STDs-u-r-r-o_g_a_t-ion)/(STD-b-a-s_e - OPT.STD_M_C) for ',num2str(maxmodels),'
models']);
colormap cool; iq = prctile(std fraction2,[25 50 75]); tmax = max(hist(stdfraction2));
line([iq(1) iq(1)],[0 tmax],'LineStyle','-'); line([iq(3) iq(3)],[0 tmax],'LineStyle','-','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t_h Percentile = ',num2str(iq(1))]...

,[75_t h Percentile = ',num2str(iq(3))],['Median = ,num2str(iq(2))],' Frequency');
xlabel('(STD.Base-OPT.STD.NSurrogation)/(STD.Base-OPT.STD.MC)');
ylabel(' number of systems ');
hgsave('fig2');

323

figure;
plot(X1,Y,'*','color','r');
X2 = [ones(size(X1')) X1'];
a = X2\Y';
Y2 = a'*X2';
B = [X1' Y2'];
iO = regress(Y',X1');
B = sortrows(B,1);
hold on;
line([B(1,1);B(maxmodels,1)], [B(1,2);B(maxmodels,2)],'Color','g', 'LineWidth', 0.5);
line([O;B(maxmodels,1)],[O;i*B(maxmodels,1)],'LineWidth',1.5);
title(['For 3ArAd Order Model : Plotting (STD_b_a_s_e -
STD_s_ur_ rro g_a t i_o n)/STD_b_a_s-e vs (STD_b_a_s_e - STD_o_pt)/STD-b-a_5se
and slope =', num2str(a(2,1))]);
xiabel('(STD_b_a_s_e - STD_o_p_t)/STD-b-a-s_e');
ylabel('(STD_b_a_s_e - STD_s-u-r-roga-t-i_o_n)/STD_b_a_s-e');
hgsave('fig3');

probpos = 0; % To find the probability that compounding will yield positive improvement
for index = 1:maxmodels

if Y(1,index) >= 0.00
probpos = probpos + 1;

end
end

% Printing the results
sprintf(['mean(Number of OCF matched for Noise Surrogation) =

',num2str(mean(matchingsurrogate))])
sprintf([' Probability that Noise Surrogation will Yield Positive Improvement =

',num2str(probpos/maxmodels)])

324

16.1

% We first assume the model parameters we want to use in RWH 2nd order
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model.

% Noise factors are taken as independent.

% Noise Surrogation (TTBF) is done by finding 2 most important noises out of the
% total 5 noises for a given system based on their absolute scale

% We will find optimal control factor setting for TTBF noise strategy.
% And compare that with optimal control factor
% setting got from using Monte Carlo to generate noise factor settings. We
% will run this for 200 models. Each model has 7 CF's and 5 NF's and RWH
% model determines how active they are.

% Find Improvement Ratio for each value of p11, p01, p00 from 0.01 to 1 00.
% The p (prob. of active main effects) = 0.95. Since for most of the Strong
% Hierarchy case studies main effects were active with high probability.

% RWH for 200 models for 2nd order RWH Model

% 02/11/2006 by Jagmeet Singh

clear; cdc;
global cfsetting w2 ncf nnf maxnoisevar;

[cfsetting,conf-cfsetting]=fracfact('a b c d e f g'); % defining 2(7) Full Factorial Array for CF's
[nfsetting,conf nfsetting]=fracfact('a b c d e'); % defining 2(5) Full Factorial Array for NF's
[reference,conf_reference]=fracfact('a b'); % defining 2(2) Full Factorial for TTBF strategy

modelpara=6; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)

modelparameter=models(modelpara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); s1 =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=modelparameter(1,5); p = 0.95;% defining parameters and
Changing 'p'

ncf=7; % #of CF's
nnf=5; % #of NF's

325

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

counter_p11 = 1;

for p11 = 0.01: 0.01: 1.00
X2(counter_pl 1) = p11; % Store p11 values for final plot
p01 = p11; % defining new probability parameters
p00 = p11;

hI = waitbar(0,'Running Models');
for modelcounter=l:maxmodels % To run a given number of models

[bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wl,p,pll,p01,pOO); % Finding beta values for a given
model

[main-noises, indices] = sort(abs(bi(1:5))); % To sort-out main 2 noises out of 5 based on
absolute scale

