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ABSTRACT

Increasingly stringent emissions regulations, rising oil prices, and an increased focus on
environmental awareness are driving the search for clean, alternative fuels. Derived from
natural gas, coal, and even biomass Fischer-Tropsch (FT) fuels are one such alternative.
The inherently clean nature of FT diesel coupled with the fact that FT diesel exhibits
similar physical properties to those of conventional diesel make FT diesel an ideal
candidate as both a blending agent with and eventual replacement for conventional
petroleum-based diesel fuels.

The potential for emissions reduction with FT diesel fuels in laboratory engine tests and
on-road vehicle tests is well documented. While a number of chemical and physical
characteristics of FT fuels have been attributed to the observed reduction in emissions,
the actual effects of both the fuel properties and in-cylinder combustion characteristics in
modern diesel engines are still not well understood. In this study a 2002, six-cylinder,
5.9 liter, Cummins ISB 300 diesel engine, outfitted with an in-cylinder pressure
transducer, was subjected to a subset of the Euro III 13-mode test cycle under steady-
state operating conditions.

Emissions and in-cylinder pressure measurements were conducted for neat FT diesel, low
sulfur diesel (LSD), ultra-low sulfur diesel (ULSD), and a blend of FT/LSD. The
experimental results show a significant reduction in regulated emissions with the neat FT
fuel and a more than proportional reduction in particulate emissions for the blend. In
order to provide further insight into the emissions behavior of the fuels, combustion
characteristics were determined from a heat release analysis based on the in-cylinder
pressure measurements. In addition, a detailed chemical analysis of the fuels and
particulate emissions was carried out. The differences in the measured combustion
characteristics and fuel properties were compared to the emissions variations between the
fuels studied, and an explanation for the observed emissions behavior of the fuels was
developed.

Thesis Supervisor: Victor W. Wong
Title: Principle Research Scientist and Lecturer in Mechanical Engineering
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1.0 Introduction and Background

1.1 Diesel Engine Fundamentals

The diesel engine technology of today has come a long way since its inception over a

century ago by Rudolph Diesel. In his first patent filed in Germany in 1892, Diesel

outlined the design for an innovative new internal combustion engine in which

combustion was initiated by injecting liquid fuel into air heated solely by compression.

This fundamental difference between Diesel's compression ignition (CI) engine and

conventional spark ignition (SI) engines of the time yielded an improvement in efficiency

of nearly a factor of two when the engine was first introduced [1].

Despite a number of advances in diesel engine technology in the century since diesel

introduced his first engine, the fundamental operating principles of the diesel engine have

remained virtually unchanged. In its most basic form, a diesel engine is a reciprocating-

piston engine employing internal (heterogeneous) mixture formation and autoignition to

initiate combustion. During the engine's compression stroke, intake air is compressed to

30 to 55 bar resulting in a temperature increase within the cylinder of 700 to 900'C. Fuel

is injected either directly into the cylinder or into an adjacent pre-combustion chamber

late in the compression stroke, near piston top dead center (TDC), upon which the

elevated temperature within the cylinder causes the fuel to autoignite [2].

Mixture formation in the diesel engine, therefore, plays a vital role in diesel autoignition

and subsequent combustion as well as the attainable mean effective pressure [2]. Unlike

spark ignition engines that control load by restricting the intake air by means of a throttle

plate, load in a diesel engine is controlled by varying the amount of fuel injected per

cycle. The absence of any fuel in the cylinder during the compression stroke also

eliminates the possibility of uncontrolled auto ignition or engine knock, a major problem

limiting the compression ratio of SI engines. As such, the compression ratio in diesel

engines can be up to twice that of a conventional SI engine, in the range of 12 to 24

depending upon engine size and aspiration [2].
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1.1.1 Diesel Engine Advantages

Due to the nature of the diesel combustion process, diesel engines exhibit a number of

advantages over conventional spark ignition engines the most notable of which are:

improved efficiency and better fuel economy, lower greenhouse gas and hydrocarbon

emissions, higher torque at lower engine speeds, and extended engine life. In addition to

the qualities inherent to the engine itself, engine maintenance and fuel costs for diesel

engines are also typically lower than the costs associated with comparable SI engines [3].

The significant improvement in efficiency for the diesel engine is attributed primarily to

the engine's higher compression ratio, low pumping losses due to the absence of any type

of throttle mechanism, overall lean operation, and reduced friction losses. Diesel engines

typically run at slower engine speeds than SI engines, due in part, for the need to allow

time for the heterogeneous mixture formation and autoignition to occur. The slower

engine speeds, thus, contribute to a reduction in friction losses within the power cylinder

[3]. Furthermore, the diesel engine's higher efficiency translates into a 20-40%

improvement in fuel economy for diesel-powered vehicles when compared to their

gasoline-powered equivalents [4].

The very nature of the diesel combustion process also results in a significant amount of

heat released earlier and at a faster rate in the expansion stroke than in a gasoline engine.

A direct result of the greater amount of heat released early in the expansion stroke is the

production of higher torque at lower engine speeds. In order to withstand the higher in-

cylinder pressure and faster rate of heat release, diesel engines are typically constructed

in a much more robust manner than SI engines. This fact, combined with the reduced

friction in the power cylinder, leads to an extension of the useful life of a diesel engine

three to four times that of a comparable gasoline engine. Furthermore, many of today's

heavy-duty diesel engines are designed for a service life of one million miles before the

first overhaul [3].

Aside from the performance advantages, the lean nature of diesel combustion also results

in extremely low CO emissions. Furthermore, the absence of any fuel in the cylinder
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during the compression stroke reduces the formation of HC emissions from crevice

volumes [1]. The low HC and CO emissions eliminate the need for expensive

aftertreatment systems to further reduce HC and CO levels such as the three-way

catalysts employed with SI engines.

1.1.2 Diesel Engine Disadvantages

While the benefits listed in the previous section combine to make the diesel engine the

most efficient internal combustion engine in mass production today, there is still

significant room for improvement in a number of key areas. The major disadvantages of

the diesel engine are: elevated NOx and particulate emissions, heavy weight and low

specific power output, reduced engine speed and low exhaust temperatures, and elevated

engine noise levels.

The complex heterogeneous nature of diesel combustion leads to significant NOx and

particulate matter (PM) emissions from diesel engines. The problem of reducing both of

these emissions simultaneously is, perhaps, the most difficult challenge facing diesel

engine development today. Furthermore, the overall lean nature of diesel combustion

complicates NOx reduction via exhaust aftertreatment systems, as NOx reduction in an

oxygen-rich environment cannot currently be easily achieved [3]. An additional

disadvantage of lean combustion in diesel engines is its associated reduction in exhaust

temperature, which complicates particulate emissions reduction using particulate filters

and traps, since these units require temperatures in excess of 600'C for complete soot

oxidation and regeneration [5].

While the problem of reducing NOx and PM emissions is currently the most pressing

challenge facing the diesel industry, a number of additional diesel engine design and

operating characteristics are the focus of substantial improvement efforts as well. The

robust engine design requirements, imposed by the severe nature of the diesel combustion

process, lead to increased engine size and weight. As a result, the specific power output

of diesel engines is typically only 50% to 65% of that of comparable gasoline engines.

An additional consequence of the rapid autoignition event in diesel engines is elevated
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engine noise, especially at idle. In an effort to reduce engine noise and emissions, most

modem diesel engines are now equipped with precision high-pressure fuel injection

systems, which, while effective, also add substantial cost to the engine [3].

1.1.3 Diesel Engine Applications

Despite some apparent disadvantages, the benefits of diesel engines, namely high

efficiency and improved fuel economy, durability, and high power output have made the

diesel engine the power plant of choice in a large and varied number of applications.

Currently diesel engines are used in many industries including transportation,

construction, agriculture, and mining, and power a wide range of vehicles from large

container ships and locomotives to light-duty passenger cars and agricultural equipment.

Based on a 2000 study titled "Diesel Technology and the American Economy," diesel-

powered vehicles transport over 95% of all freight in the United States. Furthermore,

based on the fraction of fuel energy consumed by vehicle type, diesel engines power 80%

of all buses (transit, intercity, and school), 100% of all freight ships, 100% of all freight

trains, and 23% of all passenger trains (transit, commuter, and intercity). In addition,

based on the fraction of fuel energy consumed by sector, diesel engines power 83% of all

construction equipment, 66% of all agricultural equipment, and 22% of all mining

equipment in the U.S. [6].

While diesel engines find widespread use in a number of heavy-duty vehicles, their

acceptance in the light-duty and passenger vehicle market in the U.S. has been slow. A

market survey conducted by R.L. Polk & Company in 2004 showed that for vehicles

offering a choice between gasoline- and diesel-powered versions, 59% of consumers

chose diesel engines in the medium-duty truck segment, whereas only 11% chose the

diesel-powered version in the light-duty segment, and only 6% chose diesel passenger

vehicles. Furthermore, diesel-powered vehicles made up only 3.37% of the new U.S.

passenger vehicle market in 2004, up from 2.25% in 2000 [7].
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The case for diesel engines in the automotive and passenger vehicle market in Europe and

many other parts of the world is quite different from that of the United States. Already in

1990 14% of all new car registrations in Western Europe were diesels, with the number

rising to 40% by 2002 and 51.9% by 2004. Based on projected sales estimates, the

automotive diesel market share in Europe is expected to extend well over 50% by 2010

[8].

1.2 Project Motivation

The growing number of diesel engines in use in the United States and Europe has

prompted concern over the contribution of diesel engines to the overall atmospheric

emissions inventory. Combined with increasing evidence demonstrating the adverse

health effects posed by diesel particulate (PM) emissions [9], this concern has given rise

to increasingly stringent emissions regulations aimed at drastically reducing exhaust

emissions from diesel engines. These new regulations are some of the most important

factors driving diesel engine development in the United States and Europe today.

In order to meet these strict requirements, engine manufacturers are finding it more and

more difficult to reduce emission levels through in-cylinder optimization alone. As a

result, exhaust aftertreatment systems and cleaner diesel fuels present additional means

for meeting these requirements. The trend toward cleaner fuels for reduced emissions

and improved compatibility with aftertreatment devices has led to renewed interest in

Fischer-Tropsch (FT) fuels in recent years. Developed in the 1920's by Franz Fischer

and Hans Tropsch, the FT process can be used to produce hydrocarbon fuels from a wide

range of carbonaceous materials including natural gas, coal, and even biomass. The

diesel fuels produced as a result of this process exhibit a number of chemical and

physical properties attributed to reduced emissions levels. In addition, FT diesel is

completely miscible with conventional diesel making it an ideal candidate as both a

blending agent with and eventual replacement for conventional petroleum-based diesel

fuels. Furthermore, the current state of global politics and rising oil prices make FT fuels

an increasingly attractive alternative to petroleum-based fuels with the potential to reduce

U.S. dependence on foreign oil imports as well [10].
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1.2.1 Emissions Regulations

Due to the nature of diesel combustion, emissions of unburned hydrocarbons and carbon

monoxide are typically low and well below the regulated levels. Emissions of nitrous

oxides and particulates are, therefore, the two primary emissions of concern from diesel

engines. The contribution of diesel-powered vehicles to the overall U.S. mobile source

particulate emissions inventory is presented in Figure 1.1 below.

Gasoline
Nonroad

Gasoline 10% Diesel
Onroad Onroad

15% 24%

Diesel
Nonroad

51%

Figure 1.1. 2000 PM-2.5 mobile source emissions inventory [11]

According to the data presented in Figure 1.1, diesel engines accounted for nearly 75% of

all mobile source PM-2.5 emissions in the U.S. in 2000 [11]. PM-2.5 is defined as all

particulate matter smaller than 2.5 microns. Furthermore, in Germany the daily PM-10

emissions limit of 50 gg/m 3, which was not to be exceeded on more than 35 days in one

calendar year, was exceeded on more than 35 days within the first three months of 2005

in a number of major German cities [12].

Aside from particulates, diesel engine-out NOx exhaust concentrations are comparable to

those of gasoline engines [1]. However, SI engines have an advantage over diesels since

they are operated near stoichiometric, (p = 1, in order to utilize a three-way catalyst to

simultaneously reduce NOx, HC, and CO emissions. Unlike SI engines, diesels run lean

making NOx reduction in an oxygen-rich environment extremely difficult.
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In an effort to reduce NOx and PM emission from diesel engines, both the U.S. and EU

have implemented increasingly stringent emissions regulations. In the U.S., emissions of

NOx and particulates will be reduced by an order of magnitude from the 2002 levels of

2.0 g/hp-hr NOx and 0.1 g/hp-hr PM to the 2007 limits of 0.2 g/hp-hr NOx and 0.01

g/hp-hr PM. Trends in European emission regulations follow those of the U.S., however

in general the EU regulations are slightly less stringent, as shown in Figure 1.2 [3]. As a

result of these increasingly stringent emissions regulations, NOx and PM emissions will

be reduced by over 98% from the 1990 levels by 2010 when the new regulations are

completely phased in.
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Figure 1.2. U.S. and EU heavy-duty diesel emissions regulations [3]

The significant reduction in allowable NOx and PM emissions from heavy-duty diesel

engines is motivated, in part, by growing concern over the adverse environmental and

human health effects posed by these emissions. Excessive NOx concentrations in

densely populated urban areas contribute significantly to the formation of photochemical

smog and ozone [1]. Further, a number of studies have demonstrated the potentially

carcinogenic nature of diesel particulates, which can affect humans when the particulates

are inhaled and become trapped in the bronchial passages and lungs [13]. In addition,

diesel nanoparticles (diameter < 0.1 Im) have been the subject of much investigation,

especially in Europe, where new studies have demonstrated the potential for these

particles to penetrate lung tissue and enter the blood stream, whereby the particles are

transported to other parts of the body [14].
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1.2.2 Fuel Quality Standards

Along with a decrease in the allowable emissions limits, diesel fuel standards in the U.S.

and Europe are changing significantly. Beginning in the U.S. in 2006, the allowable

sulfur content in on-road diesel fuels will be limited to 15 PPM, down from the 500 PPM

limit set in 1993. Similar to the U.S., new diesel fuel standards will take effect in the EU

in 2009, limiting the allowable sulfur content in diesel fuel to 10 PPM. The reduction in

fuel sulfur levels is aimed at reducing particulate emissions from diesel engines, as well

as improving compatibility with aftertreatment devices that would otherwise be poisoned

by higher fuel sulfur levels [3].

1.2.3 Emission Reduction Measures

Despite the reduction in fuel sulfur content, diesel engine manufacturers are finding it

extremely difficult to meet the 2007 PM and NOx limits through in-cylinder optimization

alone. While a number of advanced engine subsystems and combustion strategies have

been developed and implemented to further improve the diesel combustion process and

reduce emissions, exhaust aftertreatment systems currently present the only technically

feasible and economically attractive means to meet these new emissions limits. Figure

1.3 depicts a number of measures, which have been successfully implemented in the past

to meet current emissions regulations.
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Figure 1.3. U.S. heavy-duty diesel emission reduction measures [15]

According to the trends shown in the Figure 1.3, advances in engine technology such as

the development and implementation of high-pressure common rail fuel injection

systems, multiple combustion strategies, variable geometry turbochargers, and cooled

EGR systems have yielded significant improvements in reducing both NOx and PM

emissions to the 2004 levels. While advanced fuel formulations and cleaner diesel fuels

present additional emissions reduction potential, it is widely accepted that some form of

PM and NOx aftertreatment systems will be required to comply with future emissions

regulations.

1.2.4 Emissions Benefits with Fischer-Tropsch Fuels

A number of studies in the open literature have demonstrated the emissions reduction

potential of neat Fischer-Tropsch fuels and blends. In addition, the zero-sulfur content of

FT fuel has also been shown to permit the use of advanced aftertreatment systems in

order to realize an even greater reduction in PM and NOx emissions [16, 17]. While

numerous studies have investigated the effect of FT fuels on engine-out emissions, little

is understood about the underlying causes for the observed emissions behavior of the

fuels, and much work in this area remains. Furthermore, most research with FT fuels has

been conducted using older technology engines without many of the advanced

subsystems used in toady's modem diesel engines.
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A comprehensive literature review covering a wide range of light- and heavy-duty

vehicle and engine tests with Fischer-Tropsch fuels was presented by Alleman et al. in

2003. The review cited the FT fuel's near zero sulfur content, low aromatics content, and

high cetane number as the major contributors to the reduction in PM and NOx emissions

observed with Fischer-Tropsch fuels. In addition, the near zero sulfur content of the fuel

enabled the use of state-of-the-art aftertreatment technologies. On the other hand, some

of the studies mentioned in the review cited poor cold flow and lubricity properties for

the FT fuel, and called for further investigation into the long-term durability implications

[18].

One of the earliest significant studies into the effects of Fisher-Tropsch fuels on diesel

exhaust emissions was carried out by Schaberg et al. in 1997. In this study, a 12.7-liter,

1991 emission level, DDC series 60 diesel engine was run using four neat test fuels and

three fuel blends. Of the four neat fuels, two were Fischer-Tropsch fuels produced by the

Sasol Slurry Phase Distillate Process (SSPD), and the remaining two were conventional

CARB and US 2-D petroleum-based fuels. In addition to the neat fuels, three blends of

various amounts of SSPD in the US 2-D were tested as well. Results showed that the

SSPD fuels reduced nearly all regulated emissions as compared to the US 2-D and CARB

fuels, with the blends reducing emissions in proportion to the amount of SSPD fuel in the

blend. Over all of the test conditions, the SSPD reduced HC, CO, NOx, and PM

emissions by 49%, 33%, 27%, and 21% respectively, when compared with the 2-D fuel.

In addition, the SSPD reduced the PM volatile organic fraction (VOF) by 34% relative to

the 2-D fuel. When compared with the CARB diesel, the SSPD reduced HC, CO, NOx,

and PM emissions by 15%, 23%, 15%, and 21%, and yielded a reduction in PM VOF of

29%. Based on the results of the study, it was estimated that a blend of 40% SSPD with

the US 2-D would result in equivalent emissions of the CARB fuel [19].

A more recent study carried out by Sirman et al. at Southwest Research Institute in 2000

investigated the fuel effects of six alternative diesel fuels in a modern 2.2L Daimler Benz

OM611 engine. The fuels under investigation were a low-sulfur diesel, Fischer-Tropsch
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diesel, a California Reference fuel, and three blends. All six fuel formulations were

compared against an ASTM D975 low sulfur No. 2 diesel (2DLS) control fuel. The neat

FT fuel reduced particulate and NOx emissions by 37% and 6% respectively, and

provided the greatest benefits in emissions reduction over all 13 test modes.

Furthermore, a 20% blend of FT in ULSD was observed to produce the same NOx

reduction as the neat FT fuel as well [20].

In another study, an unmodified 1999 Cummins 5.9 L , turbo-charged, direct injection B-

Series engine was tested using a federal low sulfur diesel fuel, CARB diesel, Swedish

City 1 diesel fuel, and Syntroleum's FT diesel. The results showed a reduction in

emissions with the FT fuel of 41% for HC, 38% for CO, 20% for NOx, and 40% for PM

compared to the federal low sulfur diesel [21].

In one of the first studies to modify an engine to take full advantage of the FT fuel

properties, May et al. used a modified Power Stroke 7.3 liter turbocharged diesel engine.

The engine was modified to take advantage of the high cetane number of the FT fuel by

lowering the compression ratio and altering the piston bowl geometry. A cooled EGR

system, DeNOx catalyst, and diesel particulate filter were also added. When operated

with the FT fuel in the optimized engine configuration, tailpipe-out emissions were

reduced to near the 2007 limits [22].

More recently, studies have focused on fuel effects and emissions in conjunction with

diesel aftertreatment devices. Thompson et al. tested a wide range of fuels of varying

sulfur content including a Fischer-Tropsch and Swedish Class 1 diesel fuel in two

advanced light-duty diesel vehicles and three heavy-duty diesel engines covering Euro-3

to Euro-5 technologies. The Euro-4 and Euro-5 engines were equipped with various

exhaust aftertreatment systems to control both NOx and PM emissions including diesel

particulate filters and SCR/urea systems for NOx control. In all cases, particulate

emissions were significantly reduced for the engines equipped with diesel particulate

filters. Furthermore, in all of the DPF tests, the impact of the fuel properties, other than

sulfur content, on PM emissions was negligible [16].
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Frank et al. conducted a similar study in which Fischer-Tropsch diesel, Biodiesel,

PuriNOxTM, two Ethanol-Diesel blends, and a number of conventional diesel fuels of

varying sulfur content were evaluated using four different exhaust aftertreatment

configurations: engine-out, diesel oxidation catalyst, continuously regenerating diesel

particulate filter, and EGR-DPF. In general, it was observed that the use of aggressive

aftertreatment systems had a much more pronounced effect on emissions than any of the

fuels alone. The FT fuel exhibited the lowest PM emissions of all of the fuels tested and

also substantially reduced NOx emissions. Only the PuriNOxTM exhibited a greater

overall reduction in NOx than the FT [17].

1.3 Project Objectives

While the emissions characteristics of FT fuels are well documented in the literature, the

underlying mechanisms responsible for the observed emissions behavior are still not well

understood. Furthermore, most of the published studies present results based on

experiments conducted using older technology engines, that do not employ such

advanced combustion and engine control strategies as multiple injection events and

severely retarded injection timing for NOx control. The goal of this work was to

investigate the fundamental combustion and emissions characteristics of Fischer-Tropsch

diesel in a modem CI engine.

This study concludes the initial work on FT fuel effects that began in 2001 and was

subsequently reported on by Llaniguez (S.M. 2003) and Acar (S.M. 2005). This work

distinguishes itself from previous studies as it focused solely on the fundamental fuel and

combustion interactions and their effect on engine-out emissions, whereas the studies by

Llaniguez and Acar tended to focus more on the interaction between the FT fuel and

various engine parameters such as EGR rate and injection timing.

The focus of this work was, therefore, to gain a fundamental understanding of the impact

of fuel properties, combustion characteristics, and engine operating parameters on

regulated emissions from a modem heavy-duty diesel engine. To this end, experiments
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were carried out on a 2002 Cummins ISB 300 diesel engine using a standard low sulfur

diesel fuel, ultra-low sulfur diesel fuel, Syntroleum Fischer-Tropsch diesel fuel, and a

blend of 25% FT/75% LSD by volume. A significantly expanded test matrix was

developed to cover a much wider range of engine operating conditions than had been

used in previous studies. Moreover, detailed fuel and particulate composition analyses

were carried, in order to gain further insight into the impact of fuel properties on

emissions. In addition, in-cylinder pressure measurements were also recorded and used

to calculate a number of thermodynamic indicators to quantify the observed differences

in the combustion characteristics of the fuels.
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2.0 Diesel Combustion and Emissions Formation

The diesel combustion process, characterized by its internal heterogeneous mixture

formation and autoignition, is a highly complex multi-phase process that significantly

affects particulate and NOx emissions. It is, therefore, imperative that any discussion of

pollutant formation in diesel engines begin with a thorough review of the diesel

combustion process.