% 4th and 5th element of indices will give the indices of main 2 noises

% Filling nfsettingttbf according to discussed strategy
for nfruns = 1:nnf

for nfrows = 1:4
dummy = randperm(2)*2 - 3;
nfsettingTTBF(nfrows, nfruns) = dummy(1,1);

end
end
nfsettingTTBF(:, indices(4))= reference(:,1);
nfsettingTTBF(:, indices(5))= reference(:,2);

nfsettingTTBF

% For 2(5) Full Factorial Noise Array
clear ResponseMatrix1; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:32
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=0; sumijk=o;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
yl(cfruns,nfruns) = bi*x' + sumij + sumijk + normrnd(0,w2);
ResponseMatrixl(index respmatrix,:)=[nfsetting(nfruns,:) cfsetting(cfruns,:)

yl (cfruns,nfruns)];

326

indexrespmatrix = indexrespmatrix + 1; % For Storing Response Matrix
end

end

varianc = var(yl')';
STDev_1 = varianc.AO.5; % Stdev for each CF setting
stdbase_1 = STDev_1(1,1);
op std 1 = min(STDev_1); % Finding least Stdev
PredMin_1 = sortrows([STDev_1 cfsetting],1);
OCF_N1 = PredMin_1(1,2:8);

% For TTBF Noise Strategy at 4 levels
clear ResponseMatrix_c; % Response Matrix = [NF CF Y]
indexrespmatrix = 1; % Counter for response matrix
for cfruns = 1:128

for nfruns = 1:4
x(1,1:5)=nfsettingTTBF(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Setting
sumij=O; sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_c(cfruns,nfruns) = bi*x + sumij + sumijk + normrnd(O,w2);
ResponseMatrix-c(indexresp_matrix,:)=[reference(nfruns,:) cfsetting(cfruns,:)

y_c(cfruns,nfruns)];
index respmatrix = index respmatrix + 1; % For Storing Response Matrix

end
end

varianc = var(yc')';
STDev c = varianc.A0.5; % Stdev for each CF setting
stdbase_c = STDev c(1,1);
op std c = min(STDevc); % Finding Least STDev_1
PredMinc = sortrows([STDev c cfsetting],1);
OCF_c = PredMinc(1,2:8);

% Finding Optimal Standard Deviation from Compound Noise
for cfruns = 1:128

327

if OCFc == PredMin_1(cfruns, 2:8);
Opt c = PredMinl(cfruns,1);

end
end

% Determining the Optimal Standard Deviation from Noise Strategy 1
Opt_1 = opstd_1;

stdbase = mean(STDev_1); % Base Stdev is taken as mean of all STDev's

% Storing Improvement Ratios for Compound Noise
stdfraction4(modelcounter) = ((std base - Optc)/(stdbase - Opt_1 + le-10));

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d for p1 1, p01, p00 =
%.2f',modelcounter, p11))

end
close(h1); % Close waitbar

improvementratio mean(counterp1 1) = mean(std-fraction4);
Ratio for given p11

improvementratio median(counterp1 1) = median(stdfraction4);
Ratio for given p11

counter-p11 = counter p11 + 1; % Increasing the Counter

end

% saving workspace
save variables;

% Finding Improvement

% Finding Improvement

clear; cic;
load variables; % to remove previous data and upload the current data

% Plotting Improvement Ratio Mean vs P11, P01, P00

t2 = polyfit(X2, improvementratiomean, 3);
y2= polyval(t2,X2);
hold on;
plot(X2, improvementratiomean, .');

% Fitting a 3rd order polynomial

328

plot(X2, y2,'k','LineWidth',1, 'Marker', '+', 'MarkerEdgeColor','k',...
'MarkerFaceColor',Yk',...
'MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0_0', 'FontSize', 11);
ylabel('Mean Improvement Ratio', 'FontSize', 11);
title('Mean Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([O 1]);
hgsave('meanimprovement ratio');
hold off;
figure;

% Plotting Improvement Ratio Median vs P11, P01, P00

t3 = polyfit(X2, improvementratiomedian, 3); % Fitting a 3rd order polynomial
y3 = polyval(t3,X2);
hold on;
plot(X2, improvementratiomedian, tt);

plot(X2, y3,'k','LineWidth',1, 'Marker', '+', 'MarkerEdgeColor','k',...
'MarkerFaceColor','k',...
'MarkerSize', 2);

xlabel('p_1_1, p_0_1, p_0_Ct 'FontSize', 11);
ylabel('Median Improvement Ratio', 'FontSize', 11);
title('Median Improvement Ratio vs Density of Effects for RWH Model', 'FontSize',12);
ylim([0 1]);
hgsave('medianimprovementratio');
hold off;