2.1 Diesel Combustion Fundamentals

Diesel combustion systems can be divided into two major categories: direct injection (DI)

systems, and indirect injection (IDI) systems (also called divided chamber and

prechamber systems). These classifications can be further subdivided into various other

categories based on combustion chamber geometry and means of fuel injection [1]. The

following discussion will focus on the direct injection system, as it is the system

employed by the Cummins ISB in this study.

Combustion in a direct injection diesel engine begins when fuel is injected into the hot

compressed cylinder gasses. The start of injection and the start of ignition in a diesel

engine are separated by a specific amount of time, known as the ignition delay. The

length of the ignition delay is influenced by a number of factors, the most important of

which are: the cetane number and quality of the fuel, the engine's compression ratio, the

cylinder and component temperatures, and the fuel management system [2].

The diesel combustion process begins following the ignition delay and is initiated by the

start of ignition. The air-fuel ratio, X, in a heterogeneous mixture, such as that found in

the cylinder following fuel injection, varies from pure air at the spray periphery (k = co) to

pure fuel (k = 1) at the center of the spray. However, analogous to the combustion of

homogenous mixtures, combustion in a diesel engine only takes place within a small

range between k = 0.3 and k = 1.5. The distribution of the injected fuel throughout the

cylinder and mass transport necessary to form the combustible mixture occurs via

diffusion and turbulent mixing which is strongly influenced by the following factors: the

kinetic energy and small scale turbulence induced by the fuel spray, heat energy within
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the cylinder that promotes vaporization of the liquid fuel, combustion chamber geometry

and large scale turbulence (swirl), and the combustion process itself [2].

Following the start of ignition, the combustion process proceeds in two distinct phases.

In the first phase, "premixed combustion," the fuel injected prior to the star of ignition,

which has already mixed with the hot air inside the cylinder to form a combustible

mixture, burns rapidly within a few crank angle degrees. The rapid pressure rise and heat

release associated with the premixed combustion phase is primarily responsible for the

diesel combustion noise. Following the premixed combustion, the fuel injected after the

start of ignition combusts in the "diffusion" or "mixing controlled" phase [1].

In many cases heat release continues at a low rate well into the expansion stroke, and a

"late combustion" phase is clearly identifiable. This late combustion can be due to a

number of factors such as unburned fuel remaining in the cylinder, soot oxidation, and

the fact that the kinetics of the final burning process slow down as the temperature of the

cylinder drops during expansion [1].

Each distinct phase of the combustion process has a specific effect on emissions

formation within the power cylinder as depicted in Figure 2.1 below.

White/yellow flame:
Burned gas: NO soot oxidation Lean flame-out Initial rapid

Flame quench Rich zones region: HC combustion: noise
on walls: HC in fuel jet:

soot formation Burned gas:NO Fuel jet
mixing with air

Fuel vapor rich mixture
from nozzle
sac volume

Mixing controlled Premixed

Figure 2.1. Pollutant formation pathways during diesel combustion [3]

The portion of fuel that burns very rapidly within the premixed combustion phase gives

rise to the high cylinder temperatures necessary to form NO in the flame front and post-

flame gasses. However, due to the small area of the flame front, NO formation in the

post-flame typically dominates any flame-front-produced NO.
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The majority of diesel soot and particulates are formed in the diffusion phase where fuel

rich zones, the result of incomplete mixing, lead to incomplete combustion and the

formation of partially combusted carbon in the form of soot. However, the total engine-

out PM emissions are typically much lower than the amount of soot formed during the

combustion process, as much of the soot is oxidized as it approaches the diffusion flame

boundary and during the late combustion phase [1].

A very effective means for reducing NOx and PM emissions in the cylinder is through

the use of heavily retarded injection timing and a multiple fuel injection strategy. Both of

these combustion strategies influence the rate and shape of the heat release curve, and

have a significant impact on engine-out emissions. A comparison of a conventional heat

release profile and one in which three separate injection events are employed is shown in

Figure 2.2 below.
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Figure 2.2. Comparison of heat release profiles for (a) conventional DI combustion,

[3] and (b) DI combustion with three separate injection events [23]

The heat release profile shown in Figure 2.2 (a) is for a conventional DI diesel engine

employing only a single injection event. The characteristic combustion phases are clearly

visible in this plot. On the other hand, the heat release profile shown in Figure 2.2 (b)

exhibits three distinct peaks corresponding to the heat release for each separate injection

event. In most multiple injection strategies, a small amount of fuel is injected during the

pre-injection event, which helps to slow the initial pressure and associated temperature
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rise within the cylinder. In this way, the pilot-injection not only helps to reduce NOx

emissions, but also reduces combustion noise. Due to the small amount of heat released

during the post-injection, the rise in cylinder pressure during the main combustion is also

slower, thus further reducing combustion noise. Following the main injection, the post-

injection is very effective in completing the oxidation process and reducing particulate

emissions [23].

Advanced multiple injection strategies, while effective when used properly, can actually

increase NOx and PM emissions if not correctly optimized and calibrated. The timing of

each injection event, quantity of fuel injected for each event, and separation of injection

events are key parameters in such a multiple injection strategy. For example, Mallmo et

al. found that the addition of a second pilot injection more than 400 BTDC increased PM

emissions by 15%. On the other hand, they also demonstrated that optimized timing of

the post-injection reduced PM emissions by more than 30% [23]. Overall, multiple

injection strategies give greater freedom to the engine designer when optimizing the

combined fuel injection, combustion, and emission control systems.

Despite advanced combustion strategies and fuel injection systems, diesel combustion

remains a complex process that significantly influences emissions formation. Due to the

inherently heterogeneous nature of the internal mixture formation and autoignition in

diesel engines, a truly soot-free engine is impossible to achieve as some soot is always

formed in the diffusion phase. However, through the use of advanced fuels and

aftertreatment systems, significant reductions in both PM and NOx emissions can be

achieved [23].

2.2 Exhaust Composition

Diesel exhaust is a complex mixture of gasses, liquids, and solid aerosol particles, the

precise composition of which depends upon on a number of factors. While fuel and lube

oil compositions certainly contribute to the overall exhaust composition, the fuel

distribution within the cylinder and the manner in which this distribution changes

throughout the combustion process also exerts significant influence [11]. Figure 2.3
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presents typical values for the major diesel exhaust constituents for an engine operating at

full load.
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Figure 2.3. Typical diesel exhaust gas composition (Vol. %) at full load [24]

Interestingly, less than 0.3% by volume of the total diesel engine exhaust is composed of

regulated pollutant species (CO, HC, NOx, and PM), and of those exhaust constituents,

only 0.180% (NOx and PM) contribute significantly to the overall mobile-source

atmospheric emissions inventory as described in Section 1.2.1. Furthermore, while PM

emissions compose only 0.005% of the total exhaust by volume, they currently pose the

greatest concern to human health and the environment [24].

Diesel particulate matter is defined by the U.S. EPA as "all solid matter and condensable

species that can be collected on a paper filter from a diluted exhaust sample held at no

higher than 52'C" [25]. Diesel particulates are primarily composed of carbonaceous

material (soot) on which some organic compounds have become absorbed. The

composition of the PM can be divided into three significant categories consisting of the

SOL (solid particles or soot), SOF (soluble organic fraction), and SO 4 (sulfates). The

SOL is primarily composed of the organic and elemental carbonaceous solid, while the

SOF is made up of unburned hydrocarbons originating from the fuel and lubricant that

have become absorbed on the soot. The SO 4 originates from sulfur compounds present in

the fuel and lubricant, which form SO 2 and small amounts of SO 3 during combustion, and

later combine with water and oxygen in the exhaust to form sulfuric acid (H2 SO4). The
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absorption of the sulfuric acid on the PM is the source of particulate sulfates. In addition

to the major constituents just listed, liquid phase hydrocarbons and sulfate compounds

may also form on the outside of the PM [13]. A schematic depicting the various

constituents that comprise the PM is shown in Figure 2.4.
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Figure 2.4. Typical diesel particulate composition [13]

As shown in the schematic above, the diesel particulates are composed of collections of

small primary particles (spherules). The average diameter of the spherules is in the 10 to

80 nm range, with most between 15 and 30 nm. Particles exist either as clusters or chains

of spherules and may contain up to 4,000 individual spherules [1].

In addition to the PM constituents shown in Figure 2.4, the particulates also contain some

levels of ash. Ash in diesel particulates originates primarily from metallic compounds in

the engine lubricant, wear metal, and fuel additives [26]. Efforts to reduce particulate ash

have increased significantly in recent years, as ash accumulation in particulate traps

shortens the service life of the trap.

Due to the complex mixture of organic and inorganic compounds in both solid and liquid

phases that make up diesel particulate matter, exhaust and PM sampling conditions play

an important role in influencing the amount, type, and composition of the PM collected.
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The dilution ratio and temperature at which the particulates are collected are the two most

important experimental parameters influencing particulate composition. As the dilution

ratio increases from unity, the extractable fraction of the particulates increases as well, up

to a dilution ratio of approximately 8 to 10. The extractable fraction increases with

increasing dilution ratio, since the dilution and subsequent cooling of the exhaust stream

promotes the condensation and absorption of liquid and vapor phase hydrocarbons and

sulfate compounds onto the soot. Further dilution of the exhaust gasses, above a dilution

ratio of approximately 10, causes the extractable fraction to decrease slightly. In the

absence of any type of dilution, a dilution ratio of unity, the extractable fraction is

extremely small, since the rate of condensation and adsorption of liquid and vapor phase

hydrocarbon onto the PM in the hot exhaust gasses is relatively slow [1].

2.2.1 NOx Formation

NOx is a term used to describe the total emissions of NO and NO 2, although NO is

generally the predominant oxide of nitrogen produced inside the cylinder. While the

primary source of NO is atmospheric nitrogen, fuel nitrogen is also a possible source of

NO, however the levels of nitrogen compounds in current fuels are generally negligible

[1].

Three important mechanisms contribute to the formation of NO from atmospheric

nitrogen and are collectively know as the extended Zeldovich mechanism. The reactions

that make up the extended Zeldovich mechanism are listed as follows:

Equation 2.1 O+N 2 +-> NO+ N

Equation 2.2 N-+ 02 <- NO+ O

Equation 2.3 N+OH<->NO+H

The large activation energies for the forward reaction in Eq. (2.1) and reverse reactions in

Eq. (2.2) and Eq. (2.3) are responsible for the strong temperature dependence of the NO

formation rates. Due to the high forward rate constant for the first reaction, Eq. (2.1), it is
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generally the rate limiting step in the extended Zeldovich mechanism. The high

temperatures required for the reaction to take place at an appreciable rate generally occur

in the post-flame gasses during the pre-mixed phase of diesel combustion. While some

NO does form in the flame front, this amount is significantly smaller than that generated

in the post-flame gasses, since the reaction zone in the flame front itself is extremely thin

[1].

Although not insignificant, NO 2 emissions from modem diesel engines account for

approximately 10% of the total NOx emissions and play an important role in particulate

trap regeneration. While the exact mechanisms responsible for the production and

destruction of NO 2 in diesel engines are not as well understood as those for NO, one

possible mechanism for the formation of NO 2 from NO is presented below [1]:

Equation 2.4 NO + H20 -* NO 2 + OH.

Unless the NO 2 formed in the flame zone is quenched by mixing or some other means,

the high temperatures within the vicinity of the flame front will most likely lead to the

back-conversion of NO 2 to NO as follows:

Equation 2.5 NO 2 + 0 -+ NO +02.

The validity of the mechanism presented above is supported by experimental data

showing the highest N0 2/NO ratio occurring at low load, where quenching due to mixing

with cooler gasses within the cylinder is more likely to occur [1].

2.2.2 Particulate Formation

Particulate formation is a complex process involving nucleation, growth, and

agglomeration of the particles. Almost simultaneous to these processes, particulate

oxidation within the cylinder also takes place as the particulates, in various stages of

development, are mixed with fuel hydrocarbons and consumed by the diffusion flame in

oxygen-rich regions within the cylinder. While the specific particulate formation
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mechanisms are not well understood, a number of theories have been developed to

explain the formation of soot precursors. The two most prevalent theories are the

Acetylene Theory and Radical Hypothesis [27].

According to the Acetylene Theory, a product of the oxidation of fuel molecules is the

formation of acetylene, which forms the building blocks for more complex hydrocarbons

and aromatics. The ensuing formation of polycyclic aromatic hydrocarbons (PAH) from

the acetylene base molecules forms the precursors to soot and particulates. On the other

hand, the Radical Hypothesis assumes that small free-radicals combine to form larger

branched hydrocarbons independent of their original composition [27]. A schematic

depicting the PM formation pathways proposed by the two theories is shown in Figure

2.5.
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Figure 2.5. Formation mechanisms for diesel particulates in the power cylinder: (a)

Acetylene Theory, and (b) Radical Hypothesis [271
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The formation and growth of the particulates, from the soot precursors formed via either

of the two theories, follows from the combination of larger polycyclic aromatic

hydrocarbons, and the volume of the resulting aggregate increases by means of

coagulation and surface growth. Growth on the surface of the primary particles proceeds

as carbon atoms form leaf-shaped graphite crystallites, which are randomly packed with

their planes parallel to the surface of the primary particles [27].

During the early phases of combustion, the spherical primary particles continue to grow

in the manner described above until a diameter of approximately 30 nm is reached. As

the cylinder temperature drops during the expansion stroke, the primary particles

agglomerate by means of particle-to-particle collisions and, thus, form chain- and grape-

like structures with diameters in the range of 70 to 100 nm. Additional cooling results in

the absorption and condensation of gaseous species, mostly hydrocarbons, onto the

particulates. Figure 2.6 presents TEM images of diesel particulates [27].

(a) (b)

Figure 2.6. TEM diesel particulate images at (a) low and (b) high load [27]

An important distinction in the particulate formation process is the difference between

particulate growth via agglomeration and coagulation, and surface growth by means of

condensation and absorption. In the former case, growth by agglomeration and

coagulation leads to a decrease in the number of soot particles, whereas the soot volume

fraction (volume of soot/total volume) remains the same. In the latter case, surface
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growth leads to an increase in the amount of soot, while the total number of particulates

remains constant [1].

Parallel to the particulate formation processes, oxidation of the newly formed soot

precursors and particulate agglomerates is also continually taking place throughout the

diesel combustion process. Over 80% of the initially formed particulates are oxidized

within the cylinder and never contribute to engine-out PM emissions. The particulate

emissions measured at the tailpipe are, therefore, the result of two competing processes:

particulate formation and oxidation [27].
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3.0 Factors Influencing Diesel Emissions

The emissions characteristics of Fischer-Tropsch fuels are well documented in the

literature, and the results of a number of studies [28-36] on FT fuels were presented in a

thesis by Llaniguez (S.M. 2003). The work on this project distinguishes from previous

studies in two respects. First, the current study was carried out using a modern (MY

2002) advanced diesel engine that has incorporated much of the latest engine technology

and emissions control strategies. Second, the author is unaware of any studies to date in

which the combustion and emissions characteristics of neat FT fuels and blends have

been carried out on an engine employing a multiple injection strategy.

Despite the numerous studies of FT fuels and their effects on engine-out emissions, the

underlying causes for the emissions behavior are still not well understood, and much

work in this area still remains. It is widely accepted that a number of factors contribute to

the emissions behavior of the fuel, the most important of which are: chemical and

physical properties of the fuel, combustion characteristics, and interaction with the engine

technology.

3.1 Fuel Effects

The intercorrelations between fuel properties make investigation into the effect of a

specific property on emissions quite difficult. Relatively few studies have succeeded in

adequately decoupling the change in a specific fuel property from changes in additional

properties in the test fuel. Furthermore, it is nearly impossible to link changes in

emissions to a particular fuel property when a number of properties are varied

simultaneously [37]. The literature review compiled by Lee et al. focused solely on those

studies where the intercorrelations between the fuel properties were decoupled, allowing

for direct comparison between changes in a specific fuel property and engine-out

emissions. In this review, the following fuel properties were identified as having a

significant effect on diesel emissions: cetane number, fuel sulfur, density, and aromatics.
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3.1.1 Cetane Number

Cetane number is the measure of a fuel's tendency to auto-ignite, with higher cetane

number fuels exhibiting a shorter ignition delay. Recent studies have shown some benefit

to reduced NOx emissions as cetane number was increased, however the impact of cetane

number on particulates tends to be much less pronounced and engine specific. The

reduced ignition delay with higher cetane number fuels leads to a reduction in pre-mixed

combustion and a more gradual temperature rise in the cylinder, thus slowing the rate of

NOx formation [38].

3.1.2 Sulfur

One of the most widely investigated diesel fuel parameters, the conversion of fuel sulfur

to sulfate following the combustion process contributes to particulate exhaust emissions.

Previous studies have shown that the amount of sulfur converted to PM is at least 1-2%

of the fuel sulfur content irrespective of the total fuel sulfur level or engine type [39]. In

addition to contributing to particulate emissions, fuel sulfur has also been linked to

catalyst poisoning, limiting the use of exhaust aftertreatment systems with diesel engines.

Furthermore, the production of sulfuric acid from fuel sulfur has detrimental effects on

the durability of EGR systems as well [40]. Aside from influencing particulate emissions

and its detrimental impact on specific engine subsystems, fuel sulfur is not known to have

any significant effect on regulated gaseous engine-out emissions [37].

3.1.3 Density

A number of studies have linked fuel density to particulate emissions. It has been shown

that reducing fuel density can lead to a significant reduction in particulate emissions in

older technology engines; however the effect is substantially reduced in newer

technology engines with advanced injection strategies and improved mixing. In addition

to reducing particulates, less dense fuels tend to reduce NOx emissions as well. On the

other hand, emissions of CO and HC's may increase as the fuel density is reduced. Aside

from emissions, density also directly affects an engine's power output, with less dense

fuels leading to reduced power output, all other factors remaining constant [37, 41].
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3.1.4 Aromatics

Much of the data regarding the impact of aromatics on emissions in the past presented

conflicting results and failed to decouple the effect of the aromatics from density, cetane

number, and T90. Despite this fact, it is widely agreed that total aromatics do not

contribute significantly to HC, CO, or PM emissions, and only slightly affect NOx

emissions. On the other hand, poly-aromatic hydrocarbons (PAH) can have a substantial

impact on particulate emissions and a smaller effect on NOx and CO emissions.

However, similar to density, the effect of poly-aromatics on emissions is seen to decrease

with newer technology engines [37, 40].

3.1.5 Back-End Volatility

While the effect of back-end volatility, T90/T95, on emissions is generally considered

minor and heavily dependent on the composition of the back end, this property can have a

small effect on engine-out gaseous emissions. A number of studies have shown that

reducing back-end volatility can lead to a slight increase in HC and CO emissions along

with a decrease in NOx emissions. As mentioned above, T90/T95 has not been shown to

have a noticeable effect on PM emissions [37, 43].

3.2 Combustion Characteristics

Although the effects of FT fuel on engine-out emission have been well documented in the

literature, there are very few published reports on the combustion characteristics of FT

fuel. Furthermore, the author is not aware of any analysis of the combustion behavior of

neat FT fuel or FT blends in a modem diesel engine employing a multiple fuel injection

strategy and heavily retarded injection timing in addition to a number of other advanced

engine subsystems.

Atkinson et al. presented, perhaps, the first detailed combustion analysis of FT fuel in a

direct injection diesel engine. In this study, a Navistar T444E (7.3 liter, V8) diesel

engine was outfitted with two in-cylinder pressure transducers and subjected to twelve

steady-state operating conditions. Over the entire test range, it was found that the higher

cetane number of the FT fuel yielded a reduced ignition delay, and thus, reduced fuel
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evaporation before ignition. Furthermore, the FT fuel exhibited a slightly longer

combustion duration and more uniform heat release rate than the baseline diesel.

However, the total time from the start of injection to the end of combustion for each fuel

was approximately equivalent. FT fuel was observed to reduce nearly all regulated

emissions over the entire engine operating range, with the exception of hydrocarbons at

some test conditions. It was also noted that FT fuel reduced the exhaust gas temperature,

thus reducing NOx emissions. During the course of the Atkinson study the engine was

operated completely stock, with no engine control parameters altered to compensate for

the differences in the combustion characteristics of the two fuels [44].

Following the Atkinson study, McMillan and Gautam investigated the combustion and

emission characteristics of FT and a federal low-sulfur diesel fuel in a Ricardo single-

cylinder four-stroke DI research engine outfitted for in-cylinder pressure measurements.

The engine was run at several steady-state operating conditions and timing was varied for

each fuel at these conditions as well. McMillan and Gautam cited the higher cetane

number and lower density of the FT fuel as primarily responsible for the observed

differences in the combustion characteristics. They also observed similar overall bum

durations and peak pressures for the two fuels; however the FT did exhibit a slightly

shorter 50% to 90% mass fraction bum duration [45]. Consistent with the Atkinson

study, nearly all regulated exhaust emissions were reduced with the FT fuel, and the

higher cetane number of the FT contributed to its shorter ignition delay.

3.3 Engine Technology

While the fuel properties and combustion characteristics have a significant effect on

exhaust emissions, the relative importance of each specific effect can change depending

on the type of engine and its operating characteristics. Numerous studies have indicated

that the relative impact of fuel properties on emissions decreases with modem technology

engines. In addition, Mann et al. noted that fuel effects on engine calibration

significantly influenced the observed emissions effects. In this study, seven diesel fuels

were tested in a modern electronically controlled direct-injection diesel engine and

significant changes in engine calibration settings (most notably EGR rate and injection
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timing) were observed [46]. More recently, the effects of multiple injections and

injection pressure have also demonstrated a significant effect on engine-out emissions

and heat release rate [47, 48].
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4.0 Experimental Fuels

The three neat fuels under investigation in this study were a low sulfur diesel containing

400 PPM sulfur, an ultra-low sulfur diesel containing 15 PPM sulfur, and a Fischer-

Tropsch synthetic diesel, produced from natural gas, containing zero sulfur. A blend of

25% FT and 75% low sulfur diesel by volume was used as well.

4.1 Number 2 Diesel Fuel

Two standard No. 2 diesel fuels were used to develop a performance and emissions

baseline against which the Fisher-Tropsch fuel was compared. The baseline fuels were

supplied by Fleetline, and differed primarily in sulfur content with the LSD containing

400 PPM sulfur by volume and the ULSD containing 15 PPM sulfur by volume.

According to the information provided in the product literature, these fuels are

formulated with "anti-oxidants to reduce volatility and prevent fuel degradation,

inhibitors to fight gum and deposit formations in the fuel system, viscosity improvers for

fuel injector lubrication and correct spray pattern, and additives for low-temperature

operation" [35].