329

16.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model
% Reference Chipman, Hamada and Wu paper 1997 and Prof. Frey's paper
% 03/04/2004 by Jagmeet Singh

Tablel =
10
10
15
15
15

[10
I
1
1/3
1/3
1/3

0
2/3
2/3
0

1 1
0.1 0.1
1 1
1
0.1
1

1
0.1

1];

Table2 = [0.25 0.25
0.25 0.25
0.25 0.25
0.43 0.31
0.43 0.31
0.43 0.31

0.1
0.1 0
0.1 0
0.04 0
0.04 0
0.04 0

Tablel= [Tablel Table2];
vector=Table1 (modelpara,:);

0 0.25 0.1 0
0.25 0.1 0 0
0 0 0 0
0.17 0.08 0.02
0.17 0.08 0.02
0 0 0 0];

% for input to Main Model

330

0

0
0

16.3

function [bi,bij]=RWH_2ndorder(ncf,nnf,c,sl,wl,p,p1 1,p01,p00)

% Developing 2nd order RWH Model (without ERROR)
% INPUTS: # of CF's, # of NF's, C, S1, W1, p,
% p00, p01, p11

% OUTPUT: bi's and bijs
% Developed on 03/03/2004 by Jagmeet Singh

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=w1;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1 nnf+ncfj); % Defining delta
for i=1:nnf+ncf % Prob (deltai = 1) = p

if delta(1,i) <= p
delta(1,i)=1;

else
delta(1,i)=0;

end
end

deltaij(1:(nnf+ncf),I:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(i,j)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(i,j) <= p00

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sumdeltas == 1
if deltaij(i,j) <= p01

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

end

if sumdeltas == 2

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

% Defining delta-ij when both the factors are active

331

if deltaij(i,j) <= p11
deltaij(i,j)=1;

else
deltaij(i,j)=O;

end
end

end
end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,i) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1,i)=t(i)*normrnd(0,c);
end

end

bij(1:nnf+ncf,11:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*t)*normrnd(0,s 1);
else

bij(i,j)=t(i)*t(j)*normrnd(0,c*sl);
end

end
end

332

16.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
0/ cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = std forcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

333

16.5

% Function Varcfsetting takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 1000 Noise factors settings and finds
% the variance at each control factor setting for full model

% 03/16/2004 by Jagmeet Singh

function [ResponseMatrixMC, varianc] = Varcf_setting(bi, bij, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

X = ff2n(7)*2 - 1; % Defining x's for Response Model
nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:size(X,1)

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=X(cfruns,:); % Defining CF Settings
sumij=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end
y_MC(cfruns,nfruns)=bi*x' + sumij + normrnd(0,w2);

end
end

ResponseMatrixMC = [X yMC]; % Storing CF setting and Yassumed for that setting
varianc = (var(yMC'))'; % Finding the Variance for each CF setting

334

17.1

% function effectcorrelationo: To check the impact of correlation and
% variance of noise factors

% We first assume the model parameters we want to use in RWH 3rd order
% model. We call that set of parameters from modelparameters.m. Then we
% find betas for a given model. We run 2 kinds of analysis on the beta
% values.

% One is the Assumed model in which noise factors are independent and the
% other one is Actual model in which noise factors are correlated. We find
% optimal CF setting in both cases. And the respective standard deviations
% at the optimal CF setting in both the cases. We runs this for 200
% models. Each model has 7 CF's and 5 NF's and RWH model determines how
% active they are. We will use MONTE CARLO method to find variance for each
% control factor setting

% BASIC WH for 200 models for 3rd order RWH Model

% 04/21/2005 by Jagmeet Singh

clear;clc;
global cfsetting w2 ncf nnf maxnoisevar;

cfsetting = ff2n(7)*2 - 1; % Defining Full Factorial Design for the 7 Control Factors

modelpara=1; % Defining which model parameters we would be using for 2nd order model
% Basic WH(1); Basic low w(2); Basic 2nd order(3); Fitted WH(4); Fitted
% low order(5); Fitted 2nd order(6)
modelparameter=models(modepara); % To get the values of c, s1, p's etc for the given
model
c=modelparameter(1,1); s1 =modelparameter(1,2); s2=modelparameter(1,3);
w1 =modelparameter(1,4); w2=10.0 p=modelparameter(1,6);
p11=modelparameter(1,7); p01=modelparameter(1,8); pOO=modelparameter(1,9);
pll=modelparameter(1,10); p011=modelparameter(1,11); p001 =modelparameter(1,12);
pOOO=modelparameter(1,13);% defining parameters

ncf=7; % #of CF's
nnf=5; % #of NF's
counterper dev op = 0; % To increment when (std actual - opstdactual)/op_stdactual <
5%
counter per-devbase = 0; % To increment when (std actual - opstdactual)/std_baseactual
< 5%
counterOCF = 0; % To increment when OCFactual == OCFassumed for a given model
run
MU = [0 0 0 0 0]; % Defines the means of the Noise Variables been used
sigma assumed = eye(5); % Define the covariance matrix for the assumed model
% the on diagonal elements are ones and rest all zero. EYE function
% generates Identity Matrix
maxnoisevar = 200; % Maximum number of Noise Factor settings

335

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxmodels = 200; % The number of models to be tested
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hi = waitbar(0,'Running Models');
for modelcounter=1:maxmodels % To run a given number of models

modelcounter
[bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,pl1,pOl,pO0,p111,pOl1,pOO1,pOO0); %

Finding beta values for a given model

% For Assumed Model with all independent noise factors
clear ResponseMatrixAssumed; % Response Matrix = [CF Yassumed'sforCFsetting]
[ResponseMatrixAssumed, varianc] = Assumedmodel(bi, bij, bijk, MU, sigma_assumed);

STDevassumed = varianc.AO.5; % Stdev for each CF setting
stdbaseassumed = STDev-assumed(1,1);
op stdassumed = min(STDevassumed); % Finding least Stdev
PredMinassumed = sortrows([STDev assumed cfsetting],1);
OCF_assumed = PredMinassumed(1,2:8);

%%%%%%%%%%%%%%%%%%%%%
% For Actual Model with correlated noise factors
clear ResponseMatrixActual; % Response Matrix = [CF Yactual'sforCFsetting]

% To generate Sigmaactual Matrix (Covariance Matrix) which has Correlation among
% the noise variables and Has the same on diagonal elements as
% sigmaassumed. And SigmaActual is Positive Semi Definite and
% Symmetric.
r = normrnd(0,0.01,[10 1]); % To generate random correlation coefficients
sigma-actual = eye(5); % Inital Matrix
dummy_t=1;
for i=1:5

for j=i+1:5
sigma actual(i,j) = r(dummy t,1);
sigma actual(j,i) = r(dummy t,1);
dummyt = dummyt+1;

end
end
sigmaactual = corrcoef(sigmaactual); % Gives PSD Covariance Symmetric Matrix
for i=1:5

for j=i+1:5
sigma actual(i,j) = sigmaactual(i,j)/25;
sigma actual(j,i) = sigmaactual(j,i)/25;

end
end
% To reduce the correlation among noise factors

[ResponseMatrixActual, varianc actual] = Actualmodel(bi, bij, bijk, MU, sigma-actual);

336

STDevactual = variancactual.A0.5; % Stdev for each CF setting
stdbaseactual = STDevactual(1,1);
op std actual = min(STDevactual); % Finding least Stdev
PredMinactual = sortrows([STDevactual cfsetting],1);
OCF_actual = PredMin-actual(1,2:8);

% Determining the Stdactual at OCFassumed
Stdactual = stdforcfsetting(ResponseMatrixActual, OCF assumed);

% We might select control factor settings randomly. So any
% setting of CF can be chosen to act as a base. Here we
% will find Standard deviation of a cf setting which is
% chosen at random and we will take it as one of the base
% standard deviation and we will work on the results
base cfsetting = unifrnd(-1,1,[1 7]);
for indexcf=1:7

if basecfsetting(1,indexcf) <= 0.00
basecfsetting(1,index-cf)=-1;

else
basecfsetting(1,indexcf)=1;

end
end
stdbaseactual_1 = std_forcfsetting(ResponseMatrixActual, basecfsetting);