4.1.1 Low Sulfur Diesel Fuel

Fleetline's low sulfur diesel fuel was selected as one of the baseline fuels, as it is

representative of typical worst-case fuels currently used in on-road heavy-duty diesel

engines. The fuel, thus, provided a reference by which to compare potential

improvements in performance and emissions observed with the FT fuel. The 400 PPM

fuel sulfur content of the Fleetline low sulfur diesel used in this study still meets the

current EPA Low-Sulfur Fuel requirement of no more than 500 PPM sulfur. In addition,

according to the ASTM D 975 specifications for No. 2 diesel fuels, it should have a

minimum cetane number of 40 and contain no more than 35% aromatics. A detailed

listing of the fuel properties and specifications provided by the manufacturer is listed in

Table 4.1.

51



PRODUCT
SPECIFICATIONS

PREMIUM LOW-SULFUR
DIESEL FUEL

ASTM ASTM NO. 2-D TYPICAL
TEST DESCRIPTION METHOD STANDARD (D 975) ANALYSIS
Cetane Number D 976 40 min. 47

API Gravity at 16"C (60'F) D 287 30 min. 37

Pour Point, VC ("F) D 97 -7 (20) max. .-11 (12)*

Cloud Point, C ("F) 1) 2500 -10 (14)'

Flash Point (Pensky-Marteris), C (F) D 93 52 (125) min. 66 (151)

KTU/Gallon (gross) 139,200
Sulfur, Weight % D 1552 0.05 max. 0.04

Viscosity, Saybolt,
SUS at 38C (1001F) 1) 2161 32.6-40.1 34.5

Viscosity, Kinematic,
cSt at 40'C (104"F) 1.) 445 1.9-4.1 2.52

Copper Strip Corrosion,
3 Irs. C 50"C (122*F) D 130 3 max. 1

Disillation (Evap., "C (""F) D 86
10% Recovered 206 (402)
50% Recovered 260 (500)
90% Recovered 282-338 (540 -640) 335 (635)
End Point 353 (667)
Recovery % 98.0
Residue % 1.5
Loss % 0.5

Carbon Residue, Ramsbot toI
(10% Bottoms, Weight %) 1.) 524 0.35 max. 0.05

Water and Sediment, Vol. % D 1796 0.05 max. 0.001

Ash, Weight % 1 482 0.01 max. <0.001

Color (Visual) Clear to Amber

Date Approved: 3/15/00 (Specifica1ion valid only if dated)

Typical test data are average values only. Minor variations which do not adect performance may occur.

Adjusted with additives and kerosene Note: Other additives may be added
blending for winter operation. to enhance lubricity when needed.

DENIS K. BURKE INC. We can also custom blend fuel to neet
customer's specifications.

284 EASTERN AVE. , CHELSEA, MASS. 02150 - PHONE: 1-800-289-2875 . FAX: (617) 884-7638 - WEBSITE: WWW.BURKEOL.COM

Table 4.1. Manufacturer's specifications for the low sulfur diesel used as one of the

baseline fuels
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The lower heating value of the low sulfur diesel fuel was not listed in the product

literature provided by Fleetline, and repeated attempts to contact the manufacturer were

unsuccessful in obtaining the actual heating value. Therefore, the lower heating value for

a standard No. 2 diesel fuel given in Syntroleum's S-2 product literature was used to

allow for comparison of the lower heating values of the three different fuels used in the

experiments. The value given in the Syntroleum brochure is: QLHV,NO.2 = 129,400 Btu/gal

[49]. In order to convert the heating value from a volumetric to mass basis, the density of

the fuel is required. The API (American Petroleum Institute) gravity obtained using the

ASTM D 287 method for the low sulfur diesel fuel is given in the manufacturer's

specifications in Table 4.1 as 37. The ASTM D 287 method defines API gravity at 16'C

as:

141.5Equation 4.1 API@16 C = -131.5
s.g.@16'C

The fuel density was calculated using the given API gravity and Equation (4.1) as PNo.2

840 kg/M 3. Using the calculated density gives a lower heating value of QLHV,NO.2 = 42.9

MJ/kg. This compares well with heating value data of typical light diesel fuels listed as

QLHV,No.2 = 43.2 MJ/kg in [1].

4.1.2 Ultra-Low Sulfur Diesel Fuel

To provide a more realistic baseline for comparison with the FT fuel, tests were also

carried out with Fleetline's ultra-low sulfur diesel fuel. This fuel meets the 2006 standard

of 15 PPM sulfur by volume, and is representative of the types of diesel fuels that will be

in use once the 2006 standards take effect. The fuel properties provided by Fleetline for

the ultra-low sulfur diesel are listed in Table 4.2. Aside from a significant difference in

sulfur content, the ULSD has a slightly higher cetane number and API gravity than the

low sulfur diesel.
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FLEETLINE PRODUCT
SPECIFICATIONS

ULTRA LOW SULFUR DIESEL
ASTM

TEST DESCRIPTION METHOD
Cetane Index (Calculated) D 976
Cetane Number D 613
API Gravity at 16'C (6*F) D 40153

Density, lbs./gallon Table 8
Pour Point, 'C ('F) D 97

Cloud Point, 'C (*F) D 2500

Flash Point (Pensky-Martens), *C ('F) D 93A

Heat of Combustion, BTU/gallon D 240

Viscosity, Saybolt, SUS at 38'C (1O*F) D 2161

Viscosity, Kinematic, cSt at 4ffC (104'F) D 445

Sulfur, parts per million D 5453

Nitrogen, parts per million D 5762
Corrosion, Copper Strip D 130

Alkali or Mineral Acids D 974

Distillation (Evap.), 'C ('F) D 86

10% Recovered

50% Recovered

90% Recovered

End Point

Recovery %

Residue %

Loss %

Carbon Residue, Wt. % (10% Bottoms) D 524

Water and Sediment, Vol. '% D 1796

Ash, Weight % D 482

Color (Visual) D 1500

Date Approved: 2/15/04 (Specification valid

ASTM NO. 2-D
STANDARD (D 975)

40 min.

40 min.

30 min.

-6 (20) max.

52 (125) min.

32.6-40.1

1.9-4.1

30 max.

1 max.

TYPICAL
ANALYSIS

42.7
50

40.3

6.858

-30 (-22)

-30 (-22)

63 (146)

135,514

31.47

1.67

15

n

neutral

199 (390)

218 (425)
282-338 (540-640) 248 (478)

- 269 (517)

- 98.0
- 1.4

- 0.6
0.35 max. 0.15
0.05 max. 0.00

0.01 max. 0.00

(Clear to Amber) <0.5

only if dated)

Note: Preniumi Additive Package
mcintides cetane iiprovers,, lubricity
nlhancers arid detergeits. DENNIS K. BURKE INC.

Typical test data are average values only.
Minor variations which do not affect

performance may occur.

284 EASTERN AVE. * CHELSEA, MASS. 02150 * PHONE: 1-800-289-2875 * FAX (617) 884-7638 * WEBSITE: WWW.BURKEOILCOM

Table 4.2. Manufacturer's specifications for the ultra-low sulfur diesel used as one

of the baseline fuels.

54



The purpose of using the ULSD fuel is twofold. First, to allow for evaluation of the fuel

sulfur effect on emissions and, second, to compare FT fuel to a fuel that will be widely

available in the future.

Once again, the lower heating value of the ultra-low sulfur diesel fuel was not listed in

the table provided by Fleetline. In order to compare the lower heating value of the ULSD

to the other fuels used in this study, the lower heating value for a standard No. 2 diesel

fuel, QLHv,NO.2 = 129,400 Btu/gal, given in Syntroleum's S-2 product literature was used

once more [49]. The conversion of the heating value from a volumetric basis to SI units

on a mass basis follows the same procedure outlined in Section 4.1.1. Accounting for the

measured fuel density of 845 kg/m3, yields a lower heating value for the ULSD of

QLHV,No.2 = 42.7 MJ/kg [36]. This value also compares well with heating value data for

typical light diesel fuels listed as QLHV,NO.2 = 43.2 MJ/kg in [1].

4.1.3 No. 2 Diesel Combustion Equation

In order to compare differences in the combustion characteristics between the No. 2

diesel fuels and the Syntroleum S-2 FT diesel, a simplified chemical composition of

CH1 .8 and a molecular weight of 170 g/mol [1] was used in order to write the ideal

combustion equation (using the simplified chemical composition) for both the LSD and

ULSD baseline No. 2 diesel fuels as follows:

Equation 4.2 12.3CH 8 + 17.835(02 +3.773N2)->12.3Co 2 +11.07H20+17.835 1-1 02+ 2N2

Based on Equation 4.2, the air/fuel ratio for stoichiometric combustion for both of the

baseline No. 2 diesel fuels is 14.50:1. This matches the accepted stoichiometric air/fuel

ratio for light diesel fuels given in [1].

4.2 Fischer-Tropsch Diesel

The trend toward cleaner fuels for reduced emissions and improved compatibility with

aftertreatment devices has led to renewed interest in Fischer-Tropsch fuels in recent

years. Developed in the 1920's by Franz Fischer and Hans Tropsch, the FT process can
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be used to produce hydrocarbon fuels from a wide range of carbonaceous materials. This

process consists of four major steps and is shown in Figure 4.1 below.

Syngas Production F-T Synthesis
Air Gas Turbine Exhaust

Compressor-

Natural Gas
Steam

Hydrocracker

Steam,., Syn crude

Separator
Nitrogen-Diluted Syngas Process Water

Figure 4.1. Production of Fischer-Tropsch fuels via the Syntroleum ProcessTM [49

The first step is the production of synthesis gas (CO and H2) from the feedstock, typically

natural gas, coal, or biomass. This step is followed by the purification of the synthesis

gas, since the FT process relies heavily on the use of catalysts, and any sulfur in the

synthesis gas can poison the catalysts, thus reducing fuel production. The third step is the

FT catalysis process in which the synthesis gas is converted to heavy, straight-chain

liquid hydrocarbons and waxes. The final step in the process consists of refining the

heavy hydrocarbons by means of hydrocracking, isomerization, fractionation, and

distillation to produce the desired fuel [41]. For a detailed description of the specific

steps and reactions involved in the Fischer-Tropsch synthesis process, the reader is

referred to [35].

4.2.1 Syntroleum FT Diesel Fuel Properties

The Fischer-Tropsch fuel (S-2) used in this study was provided by the Syntroleum

Corporation. Syntroleum S-2 is produced using the Syntroleum ProcessTM described in

the previous section. Utilizing a unique auto-thermal-reformer (ATR) to produce the

synthesis gas from natural gas and untreated air reduces the overall production costs and

makes Syntroleum S-2 fuel economically marketable [35].
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While the zero sulfur content of the S-2 FT fuel provides a number of benefits in terms of

particulate emissions reduction and improved compatibility with exhaust aftertreatment

systems, the absence of the sulfur also reduces the lubricity properties of the fuel, which

may have deleterious effects on the fuel injection system. In order to improve the

lubricity properties of the fuel, 300 PPM of a lubricity additive manufactured by Lubrizol

was blended with the fuel prior to shipping to MIT. The Lubrizol additive is not believed

to significantly affect the combustion or emissions characteristics of the S-2 fuel.

The diesel fuels produced as a result of the Syntroleum Process TM exhibit a number of

chemical and physical properties attributed to reduced emissions levels, namely zero

sulfur content, low aromatics and olefins content, high cetane rating (74.4), and reduced

density. In addition, S-2 diesel has a viscosity similar to that of standard No. 2 diesel,

allowing the fuel to be used in current technology engines with no modifications to the

fuel handling and injection system. The S-2 diesel used in this study meets or exceeds

the ASTM requirements for typical diesel fuel oils, which are given in Table 4.3 below.

* All "D"' methods arc ASTrM sandards.

Table 4.3. ASTM D 975 requirements for diesel fuel oils
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Furthermore, FT diesel is completely miscible with conventional diesel making it an ideal

candidate as both a blending agent with and eventual replacement for conventional

petroleum-based diesel fuels. Additional fuel properties provided by Syntroleum for the

two batches of S-2 FT fuel used during this study are presented in Table 4.4 and 4.5.

cetlifcat2 of Ana"yi

SYNTHETIC DIESEL FUEL OIL-S

BATC'ti 5 LOT

PHYSICAL PROPERTIES

Flash Point min

Distilation. 10% Vo Recovered

0isiftion, 50% Vol Recoveed

Distillation, 90% Vol Recovered

Kinematic iscosity 4Y C

Ash

Cloud Point MWJMax

ConductMy

Density @ 15'C

API

Aopearance

JMMER GRADE

troeurn
irade S2-Summer Climate diesel fuel with Cloud
oint between -20,,C and -290C

5OContain0r(Numberx 1240161

TEST METHOD UNITS S-2 S2 SPECIFICATION ACTUAL

09C(F 2 (125) 58(136

D86 C Rtport 191
86C Repor 243

086 7- C 282-38 307
ASTMVD445 2 0
ASTM 0-482 % mass <01 0.001

D5771 CF 20 to -2C -25

ASTM D-2624 PS 250-460 276

AST M D-4052 kg/L 076-07 0 77
ASTM D-4052 48 54 52 2

Visua Cear & Bgf Clear &nght

Table 4.4. S-2 fuel properties for the first batch of Fischer-Tropsch diesel tested

Aside from minor variations in physical properties such as flash point, kinematic

viscosity, and distillation there were no major differences between the two batches of

Syntroleum S-2. Furthermore, the differences in physical properties are so small that

their effect on the combustion and emissions behavior of the fuels is negligible.
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SYNTHETIC DIESEL FUEL OIL-,SUMMER GRADE

BATCH II LOT 8
PHYSICAL PROPERTIES

Flash Point, min

Distillation, 10% Vo. Recovered

Distillation, 50% Vol Recovered

TEST METHOD

D93

086

D86

Grade S2-Summer Climate diesel fuel with Cloud
Point between -20*C and -290C

ISO Container Number 124260-0

UNITS

QC(OF)

*C

S-2 S2 SPECIFICATION

52 (125)

Report

Report

ACTUAL

61(142)

196

254

Distillation, 90% Vol Recovered D86 .C 282-338 308

Kinematic Viscosity @ 40 C ASTM D-445 cSt 1.9-2.5 2.2

Ash, max ASTM D-482 % mass <0.01 <0.0001

Cloud Point D5771 'C -20 to -29 0C .24

Conductivity ASTM D-2624 pS 250-450 363

Density. ASTM D4052 kg/L 0.76-0.78 0.77

API ASTM D-4052 49-54 51.5

Aooearance Visual Clear & Briaht Clear & Bright

Table 4.5. S-2 fuel properties for the second batch of Fischer-Tropsch diesel tested

The lower heating value of Syntroleum S-2 was calculated using data provided by

Syntroleum and values listed in Table 4.4 and Table 4.5. The product literature for

Syntroleum S-2 gives a lower heating value of QLHV,S-2 = 121,500 Btu/gal. The lower

heating value was then converted to SI units and a mass basis using the S-2 density listed

as Ps-2 = 775 kg/M 3 . The resulting lower heating value of QLHv,S-2 = 43.7 MJ/kg is

substantially greater than that of the baseline fuels on a mass basis. However, the

significantly lower density of the S-2 fuel results in a reduction in the lower heating

value on a volumetric basis by approximately 6.0% as compared to the baseline fuels.

4.2.2 Syntroleum FT Diesel Combustion Equation

Syntroleum provided additional S-2 fuel properties and specifications necessary to carry

out the combustion calculations. The molecular weight of the FT fuel is 205 g/mol, and

the fuel is composed primarily of 84.9% carbon and 15.1% hydrogen. No significant
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quantities of impurities such as oxygen or nitrogen were detected in the fuel. Based on

the fuel composition data provided by Syntroleum, the reduced chemical C:H ratio for the

S-2 diesel fuel is 2.12. Based on the simplified fuel composition, the ideal combustion

equation for Syntroleum S-2 is:

Equation 4.3 14.49cH 12 + 22 17 (O2+3.773N 2)-+ 14.49CO2 + 15.36H2 0 +22.171 - 1 02 + 83.65 N2

Equation 4.3 yields an air/fuel ratio of 14.95:1 for the stoichiometric combustion of

Syntroleum S-2 diesel.

4.3 Fuel Blends

In addition to the three neat fuels, fuel blends were studied in order to gain a better

understanding of how varying fuel properties affect emissions reductions. Furthermore,

this allowed direct quantification of the effect of fuel sulfur level on particulate emissions

as well. A blend of 25% FT diesel and 75% low sulfur diesel was used in order to realize

the greatest benefit of using the FT fuel as a blending agent.

4.3.1 25% FT - 75% Low Sulfur Diesel Blend

This blend was studied to determine whether or not the major advantages of FT fuel

could be realized if the FT fuel comprised only a small portion of the engine's fuel.

Previous studies have demonstrated that the effect on the emissions trends of FT/D-2

blends is not linear with respect to the portion of FT in the blend, with most of the benefit

realized with less than 50% FT in the blend by volume [35, 36]. In order to realize the

greatest benefit of using the FT fuel as a blending agent, a 3:1 by volume LSD to FT fuel

blending ratio was chosen.

The lower heating value and ideal combustion equation for the blend were determined

from the figures for the baseline LSD and FT fuel properties presented above in Section

4.1.1 and Section 4.2.1. The conversion of 25% by volume FT fuel to a mass basis

yielded 23.5% FT fuel by mass, giving a fuel density for the blend of 824 kg/m3 . Using

the calculated fuel density, the lower heating value for the blend was calculated to be
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QLHV, BL = 43.1 MJ/kg. Furthermore, the 25% molar fraction of FT gave a simplified

chemical composition for the blend of CH1.9. Based on the simplified chemical

composition, the ideal combustion equation is given as:

Equation 4.4
12.88CH+19.0 +3.773N2)-+12.88CO+12.24H20+19.0 1 02+71.69 N2

# + ( N

From Equation 4.4, the stoichiometric air-fuel ratio for the blend is 14.61:1, which lies

between the calculated air/fuel ratio for the neat LSD and FT fuels, as could be expected.

4.4 Fuels Analysis

In order to verify the fuel properties provided by the manufacturers, and provide further

insight into the observed combustion and emissions differences between the fuels, a

sample of each of the fuels tested was sent to Syntroleum for analysis. A specific

comparison of the fuel properties analyzed by Syntroleum is presented in Table 4.6.

Fleetline Fuel LSD Fleetline Fuel Syntroleum S-2
(400ppm) ULSD (15ppm)

Flash point, OF 130 139 142

Viscosity @400C 2.777 2.288 2.2

Cloud Point, *C -13 -24 -25

Freezing Point,*C -10.5 -18.5 --

Density,150C 0.851 0.82 0.7701

Sp Gr, 15*C 0.855 0.824 0.775

API, 60"F 33.95 40.16 51.06

D2887,BP F _225 254 246

D2887, 5% 335 321 330

D2887,10% 369 343 357

D2887,20% 409 368 400

D2887,30% 442 389 435

D2887,40% 473 410 467

D2887,50% 502 428 498

D2887,60% 534 449 528

D2887,70% 576 467 561

D2887,80% 622 491 594

D2887,90% 673 517 640

D2887,95% 703 540 675

D2887,FBP 758 652 741

Table 4.6. Fuel properties comparison as determined

by Syntroleum

from the analysis carried out
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The results of the Syntroleum analysis match the data provided by Fleetline reasonably

well, however the values provided by Fleetline are only the results of typical values

computed from an average of a number of samples, and minor variations are to be

expected.

Of specific interest to this study is the distillation data presented in the chart comparing

the distillation curves for the three different fuels in Figure 4.2. It is quite clear from the

chart that the distillation curve for the FT fuel is very similar to that of the low sulfur

(400 PPM) diesel. Furthermore, the ultra-low sulfur diesel (15 PPM) contains a

significantly greater amount of the lower boiling point (higher volatility) fraction,

especially near the back end.

Distillation Curves
800 -

700 -
*

600 -

2~500 -

S400 ... * - LSD L
lo-w--- ULSD

C300 ----e-FT-

200

100

0 -
0 20 40 60 80 100 120

Percent Distilled r%]

Figure 4.2. Distillation curves for each of the three fuels tested

In addition to verifying the distillation curves, Syntroleum also analyzed the fuel samples

using gas chromatography. The gas chromatograms present the results of their analysis

and are shown Figure 4.3 and Figure 4.4.
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Figure 4.3. GC trace for the 400 PPM low sulfur diesel
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Figure 4.4. GC trace for the 15 PPM ultra-low sulfur diesel

Unfortunately the gas chromatograms for Syntroleum's S-2 fuel were not available prior

to the conclusion of this study, however based on the distillation curves presented in

Figure 4.2, the GC trace for the FT is expected to be similar to that of the LSD with a
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slightly lower heavy hydrocarbon concentration near the back end. From the two gas

chromatograms for the low sulfur and ultra-low sulfur diesel, it is apparent that the ULSD

contained a significantly greater portion of light hydrocarbons, a trend that was observed

in the distillation curves for the two fuels as well. The lack of peaks on the right side of

the spectrum for the ULSD indicate the absence of an appreciable number of heavy

hydrocarbons (high carbon number compounds). Heavier compounds elute from the

column more slowly, and, thus, appear toward the latter end of the spectrum. The

distribution of hydrocarbon compounds in the LSD was much more uniformly distributed

over the entire range of the GC trace and included a wide range of both light- and heavy-

hydrocarbons, as indicated by the large number of peaks at later elusion times.
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5.0 Experimental Setup

While the engine and test bed were installed an setup for two prior studies by Llaniguez

(S.M. 2003) and Acar (S.M. 2005), substantial changes to the data acquisition and

gaseous and particulate emissions sampling systems were made in this study. For a

detailed description of the engine setup the reader is referred to [35]. Additional details

and diagrams related to the experimental setup are also presented in Appendix A.

5.1 Engine

The engine used in this study was a pre-production development engine based on the

Cummins 2002 ISB 300 platform. The Cummins ISB 300 is a turbocharged, 6-cylinder,

5.9-liter, four-stroke, direct injection diesel engine. The engine is rated at 224 kW (300

hp) at 2500 rpm and 890 N-m (660 lb-ft) at 1600 rpm. Appendix B presents additional

engine performance data. The ISB300 is certified to meet 2002 EPA emissions

standards, and employs a number of advanced subsystems such as a Bosch common rail

high-pressure fuel injection system, Holset variable geometry turbocharger, and cooled

EGR. In addition to these subsystems, the engine also utilizes a multiple fuel injection

strategy to further optimize the combustion process with three injection events (pre-,

main-, and post-injection) per cycle. All of the advanced subsystems are electronically

controlled by an electronic control module (ECM) (version CM 850) calibrated to meet

2002 emissions limits when operating with an EPA No. 2 diesel fuel. Table 5.1 lists the

engine specifications.