% Storing and Analysing Results
per dev op(modelcounter) = ((Stdactual - opstdactual)/op std actual)*100.;
if per dev op(modelcounter) < 5.000

counterper-dev-op = counterper dev op + 1; % When the difference is small
end
per dev base(modelcounter) = ((Std_actual - op_std_actual)/std base actual)*100.;
if per dev base(modelcounter) < 5.000

counterper dev base = counter-per-devbase + 1; % When the difference is small
end

if OCF actual == OCFassumed
counterOCF = counterOCF + 1; % When same CF setting is predicted in both cases

end

% Storing Optimal Standard Deviation and STD.Actual
OPSTDACTUAL(modelcounter) = opstd actual;
STDACTUAL(modelcounter) = Std_actual;

% Storing % Improvement in Assumed Model is OCF_assumed are selected
improv-assumed(modelcounter) = ((std baseassumed -

opstdassumed)/std baseassumed)*1 00.;
% Storing % Improvement in Actual Model if OCFassumed are selected
improv actuall (modelcounter) = ((stdbase actual - Std-actual)/std_base_actual)*1 00.;
% Storing % Improvement in Actual Model if OCFactual are selected

337

improv-actual2(modelcounter) = ((std baseactual - opstd actual)/stdbase actual)*100.;
% Storing % Improvement in Actual Model if OCFassumed are selected and
% STD.Actual.1
improv-actual3(modelcounter) = ((std baseactual_1 - Std_actual)/std baseactual_1)*100.;
% Storing % Improvement in Actual Model if OCFactual are selected and
% STD.Actual.1
improv-actual4(modelcounter) = ((std baseactual_1 -

opstd-actual)/stdbaseactual_1)*100.;

% Storing Fractions of stddev ratios for actual model
stdfraction1(modelcounter) = (Stdactual/stdbase actual);
% Storing Fractions of STD_Actual to Op_StdActual ratios of actual
% model
stdfraction2(modelcounter) = (Std actual/opstd actual);
% Some Other important fractions
stdfraction3(modelcounter) = ((Std actual - stdbaseactual_1)/(op std actual -

stdbaseactual_1 + le-10));
% To avoid division by zero

stdfraction4(modelcounter) = ((Std actual - stdbase actual)/(op std actual -
stdbaseactual + 1e-10));

% To avoid division by zero

% Storing Fractions of stddev ratios for actual model
stdfraction5(modelcounter) = (Std actual/stdbase actual_1);

waitbar(modelcounter/maxmodels,hl,sprintf('Running Model #%d',modelcounter))
end
close(hl); % Close waitbar

% saving workspace
save variables;

output;

338

17.2

function vector=models(modelpara)
% It defines the parameters that we would be using for Relaxed-Weak
% Heredity model
% Reference Chipman, Hamada and Wu paper 1997 and Prof. Frey's paper
% 03/04/2004 by Jagmeet Singh

Tablel = [10 1 1
10 1 1
10 1 0
15 1/3 2/3
15 1/3 2/3
15 1/3 0

1 1
0.1 0.1
1 1

1
0.1
I

1
0.1

1];

Table2 = [0.25 0.25
0.25 0.25
0.25 0.25
0.43 0.31
0.43 0.31
0.43 0.31

0.1
0.1 0
0.1 0
0.04 0
0.04 0
0.04 0

Table1= [Tablel Table2];
vector=Tablel (modelpara,:);

0 0.25 0.1 0
0.25 0.1 0 0
0 0 0 0
0.17 0.08 0.02
0.17 0.08 0.02
0 0 0 0];

% for input to Main Model

339

0

0
0

17.3

function [bi,bij,bijk]=RWH_3rdorder(ncf,nnf,c,sl,s2,wl,p,p1 1,p01,p00,p11 ,p 1 ,p 1,p000)

% Developing 3rd order RWH Model (without ERROR) Including the Demand and
% Capacity noises for Phase 5 study.

% INPUTS: #of CF's, # of NF's, c, s1, s2,
% p00, p01, P11, pll, poll, p001

W1, p,
p000

% OUTPUT: bi's, bij's,and bijk's
% Developed on 03/24/2004 by Jagmeet Singh

% Defining the intensity of Noise wrt range of Control Factor setting (wI)
W1 = 1.0;

for i=1:(ncf+nnf) % Defining t as mentioned in the writeup
if i <= nnf

t(i)=w1;
else

t(i)=1;
end

end

delta=unifrnd(0,1,[1
for i=1:nnf+ncf

if delta(1,i) <= p
delta(1,)=1;

else
delta(1,)=0;