Number Of Cylinders 6
Combustion System Direct Injection
Aspiration Turbocharged
Stroked (Displaced) Volume [liters] 5.9
Bore/ Stroke [mm] 102/120
Connecting Rod Length [mm 192
Crank Radius [mm] 60
Compression Ratio 17.2

Valve Timing IVO = 9.5 bTDC I IVC = 23.50 aBDC
EVO = 142.0 'aTDC I EVC = 18.00 aTDC

Injection Nozzle O.D. = 158 Lm, L = 1.00 mm
8 Sac-less (VCO) Nozzles Per Injector

Table 5.1. Pre-production Cummins ISB 300 engine details [351
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5.2 Engine Control Software

The ISB 300 engine provided by Cummins was fully electronically controlled and came

equipped with an unlocked ECM. In addition, Cummins also provided their proprietary

in-house software, Calibration Terminal (CalTerm) version 7.63, allowing for engine

calibration changes and real-time monitoring and modification of engine parameters.

Throughout the duration of this study, the stock 300-horsepower calibration provided by

Cummins was uploaded into the ECM and no modifications to any engine control

parameters were made. This calibration was based on a standard No. 2 diesel fuel and

was used for the following two reasons: (1) to ensure the engine would run on the 2002

EPA-emission-certified performance maps, and (2) to evaluate the performance of the

Fischer-Tropsch fuels and blends in a modem engine with an unmodified control system.

While CalTerm allows for the monitoring and modification of hundreds of engine

parameters, unlike prior studies, no parameters were modified during the tests carried out

in this investigation. Despite this fact, CalTerm was used to monitor and log a number of

engine control parameters of interest such as charge flow, pilot injection quantity and

timing, post injection quantity and timing, EGR fraction, boost pressure, and common-

rail accumulator pressure, among others. Furthermore, CalTerm proved invaluable as a

diagnostic tool aiding in the diagnosis of occasional engine problems by providing real-

time logging and display of fault codes.

5.3 Dynamometer Setup and Controller

The engine was directly connected to a Digalog AE 250 eddy current dynamometer via a

drive shaft assembly and two Spicer 1710 Series flange yokes capable of withstanding

1220 N-m under steady state operation and spikes of up to 6500 N-m [35]. The Digalog

AE 250 is rated up to 250 kW, and was used to load the engine. In order to control

engine load, a Watlow Series 96 process controller was wired into the engine's control

system. Furthermore, a Digalog Model 1022A-STD dynamometer controller regulated

engine speed. Torque was measured using a Maywood Instruments U4000, 500 kg load

cell, and torque data was continually recorded using the National Instruments data

acquisition system described in the following section.
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5.4 Data Acquisition System

The engine was heavily instrumented and all measurements were recorded using National

Instruments data acquisition (DAQ) hardware and software. A high-speed PCI-6024E

DAQ board comprised the heart of the system, and was connected to a SCXI-1000

multiplexing chassis. A 32-channel thermocouple module (SCXI-1102B) containing a

fixed 200 Hz low-pass filter was installed in the multiplexing chassis, and used to acquire

most slow-speed data. In addition, a general 32-channel module (SCXI-1 100) containing

a 10 kHz low-pass filter was also installed in the multiplexing chassis to accommodate

both high- and low-speed data acquisition. TBX-1303 terminal blocks were connected to

both the SCXI-1 102B and SCXI-1 100, and incoming signals were wired directly to the

terminal blocks. The slow-speed measurements consisted primarily of data from various

thermocouples, pressure transducers, and flow meters in addition to the engine control

parameters monitored in CalTerm. A detailed list of the parameters that were monitored

is shown in Table C.1 of the appendix.

Aside from the two modules mentioned above, an additional 32-channel SCXI-1 102B

module was also installed in the multiplexing chassis during the course of this

investigation to accommodate additional input signals from various emissions analyzers,

exhaust thermocouples, and pressure transducers. This module also contained a fixed

200 Hz low-pass filter, and was connected to a TBX-1303 terminal block equipped with

cold-junction-compensation sensors to correctly scale the thermocouple signals. The

addition of the above-mentioned data acquisition hardware allowed for the acquisition

and monitoring of over 96 input signals from various auxiliary sensors mounted on the

engine and exhaust system.

In order to correctly monitor and record data from all of the auxiliary sensors as well as

the emissions analyzers, the original National Instruments Labview data acquisition

programs written by Llaniguez (S.M. 2003) were modified. Entirely new programs to

monitor exhaust conditions were written as well, and these are shown in Figure C.1 and

Figure C.2 of the appendix.
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5.4.1 High-Speed In-Cylinder Pressure Measurements

The high-speed data consisted mainly of in-cylinder pressure, crank angle, and manifold

air pressure measurements. The in-cylinder pressure measurements were performed

using an AVL QC33C quartz, piezo-electric pressure transducer mounted in cylinder

number 6. A Kistler 5010B charge amplifier converted the transducer's small current

output to a voltage signal, and the transducer was liquid cooled using a Bernard Model

2500SS MIG welder cooler.

A BEI high-resolution (1800 pulse-per-revolution, 0.20 resolution) crank angle encoder

mounted onto the tone wheel recorded engine-position-indexing signals, and provided

information on top dead center of cylinder 6. In addition, the encoder also triggered the

start of data acquisition at the same point of an engine revolution, but not necessarily the

same stroke. In order provide more precise engine-position data on which stroke of the

four-stroke cycle each piston was going through, data from Hall-Effect sensors on both

the camshaft and tone wheel were monitored as well. This ensured correct phasing of the

in-cylinder pressure signal [35].

5.4.2 Pressure Transducer Calibration and Encoder Phasing

In order to obtain meaningful results from the high-speed in-cylinder pressure

measurements, correct phasing of the pressure signal is of utmost importance. Two

methods were used to correctly adjust the phasing of the start of the high-speed data

recording with respect to TDC. The method used as a first approximation to set the

proper phasing was to adjust the encoder so that the reference signal on the crankshaft

tone wheel occurred 60.0' bTDC [35]. Once the encoder was set at this approximate

position, the peak pressure was determined from a motoring pressure trace and 0.4' were

added due to heat transfer and blow-by effects. This was the procedure recommended by

Cummins and resulted in a more precise determination of TDC.

In order to obtain the motoring pressure trace for TDC determination, the engine was

fired and only fueling to cylinder number 6 was cut. Fueling to this cylinder was cut by

setting the engine parameter FSI_x_ExtCylMaskc to 001F (hexadecimal representation
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of cylinder 6) so that the motoring pressure traces could be recorded. The motoring

traces were thus recorded and fine adjustments to the encoder made until proper phasing

of the signal was achieved. As a final check for correct phasing, the log-pressure versus

log-volume curves were plotted for the motoring pressure traces to verify that the

compression and expansion lines did not cross [35].

5.5 Fuel Flow Measurements and Fuel Handling System

The system used to measure fuel flow rates consists of an Ohaus Scout II Pro balance and

a four-liter beaker used to hold a given quantity of fuel. Fuel was supplied to the engine

from the beaker via a three-way ball valve to allow for selection of either the beaker or

fuel tank as the fuel source. Likewise, the fuel return to the beaker was also controlled

via a second three-way ball valve. The return line was also used to refill the beaker when

the supply line was shut off. The balance was connected directly to the serial port of the

data acquisition computer and fuel mass was monitored and recorded every second.

The duration of the fuel flow measurements was limited by the size of the beaker,

approximately one gallon, necessitating that fuel flow data only be taken when gaseous

emissions and slow-speed data were recorded to allow sufficient time for the beaker to be

refilled. Additional corrective measures to compensate for temperature variations such as

the counter-flow heat exchangers installed by Llaniguez and Acar were retained, although

no longer necessary, as the mass flow of the fuel was measured directly by the balance.

All of the diesel fuel was contained in two separate 81.4-liter (22-gallon) ATL Inc.

SP122B racing fuel cells. The first fuel cell was used to hold only the LSD, ULSD, and

fuel blends while the second fuel cell was only used for the neat FT diesel. This was

done to prevent any cross contamination between the neat FT fuel and baseline diesel

fuels. A fuel control bulkhead consisting of a series of three-way valves allowed for

switching between the individual fuel tanks. Additional valves in the bulkhead made it

possible to bypass the entire return system in order to drain and purge the system when

changing fuels. The fuel change procedure is described in detail in Section 6.3.1. All
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connections on the entire fuel system were made with stainless-steel braided Teflon lines

to ensure trouble-free operation and comply with laboratory safety regulations.

5.6 Intake Air Measurement and Air Handling Systems

Intake airflow measurements were carried out using an Eldridge Products, Inc. Series

8732 thermal mass flow meter installed just after the air filter and before the turbocharger

inlet. Following the turbocharger, a Spearco Universal Air/Liquid Intercooler cooled the

pressurized intake air before it entered the engine's intake manifold. Cooling water was

supplied to the intercooler at a constant flow rate directly from the laboratory's water

supply and recovery system. As a result, the intercooler tended to over-cool the intake air

when the engine was operated at light loads, and not cool enough at extremely high loads.

A gate valve controlled the flow of cooling water to the core of the charge-air cooler, and

was used as a rough means to control the cooling capacity of the intercooler.

The intercooler was connected to the engine via 7.54 cm (3") I.D. silicone rubber hose,

rated to a maximum temperature of 170'C. Despite these measures, the engine was

never operated at rated speed and load due to problems experienced by Llaniguez and

Acar in previous tests with the durability of the intake air hoses and cooling capacity of

the intercooler at these conditions. Intake air temperature and relative humidity were also

continually monitored via a Omega Digital Thermo-Hygrometer that was also wired into

the data acquisition system.

5.7 Gaseous Emissions Analyzers

A gas analyzer system was designed and fabricated at the Sloan Automotive Laboratory.

This system is capable of measuring exhaust gas concentrations in both the raw exhaust

stream and dilution tunnel, as well as in the intake manifold to determine the EGR

fraction. In this study, all gaseous emissions comparisons were based on measurements

sampled from the raw exhaust using heated sample lines and filters to prevent any water

from condensing out of the exhaust stream. Figure 5.1 shows a schematic of the emission

sampling system and general experimental setup as it looked at the beginning of this

study.
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Figure 5.1. Emission sampling system schematic

A full suite of California Analytical Instruments (CAI) emissions analyzers comprised

the heart of the gaseous emissions sampling system and enabled measurement of HC,

NO/NOx, C0 2, CO, and 02 exhaust concentrations. Following the completion of the

work by Acar, the entire gaseous emissions and particulate sampling system was rebuilt,

and new CO/CO 2/02 and SO 2 analyzers were installed.

Hydrocarbon emissions were measured using a CAI Model 300-HFID. The Model 300-

HFID was calibrated with 300 PPM and 30 PPM propane (C 3H8) span gasses and zeroed

using highly purified compressed nitrogen gas. This calibration resulted in a total

effective range of 0 - 900 PPM of C1; however, during the experiments the HC analyzer

was left on the 0 - 30 PPM range since HC emissions from the engine were extremely

low. The operating principle of the 300 HFID is based on a flame ionization detector,

whereby a flame ionizes the sample stream and electrodes in the instrument measure the

particles. A mixture of 40% hydrogen, 60% helium, and hydrocarbon-free air was used

to fuel the flame in the Model 300-HFID. The output of the HC analyzer was fed into the

DAQ system, and the voltage signal was converted back to a PPM concentration and

recorded.
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A California Analytical Instruments Model 400 HCLD Heated Chemiluminescence NO,

analyzer was used to measure NO/NOx concentrations in the raw exhaust. The analyzer

works by using a photodiode detector and chemiluminescence to generate a low DC

current proportional to the amount of NO in the sample gas. To calibrate the Model 400,

a calibration gas of 296 PPM of NO and a zero gas of high-grade nitrogen was used. The

output of the NOx analyzer was fed into the DAQ system, and the voltage signal was

converted back to a PPM concentration and recorded.

A recently installed CAI 602P Non-Dispersive Infrared (NDIR) analyzer replaced the

Horiba MEXA 554 JU for CO2 measurements in previous studies. In addition to C0 2,

the NDIR analyzer is also capable of measuring CO and 02 concentration in the sample

gas. The NDIR gas analyzer utilizes the basic principle that each gas component exhibits

a unique absorption line spectrum in the infrared region to measure sample gas

concentration. The analyzer was calibrated using the following span gas concentrations:

20.0% C02 , 0.302% CO, and 20.0% 02. Highly purified nitrogen gas was used to zero

the analyzer as well. In addition, gas concentrations of 6.60% C0 2, 2.50% CO, and

4.115% 02 were also used to verify correct analyzer operation. The output signals from

each of the three channels (CO/CO 2/02) were wired into the DAQ system.

All of the above-mentioned gaseous emissions analyzers were mounted in a newly

fabricated analyzer rack. The rack was designed to accommodate up to four different

input sample lines to allow either simultaneous measurement of all gaseous emissions of

interest or individual measurement of emissions from up to four different sample points.

In addition to the analyzers, the rack houses a number of sample preparation and

conditioning systems. The samples for all of the CAI instruments were carried from their

respective sample points on the engine/exhaust system to the analyzer rack via heated

sample lines. A detailed schematic of the gaseous emissions measurement system

designed and fabricated for this project is shown in Figure 5.2.
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Figure 5.2. Gaseous emissions sampling system

The heated sample lines enter the rear of the analyzer rack and are connected directly to

three individual Universal Analyzers Model 270S heated stack filters and one M&C

Products Series FT heated filter. The Universal analyzers filters employ 2-micron

ceramic filter elements to remove any large particulate matter that can clog sample and

capillary tubes within the gas analyzers, and the M&C filter employs a slightly larger 3-

micron filter element. A series of heated stainless steel lines connect the heated filters to

one of two manifolds. The first manifold, and corresponding bulkhead mounted on the

front panel of the analyzer rack, control sample port selection (Dilution tunnel, Rawl,

Raw2, and EGR). The second manifold and corresponding bulkhead enable analyzer

selection and control zero gas, span gas, and purge airflow.

Each CAI analyzer is also equipped with its own internal sample pump to facilitate

sample gas transport from the engine through the heated lines to the analyzers. Early
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attempts to simultaneously run all of the analyzers on the same sample line resulted in

extremely low sample flow rates and erroneous measurements due to interaction of the

various sample pumps. In order to allow for simultaneous emissions sampling, two by-

pass lines were added to the gas analyzer system as shown in Figure 5.2. The by-pass

lines allow the sample gas to circumvent the common manifolds and flow directly into

each of the three gas analyzers, thus eliminating the problem of negative pump

interference.

In order to reduce the amount of zero gas consumed during analyzer warm-up and shut

down, as well as to provide a convenient means for flushing the analyzer system before

shut-down, a purge air system was also installed in the analyzer rack. The system

consists of a Gast rotary vane vacuum pump used to pull ambient air into the system and

additional bulkhead connections to direct the purge air to each of the analyzers and

associated piping.

5.7.1 Sample Preparation

As the HC and NOx measurements were carried out wet, the sample gasses for these

analyzers were routed directly from the bulkhead, via heated lines to the sample inlet port

of the analyzers. Stainless steel tubing was used for all connections within the gas

analyzer system, and all lines, manifolds, and valves were heated using Omegalux rope

heaters controlled by two Powerstat variable autotransformers.

On the other hand, since the C0 2, CO, and 02 emissions must be measured dry to avoid

interference between any moisture in the exhaust stream and the optical measurement

systems in the analyzer, the sample stream is first passed through a Universal Analyzers

Model 520 single stage sample chiller to cool the sample to 3.5'C and remove any water

vapor present in the sample stream. The water that accumulates in the sample chiller is

then removed with a Universal Analyzers Model 7015-20 peristaltic pump. Furthermore,

a secondary moisture sensor/filter assembly provides an additional check before the cool

dry gas stream is routed into the NDIR analyzer.
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5.7.2 Gaseous Emissions Sample Points

Gaseous emissions were sampled from three different locations on the engine/exhaust

system in this study. All engine-out emissions were sampled from the raw exhaust

stream at a sample point 10 pipe diameters away from the nearest elbow to ensure fully

developed flow at the sample point. Additionally, emissions were also sampled from the

intake manifold and mini-dilution tunnel. Intake manifold sampling consisted primarily

of CO 2 concentration measurements in order to calculate the EGR fraction. The intake

manifold emissions sample point was installed 304.8 mm (12") from the EGR valve. For

the gaseous emissions measurements taken from the mini-dilution tunnel, a sample point

was installed 762.0 mm (30") away from the tunnel inlet to ensure fully developed flow

at the sampling point. CO 2 concentration measurements in the dilution tunnel were used

to compute dilution ratio by comparing the raw and dilute CO2 measurements.

Furthermore, the new sampling system enabled the verification of both the dilution ratio

and EGR fraction, based on CO2 measurements, with NOx measurements in these

locations as well.

5.7.3 Sulfur Dioxide Measurements

An Antek Model 6000SE SO2 analyzer was installed following the first round of testing.

The Model 6000SE utilized two pyro furnaces each at 10000 C to convert any sulfur on

the particulates and in the exhaust stream to SO 2 for measurement via UV fluorescence.

As any NO present in the sample stream can adversely influence the SO 2 measurements,

(100 PPM NO is detected as 1 PPM SO 2) the Antek is also equipped with an ozone

generator to convert the NO to NO 2, which then no longer interferes with the analyzer.

For a detailed description of the SO 2 analyzer and its principle of operation, the reader is

referred to [26].

The Antek is capable of detecting SO 2 levels in the exhaust down to 250 ppbv.

Depending upon the fuel sulfur concentration, the Antek was calibrated using SO 2 span

gas concentrations of 1.96 PPM, 5.23 PPM, and 32.29 PPM. Furthermore, breathing

quality compressed air was used as the zero gas for the Antek. SO 2 emissions were

sampled from the same locations as the other analyzers as described in Section 5.7.2,
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using heated sample lines to maintain as closely as possible the raw exhaust gas

composition. An additional sample point for raw exhaust emissions was added

downstream of the original raw exhaust sample point to accommodate the Antek's longer

heated sample line. Although SO 2 emissions were primarily sampled from this second

raw exhaust sample point, other sample points were occasionally used to verify correct

analyzer operation and to double-check readings. A detailed schematic of the test bed

with the SO 2 analyzer and second raw exhaust sample point is depicted in Figure 5.3.
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Figure 5.3. Modified test bed showing addition of SO 2 analyzer, second raw exhaust

emissions sampling point, and modified PM sampling system

The modifications to the particulate sampling system shown in Figure 5.3 are presented

in detail in Section 5.9.

5.8 Mini-Dilution Tunnel

Particulate Matter is defined by the EPA as all solid matter and condensable species that

can be collected on a paper filter from a diluted exhaust sample held at no higher than

52*C [25]. In order to conform with the EPA mandated particulate sampling procedure

and cool the exhaust to 52'C, some form of a dilution tunnel must be employed. Dilution
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tunnels introduce a given portion of ambient air into some or all of the exhaust stream.

The mixing of ambient air with the hot diesel exhaust serves two purposes. First, it helps

to cool the gasses to below 52'C, and, second, it simulates particle transformations (i.e.

agglomeration, adsorption, and nucleation) that occur naturally on the road after the PM

leaves the tailpipe.

The size of the dilution tunnel used in this study was limited by the available space in the

test cell, and as a result, a mini-dilution tunnel was used that only dilutes a fraction of the

exhaust stream. The tunnel is composed of 7.54 cm (3") O.D. stainless steel tubing, and

is connected to the engine's exhaust system via a 1.88 cm (%") O.D. stainless steel tube.

A high-temperature ball valve and a Spencer Model 1001-%SS blower control exhaust

flow to the tunnel. The blower maintains the pressure inside the tunnel below

atmospheric, and ambient air is drawn into the tunnel through a HEPA filter element

mounted near the raw exhaust inlet on the dilution tunnel system. The tunnel is 0.762 m

(30") long from the raw exhaust inlet to the tunnel outlet to ensure fully developed flow

and complete mixing of the raw exhaust and ambient air.

As mentioned in Section 5.7.2, the dilution ratio was measured by comparing the CO 2

readings in the tunnel to the CO2 readings in the raw exhaust. Additional checks of the

dilution ratio were also made by monitoring both raw and dilute NO/NOx readings.

5.9 Gravimetric Particulate Matter Sampling System

The gravimetric particulate matter sampling system was set up to accommodate both raw

and dilute particulate samples. Dilute samples were drawn directly from the dilution

tunnel, whereas raw samples were routed from a location on the exhaust system before

the dilution tunnel via heated stainless steel sample lines to the particulate sampling

system. Heated sample lines were used when sampling raw exhaust to prevent water

from condensing out of the exhaust stream and onto the filter and tube walls.
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Pall Corporation stainless steel 47mm filter holders were used to hold Pallflex@

Fiberfilm Model T60A20 glass fiber filters, on which the particulate samples were

collected. The Pallflex@ Model T60A20 filters are recommended by the EPA for use in

gravimetric filter measurements [50]. Additionally, the Model T60A20 filters can also

withstand the elevated temperatures encountered during raw exhaust sampling, as they

are rated for temperatures up to 315.5 C.

Exhaust gas was drawn through the particulate sampling system by a Gast Model 0823

rotary vane vacuum pump, and the sample flow through the paper filter was measured via

an Omega FVL-1611 volumetric flow meter installed downstream of the filter holder

assembly. The Omega FVL-1611 is capable of measuring flow rates up to 250 SLPM.

The output from the flow meter was fed directly into the data acquisition system, and the

flow rates were monitored and recorded continuously for the entire duration of the

particulate collection.

In order to verify compliance with EPA dilute particulate sampling procedures,

thermocouples were installed at locations slightly in front of the 47mm filter holders.

The temperature readings were also fed into the National Instruments data acquisition

system.

Shortly after the initial round of testing, the Gast rotary vane vacuum pump failed due to

excessive water accumulation within the pump and the elevated temperatures to which

the pump had been subjected during raw particulate sampling. Following the failure of

the pump, the entire particulate sampling system was rebuilt. In addition to installing a

larger and more robust rotary vane vacuum pump, Gast Model 1423, a number of

protective measures were taken to prevent future pump failure as well.

The installation of the larger Model 1423 vacuum pump enabled a maximum flow rate of

13.2 CFM at 25 in Hg vacuum. The significantly higher flow rate of the pump allowed

for the installation of a second particulate collection system in parallel with the original

system, which reduced overall PM collection times by 50%. Secondary 10-micron Gast
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canister filters were also installed directly after the filter holder assemblies as an

additional protective measure to ensure that no particulates would enter the new vacuum

pump. Custom counter-flow heat exchangers were also designed and fabricated at the

Sloan Automotive Laboratory and installed immediately after the canister filers. The

heat exchangers were capable of cooling the sample gasses to between 20'C to 30'C,
well below the pump's maximum allowable inlet temperature specified by the

manufacturer. Following the heat exchangers and immediately before the pump, two

SMC Model AMJ4000-NO4B water separators were installed as well. The water

separators are designed to remove any remaining moisture in the gas stream that did not

condense in the heat exchangers. A schematic of the rebuilt particulate sampling system

is shown in Figure 5.4.

47mm Filter Heat Volumetric
Holder Exchanger Flow Meter

Vacuum
Relief Valve

? Exhaust

Vacuum Pump -

Vacuum Gauge

Water
In-Line Filter Separator

Figure 5.4. Dual branch particulate sampling system with sample conditioning

systems in place
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6.0 Experimental Test Matrix and Procedure

The experimental work covered in this thesis can be subdivided into three major rounds

of testing. The first round focused specifically on the emissions characteristics of the

four fuels and a select number of engine operating conditions. The second round of

testing covered a significantly larger number of engine operating conditions but focused

more on in-cylinder pressure measurements and combustion characteristics of the fuels.

Finally, the last round of testing focused solely on the low sulfur diesel and FT fuel, and

consisted of a more in-depth gaseous and emissions characterization of these two fuels.

6.1 Engine Operation

In the present study, the stock 300 horsepower calibration provided by Cummins was

uploaded into the ECM and no additional modifications to any control parameters were

made. In some cases it was, however, necessary to override the stock control settings

during engine warm-up, as the engine would shift from the stock control algorithm to a

condensation protection algorithm. The engine control system on the ISB 300 monitors

intake manifold temperature, intake manifold pressure, airflow, EGR flow, and a number

of other parameters to infer if water may be condensing in the intake manifold or EGR

system. When the engine is first started and the intake manifold temperature is

excessively cold as the charge air cooler is still warming up, oftentimes the engine

control algorithm would switch to the condensation protection mode. As a result, the

EGR valve closed completely to prevent excessive corrosion of the aluminum

components, and the engine switched to a completely different set of operating tables.

However, since the engine was operated in a controlled laboratory environment, this was

in actuality often not the case. To expedite engine warm-up, the condensation protection

algorithm was oftentimes manually overridden to return the engine to the stock control

settings. Furthermore, the gate valve controlling the flow of cooling water to the

intercooler was also closed, which further helped to expedite engine warm-up. The

testing was carried out using the stock calibration to provide the worst-case scenario for a

modern engine that switches to FT fuel without properly calibrating the ECM to account

for the change in fuel properties.
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6.1.1 Experimental Test Matrix

The test matrix of engine operating conditions for this study was based on a subset of the

Euro-III 13-Mode Stationary Test Cycle. The European Stationary Cycle (ESC) consists

of 13 operating conditions representative of actual on-road driving conditions and is used

by Cummins as well. A subset of the Euro-III test modes used in the initial round of

emissions testing is listed in Table 6.1. The engine speeds for each test mode A, B, and C

are defined as follows:

Equation 6.1 A = RPM,,, + 0.25* (RPMhigh - RPM,,,)

Equation 6.2 B = RPM,,, + 0.50 * (RPMhIgh - RPM,,,)

Equation 6.3 C = RPM, + 0.75* (RPMhigh - RPM,,,)

where RPMhigh, is defined by calculating the highest engine speed above the rated speed

where 70% of the maximum net power occurs, and RPM 0 ,, is defined by calculating the

lowest engine speed below the rated speed where 50% of the maximum net power occurs.

Based on the engine's torque and power curves provided by Cummins and presented in

Appendix B, Eq. (6.1) through Eq. (6.3) yield the following values for the three test mode

speeds: A = 1682 rpm, B = 2013 rpm, and C = 2345 rpm [35]. Table 6.1 below shows

the initial test matrix, which formed the basis for the emissions tests.

A25 1682 224 477
A50 1682 470 1001
B50 1 20131 4471 952

*A50 is actually 53% load

Table 6.1. Initial test matrix

The test matrix shown above represents the three steady-state speed and load points that

were used to evaluate the fuel effects on engine-out emissions. The number following

the letters for the speed modes in Table 6.1 indicates the percent of maximum engine load
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at which the engine was operated for a given speed. The A50 test point at 53% load was

retained from the previous work of Llaniguez and Acar to allow for direct comparison of

the results. The initial test matrix was chosen for the following two reasons: to verify the

initial results observed in the last reporting period for the fuel blends, and to reduce dilute

particulate collection times, as the test points represent operating conditions producing a

relatively large amount of particulate emissions.

6.1.2 Expanded Test Matrix

Following the initial round of testing, the test matrix was expanded to 10 steady-state

speed-load points for each fuel to represent a larger portion of the engine's operating

range. Similar to the initial test matrix, the expanded test matrix is comprised of a subset

of the Euro III 13-mode test cycle. The specific operating conditions are listed in Table

6.2.

A25 1682 224
343
477

A50 1682 470 1001
A75 1682 671 1429
B25 2013 223 475
B50 2013 447 952
B75 2013 669 1425
C25 2345 217 462
C50 2345 433 922
C75 2345 650 1384

*A50 is actually 53% load

Table 6.2. Expanded test matrix used to evaluate combustion characteristics

Due to the lengthy sampling times necessary to collect a significant amount of dilute

particulates for gravimetric analysis, combined with the fact that diesel particulate

emissions are fairly well documented in the literature [12, 41, 51] and the previous work

on this engine [35, 36], exhaust emissions measurements were not continued with the

expanded test matrix. The focus of the study, thus, shifted to a detailed combustion

analysis.
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This test matrix was designed to complement the data previously collected in several

ways. As can be seen in Tables 6.1 and 6.2, there is significant overlap in the A25, A50,

and B50 conditions. The purpose of this overlap is two-fold: to provide an opportunity to

correlate results of the combustion analysis with previous emissions data, and to allow for

a direct comparison of the 400 PPM and 15 PPM sulfur fuel to the FT fuel. The

expanded test matrix extends the scope of the work to cover a full range of engine

operating conditions, and it encompasses relatively high speed and load test conditions

not covered in previous work.

Data sets recorded in the experiments and presented here adhere to a prescribed naming

convention that indicates the fuel used and the engine operating parameters. A two to

four letter prefix indicates the type of fuel for the data set. FT, BL, LSD, and ULSD

represent Fischer-Tropsch, FT/400 PPM blend, low sulfur diesel (400 PPM), and ultra-

low sulfur diesel (15 PPM) respectively. Following the fuel specification, the general

operating condition is indicated by the letter corresponding to the speed and two digits

representing the percent load for that speed, as outlined in Table 6.2. Unlike the previous

studies, all other engine control parameters such as EGR rate and injection timing were

maintained at their respective stock settings and no changes to the stock engine

calibration were made.

6.2 Particulate Matter Sampling Conditions

Unlike previous work [35, 36], all of the particulate data used to characterize the

emissions trends were sampled from the exhaust stream after first passing through the

mini-dilution tunnel. Although the sampling times required to collect a comparable

amount of dilute particulates are approximately 6 times longer when compared with the

raw sampling method, only dilute particulates were sampled during the first round of

testing in order to reduce the error and uncertainty inherent to the raw sampling method.

Before each test, the Pallflex filter papers were placed in individual plastic Petri dishes

and conditioned for at least 56 hours in accordance with protocol recommended by the
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EPA [50]. Filters that were later sent to the emission/chemistry laboratory of a major

engine manufacturer for analysis were placed in glass dishes rather than the plastic Petri

dishes, since, according to Cummins, certain chemicals in the plastic dishes can leach out

onto the filter paper and affect the results.

All filter preparation and conditioning were carried out in a climate-controlled

environment where the temperature was between the EPA mandated range of 68* - 86'C

and relative humidity of 30% - 70%. Despite the carefully controlled conditions, it was

found that daily variation in temperature and humidity, especially when comparing

samples collected in the summer and winter months, had a significant effect on filter

mass. To correct for variations in environmental conditions, a set of four control filters in

plastic Petri dishes were kept in the sample preparation room at all times and used to

compute a correction factor based on the weight variation of the control filters in the

period between clean and loaded filter weighing.

6.2.1 Dilute Exhaust Sampling

All dilute particulate sampling was carried out with dilution ratios between 9 and 12, and

the dilution ratio was computed by measuring the CO 2 concentration in both the raw and

dilute exhaust stream. Additional checks of the dilution ratio were made by measuring

the dilute and raw NOx concentrations as well. The temperature of the exhaust before

each sample filter was carefully monitored to ensure that the particulate samples were

collected below 52*C. Typical PM collection temperatures ranged between 45'C and

52*C, and sample times were typically around 30 minutes to collect at least 2.0 mg of

sample. Filters sitting idle in the climate-controlled sample preparation room could vary

in weight by 0.5 mg. Despite corrective measures taken to reduce sample variability

and the use of control filters to account for changes in filter weight due to environmental

effects, the best way to minimize sampling error was to collect as much of a sample and

as many samples at one test condition as possible.

As mentioned in the previous section, new filter papers were allowed to condition in

individual Petri dishes in a climate-controlled room for at least 56 hours prior to use.
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After the conditioning period, four particulate samples were taken consecutively for 30

minutes each in order to collect a statistically significant number of samples and calculate

a meaningful average. After the filter papers were loaded, they were again allowed to

condition for at least 56 hours in the climate-controlled room in order to dry the paper

and settle the particulates.

6.2.2 Raw Exhaust Sampling

While all of the particulate emission trends and comparison of PM emission levels of the

various fuels are based on dilute particulate samples, some raw particulate sampling was

carried out in the last round of testing to gain a better understanding of the composition of

the particulates as they existed in the undiluted exhaust stream. As a result, the

extractable fraction was significantly reduced, since the hot, undiluted exhaust conditions

between the turbo outlet and PM sampling port are not conducive to the condensation of

various gaseous species and light hydrocarbons onto the PM.

Typical temperatures just in front of the sample collection filter ranged from 70'C to

90'C for the raw particulate samples. Furthermore, the sampling times necessary to

collect a sufficient amount of raw PM for analysis was significantly reduced for the raw

particulate samples, with a sampling time of approximately 10 minutes yielding up to 5.0

mg of raw PM collected on the filter for the LSD fuel. This reduction in sampling time

is due to the fact that, in the case of dilute sampling, only a portion of the PM that enters

the dilution tunnel is actually sampled, with the rest returned back to the exhaust trench.

On the other hand, in the case of raw sampling, all of exhaust pulled through the sample

port is routed directly to the filter. However, if this were not the case and equal amounts

of raw and dilute particulates were sampled, the dilute sample weight would be

significantly higher due to the effects of nucleation, condensation, and absorption in the

dilution tunnel.

Generally, the dilute sampling method produced more consistent results and was the only

sampling method that ensured the sample stream was cooled to below 52'C in

accordance with the EPA particulate sampling guidelines. Despite this fact, the dilute
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sampling method still leaves much room for improvement, specifically in the areas of

filter conditioning, handling, and weighing.

6.2.3 Filter Processing

Following at least 56 hours of filter conditioning in the individual glass or plastic Petri

dishes, the clean sample filters were weighed using a Mettler Toledo Model AG285

balance accurate to + 0.01 mg. Each filter was weighed 3 times, along with the control

filters, prior to use. Following sample collection, all particulate samples were returned to

the sample conditioning room for storage prior to final weighing. After at least 56 hours

in the sample conditioning room, the loaded filters were reweighed to determine the mass

of PM collected. The control filters were also reweighed at this time and used to correct

for any changes in the room's temperature and humidity.

6.3 Engine Operation during Experiments

Before beginning each round of testing, all of the gas analyzers and associated heated

filters, lines, and sample conditioning systems were allowed to warm up for one hour.

Following the initial analyzer warm-up phase, each analyzer was calibrated with the

appropriate zero and span gasses covering the instrument's expected operating range.

The analyzers were then flushed with zero gas and purge air for at least one more hour

prior to taking any measurements. After all of the gas analyzers were calibrated, the clean

sample filters for particulate collection were weighed and retrieved from the climate-

controlled sample conditioning room.

Following the weighing of the clean sample filters, the engine was started and allowed to

idle for five minutes as the National Instruments and CalTerm software programs were

started. At this point, initial checks of key engine operating parameters were made using

CalTerm to verify proper engine operation. Following the initial checks, the appropriate

engine speed was set using the Digalog dynamometer controller. Load on the engine was

then slowly increased until the predetermined load set point was reached using the

Watlow controller. The engine was run at the specified test condition until normal

operating oil and coolant temperatures were reached, and all engine subsystems had

87



settled into steady state operation. This time also allowed the filter holders and

particulate sampling apparatus to reach operating temperature. As mentioned in Section

6.1, the condensation protection control algorithm was occasionally overridden to

expedite the warm-up process; however, all engine control parameters were returned to

their stock settings before any measurements were taken.

Once the engine reached its normal operating temperature at the specified test condition,

a 60-second scan of all slow-speed engine data including fuel flow was initiated. This

60-second scan of the slow-speed engine data was only taken once for each operating

condition. After the slow-speed scan, three 30-second scans of the gas analyzers were

run. During these scans all gaseous emissions were sampled simultaneously from the raw

exhaust, including HC, NO, NOx, CO, C0 2, and 02. In the third round of testing, SO 2

emissions were sampled from the raw exhaust as well, as the Antek SO 2 analyzer became

available. Following the gaseous emissions measurements in the raw exhaust, CO 2

measurements were taken from the intake manifold and dilution tunnel as well. During

all of the emissions measurements, the engine's fuel was drawn from the fuel beaker

instead of the tank, in order to obtain fuel consumption figures for each test condition.

Once the emissions scans were complete, the first particulate filter samples were

collected. During the particulate sampling, flow data for the exhaust through the filters,

as well as filter temperature data were recorded using the data acquisition system in

addition to actual engine operating data. Between each of the four particulate samples,

another round of emissions and fuel consumption data was recorded and the particulate

sampling process was repeated. For each test condition, five sets of emissions and fuel

consumption data were taken in between four dilute particulate samples.

After all of the emissions and particulate samples were taken at a particular test

condition, the high-speed in-cylinder pressure measurements were initiated. The high-

speed data consisted of a 10-cycle and a 100-cylce high-speed scans to record in-cylinder

pressure data. Both the 10-cycle and the 100-cycle scans were taken at the end of all

tests, which was approximately 2.5 hours after the first slow-speed scan. Following the
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high-speed scans, the engine's operating conditions (speed and load) were adjusted to the

next test condition, and the entire test procedure outlined above was repeated.

This same procedure was also used during the third round of testing when raw particulate

samples were collected. The only notable change in the test procedure was the addition

of the second particulate sample filter allowing for the simultaneous collection of two

raw PM samples. Furthermore, SO 2 data was recorded along with all other gaseous

emissions. Aside from the raw PM sampling and the inclusion of the SO2 measurements,

no other changes to the basic test procedure were made.

It should also be noted that the particulate and emissions measurements were not

continued for the expanded test matrix. During these tests only the 60-second scan of all

slow-speed engine data, including fuel flow, was taken. Following the slow-speed data,

the 10-cyle and 100-cycle high-speed in-cylinder pressure measurements were taken.

This process (alternating slow- and high-speed scans) was repeated four times for each

test condition in order to collect enough data to calculate meaningful averages for each

test condition.

Upon completion of data collection, the engine was slowly ramped down to idle and all

heated exhaust sample lines were disconnected from the exhaust system and turned off.

The engine was then allowed to idle for 5 to 10 minutes before being shut down using

CalTerm. All gas analyzers were purged with ambient air and allowed to cool down for

at least one hour prior to shut down. Lastly, all particulate samples were returned to the

sample conditioning room to allow the samples to settle.

6.3.1 Fuel Change Procedure

Fuel changes were initiated following the completion of a full round of testing for each

fuel under investigation. Testing began with the FT fuel (zero sulfur content), and

subsequent fuel tests were carried out in the order of increasing fuel sulfur content. The

fuels were tested in this order for the purpose of reducing the potential for residual sulfur
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in the fuel system leftover from a high sulfur fuel to contaminate the ultra-low sulfur and

FT fuels.

In order to minimize cross-contamination of the FT and standard No. 2 diesel fuels, the

engine is equipped with two separate ATL fuel cells. Despite this setup, a number of

additional precautions were taken when switching from one fuel to another. First, the

supply and return valves on the bulkhead controlling fuel routing were switched to the

desired fuel source. In addition, the bypass valve was opened and the engine's electronic

fuel lift pump was run to purge any remaining fuel from the supply-side of the system.

At this point, the engine's fuel filter was removed and replaced to prevent any cross-

contamination of fuel sulfur. In order to purge any remaining fuel from the return side of

the system, the lift pump was again run with the return line disconnected from its

respective tank, and all fuel was routed to a waste fuel container. As a further precaution,

the return line was left connected to the waste fuel container for the first few minutes of

engine operation with the new fuel to fully eliminate the possibility of any cross-

contamination.

6.3.2 Oil Change Procedure

All engine tests for the current reporting period were carried out using a standard 15W-40

heavy-duty diesel oil as recommended by Cummins. Routine oil and filter changes were

carried out at the manufacturer's prescribed maintenance intervals. Furthermore, new

and used oil samples were collected and sent to the emission/chemistry laboratory of a

major engine manufacturer for analysis.

6.4 Data Processing and Reduction

All gaseous and particulate emissions values reported in this study were normalized in

units of power and time (g/hp-hr) to allow for direct comparison of the various fuels over

a wide range of engine operating conditions. Furthermore, as not all gaseous emissions

were measured on the same basis (wet or dry), the conversion on the emissions values to

the same basis required a significant amount of data processing.
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6.4.1 Gaseous Emissions Data Processing

Since the HC, NO, and NOx emissions were measured wet and the CO, C0 2, and 02

emissions were measured dry, with any water in the exhaust removed via the sample

chiller, the CO, C0 2 , and 02 concentrations were all converted to a wet basis. This also

enabled direct comparison with the Cummins ESC data, which was reported on a wet

basis as well. In order to convert all of the emissions values measured on a dry basis to a

wet basis, the water content in the intake and exhaust had to be estimated.

The conversion of the emissions values measured on a dry basis to a wet basis is as

follows. If the average molecular formula of the fuel is defined as (CHy)a, where y is the

molar H/C ratio of the fuel, then the molecular weight, Mf, of the fuel is given by [1]:

Equation 6.4 Mf = a(12 + y)

where a is the coefficient used to multiply the average molecular weight of the simplified

chemical composition to equal Mf. Since the Cummins ISB employs a cooled EGR

system to reduce NOx emissions, a fraction of the exhaust gasses is routed back into the

intake manifold where it is mixed with the fresh intake charge. The moles of the major

species in the intake mixture with EGR can be estimated via the following equation

written per mole of 02 [1]:

Equation 6.5 (1 - xb)[ (1 + 28)#(CHy), + 02 + VW2
M f

+ Xb +C2 n 20 +nco +nH. N
2 n02)

where xb is the burned gas fraction, c is defined as 4/(4+y), 4 is the fuel/air equivalence

ratio, ni is the number of moles of species i per mole of 02, and y is the molar N/O ratio

(3.773 for air). The mole fractions of the individual species are obtained by dividing by

the total number of moles of unburned mixture, n,, [1].
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Equation 6.6 nu=(-xb) [4(l+2c)o +l V +Xbnb
Mf

where nb, the total number of moles of burned mixture, is given by the following equation

for a lean mixture [1]:

Equation 6.7 nb - (1 -6 + I + .

Since the engine is turbocharged, it is assumed that the residual gas fraction is negligible

in the equations presented above. However, since the engine employs EGR, Xb, was

initially set equal to the EGR fraction, which was computed from the measured CO 2

concentrations in the intake manifold and exhaust system [35].

Once the correct water content in the intake mixture (air, fuel, and burned gas fraction)

was calculated, the water vapor mole fraction in the exhaust was found from the ideal

combustion equations for each fuel. The equations presented above were then iterated

with the newly determined EGR fraction until a steady-state value was reached. Based

on the water vapor mole fraction in the exhaust, the dry-basis CO, C0 2, and 02 values

were converted to a wet basis as follows:

Equation 6.8 Y,= (1 - YH2 O)x i

where Y, is the wet mole fraction of species i, and Y,* is the dry mole fraction of species i,

[1]. As an additional check of the accuracy of the calculations presented above, the

measured air/fuel ratio based on the air and fuel flow measurements was compared

against the air/fuel ratio computed using the exhaust emissions measurements and the two

were found to be in good agreement.
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6.4.2 Particulate Emissions Data Processing

Only a portion of the raw exhaust was diverted into the mini-dilution tunnel and collected

via the particulate sampling system. Therefore, the mass of the particulates collected on

the filter papers had to be converted to a total engine-out PM emissions rate. This was

accomplished by using the measured sample flow data recorded from the Omega FVL-

1611 volumetric flow meter and the dilution ratio computed from the CO 2 concentrations

measured in the dilution tunnel and exhaust system.

The PM sample flow rate data was averaged over the entire sampling period, since the

flow rate decreased with time as the filters were loaded. The sample flow rate across the

filter was then used to compute the actual particulate emissions from the engine

normalized in units of power and time (g/hp-hr) to allow for direct comparison over a

range of operating conditions.

6.5 Heat Release Analysis

The major thermodynamic indicators used in this study to quantify the specific aspects of

the combustion process were calculated via a simple single-zone heat release analysis.

The analysis is based on the First Law of Thermodynamics and assumes a single zone of

uniform products in a closed system between intake valve closing (IVC) and exhaust

valve opening (EVO). The gas properties in the cylinder are calculated using the ideal

gas relationships and the gas constant for air. Due to the nature of this simple single zone

model, heat loss through crevice effects, and other non-uniformities within the cylinder

the model can only produce approximate results. The following form of the First Law

forms the basis of the model:

Equation 6.9 dUnterna= Qchemical QHT -

where 6 Qchemical is the calculated chemical energy of the fuel, 6 QHT is the energy lost

through heat transfer, and 5W is the work. In order to apply the First Law directly to in-

cylinder pressure data, the differential forms of some of the terms were rewritten on a

crank-angle basis, since the pressure and volume data were recorded referenced to a
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signal from the crank-angle encoder [35]. The following form of the First Law was

applied directly to the experimental data:

Equation 6.10 3 Qchemical 1 dP + _ _+ _T

dO y-1 dO y-1 dO dO

where V is the cylinder volume, P is the cylinder pressure, and y is the ratio of specific

heats (cp/c,). The heat transfer term in Eq. (6.10) was calculated from a Nusselt-

Reynolds number correlation similar to that used to model steady turbulent pipe flow.

Reference [52] provides further detailed information on the heat transfer model.

6.5.1 In-Cylinder Pressure Signal and Data Processing

The in-cylinder pressure signal from the crank angle encoder was first processed using a

10 kHz hardware filter in the National Instruments SCXI data acquisition module. The

10 kHz filter setting was selected to filter some noise, while at the same time preventing

the possibility of introducing phase-shift errors in the pressure signals due to poor low-

pass filter response [35].

In addition to the hardware filtering, a simple software filter was created in MatLab to

further process the data prior to carrying out the heat release and combustion analysis.