end

nnf+ncf]); % Defining delta
% Prob (delta i = 1) = p

end

deltaij(1:(nnf+ncf),I:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumdeltas=delta(1,i)+delta(1,j); % Finding the sum of delta-i + delta-j
deltaij(ij)=unifrnd(0,1); % Defining delta-ij [0,1]

if sumdeltas == 0
if deltaij(ij) <= p00

deltaij(i,j)=1;
else

deltaij(ij)=0;
end

end

if sumdeltas == 1

% Defining delta-ij when both main factors are inactive

% Defining delta-ij when one of the factors is active

340

if deltaij(i,j) <= p01
deltaij(i,j)=1;

else
deltaij(i,j)=0;

end
end

if sumdeltas == 2
if deltaij(i,j) <= p11

deltaij(i,j)=1;
else

deltaij(i,j)=0;
end

% Defining delta-ij when both the factors are active

end

end
end

% Defining delta-ijk
deltaijk(1:(nnf+ncf),I:(nnf+ncf),I:(nnf+ncf))=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumdeltas=delta(1,i)+delta(1,j)+delta(1,k); % Finding the sum of delta's
deltaijk(i,j,k)=unifrnd(0,1); % Defining delta-ijk [0,11

if sumdeltas == 0
if deltaijk(i,j,k) <= p000

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 1
if deltaijk(i,j,k) <= p001

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 2
if deltaijk(i,j,k) <= p01 1

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=0;
end

end

if sumdeltas == 3
if deltaijk(i,j,k) <= p111

% Defining delta-ijk when all 3 main effects are inactive

% Defining delta-ijk when all 2 main effects are inactive

% Defining delta-ijk when all 2 main effects are active

% Defining delta-ijk when all 3 main effects are active

341

deltaijk(i,j,k)=1;
else

deltaijk(i,j,k)=O;
end

end

end
end

end

for i=1:nnf+ncf % Defining bi's for the CF's and NF's
if delta(1,) == 0

bi(1,i)=t(i)*normrnd(0,1);
else

bi(1,i)=t(i)*normrnd(O,c);
end

end

bij(1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:(nnf+ncf)
if deltaij(i,j) == 0

bij(i,j)=t(i)*t(j)*normrnd(0,s1);
else

bij(i,j)=t(i)*tj)*normrnd(0,c*s1);
end

end
end

bijk(1:nnf+ncf,1:nnf+ncf,1:nnf+ncf)=0;
for i=1:nnf+ncf

for j=i+1:nnf+ncf
for k=j+1:nnf+ncf

if deltaijk(i,j,k) == 0
bijk(i,j,k)=t(i)*tj)*t(k)*normrnd(O,s2);

else
bijk(i,j,k)=t(i)*t(j)*t(k)*normrnd(O,c*s2);

end
end

end
end

342

17.4

% Function to find the variance of the response once it is given the
% Control Factor setting and the Matrix with contains the response and
% cfsetting

% Inputs: Response Matrix and Required CF setting

% Output: Standard Deviation of Response for the given CF setting

% 03/24/2004 by Jagmeet Singh

function [std dev] = stdforcfsetting(ResponseMatrix, setting)

global cfsetting w2 ncf nnf maxnoisevar;

clear ysetting;

for i = 1:128
if setting == ResponseMatrix(i,1:7)

ysetting = ResponseMatrix(i,8:maxnoisevar+7);
stddev = std(ysetting);

end
end

343

17.5

% Function Actual Model takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are correlated.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 03/24/2004 by Jagmeet Singh

function [ResponseMatrixActual, varianc] = Actualmodel(bi, bij, bijk, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:128

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Settings

sumij=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end

sumijk=0;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end

yactual(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(0,w2);
end

end

ResponseMatrixActual = [cfsetting yactual]; % Storing CF setting and Yactual for that setting
varianc = (var(yactual'))'; % Finding the Variance for each CF setting

344

17.6

% Function Assumed Model takes inputs from RWH model, mean of Noises and
% the Covariance Matrix, which shows that Noise variables are independent.
% It then generates the Response for 200 Noise factors settings and finds
% the variance at each control factor setting for full model