This code essentially employs a Discrete Fourier Transform to convert between the time

and frequency domains and computes and filters the signal at and above the Nyquist

frequency to eliminate the problem of alias frequencies. An example of the output from

the in-cylinder pressure data filter program is shown in Figure 6.1 for 9 cycles at the A50

test condition (1682 rpm, 447 N-m). For the sake of clarity, only 9 cycles are shown in

the graphs in Figure 6.1, however all cylinder pressure data presented in this report were

averaged over 100 cycles to minimize the effects of cycle-to-cycle variation.
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Figure 6.1. Example of MatLab cylinder pressure filter program with FT fuel at the

A50 test condition showing (a) input file prompt and frequency cutoff specification,

(b) raw and filtered pressure data, and (c) calculation of Nyquist and cutoff

frequencies.

The filtered output from the MatLab code was then input into the FORTRAN heat release

program to calculate the various thermodynamic indicators of interest. The heat release

program employs the simple First Law model presented in Section 6.5 to calculate a

number of thermodynamic indicators to characterize the combustion process. In addition

to the pressure data filtered using the MatLab program described above, a second data

file containing specific fuel properties and engine operating parameters was also input

into the heat release program. The relevant portions of the FORTRAN and MatLab codes

employed in the processing of the in-cylinder pressure data, as well as the relevant input

parameters, are presented in Appendix D.
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7.0 Experimental Results

This chapter presents the results of the combustion and emissions measurements, along

with the detailed particulate analysis. The results provide considerable insight into the

major factors influencing the observed emissions trends.

7.1 Emissions Characteristics

Due to the overall lean operation of diesel engines, in addition to the advanced

subsystems and combustion strategy of the Cummins ISB, emissions of carbon monoxide

are fairly low. The compression of only air during the compression stroke eliminates

several major sources of unburned hydrocarbons, thus HC emissions from diesel engines

are usually within acceptable levels. Therefore, the focus of the following discussion is

primarily on the NO, and PM emissions trends; however, some experimental data

covering other emissions of interest are presented as well.

7.1.1 Particulate Emissions

The specific particulate emissions rates for the three initial test conditions under

investigation are shown in Figure 7.1.
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Figure 7.1. Specific particulate emissions
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The amount of particulate matter that exits the engine is due to two competing processes:

the extent of particulate formation and oxidation. Both the FT fuel and the blends

reduced regulated emissions for each test condition. The fuel effects were most

pronounced in regards to particulate emissions, where the FT fuel alone reduced

particulate emissions by 54% on average as compared to the baseline fuel over all three

test conditions. The blend performed nearly as well as the ultra-low sulfur diesel in

reducing particulate emissions, with both fuels reducing particulates by an average of

28% compared to the baseline fuel. The fact that the blend produced approximately half

the particulate reduction of using neat FT fuel alone suggests a more than proportional

benefit of using the blend.

7.1.2 NOx Emissions

It is well understood that the principle factor driving NOx formation is in-cylinder

temperature during combustion. The extended Zeldovich mechanism is very sensitive to

temperature, and NOx control techniques typically attempt to lower peak cylinder

temperatures. Based on this fact, it is not surprising that the fuel effect on NOx emissions

is much less pronounced. The greatest reduction in NOx emissions was observed with

the FT fuel, which reduced NOx by approximately 12% as compared to the low sulfur

diesel. The blend and ultra-low sulfur diesel reduced NOx emissions only slightly, on the

order of 2% and 4% respectively. The specific NOx emissions rates for the three initial

test conditions are depicted in Figure 7.2.
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The average exhaust temperatures measured from thermocouples located just outside

each exhaust port are plotted in Figure 7.3.
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Figure 7.3. Average measured exhaust temperature
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The FT fuel exhibited a slightly lower exhaust temperature for each test condition, with

values ranging from a maximum temperature reduction of 17.6*C to a minimum

reduction of 2.5*C. The blend exhibited only a slight decrease in exhaust temperature

relative to that of the baseline fuel.

The effect of the FT fuel and blend on reducing the measured exhaust and corresponding

cylinder temperatures is most likely the primary factor contributing to the reduction in

NOx emissions. This observation confirms the temperature sensitivity of the extended

Zeldovich mechanism as primarily responsible for the majority of the NOx formation in

the power cylinder.

7.1.3 Hydrocarbon Emissions

As can be seen from Figure 7.4, the effect of the fuels on hydrocarbon emissions was

varied.
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Figure 7.4. Specific hydrocarbon emissions
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The FT and blend yielded approximately the same reduction in HC emissions, while the

ULSD increased hydrocarbon emissions by nearly 15% on average when compared with

the baseline low sulfur diesel. Hydrocarbon emissions are the product of a number of

factors related to fuel properties, cylinder geometry, combustion characteristics, and a

multitude of additional factors. It is, therefore, quite difficult to attribute the observed

differences in HC emissions to any one specific factor. While a number of fuel property

interactions may be responsible for the trend, the most likely cause is due to the higher

volatility of the ULSD, as depicted by the distillation curves shown in Figure 4.2.

7.1.4 Detailed Emissions Summary

Following the initial round of testing, a more detailed emissions sweep was carried out

over a much wider range of engine operating conditions. The engine operating

conditions covered nearly all modes of the Euro-III 13-mode test cycle, with the

exception of the 100% load points. In addition to the gaseous emissions measured in the

previous round of testing ( CO, C0 2 , 02, HC, NO, and NOx), measurements of the S02

concentration in the exhaust were carried out as well. However, unlike the previous

round of testing, the complete emissions mapping was conducted only with the low sulfur

diesel and Fischer-Tropsch diesel. The percent difference between the emissions levels

for the FT and LSD are presented in Table 7.1 below.

CO 2  H 20 02 N 2  CO HC NO NO 2  H2  SO 2  NOx PM

Test Condition MI MI r/01 [%1 [I [/1 [%1 %01 %[%1 % %1 % / % %

A25 -9.3 20.6 -9.5 -4.1 10.2 -31.9 -25.8 -25.0 46.5 -99.9 -25.8 -56.0

A50 -4.4 8.8 -1.9 0.0 22.5 -32.9 -20.4 -27.9 39.5 -100.1 -20.8 -40.6

A75 -3.0 9.3 -1.0 1.0 -37.0 -21.1 -22.3 56.4 -29.1 -98.1 -20.1 -24.3

B25 -3.2 9.6 -0.3 0.6 33.3 -45.7 -11.6 -6.0 51.0 -97.7 -10.9 -50.1

B50 -3.9 7.0 2.2 1.4 33.9 -47.9 -9.0 -4.3 49.2 -98.1 -8.6 -56.5

B75 -2.2 7.0 -0.6 0.8 -37.9 -31.6 -19.3 31.1 -32.1 -97.0 -16.8 -45.7

C25 -5.5 6.4 -0.7 -0.7 26.5 -49.2 -15.5 2.2 42.4 -95.1 -12.9 -53.8

C50 -5.5 4.4 2.1 0.3 51.7 -53.2 -10.4 40.3 67.4 -96.4 -6.6 -58.9

Z25 -13.0 1.9 -1.6 -3.4 6.8 -48.8 -8.8 5.6 25.1 -93.1 -8.0 0.0

Average1228.5288

Table 7.1. Difference in measured and calculated exhaust constituents for the

Fischer-Tropsch and low sulfur diesel fuel
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Negative values in the table indicate a decrease in emissions with the FT fuel, whereas

positive values indicate an increase. The NO 2 emissions values used in the calculations

presented in the table were determined from the difference in the measured NOx and NO

emissions values. Furthermore, the water content in the exhaust was estimated using the

procedure outlined in Section 6.4.1, and concentrations of all other gaseous species that

were not measured in the exhaust directly (N2 and H2) were calculated from the actual

combustion equation for the appropriate fuel.

Consistent with the emissions trends observed during the initial round of testing, the data

shows an average reduction in PM emissions with the FT fuel of nearly 50% as compared

to the baseline low-sulfur diesel. Emissions of sulfur dioxide for the FT fuel were on

average 97% lower than with the LSD. The large reduction in SO 2 emissions is due to

the fact that FT diesel contains zero sulfur, whereas the LSD contains 400 PPM sulfur.

The low levels of SO 2 emissions that were measured for the FT fuel are attributed to the

sulfur contained in the lubricant oil. NOx and HC emission agree well with those

reported for the initial round of testing, with reductions in NOx and HC by 15% and 40%

on average. Furthermore, emissions of CO 2 decreased with the FT fuel by approximately

5% on average. Although an average increase in CO levels of 12% was observed with

the FT, the CO levels measured with both fuels were extremely low, near the lower

detection limit of the analyzer, and the increase in CO levels with the FT warrants further

investigation.

7.2 Particulate Analysis

In order to determine more precisely the effect of various fuels on particulate

composition, all particulate samples were sent to the emission/chemistry laboratory of a

major engine manufacturer for detailed analysis. Prior to analysis, all samples were

conditioned and reweighed in a strictly controlled environment at the engine

manufacturer's emission/chemistry laboratory to confirm the particulate mass values

determined at MIT. Following the conditioning and weighing, the samples were

analyzed to determine the contribution of sulfates (SO 4), nitrates (NO3), and soluble

organic fraction (SOF) to the total particulate mass (TPM). As nitrates are not of primary
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interest, and since the nitrate levels were extremely low, their contribution to the TPM is

neglected in the following sections. Once total SOF and SO 4 were known, and neglecting

the contribution of the nitrates, the SOL (non-soluble fraction or soot) was calculated

from the total particulate mass as follows:

Equation 7.1 TPM = SOL + SOF + SO 4

The SOL is important as it consists of the basic solid carbonaceous particles formed

during combustion [13]. The following sections present the results of the detailed PM

analysis.

7.2.1 PM Constituent Distribution

An overview of the results of the particulate analysis for each of the three test conditions

is presented in Figures 7.5 through 7.7.
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Figure 7.5. Distribution of particulate constituents collected at an engine operating

condition of 1682 rpm, 474 kPa BMEP
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Of particular interest is the apparently small contribution of sulfate to the total particulate

mass, which ranged from a minimum of 0.64% to a maximum of 3.05% of the TPM. A

simple calculation of the fuel sulfur to sulfate conversion rate, based on the known fuel

sulfur content and fuel consumption rate, yielded a range from a low of 0.22% for the

FT/LSD blend to a high of 1.94% for the ULSD. Furthermore, the sulfur to sulfate

conversion rates of the blend and low sulfur diesel comprised the low end of the range

(0.22% to 0.43%) while the ultra-low sulfur diesel made up the high end (0.52% to

1.94%). These values are suspect as previous studies have shown that the amount of fuel

sulfur converted to PM is at least 1-2% of the fuel sulfur content irrespective of the total

fuel sulfur level or engine type [39]. Despite this discrepancy, the relative trends

observed in the data still hold considerable merit.

The fuel sulfur to sulfate conversion rates were observed to vary directly with load,

however the trends differed for each of the fuels tested. The fuel sulfur to sulfate

conversion rates for both the blend and low sulfur diesel tended to increase with

increasing load, while the conversion rates for the ultra-low sulfur diesel exhibited the

opposite behavior.

In general, the contribution of the SOF to the total particulate mass decreased with

increasing load, while SOL and SO 4 increased. This trend is consistent with other

published reports in the literature [53].

7.2.2 Non-Soluble Fraction and Soot

The SOL contribution to the total particulate mass ranged from 43.7% for the FT fuel to

54.4% for the ULSD. On average, over all of the test conditions, the FT fuel reduced

SOL by 60.6%, the ULSD reduced SOL by 22.1%, and the blend reduced SOL by

26.16% as compared to the baseline low-sulfur diesel. A comparison of the solid fraction

for each of the fuels over all of the test conditions is shown in Figure 7.8.
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Figure 7.8. Comparison of solid non-soluble fraction

Estimates based on the simplified chemical composition of the fuels, molecular weight,

and carbon content provided by the manufacturers gives a lower carbon content of 9.8%

by weight for the FT fuel as compared to the LSD. As demonstrated in the figure above,

the blend yielded a more than proportional reduction in SOL by approximately 43.0% as

compared to the reduction obtained with the FT fuel alone.

7.2.3 Soluble Organic Fraction

The soluble organic fraction was determined via supercritical fluid extraction using CO 2

as the working fluid. This method is believed to produce more consistent results than

those achieved by performing the soxhlet extraction using dichloromethane. The trends

observed in the SOF are very similar to those presented in the previous section for the

SOL. The SOF contribution to the total particulate mass ranged from 41.8% for the

ULSD to 55.7% for the FT fuel. While the FT fuel yielded proportionally the greatest

contribution of SOF to the TPM, it still produced an average reduction in SOF of 46.0%

as compared to the baseline LSD. The blend and ULSD both yielded average reductions

in SOF of 26.2% and 34.2% respectively, over the baseline fuel.
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Figure 7.9. Comparison of soluble organic fraction

As shown in Figure 7.9, the blend yielded a more than proportional reduction in SOF, by

approximately 56.9%, when compared with the reduction obtained using the FT fuel

alone.

7.2.4 Sulfates

The sulfate contribution to the TPM was determined via ion chromatography. As

discussed in Section 7.2.1, the low absolute magnitudes of the SO 4 values (between

0.22% and 3.05% of the TPM) are suspect, as they do not correlate well to the accepted

fuel sulfur to sulfate conversion rates presented in the literature. Nonetheless, the relative

trends are still quite valid. As was expected, the FT fuel and ULSD contributed least to

the SO 4, as these fuels contained little to no sulfur. The blend and LSD, on the other

hand, contained considerably more sulfur, 305.9 PPM and 400 PPM sulfur by weight

respectively. Figure 7.10 presents the particulate sulfate levels generated by each of the

fuels.
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Figure 7.10. Comparison of sulfate contribution to TPM

On average, the FT fuel reduced SO 4 by 89.1%, the ULSD reduced S04 by 76.9%, and

the blend reduced S04 by 37.0% as compared to the baseline low-sulfur diesel. As

demonstrated in Figure 7.10, the blend yielded a more than proportional reduction in SO 4

by approximately 41.5% as compared to the reduction obtained with the FT fuel alone.

Despite these significant reductions in SO 4, the impact to the overall particulate mass was

nearly negligible due to the small contribution of the SO 4 to the TPM.

The contribution of sulfur in the engine lube oil to the total particulate sulfate is depicted

in Figures 7.11 through 7.13 for each of the three test conditions. The zero sulfur nature

of the FT fuel allowed for the simple and straightforward determination of the lube oil

contribution, as any SO 4 in the PM must be attributed to the lube oil.
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Figure 7.13. Comparison

at a test condition of 2011

of lubricant oil and fuel

rpm, 947 kPa BMEP

contribution to particulate sulfate

Although the absolute magnitude of the lube oil-derived SO 4 increased with increased

engine speed and load, a result of the associated increase in lube oil consumption, the

relative lube oil contribution to the total S04 declined as the increase in oil consumption

was negated by the significantly larger increase in fuel consumption. On average the

lube oil contributed between 13.9% and 24.9% of the SO 4 determined from the LSD PM

emissions, between 63.3% and 74.3% of the S04 determined from the ULSD PM

emissions, and between 17.9% and 35.7% of the S04 determined from the PM emissions

observed from the blend.

7.2.5 Comparison to Raw Particulate Measurements

In order to verify the results of the first PM analysis, as well as to determine the effect of

dilution ratio on PM composition, a second batch of particulate samples was sent to the

same engine manufacturer's emission/chemistry laboratory for analysis. The average

particulate composition is shown in Figure 7.14.
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Figure 7.14. Particulate composition for (a) low sulfur diesel, and (b) Fischer-

Tropsch fuel. All particulate samples were collected from the raw undiluted

exhaust at an engine operating condition of 1682 rpm, 474 kPa BMEP.

All of the samples in the second batch were collected from the raw exhaust without the

use of the dilution tunnel. Furthermore, all of the paper filters used in the second batch

were stored in glass Petri dishes, rather than the plastic dishes typically used to store the

filters, as it was believed that some chemicals in the plastic could leach into the filter

paper, potentially affecting the results of the analysis.

The results of the second analysis confirm the initial results with respect to the sulfate

contribution to the total particulate mass. In the case of the FT particulates, the SO 4

content was reduced by nearly a factor of three when compared to the LSD particulates.

However, as a result of the raw sampling, the soluble organic fraction is quite small in

both cases, as the hot raw exhaust conditions are not conducive to the condensation of

various gaseous species onto the PM. While the FT particulates do exhibit a slightly

higher soluble organic fraction and a significantly lower overall sulfate content than the

LSD particulates, due to the differences in fuel composition, the differences in the hot

undiluted exhaust stream are minimal. In both cases the particulate composition is very
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similar, consisting primarily of non-soluble carbonaceous soot. Typically raw particulate

samples contain a significantly higher portion of SOL than equivalent dilute PM samples

due to the elevated temperatures at which the samples are collected [53].

7.2.6 Detailed Exhaust Sulfur Accounting

Based on the measured gaseous SO 2 emissions and the sulfate contribution to the total

particulate mass, the total sulfur content of the exhaust (particulate and gaseous) was

calculated and compared to the expected exhaust sulfur levels. The expected exhaust

sulfur levels were computed using the known fuel and oil sulfur levels and fuel and oil

consumption rates. While the fuel consumption rates were measured directly for each

test condition, no direct measurements of oil consumption were made. The contribution

of the sulfur in the lubricating oil to the total exhaust sulfur levels was estimated in two

different ways. One means of estimating the lube oil sulfur contribution was to use the

gaseous and particulate sulfur levels measured using the FT fuel. Since the FT diesel

contains no sulfur, it was assumed that any SO 2 in the exhaust and any sulfates on the FT

particulates were due to the lube oil sulfur. Table 7.2 lists the contribution of the gaseous

and particulate sulfur levels to the total measured sulfur emissions with the FT fuel.

Sulfur: Sulfur:
FT Speed BMEP Gaseous PM

SO 2  Sulfates
[rpm] [kPal [glhrj [glhr]

A25 1681 477 0.00 0.03
A50 1684 955 0.00 0.03
A75 1684 1388 0.11 0.05
B25 2012 483 0.06 0.02
B50 2016 951 0.10 0.03
B75 2013 1407 0.21 0.05
C25 2344 456 0.16 0.03
C50 2351 901 0.21 0.02

Table 7.2. Breakdown of total sulfur emissions for the FT fuel

The second means of estimating the contribution of the lube oil sulfur to the total exhaust

sulfur levels, was by using the oil consumption rates for the Cummins ISB determined in

a previous thesis by Plumley. In this thesis, Plumley gives the measured oil sulfur
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concentration as 4,200 PPM, and oil consumption rates for the A50 and B75 test

conditions as 5.8 g/hr and 7.5 g/hr respectively for the Cummins ISB 300 [26].

Sulfur: Sulfur: Total Measured Total Expected

LSD Speed BMEP Gaseous PM Sulfur Sulfur
S02 Sulfates Fuel +Lube) Fuel +Lube

[rpm] [kPal [g/hr] [g/hrj [glhr] [g/hr]

A25 1679 483 2.23 0.17 2.40 3.68

A50 1681 951 3.97 0.13 4.10 5.5
A75 1686 1415 5.79 0.19 5.98 8.73
B25 2012 476 2.84 0.13 2.97 4.63

B50 2017 945 4.93 0.17 5.09 7.55
B75 2013 1416 7.08 0.24 7.32 10.37

C25 2342 457 3.25 0.16 3.41 5.57
C50 2345 919 5.98 0.16 6.14 8.99

Table 7.3. Breakdown of total sulfur emissions for the LSD

Once the expected lube oil sulfur emission rates were known, the total expected exhaust

sulfur levels were calculated as the sum of the fuel and lube oil sulfur contributions. The

breakdown of the total sulfur emissions for the LSD is given in Table 7.3. The

contribution of the lube oil sulfur to the expected sulfur levels in the Table 7.3 was

estimated from the FT sulfur data presented in Table 7.2. As can be seen from the table,

only 65% to 70% of the expected exhaust sulfur could be accounted for based on the

gaseous SO 2 and PM sulfate concentration measurements alone.

In order to verify the difference in the measured and expected exhaust sulfur levels, the

estimated lube sulfur contribution based on the measured FT sulfur levels were compared

with those calculated using the lube oil consumption rates given by Plumley. In both

cases, the lube oil sulfur contribution to the total exhaust sulfur levels was extremely

small due to the low lube oil sulfur content and small rate of engine oil consumption.

A comparison of the measured and expected exhaust sulfur levels for the A50 test

condition is given in Figure 7.15. In this case, the sulfur contribution of the lube oil

estimates based on the measured FT data and oil consumption data given by Plumley

agree very well.
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Figure 7.15. Measured and expected sulfur emissions with the 400 PPM low sulfur

diesel at 1682 rpm and 951 kPa BMEP. FT corrected and OC corrected indicate

lube oil sulfur contribution estimates based on the measured FT data and oil

consumption rates given by Plumley respectively.

On the other hand, the sulfur contribution of the lube oil estimates based on the measured

FT data and oil consumption data given by Plumley for the B75 test condition differ

substantially as shown in Figure 7.16. However, once again, the contribution of the lube

oil-derived sulfur is small in comparison to the fuel sulfur contribution.
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Figure 7.16. Measured and expected sulfur emissions with the 400 PPM low sulfur

diesel at 2013 rpm and 1416 kPa BMEP. FT corrected and OC corrected indicate

lube oil sulfur contribution estimates based on the measured FT data and oil

consumption rates given by Plumley respectively.

Despite differences in the estimation of the lube oil-derived sulfur, the measured exhaust

sulfur levels are still 30% to 35% lower than the expected levels. This discrepancy is

most likely due to a combination of one of the following causes:

* failure by the Antek SO 2 analyzer to convert and measure all of the gaseous sulfur

(SO 2) in the exhaust,

* failure to measure all of the sulfur on the PM via ion chromatography,

* or deposition of the sulfur within the engine/exhaust system.

The first two reasons are the most likely causes, especially since the sulfur content

measured on the PM was much smaller than expected. However, if the low PM sulfate

content was the only source of the discrepancy, a total PM sulfate content of

approximately 25% would be required to make up the difference between the measured

and expected exhaust sulfur levels. Since this level of sulfate on the PM is on the high
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side for a 400 PPM fuel, low SO2 readings by the Antek in conjunction with low sulfate

measurements are the most likely causes. Nonetheless, deposition of sulfur within the

engine/exhaust system is still a plausible factor contributing to the low exhaust sulfur

measurements and will be the subject of further investigation.

7.3 Combustion Characteristics

For the sake of clarity, the combustion data for the ultra-low sulfur fuel was not included

in the figures comparing the combustion characteristics. It should be noted, however,

that the ULSD exhibited very similar combustion characteristics to the standard low

sulfur baseline fuel. Thus, the following discussion is focused on comparing the

combustion characteristics of the neat FT fuel, low sulfur diesel, and blend of FT/LSD.

7.3.1 Ignition Delay

Figure 7.17 compares the ignition delay of the three fuels. The FT fuel yielded a shorter

ignition delay over the range of operating conditions, with the blend exhibiting an

ignition delay between that of the FT and LSD.

ifi
Z25 A25 A50

Iii
A75 B25 B50 B75 C25 C50 C75

O FT 3 3.5 3.5 4.6 3.1 4.9 5.8 6.8 8.06 7.7

E BL 3.2 3.9 4.5 4.7 4.1 5.3 6 8.7 8.6 8

1 LSD 3.8 4.1 4.6 5 4.5 1 5.5 6 9.3 8.7 8.6

Test Mode

Figure 7.17. Ignition delay
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The decreased ignition delay for the FT and blend results in less fuel injected during the

premixed combustion phase, yielding a more uniform and less rapid temperature rise

within the cylinder. This is evidenced by the significantly lower heat release rate in the

pilot injection (see Figure 7.21), however the heat release profile of the main injection

seemed little affected by the reduced ignition delay.

7.3.2 Burn Duration
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Figure 7.18. Start of injection to 99% burn duration

Figure 7.18 depicts the total time from the start of injection (SOI) to the end of

combustion (EOC), which is nearly the same for both fuels. Despite the reduced ignition

delay of the FT fuel and blend, the fact that the time from SOI to EOC varied little with

the three fuels is attributed to the lower density of the FT fuel which results in more fuel

injected per cycle (longer injection duration), as well as the slightly longer tale-end bum

observed in the FT fuel and blend.
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The FT fuel and the blend also exhibited reduced 50% to 90% burn durations, indicating

a faster burn rate for the FT fuel during the latter part of the combustion process as shown

in Figure 7.19. On average, the FT fuel reduced the diffusion burn duration by

approximately 7.4%, with values ranging from a maximum reduction of 20.2% to a slight

increase of 1.4% as compared to the low sulfur diesel.
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Figure 7.19. 50% to 90% burn duration

In addition to exhibiting a faster burn rate during the diffusion burn, the location of the

50% heat release occurred slightly earlier for both the FT and blend as shown in Figure

7.20. This observation is attributed primarily to the reduced ignition delay of the FT fuel

and blend, essentially initiating the combustion process earlier and thus liberating more

energy faster than the baseline fuel.
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Figure 7.20. Location of 50% heat release

Figure 7.21 shows the initial 10% to 50% burn duration, which did not vary significantly

for the three fuels. The reduced ignition delay for the FT fuel and blend, combined with

the lower density of the FT fuel which reduces the amount of fuel injected for a given

time interval, may lead to a reduction in the amount of fuel burned during the pre-mixed

burn phase and thus contribute significantly to the observed reduction in PM emissions.
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Figure 7.21. 10% to 50% burn duration

On the other hand, the FT and blend tended to have a slightly longer tail-end burn as

demonstrated in Figure 7.22. The tail-end burn for the FT fuel was approximately 5.3%

longer on average, with values ranging from a maximum increase of 10.7% to a

minimum of 2.5%. These values should only be taken as approximate, due to the

difficulty associated with determining the location of the 99% heat release. In nearly all

the cases, the blend exhibited combustion characteristics in between those of the two

fuels.
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Figure 7.22. Tail-end burn duration

7.3.3 Maximum In-Cylinder Pressure and Location

Figures 7.23 and 7.24 compare the maximum in-cylinder pressure for each fuel and its

associated location. Since torque was held constant at each test condition for each fuel,

maximum cylinder pressure and its location remained fairly constant as well. Slight

variations between the two fuels can be attributed to small differences in injection timing,

which would affect the location and magnitude of the maximum pressure.
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Figure 7.23. Maximum in-cylinder pressure after start of injection
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Figure 7.24. Location of maximum in-cylinder pressure after start of injection
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7.3.4 Pressure Trace and Heat Release Characteristics

Since the stock engine calibration employs a strategy of severely retarded injection

timing to decrease in-cylinder temperatures and reduce NOx emissions, the maximum

cylinder pressure for a number of test conditions occurred before TDC and before

significant combustion had taken place. For these cases, the maximum cylinder pressure

was taken at the 10% heat release location to provide a more representative value of the

pressure actually experienced by the fuel [35]. An example of a typical pressure trace for

a severely retarded injection timing condition is given in Figure 7.25.
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300 320 340 360 380 400 420 440
Crank Angle

Figure 7.25. Pressure trace for severely retarded timing, 2013 rpm, 1611 kPa IMEP

Figure 7.26 presents the heat release curve corresponding to the pressure trace presented

in Figure 7.25 above. The three distinct peaks correspond to the pre-, main-, and post-

injection events and their associated heat release profiles.
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Figure 7.26. Heat release curves corresponding to severely retarded injection

timing at an engine operating condition of 2013 rpm, 1611 kPa IMEP

7.3.5 Pilot-Injection Maximum Heat Release Rates and Location

Figures 7.27 and 7.28 depict the maximum heat release rates and corresponding locations

for each pilot injection event. In nearly all of the cases, the FT and blend exhibited a

lower maximum heat release rate occurring slightly earlier than that of the low-sulfur

diesel. The most significant difference between the heat release rates occurred for the

pilot injection with the FT fuel. On average the FT reduced the maximum heat released

by 24%, once again indicating a reduction in the amount of fuel burned during the pre-

mixed combustion phase. The C50 and C75 test conditions were omitted in Figure 7.27

and Figure 7.28 due to the absence of a readily discernible heat release profile for the

pilot injection event.
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Figure 7.27. Pilot injection maximum heat release rate
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Figure 7.28. Location of pilot injection maximum heat release
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7.3.6 Main-Injection Maximum Heat Release Rates and Location

The differences in the maximum heat released for the main injection are quite small, on

the order of 1 to 2%. Typically the location of the maximum heat release rate for the

main injection event occurred 1 to 2 crank angle degrees earlier for the FT fuel. Once

again, the blend exhibited heat release characteristics between that of the FT and low

sulfur diesel. Figure 7.29 compares the heat released during the main injection event for

each fuel.

Z25 A25 A50

0.647 0.915 1.229
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0.682 0.965 1.167

A75 B25 B50 B75 C25

1.432 0.991 1.327 1.578 1.196 1

1.443 1.031 1.318 1.573 1.219 1

1.435 1.048 1.326 1.577 1.227 1

Test Mode

Figure 7.29. Main injection maximum heat release

The fact that the main injection heat release profiles for the various fuels did not differ

significantly as reported in previous studies, is primarily attributed to the multiple

injection strategy employed by the Cummins ISB. Furthermore, the location of the

maximum heat release rates varied less for the higher load conditions, as shown in Figure

7.30.
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Figure 7.30. Location of main injection maximum heat release

7.3.7 Post-Injection Maximum Heat Release Rates and Location

The post injection maximum heat release rates and corresponding locations are shown in

Figure 7.31 and Figure 7.32.
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Figure 7.31. Post injection maximum heat release rate
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Figure 7.32. Location of post injection maximum heat release

The differences in the maximum heat released for the post injection event were slightly

greater than those observed in the main injection, with the FT exhibiting a lower average

heat release rate for the post injection of approximately 5%. As before, the blend

exhibited combustion characteristics between that of the FT and low sulfur diesel.

Unlike the location of the maximum heat release rate for the main injection event, the

location of the maximum heat release rate for the post injection event occurred only

slightly earlier for the FT fuel. This effect is attributed to the FT fuel's longer tale-end

bum duration and subsequently slower tale-end bum rate. In addition, the locations of

the post-injection heat release rates were nearly identical for the high load conditions.
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8.0 Discussion

The observed emissions behavior of the fuels can be explained by the differences in the

fuel properties, combustion characteristics, and impact of the engine technology.

8.1 Fuel effects

The lower density and near zero sulfur and aromatic content of the FT fuel contribute to

the reduction in particulate emissions to a certain extent. Furthermore, Lee et al. showed

that lower density diesel fuels increase the spray dispersion angle and achieve greater

spray penetration in the cylinder, promoting better mixing of the charge and more

complete combustion [37]. In addition, the lower C/H ratio of the FT fuel, due to its

reduced aromatic content, reduces the amount of carbon in the cylinder and, thus, the

amount of solid carbon in the particulates. This fact is further supported by the observed

reduction in CO 2 emissions, along with a decrease in the solid fraction (SOL) of the

particulates for the FT fuel.

While the reduction in fuel sulfur from 400 PPM in the low-sulfur diesel to 0 PPM in the

FT diesel does have some effect in terms of overall PM reduction, the effect is believed

to be small. Previous results, most notably reported by Kwon et al. and Lee at al.,

demonstrate that a reduction in fuel sulfur content below 0.05% yields little incremental

benefit in terms of PM emissions reduction [37, 40]. The small overall sulfate content of

the particulates, less than 4 % in most cases, further supports this observation. Therefore,

a significant non-sulfur effect must be accounted for to explain the observed PM

emissions trends.

Interestingly, the blend exhibited the same reduction in HC emissions as the neat FT fuel

(Figure 7.4). A number of investigators have attempted to relate total hydrocarbon

emissions to fuel properties and combustion characteristics with varying degrees of

success. It is widely accepted that cetane number and density are the two fuel properties

with perhaps the greatest influence on total hydrocarbon emissions [45]. However, a

number of other factors such as mixing, flame quenching, fuel atomization, and

combustion rate all play an important role in determining total hydrocarbon emissions as
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well. The fact that the ultra-low sulfur diesel has the greatest proportion of light

hydrocarbons of all the fuels tested, may partially explain its higher HC emissions.

Furthermore, the reduction in T90 and T95 from the LSD to the ULSD by 68'C and 72'C

respectively, may also contribute to the large observed increase in HC emissions. A more

detailed analysis taking into consideration all of the factors involved is warranted to

determine the exact causes of the observed trends in HC emissions.

The detailed particulate analysis carried out by the emission/chemistry laboratory of a

major engine manufacturer confirmed the initial observations of the more than

proportional benefit of using the FT diesel blend in terms of overall PM reduction.

However, since a more than proportional reduction in all of the PM constituents (SOL,

SOF, and SO 4) was observed, little insight is gained into this trend based on fuel

properties alone. Of interest is the extremely small, almost negligible, contribution of

fuel sulfur to the TPM, and while the absolute magnitudes of the numbers are suspect, the

observed trend does support the findings presented in [54]. Furthermore, lube oil-derived

sulfur was seen to contribute significantly to the PM emissions of fuels containing less

than 15 PPM sulfur, with the lube oil-derived sulfur contributing to between 63% to 74%

of the S04 emissions observed from the ULSD and 100% of the SO 4 emissions for the FT

fuel.

8.2 Combustion characteristics

The combustion analysis demonstrated that the significantly higher cetane number of the

FT fuel reduced the ignition delay, thus, reducing the amount of fuel vaporized during the

pre-mixed phase of combustion. This observation was further supported by the

significantly reduced maximum heat release observed in the pilot injection. Furthermore,

the lower density and heating value of the FT fuel reduces the amount of fuel injected for

a given time interval, and thus, necessitates a slightly longer injection duration in order to

achieve the same power output as the baseline fuel. The reduced amount of FT fuel

injected during the rich pre-mixed combustion phase may contribute significantly to the

reduction in PM formation during this portion of the combustion process. The slightly

reduced maximum heat release rates for the main- and post- injections are also indicative
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of a slightly more uniform combustion in the case of the FT fuel. However, it should be

noted that the extreme differences in the heat release profiles for the FT and baseline fuel

observed in other studies [43, 45] were not seen in this investigation. The multiple

injection strategy is the most likely cause for this discrepancy.

Since the burn duration is a qualitative indicator of the chemical reaction rates during fuel

oxidation, the shorter 50% to 90% burn duration for the FT fuel and blend implies a

faster burn rate for these fuels as compared to the low-sulfur diesel. This effect is most

likely due to the higher cetane number of the FT coupled with the engine's retarded

injection timing. As the fuel is injected later in the expansion stroke, the unburned gas

temperature in the cylinder decreases. This decrease in cylinder temperature may affect

the auto-ignition chemistry of the fuel. Therefore, a high cetane number fuel injected

under these conditions, with auto-ignition characteristics that are less sensitive to cylinder

temperature, will ignite more readily and maintain a faster rate of combustion than a

lower cetane number fuel [35]. The effect of the faster 50% to 90% burn rate coupled

with the slightly longer tail-end burn of the FT fuel and blend on PM emissions is

difficult to determine from the present study, although it is possible that the longer tail-

end burn may contribute to additional soot oxidation in the cylinder.

The effect of the FT fuel on reducing NOx emissions is somewhat lower than other

results reported in the literature. This may be due to the influence of the EGR system,

multiple injection strategy, and heavily retarded injection timing on reducing the

sensitivity of NOx formation in this engine to the fuel properties. Nonetheless, the

reduced exhaust and corresponding cylinder temperatures are most likely the main factors

contributing to the observed reduction in NOx emissions for the FT fuel.

The explanations presented above apply equally well to the observed emissions and

combustion behavior of the blend. Based on the combustion analysis alone, no specific

conclusions can be drawn for the more than proportional reduction in PM emissions of

the blend. In most cases the blend exhibited combustion behavior closer to that of the

baseline diesel, which is to be expected as the blend contained 75% LSD by volume.
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8.3 Engine technology

In addition to the combustion characteristics, a number of engine control parameters such

as injection timing, EGR fraction, boost pressure, and the time intervals between the

pilot-, main-, and post-injection events were monitored throughout the study. No

significant differences were observed between any of the engine control parameters and

the fuels used. It is, therefore, unlikely that any significant interactions between the fuels

and the various engine sub-systems should influence the observed results.

8.4 Comparison to Cummins Data

In order to verify the NOx and particulate emissions trends for the baseline low sulfur

diesel, the Cummins 2002 EPA engine certification emissions levels are presented in

Appendix E. Both the NOx and PM emissions levels measured at MIT agree very well

with the data provided by Cummins for the baseline fuel, thus confirming the

repeatability of the results.
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9.0 Conclusions

An investigation into the relationship between fuel properties, combustion characteristics,

and exhaust emissions was carried out using a pre-production 2002 Cummins ISB 300

direct injection turbocharged diesel engine. Experimental results indicate that the

Syntroleum Fischer-Tropsch gas-to-liquid diesel fuel significantly reduces regulated

gaseous and particulate emissions as compared to conventional diesel fuels in a modem

direct injection diesel engine.

The advanced subsystems, combustion strategy, and electronic controls employed by the

Cummins ISB have a significant effect on the manner in which the fuel properties affect

engine-out emissions. The pilot injection, high injection pressures, and retarded injection

timing all contribute to reduce the engine's premixed burn fraction, which in turn helps to

lower engine-out NOx emissions. Furthermore, these factors reduce the sensitive

dependence of NOx emissions on the fuel properties such as cetane number.

A number of thermodynamic indicators, calculated based on the in-cylinder pressure

measurements, show that the FT fuel bums faster during the latter part of combustion, as

compared to conventional petroleum-based diesel fuels. The faster bum rate of the FT

fuel combined with a more uniform heat release profile and longer tail-end burn may help

to reduce particulate formation and increase PM oxidation in the power cylinder, thus

aiding in the reduction of particulate emissions. Furthermore, previous studies have

shown that FT fuel reduces the NOx/PM trade-off, which in conjunction with retarded

injection timing and increased EGR rates provide an optimal combination of both NOx

and particulate reduction [35, 36]. In addition, the multiple injection strategy employed

by the Cummins ISB has a significant effect on the in-cylinder combustion process and

plays a significant role in reducing NOx and PM emissions relative to older technology

engines.

The experiments performed over the duration of this project include comparisons of the

combustion and emissions characteristics of FT fuel with a conventional low sulfur diesel

fuel (400 PPM sulfur), ultra-low sulfur diesel (15 PPM sulfur), and a blend of
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25%FT/75% LSD by volume. The engine operating conditions included nearly the entire

Euro-III 13-mode test cycle with the exception of the 100% load conditions. The data

collected over the course of this project leads to the following major conclusions:

* Both the FT diesel and the FT/LSD blend reduced regulated emissions for all test

conditions and exhibited similar emissions trends. The FT diesel yielded a

reduction in particulate emissions of 54% on average when compared with the

low sulfur diesel and 30% on average when compared with the ultra-low sulfur

diesel. Furthermore, the blend exhibited a reduction in PM emissions of 28%,
nearly the same as the ULSD, when compared with the low sulfur baseline diesel.

* The blend produced a more than proportional reduction in particulate emissions

when compared to the reduction obtained using the neat FT fuel alone. A blend

of 25% (by volume) FT fuel with 75% 400 PPM sulfur fuel showed that the 25%

FT fuel in the blend produced about half of the particulate reduction of using neat

FT fuel alone.

* Significant non-sulfur effects are responsible for the large reductions in PM

emissions observed for the FT fuel and blends. The results of the PM analysis

carried out at the emission/chemistry laboratory of a major engine manufacturer

confirms these findings, and demonstrated reductions in the range of 40% to 60%

in SOL and SOF for the blend when compared to the reductions observed for the

neat FT fuel alone.

* The neat FT diesel reduced NOx emissions by 15% on average over all of the test

conditions. The NOx reductions with the ultra-low sulfur diesel and blend were

not as significant with the blend reducing NOx emissions by 2% and the ULSD

reducing NOx emissions by 4% on average.

* The reduction in NOx emissions for the FT fuel and blend was directly correlated

to the measured reduction in exhaust temperatures, shorter diffusion bum, and
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reduced pre-mixed heat release. This data confirms that a temperature sensitive

extended Zeldovich type mechanism is primarily responsible for NOx formation

in the power cylinder [10].

" While emissions of hydrocarbons were low, and typically within acceptable

limits, the significantly higher rate of HC emissions from the ultra-low sulfur

diesel fuel is most likely due to the fuel's higher volatility and significantly

different distillation curve. These two factors may also be responsible for the

relatively higher sulfur to sulfate conversion rate observed for the ULSD [10].

" The increased cetane number of the FT and blend decreased the ignition delay

compared to the baseline fuel. The shorter ignition delay and lower density of the

FT fuel and blend contributed to a significant reduction in the maximum heat

release of the pilot injection, thus reducing initial particulate formation [10].

" FT fuel bums faster during the latter part of combustion. The faster 50% to 90%

burn duration and longer tail-end burn of the FT fuel may lead to additional

particulate oxidation in the power cylinder [10].

" The contribution of the sulfur in the lubricant oil to the total particulate sulfates

increases substantially as the fuel sulfur levels decrease. For the 15 PPM ULSD,

the contribution of the sulfur in the lubricant oil made up 63% to 74% of the total

PM sulfates. Furthermore, the sulfur in the lubricant oil made up 100% of the PM

sulfates for the FT fuel.

" The zero sulfur content of the FT fuel allows for the determination of the lubricant

oil sulfur contribution to the total engine-out sulfur levels (gaseous and

particulate). Despite this fact, not all of the fuel and oil sulfur could be accounted

for in the exhaust.
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The major conclusions supported by the experimental data listed above contribute

significantly to a fundamental understanding of the emissions behavior of Syntroleum FT

fuel in an unmodified modem diesel engine. The differences in the fuel's chemical and

physical composition, combustion characteristics, and interaction with the engine

technology explain fairly well the observed emissions trends. However, despite much of

the progress in expanding the fundamental knowledge base of FT fuels and their effect on

emissions, the experimental results raise a number of additional questions as well.

It is, therefore, proposed that further studies be undertaken to investigate the observed

discrepancy between the measured and expected exhaust sulfur levels. A mass balance

taking into consideration the lubricant oil and fuel sulfur contributions, as well as the

mechanisms for the consumption and transport of lube oil- and fuel- derived sulfur

through the power cylinder, lubricant, engine, and exhaust systems should provide further

insight into the actual processes involved. Furthermore, as fuel sulfur levels continue to

decline, the relative magnitude of the contribution of lube oil-derived sulfur to the total

particulate mass increases significantly, as do the detrimental effects of sulfated ash on

the long term performance and service life of diesel aftertreatment systems.

Lastly, this report has demonstrated the significant improvements in engine performance

and emissions reduction that can be achieved when Fischer-Tropsch fuels are used in

modem diesel engines. However, additional improvements in performance and further

reductions in emissions can be realized by calibrating the engine to take advantage of the

FT fuel's properties, along with the addition of exhaust aftertreatment systems.