% 03/24/2004 by Jagmeet Singh

function [ResponseMatrixAssumed, varianc] = Assumedmodel(bi, bij, bijk, MU, sigma)

global cfsetting w2 ncf nnf maxnoisevar;

nfsetting = lhsnorm(MU, sigma, maxnoisevar);
for cfruns = 1:128

for nfruns = 1:maxnoisevar
x(1,1:5)=nfsetting(nfruns,:); % Defining Noise Factor Settings
x(1,6:12)=cfsetting(cfruns,:); % Defining CF Settings

sumij=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
sumij=sumij+bij(i,j)*x(1,i)*x(1,j);

end
end

sumijk=O;
for i=1:(nnf+ncf)

for j=i+1:(nnf+ncf)
for k=j+1:(nnf+ncf)

sumijk=sumijk + bijk(i,j,k)*x(1,i)*x(1,j)*x(1,k);
end

end
end

yassumed(cfruns,nfruns)=bi*x' + sumij + sumijk + normrnd(O,w2);
end

end

ResponseMatrixAssu med = [cfsetting yassumed]; % Storing CF setting and Yassumed for that
setting
varianc = (var(yassumed'))'; % Finding the Variance for each CF setting

345

17.7

% Function to plot the outputs of the response

function outputo

load variables;

% Plotting and Analysing Results from the runs

% Pie Chart when Stdactual is close to op_std_actual based on Optimal
% Stdev
figure; success=[(counter per-dev-op) (maxmodels-counterperdevop)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hpjype','text'); oldstr = get(textobjs,{'String'});
Names = {'Success: ';> 5%: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in reducing ST-d_e_v to 5% error (based on OP.STD-d-ev) of OP.STD_d_e_v
for ',num2str(maxmodels),' models']);
hgsave('piel');

% Plotting histogram for perdev-op
figure;
hist(per-dev-op);
title(['Histogram for Percentage of (STDac t u a_l-

OP.STD_a_c t u_a_l)/OP.STD a c t ua_I for', num2str(maxmodels),' models]);
colormap cool; iq = prctile(per dev op,[25 50 75]); tmax = max(hist(per devop));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color,'r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t_h Percentile =

',num2str(iq(1))]...
,[75_t h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');

xlabel('((STD.Actual - OP.STD.Actua)/OP.STD.Actual) *100');
ylabel(' number of systems ');
hgsave('fig-piel');

% Pie Chart when Stdactual is close to op_std_actual based on base
% Stdev
figure; success=[(counter per-dev base) (maxmodels-counter perdev_base)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Success: ';'> 5%: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in reducing ST d_e_v to 5% error (based on Base.STDact_ u-a_l)
OP.STD_d_e_v for ',num2str(maxmodels),' models']);
hgsave('pie2');

% Pie Chart when OCFActual is same as OCFAssumed

346

figure; success=[(counterOCF) (maxmodels-counterOCF)];
explode = [1 0]; colormap cool; hp = pie3(success,explode);
textobjs = findobj(hp,'Type','text'); oldstr = get(textobjs,{'String'});
Names = {'Same CF levels: ';'Diff CF levels: '}; newstr = strcat(Names, oldstr);
set(textobjs,{'String'},newstr);
pos = get(textobjs,{'Position'}); pos{1,:} = [-0.28 -0.61 .35];
set(textobjs,{'Position'},pos);
title(['Success in prediction of OCFActual from OCF.Assumed ',num2str(maxmodels),' models']);
hgsave('pie3');

% Plotting Histograms
figure;
hist(std-fractionl);
title(['Histogram for Fraction of ST_d_e_v.Actual to STD.Base.Actual for ',num2str(maxmodels),'
models']);
colormap cool; iq = prctile(stdjfractionl,[25 50 75]); tmax = max(hist(stdfraction1));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,'75_t h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('STD.Actual/STD.Base.Actual');
ylabel(' number of systems ');
hgsave('figl');

figure;
hist(std fraction2);
title(['Histogram for Fraction of ST_d_e_v.Actual to OP.STD.Actual for ',num2str(maxmodels),'
models']);
colormap cool; iq = prctile(std fraction2,[25 50 75]); tmax = max(hist(stdfraction2));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','-','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t_h Percentile =',num2str(iq(1))]...

,['75_t-h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xiabel('STD.Actual/OP.STD.Actual');
ylabel(' number of systems ');
hgsave('fig2');

figure;
hist(std fraction3);
title(['Histogram for Fraction of (STD a c t u a_l-STD_b_a_s_e _a_c t u_a_I

_1)/(OP.STD a c t u a_l-STD_b_a_s_e _a_c t u aI _1) for ',num2str(maxmodels),' models']);
colormap cool; iq = prctile(std fraction3,[25 50 75]); tmax = max(hist(stdfraction3));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25 t h Percentile = ',num2str(iq(1))]...