Furthermore, the sulfur-free nature of the FT fuel allows for the use of additional and

more aggressive exhaust aftertreatment devices, previously impossible due to the

deleterious effects of fuel sulfur on the catalyst. Thus, further investigation into the

potential benefits of Fischer-Tropsch fuels used in conjunction with advanced

aftertreatment devices should be the subject of future studies.
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Figure A.1.
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Figure A.2. Particulate sampling system
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Airflow Meter

Air Intake

BEI Crank
Angle Encoder

AVL Fuel Cells

Auxiliary Pressure
Transducer Cooler

Fuel Control
Bulkhead

EGR Sample Line
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Figure A.3. Cummins ISB 300 on test bed. Note fuel container and balance for

measuring fuel flow as well as heated sample line to measure EGR fraction in the

intake manifold in the foreground.
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Figure A.4. Mini dilution tunnel and associated hardware showing heated sample

lines used to sample gaseous emissions before and after the tunnel.
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Appendix B ISB 300 Performance Data
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FTP / SET Emissions Zone Calculations:
Description: RPM 25%Torque 50%Torque 75%Torque 100%Torque

"A" (25%RPM) 1682 165 330 495 660

"B" (50%RPM) 2013 165 329 494 658
"C" (75%RPM) 2345 160 320 479 639

Table B.1. Euro-III 13-mode test conditions for the Cummins ISB 300

ECHO TORQUE CURVE
ISB-300 (660)

2002 US - TABLE I
800 -

750

700-

650 -

600-
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400--
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600 1600 1800 2000 2200

SPEED (RPM)
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ADV. RATING 1 1. - - FACTORY SET o EURO_III Modes
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Figure B.1. Cummins ISB 300 2002 EPA certification torque curve
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ECHO TORQUE CURVE
ISB-300 (660)
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Figure B.2. Cummins ISB 300 2002 EPA certification power curve
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Appendix C Measurement and Data Acquisition Systems
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Measurement Instrument Type Device: Device: Device: Device: PCi-
1102B (1) 1100 1102B (2) 6024E

Cylinder 1 Exhaust TC Type K TC 0 -- -- --

Cylinder 2 Exhaust TC Type K TC 1 -- -- --
Cylinder 3 Exhaust TC Type K TC 2 -- -- --
Cylinder 4 Exhaust TC Type K TC 3 -- -- --
Cylinder 5 Exhaust TC Type K TC 4 -- -- --
Cylinder 6 Exhaust TC Type K TC 5 -- -- --
EGR TC: Before Cooler Type K TC 6 -- -- --
EGR TC: After Cooler Type K TC 7 -- -- --

Heat Exchanger: City Water Outlet Type K TC 8 -- -
Heat Exchanger: City Water Inlet Type K TC 9 -- -- --

Turbine Outlet TC Type K TC 10 -- -- --
Intake Manifold TC Type K TC 11 -- -- --

Exhaust Manifold TC Type K TC 12 -- -- --
Coolant Reservoir TC Type K TC 13 -- -- --

Heat Exchanger: Engine Coolant Outlet Type K TC 14 -- -- --
Heat Exchanger: City Water Inlet Type K TC 15 -- -- --

Engine Block Oil TC Type K TC 16 -- -- --
Compressor Outlet TC Type K TC 17 -- -- --

Fuel Supply TC Type K TC 18 -- -- --
Dynamometer TC: Inner Loss Plate Type K TC 19 -- -- --
Dynamometer TC: Outer Loss Plate Type K TC 20 -- -- --

Dynamometer TC: Bearing no. I Type K TC 21 -- -- --
Dynamometer TC: Bearing no. 2 Type K TC 22 -- -- --
Dynamometer Water Pressure Pressure Transducer 23 -- -- --

Thermo-Hygrometer 0-10 VDC 24 -- -- --
Exhaust Pressure Pressure Transducer 25 -- -- --

Engine Block Oil Pressure Pressure Transducer 26 -- -- --

Turbine Exhaust Pressure Pressure Transducer 27 -- -- --

Intake Manifold Pressure Pressure Transducer 28 -- -- --
Fuel Lift Pump Pressure Pressure Transducer 29 -- -- --

Exhaust Manifold Pressure Pressure Transducer 30 -- -- --
Coolant Reservoir Pressure Pressure Transducer 31 -- -- --

Cylinder 6 Pressure Transducer Pressure Transducer -- 0 -- --
Fluke Current Probe Hall-Effect Sensor -- 1 -- --
Intake Air Flow Meter Dual RTD -- 2 -- --

Dilution Tunnel: Pre-Dilution Type K TC -- 3 -- --
Dilution Tunnel: Post-Dilution Type K TC -- 4 -- --

Ambient Temperature Type K TC -- 5 -- --

Post-Filter TC Type K TC -- 6 -- --
Pre-Filter TC Type KT -- 7 -- --

Engine Torque Digalog Controller - 10 --
Engine RPM Digalog Controller -- 11 -- --

Charge Air Cooler Type K TC -- 13 -- --
PM Sample Flow 2 0-5 VDC -- 14 -- --

Exhaust Temperature Type K TC -- 15 -- --
HFID Range 1-8 0-5 VDC -- 16-23 -- --

HFID Voltage 0-5 VDC - 25 -- --
HFID Oven Temperature 0-5 VDC -- 26 -- --

PM Sample Flow 1 0-5 VDC -- 29 -- --
NOx Voltage 0-10 VDC -- 30 -- --
NO Voltage 0-10VDC -- 31 -- --

Crankshaft Sensor Hall-Effect Sensor - - -- 2
Exhaust TR TC Pressure Transducer -- -- 0-9 --
Exhaust TL TC Pressure Transducer -- -- 10-17 --

Exhaust TP Pressure Transducer - - 19-21 --
C02 Voltage 0-10 VDC -- -- 23 --
CO Voltage 0-10VDC -- -- 24 --
02 Voltage 0-10 VDC -- -- 25 --

Table C.1. Measured parameters and corresponding instruments and DAQ

channels
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Figure C.1. Slow-speed data acquisition VI

Figure C.2. Emissions data acquisition VI
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Appendix D Data Analysis Code
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Appendix D.1. MatLab program used to filter in-cylinder pressure data prior to

processing with heat release program.

%FUinc r i t te. T a L ad i.- .p ed Data Taken r..T.m -Nat.onaJ
instrmenlts SCXI DLAQ System.
.A]sD, F.iters Pressre Data

%1i qh-S p eed Data F I e Formt

o 1 CoIumi 2 C
Pressure (" 'C risIl aft Sensor Intke Ma a c i N I. r eisssure

% Br) [Vlt0] [PSIG]

%I a 'ta J orma L. N-t Matc Abio've , Change The Following Ti Reflect

TFhe P.roper c o.1.mn.T.Yai

Pcolumn = 1;
Crankcolumn = 2;

MAPcolumn = 3;

file=inputdlg ({' Enter f 1.L.e namce of input data:', 'Enter enginie

RPM:', 'Enter low-pass cut-of f as multiple of RPM: '
'YA RICPT Data Aralys s ' ,l , { ' C25pcp . txt', '2342' ,3'4 0 ' } ) ;
data = load(char(file{l}));

,L.adc Hig h-cSpeed Daa iLe)

Pdata = data(:,Pcolumn);
%Create Pr:essulre Ve(ctor
Crankdata = data(:,Crankcolumn);
'CreatLe Cr anksa fL Vo t a, ge V ror
MAPdata = data(:,MAPcolumn);

Cr ea te MA P V co r
RPM=str2num(file{2});
cutoff=str2num(file{3});
clear w; clear s; clear si; clear S; clear Sl;
format long e

cunt the numaber cI c yecs in Tint data
% .t On igi-t- ow sit cf crank coL mn)

low=1.;
iflip=0;
nrev=0;
n=0;
N=length(Crankdata);
tooth=zeros (N, 1);
for i=l:N

if(Crankdata(i,1)<low)
if (i flip==0)

itemp=i;
end
iflip=l;
n=n+l;

end
if((Crankdata(i,1)>=low)&(iflip==l))

iflip=0;
if (n>25)

nrev=nrev+l;
tooth(nrev,1)=itemp;
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end
n=0;

end
end
tooth=tooth(1:nrev,1);
n=tooth(nrev,1)-tooth(1,1);
nrev=nrev-1;

sam.ping p ri d 0 c ti , and samp Ingh freq., fSa ple
dt=nrev/n*2*60/RPM;

i apJing r.equey e n Hz
fsample=1/dt;

ftr" ate data to bgi n 0d t TC in
dnmbr r ta p0ints prdg elf orankshaft r1.tion

ndeg=n/nrev/360;
Ccekt Cee if Lirt n Otch2 on' cemp ress inr or exast stroke

swi edg C notch at 28 degrees ar T e DC int ake
if(Pdata(round(tooth(1,1)+60*ndeg))>Pdata(round(tooth(2,1)+60*ndeg)))

ifirst=round(tooth(2,1)+79.6*ndeg);
nrev=nrev-2;

else
ifirst=round(tooth(1,1)+79.6*ndeg);
nrev=nrev-1;

end
r o t v a if. :i. and lEa Sy cvIlke and start and endatTC int"Ia' C

if (rem(nrev, 2) -=0)
nrev=nrev-1;

end
ilast=round (ifirst+ (nrev) *ndeg*360);
Pdata=Pdata(ifirst:ilast,1);
Punfiltered = Pdata;
Con From T Frequency bomn.
transform=fft(Pdata);
N=length(Pdata);

eFInite FerI Ir Transfrm On Dc- a
f=fsample*(1:N)/N;

rq i b 1, r y are rddant i

fNyquist=0.5*fsample;

B~sm frequenie abOv 'high}' e noi.5e

high=cutoff*RPM/60/2;
T~ er 1 rs -II F Ir C1 er%UpperLimit f Freunc,

im ri i requenci-es Avc 1 Hih
for i=1:(N+1)/2

if (f(i)>=high)
transform(i, :)=0;
transform(N+1-i,:)=0;

end
end

ernve t Fr em Freqency D'om Ti Time Demain

time=ifft(transform);
Combne Magnitude And lase T'eoreate' P

Pdata abs(time) .*cos(angle(time));
1il'n" ar .) intrlte prlss r. datIa to b at 0.2 degfre se s

t=[0:1/ndeg:(N-1)/ndeg]';
tnew=[0:0.2:nrev*360]';
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tnew=tnew(l:(size(tnew)-1),1);
Pdata2=zeros(length(tnew),l);
Pdata2=interpl(t,Pdata,tnew);
plot(Punfiltered);
hold; plot (Pdata, r');

Idat [ a :: d a Crankda t a Yt M.Adatal;
save filtered.txt Pdata2 -ASCII -TABS

msgbox(['The Nyquist frequency is ',num2str(fNyquist), ' Hz,
and the cutoff frequlency is ' num2str(high), z. There are

',num2str(nrev/2), ' cycles. ',...

'Number of data points per cycle is ',num2str(ndeg*720) ],YA

RIGHT Data Anay [zer');
c 1ea r ca
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Appendix D.2. Relevant portions of the heat release program used in the calculation

of the thermodynamic indicators to quantify the combustion characteristics of the

fuels.

C* Simple Heat Release Analysis Based on First Law
C* Written By: Dr. Victor Wong
C* Modified by: Jeremy Llaniguez, Jeff Jocsak, Alexander Sappok

logical pcal
dimension psd(3600),hrg(3600),qiallw(3600),volca(3600),
&tbulk(3600),pdsyn(3600),cumhr(3600),hrn(3600)
common bore,stroke,crl,cr,viarea,vearea,cdin,cdex,rpm,tin,pin,
& pcrmax,SOlmain
common /filter/ wl,w2,w3,w4,mfl,ktype,hfir
common /mnfold/ pim,tim,pem,tem
common /gas/ rgas, cp, cv, gamma
common /valtim/ caivc,caevo,caeend,caend, castep, cpstep
common /valflo/nin,nex
common /eff/effc,efft,effm
common /burn/casoc,burn90,fpower,qlower,fpc
common /heat/temp,alinr,pspeed,ahdpst,re,prandl,cmuprl,twal, hcoef
common /hwalls/hcst(3),twalli(3),twallp(3),twallh(3)
common /change/cm(3),par(3),parout,ch(3),pah(3),pahout
common /conduc/condin(3),din(3),cndout(3),dout(3),hext(3),text(3)
common /ddd 1 /caivo,caevc,icycnum,timc,trqini
common /prdata/ca(3600),p(3600),dnl(3600),cca(3600),ps(3600),
& pfil(3600)
common /ativc/pinit,vinit,tinit,trapm,pi,avpspd,hbore
common /burnsp/cainj,caignd,cabdur,abeta,bbeta,cbeta,c 1 pmix,
& c2pmix,cldiffc2diffc3diffc4diffafstoi,betasp,pca
real Pmax, CApmax(3600)
external pderiv
C
C Read general inputs
C
call readin
C
C Read pressure data
C
call readp
C
C Prepare initial variables used in the calculation
C

avpspd=stroke*rpm/30. !Mean Piston Speed [m/s]
rgas=8314.3/28.962 !Universal Gas Constant [J/kg-K]
cv=rgas/(gamma- 1.) !Constant Volume Specific Heat
cp=gamma*cv !Constant Pressure Specific Heat
pi=3.14159265 !pi
ahdpst=pi*bore* *2/4. !Piston Head Area [mA2]
alner=pi*bore*stroke*cr/(cr-1.) !Cylinder Liner Area [mA2]
hbore=bore/2. !Half Of Bore, Radius [m]
vdispl=pi/4. *bore*bore*stroke !Displaced Volume [mA3]
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vc=vdispl/(cr-1.)
fpc=fpower/qlower* 120./rpm/float(icycnum)

C
write (6,*) 'Fuel Energy =',fpower,'kW','Fuel Per Cylinder=',fpc
C
tstep=castep/rpm/6.
C

!Clearance Volume [mA3]
!Fuel Per Cycle Per Cylinder

!Time Steps For Integration

C Add Reference Pressure To Raw Data, Assuming Average p Before IVC = IMP
C
if ((caivc.lt.90.).or.(caivc.gt.270.)) then
write(6,*)'Check intake valve closing timing convention(90-270)'
stop
endif
nivc=ifix(caivc*5.+0.000 1)
nevo=ifix(caevo*5.+0.0001)
sumip=O.

do 20 i=1,nivc
20 sumip=sumip+p(i)

pinavg=sumip/float(nivc)
C

!IVC Reference
!EVO Reference
!Initialize Intake Pressure Variable
!Loop To Average Pressure
!Cumulative Presesure
!Average Pressure

C Calculate Scaled Pressure For Each Crank Angle
C All Units Should Be In SI, Thus Pressure Should Be In Pascal, Except Jeremy's Data
C

do 30 i=1,3600
30 ps(i)=(p(i)-pinavg)* 1.0e5+pim
C
C Get pressure time derivatives
C
call deriv5p(ps,tstep,3600,psd)
C
C Set Initial Cylinder Conditions At IVC
C

950
951
952
953

C

pinit-ps(nivc)
pinitkPa = pinit/1000
tinit=tim
call engvol(caivc,vinit,vdot,spdum,alndum)
trapm=pinit*vinit/rgas/tinit
rhoint=trapm/vinit
pvgini=pinit*vinit* *gamma
write(7,*)
write(7,950) pinitkPa
write(7,95 1) tinit
write(7,952) vinit
write(7,953) pvgini
format('Pressure At IVC [kPa]= ',fl2.3)
format('Temperature At IVC [K] =',f6.1)
format('Volume At IVC [mA3] = ',e12.3)
format('PV/gamma At IVC = ',f6.3)

C Start cycle calculation loop
C
smwork=0.
smhrel=0.
smhxfer=0.
C
do 40 i=nivc, nevo

!Loop To Convert Pressure
!Conversion Calculation

!Pressure At IVC
!Pressure At IVC in kPa
!Temperature At IVC

!Trapped Cylinder Mass
!Initial Gas Density
!Initial PVAgamma

!Initialize Work Variable
!Initialize Heat Release Variable
!Initialize Heat Transfer Variable

!Heat Release Done During "Closed" System
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!Index For Current Crank Angle In Loop
C
C Call engvol To Get Various Engine Geometry Information At Each CA
C
call engvol(theta,vol,vdot,pspeed,alinr)
C
rho=trapm/vol
temp= tinit*ps(i)/pinit*vol/vinit
tbulk(i)=temp

!Gas Density At Any Crank Angle
!Cylinder Average Temperature
!Bulk Temperature

Calculate Some Heat Transfer Parameters
Heat Transfer Theory Based On Nusselt-Reynolds Correlation:
Nu = Constant * ReAd * Pr/e
Constant Stored As hcst Array, With All 3 Values = 0.05 (See Input)
Prandtl Number Dependence Removed Below Sine Pr ~ Unity
For More Information, See Ph.D Thesis By Assanis, 1980
Assanis Uses Characteristic Velocity Equation Incorporating Turbulence
Models. More Simplified Approach Applied Here.

scale=alinr/pi/bore
if (scale.ge.hbore) scale=hbore
vis=3.3e-4*temp**.7
charv=max(abs(pspeed),avpspd/2.)
re=charv* scale *rho/vis
congas=vis*cp/prandl
cmuprl=congas/scale
rnuslt=hcst(2)*re**.7
hcoef=cmuprl*rnuslt
C

!Characteristic Length Scale
!Length Scale Restriction
!NASA Equilibrium Program
!Simple Characterisitc Vel.
!Definition Of Re
!Conductivity Of Gas
!Inverse Of RHS Of Nu
!Nusselt Number, As Above
!Solving For h

C Calculate Heat Transfer From Various Parts Of Cylinder
C
qipist=ahdpst*hcoef*(temp-twallp(2))
qihead=ahdpst*hcoef*(temp-twallh(2))
qilinr=alinr*hcoef*(temp-twalli(2))
qiallw(i)=qipist+qihead+qilinr
C

!Piston Heat Transfer
!Heat Heat Transfer
!Liner Heat Transfer
!All Wall Heat Transfer

C Calculate Gross Heat Release
C
hrg(i) = qiallw(i)+(cv/rgas+1.)*ps(i)*vdot+cv/rgas*vol*psd(i)
C
C Calculate Net Heat Release
C
hrn(i) = hrg(i) - qiallw(i)
C
C Further Calculations For Various Heat Release Characteristics
C
volca(i)=vol
C
C pdsyn(i) Is P*dV Term In Burn Rate Analysis Mode
C
pdsyn(i)=ps(i)*vdot
C
smwork=smwork+pdsyn(i)*tstep
smhrel=smhrel+hrg(i)*tstep
cumhr(i)=smhrel
smhxfer=smhxfer+qiallw(i)*tstep

!P*dV Term

!Work
!Heat Release Up To CA
!Cumulative Heat Release
!Cumulative Heat Transfer
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40 continue
C
C Find where heat release crosses 10%, 50%, and 90%
C
ci 0par=0.

c50par=0.
c90par=O.
C
do 45 i=nivc,nevo
hrfrac=cumhr(i)/smhrel
C
C Find 10% Cross-Over Point
C
if (hrfrac.gt.0.1) then
if (clOpar.lt.0.5) calO=ca(i)
clOpar=l.
endif
C
C Find 50% Cross-Over Point
C
if (hrfrac.gt.0.5) then
if (c50par.lt.0.5) ca50=ca(i)
c50par=l.
endif
C
C Find 90% Cross-Over Point
C
if (hrfrac.gt.0.9) then
if (c90par.lt.0.5) ca90=ca(i)
c90par=l.
Endif
45 continue
C
C Get Pumping Work Integrated Data
C
prewrk=0.
pstwrk=O.
do 60 i=1,nivc
theta=ca(i)
call engvol(theta,vol,vdot,pspeed,alinr)
60 prewrk=prewrk+ps(i)*vdot*tstep

do 70 i=nevo+1,3600
theta=ca(i)
call engvol(theta,vol,vdot,pspeed,alinr)
70 pstwrk=pstwrk+ps(i)*vdot*tstep

C
C Expressed in kW basis at that rpm (ihp):
C
prewkw=prewrk*rpm/1 20./1000.
pstwkw=pstwrk*rpm/120./1000.
C
C Expressed in kW basis at that rpm:
C
work=smwork*rpm/120./1000.
hrel=smhrel*rpm/120./1 000.
hxfer=smhxfer*rpm/1 20./1000.
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C Calculate The Maximum Pressure, It's Location, And The Corresponding
C Bulk Temperature Of The Cylinder.
C It Is Unlikely That The Pressure Derivative Will Be Exactly Zero, So
C Code Computes Where The Derivative Goes Through Zero, Then Checks The
C Pressure At These Two Crank Angles.
C Lastly, The Maximum Pressure Locations Are Compared To The Pressure At
C TDC. If TDC Is The Maximum Pressure, Then The Next Maximum Pressure
C At A Crank Angle Greater Than 360 Is Searched For. This Is Done Since
C The Clean-Diesel Engine Is Run With Retarded Timings
C
k = 1 .Index For Writting To CApmax
do j = nivc, nevo - 1 !Search Only Within "Closed" System
if ((psd(j)*psd(j+1).LT.0).and.(ca(j).GT.330)) then
CApmax(k) = int(ca(j)) !Array Of CA Where dP Goes Through Zero.
k=k+1
CApmax(k) = int(ca(j+1))
k=k+1
endif
enddo
Pmax = 0. !Initialization Of Pmax.
do m = 1,k
n = int(CApmax(m) * 5) !Reference Back To Heat Release Index
if ((ps(n).GT.Pmax).and.(CApmax(m).GT.3 60)) then
Pmax = ps(n)
PmaxCA = CApmax(m) + 0.1
Pmaxloc n
call engvol(CApmax(m),vol,vdot,pspeed,alinr)
rho=trapm/vol !Gas Density At Any Crank Angle
TatPmax=tinit*ps(n)/pinit*vol/vinit !Cylinder Average Temperature
endif
enddo
PmaxkPa = Pmax/1000
C
C Find Ignition Delay
C Ignition Delay Is Defined As The Time Between The Start Of Injection Of
C The Main Fuel Pulse And When The Heat Release Goes Through Zero From
C Being Negative.
C The Main SOI In The Input File Should Reflect The Cummins Covention Found
C In CalTerm: Timing in Degrees Before Top Dead Center [ 0bTDC]
C
k =1 !Reinitialize Index
SOIindex = (360 - SOImain) * 5
doj = SOIindex + 50,SOIindex,-1 !Backward Search Algorithm
if (hrg(j)*hrg(j+1).LT.0) then
SOCindex = j
SOC = SOCindex/5 - 0.1
goto 999
endif
enddo
999 SOlmain = 360 - SOlmain
Delay = SOC - SOImain
C
C Compute Various Burn Durations
bl0t90=ca90-ca10
EOC = ca90
BurnDur = EOC - SOC
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&input cbeta=0.38

gamma1.j cpmix=1.0
c2pmix=1.0

0pstep0.2 cdiff=9.95
fJ6 . c2diff=0.63

SE~fn ' -4 656 c3diff=0.98
bore=.10202 c4diff=0.19
stroke=0.120 afstoi=14.9

icycnum=6 betasp=0.
crl=0.192 pcal=false
cr=17.184 ///
viarea=0.01 &end
vearea=0.001 &hxfer

gamma=1.3 hcst=0.05,0.05,0.05
caivo=710.5 twallp=450., 450., 450.
cavc=204. twallh=450., 450., 450.
caevo=502. twalli=375., 375., 375.
caevc=18. prandl=0.67
caend=720.0001 //
castep=0.2 &end
cpstep=0.2 &modify
effc=0.7 cm=335.,410.,520.
efft=0.7 par=- 0.,0.,0.
effm=0.8 parout= .
pcrmax=-3. ch=330.,360.,390.
timc=0. pah= 1., 1., 1.
tin=300 pahout=1.
pin=1.01325e5 ///
////// 5 &end

& Hnd &wall
d omb condin=80., 80., 80.
casoc=355. cndout=80., 80., 80.
burn90=42. din=.508e-3, .508e-3, .508e-3

glower=-43.7e6- dout=2.e-2, 2.e-2, 2.e-2
fpower=-200.e3 hext=0.,0.,0.

///////text=350., 350., 350.
&end ///
&combsp &end

cainj=360. &engmap

spdran=701.,1000.,1500.,2000.,2500.,3000.,3500.,4
caignd=1 0. 000.,4500.,5000.,5500.,0.,0.,0.,0.

trqran=1 35.81,115.46,97.68,78.55,58.47,40.,20.,5.,0
cabdur=80. .,0.,0.,0.,0.,0.,0.
abeta=0.71///
bbeta=0.35 &end

Table D.1. Heat release program input parameters. Highlighted values are

dependent upon engine operating conditions and fuel type.
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Appendix E Comparison to Cummins Emissions Data
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MODE No. (rpm) (N-m) (g/hr) (g/hr)
1 750 95 129.6 0.0
2 1682 895 388.8 17.3
3 2013 446 242.1 7.8
4 2013 669 357.5 12.7
5 1682 447 216.6 7.2
6 1682 671 328.1 9.5
7 1682 224 105.7 8.8
8 2013 892 587.6 19.2
9 2013 223 148.2 6.6

10 2345 866 747.4 16.3
11 2345 217 144.8 7.7
12 2345 650 425.7 12.2
13 2345 433 328.0 6.0

Table E.1. Cummins EPA certification NOx and PM emissions
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Figure E.1. Comparison of MIT PM emissions to Cummins PM emissions at an

engine speed of 1682 rpm
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Figure E.2. Comparison of MIT PM emissions to Cummins PM emissions at an

engine speed of 2011 rpm
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Figure E.3. Comparison of MIT PM emissions to Cummins PM emissions at an

engine speed of 2345 rpm
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