,['75_t h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Actual-STD.Base.Actual1)/(OP.STD.Actual-STD.Base.Actuall)');
ylabel(' number of systems ');
hgsave('fig3');

figure;
hist(std fraction4);
title(['Histogram for Fraction of (STD a c t u a_l-STD_b_a_s_e

a c tIu a_l)/(OP.STD a c t u a_l-STD_b_a_s_e _a_c-t-uLa l) for ',num2str(maxmodels),'
models']);

347

colormap cool; iq = prctile(std fraction4,[25 50 75]); tmax = max(hist(std fraction4));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)1,[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('(STD.Actual-STD.Base.Actual)/(OP.STD.Actual-STD.Base.Actual)');
ylabel(' number of systems ');
hgsave('fig4');

figure;
hist(std fraction5);
title(['Histogram for Fraction of STD_a_c t u_a l/STD_b_a_s_e _a _c t u al _1 for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(std fraction5,[25 50 75]); tmax = max(hist(std fraction5));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile =',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency);
xlabel('(STD.Actual)/(STD.Base.Actual. 1)');
ylabel(' number of systems ');
hgsave('fig5');

figure;
hist(improv actuall);
title(['Histogram for % Improv. in ST_d_e_v(based on OCF.Assumed) for Actual Model for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(improv actuall,[25 50 75]); tmax = max(hist(improv actuall));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabeI('((STD.Base.Actual - STD.Actual)/STD.Base.Actual)*100');
ylabel(' number of systems ');
hgsave('fig6');

figure;
hist(improvactual2);
title(['Histogram for % Improv. in ST_d_e_v(based on OCF.Actual) for Actual Model for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(improvactual2,[25 50 75]); tmax = max(hist(improvactual2));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))j,' Frequency');
xlabeI('((STD.Base.Actual - OP.STD.Actual)/STD.Base.Actual)*100');
ylabel(' number of systems ');
hgsave('fig7');

figure;
hist(improv-actual3);
title(['Histogram for % Improv. in ST_d_e_v(based on OCF.Assumed) for Actual Model for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(improv actual3,[25 50 75]); tmax = max(hist(improvactual3));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r);
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');

348

xlabel('((STD.Base.Actual.1 - STD.Actual)/STD.Base.Actual.1) *100');
ylabel(' number of systems ');
hgsave('fig8');

figure;
hist(improv-actual4);
title(['Histogram for % Improv. in ST_d-e_v(based on OCF.Actual) for Actual Model for
',num2str(maxmodels),' models']);
colormap cool; iq = prctile(improv actual4,[25 50 75]); tmax = max(hist(improv actual4));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color','m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_t_h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('((STD.Base.Actual.1 - OP.STD.Actual)/STD.Base.Actual.1) *100');
ylabel(' number of systems ');
hgsave('fig9');

figure;
hist(improv assumed);
title(['Histogram for % Improv. in ST_d_e_v for Assumed Model for ',num2str(maxmodels),'
models']);
colormap cool; iq = prctile(improv assumed,[25 50 75]); tmax = max(hist(improv assumed));
line([iq(1) iq(1)],[0 tmax],'LineStyle','--'); line([iq(3) iq(3)],[0 tmax],'LineStyle','--','Color','r');
line([iq(2) iq(2)],[0 tmax],'LineWidth',2,'Color,'m'); legend(['25_t h Percentile = ',num2str(iq(1))]...

,['75_t-h Percentile = ',num2str(iq(3))],['Median = ',num2str(iq(2))],' Frequency');
xlabel('((STD.Base.Assumed - OP.STD.Assumed)/STD.Base.Assumed)*100');
ylabel(' number of systems ');
hgsave('figl0');

% Printing the results
sprintf(['mean(OP.STD.Actual) = ',num2str(mean(OPSTDACTUAL)),' std(OP.STD.Actual) =

,num2str(std(OP STD ACTUAL))])
sprintf(['mean(STD.Actual) = ',num2str(mean(STDACTUAL)),' std(STD.Actual) =

,num2str(std(STD ACTUAL))])
sprintf([' (M[Std.Actual] - M[OP.STD.Actual])/M[OP.STD.ActualI * 100 = ',num2str(
((mean(STDACTUAL) - mean(OPSTDACTUAL))/mean(OP_STDACTUAL))*100),'%%'])

349

