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Abstract

The current method of studying in vivo kinematics of human joints is a tedious
and time consuming task. Current techniques require the segmentation of hundreds
of raster images, often by hand, and registration of three-dimensional models with
two-dimensional contours. Automation of these processes would greatly accelerate
research in this field. This research presents an automated method for recovering the
pose of a three dimensional model from planar contours. Validation of the algorithm
and discussion of its performance and applicability are detailed herein.
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Chapter 1

Introduction

Fluoroscopic imaging techniques have been used extensively to measure in-vivo kine-

matics of total knee arthroplasty (TKA) because of the relatively low radiation dosage

and the accessibility of the equipment [2, 9, 25]. Previous studies employed a sin-

gle fluoroscope to take sagittal plane images of the knee at multiple flexion angles

[2, 10, 29, 6, 32]. Using the geometry of the fluoroscope, three dimensional (3D)

computer models of the tibial and femoral components were matched to the two-

dimensional (2D) features of the acquired fluoroscopic images. When the features

were considered to be matched, the relative poses of the 3D component models rep-

resented the in-vivo knee kinematics, where pose is defined as the position and orien-

tation specifying the six degree-of-freedom (6DOF) location of an object. Using this

technique numerous data have been reported on knee motion within the image plane

of the fluoroscope. However, determining knee motion in the direction perpendicular

to the fluoroscopic image plane has been questioned in recent studies [31, 15, 19].

Pursuing higher accuracies with fluoroscopy, Li et al. [19] completed a 3D study on

quasi-dynamic in-vivo kinematics of the knee and more recently, Hanson et al. [9] and

Suggs et al.[26] applied two fluoroscopes to formulate a dual-orthogonal fluoroscopic

system to investigate in-vivo TKA kinematics. These studies utilized a computer

aided drafting (CAD) program to simulate the fluoroscopic environment and manually

manipulate 3D models in space so that their projected silhouettes matched outlines

of the components on both fluoroscopic images. This methodology has been proven
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to accurately recreate the 6DOF motion of the knee at multiple flexion angles [9].

However, the manual matching procedure is laborious, impairing its application to

study continuous dynamic motion. Automating the matching procedure would reduce

the time required to match and improve the repeatability of the dual fluoroscope

methodology in determining in-vivo kinematics.

An optimization algorithm is presented for automating the process of matching

projections of 3D models of the tibia and femur to two orthogonal planar images of

the patient acquired with a dual-orthogonal fluoroscopic imaging system. Accuracy

and repeatability of the algorithm's ability to determine 6DOF location are discussed.

Results from a complete validation demonstrate the repeatability of the algorithm for

determining in-vivo TKA poses.

1.1 Previous Methods

Current research on recreating the pose of 3D objects in the orthopaedic field is

driven mostly by the desire to determine joint kinematics. Pose reconstruction from

radiographic data offers a non-invasive method for examining in vivo motion of joints.

The method itself is conceptually simple. A computer generated three-dimensional

model of the joint is obtained through MRI or CT imaging, and then radiographs

are taken with the joint in motion. The next step is to match a pose of the three-

dimensional computer model to the radiographs of the joint motion. This effectively

gives one a three-dimensional dynamic model of the joint in question.

The three main methods requiring pose reconstruction include stereophotogram-

metry, single plane fluoroscopy and biplanar fluoroscopy. Each method uses either

a variation of the hypothesis and test algorithm or a template matching scheme to

determine the true pose of the model. Variations of the hypothesis and test algorithm

include iterative closest point, non-overlapping area, iterative inverse point matching

and image matching of digitally reconstructed radiographs. These variations provide

a method of formulating an objective function which is then optimized using a wide

range of available minimization routines.
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1.1.1 Imaging Methodology

The first classification of these pose recreation methods lies in the imaging techniques.

Three dimensional imaging is used to generate very accurate anatomical models of

patient geometry. Two dimensional imaging allows for acquisition of high speed

motion of a patient performing functional activities, which provides a record of the

in-vivo kinematics. The combination of the 2D and 3D data is then used to generate

a database of highly accurate six degree-of-freedom kinematics. Several different

methods of acquiring this data has been presented in the literature.

Three Dimensional Imaging

The creation of the three dimensional model is done with a variety of techniques

depending on the application. For in-vivo models the majority are created by seg-

menting images from MRI and creating solid mesh models. A small number of re-

searchers have also used CT scan data to create these models. Combined CT and MRI

data have also been used to create voxel models as well. For patients who have had

arthroplasty, models from manufacturer CAD and laser scanning of the components

has been employed.

Two Dimensional Imaging

The creation of radiographs for pose recreation has been accomplished with x-ray and

fluoroscopy. Fluoroscopy is distinguished from x-ray by having a lower radiation dose,

which is accomplished by employing a fluorescent detector. Image quality is generally

better with high dosage x-ray, but the hazard to the patient makes fluoroscopy a more

desirable method. However, the greatest effect on pose recreation is the number and

geometry of simultaneous radiographic images taken. Radiographic configurations

currently in practice include roentgen stereophotogrammetry (RSA), single plane flu-

oroscopy and biplanar fluoroscopy. RSA is the oldest method and was originally

accomplished by implanting radio-opaque markers into the patient, but has recently

employed markerless techniques[7, 27, 28]. RSA takes two simultaneous images from
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separate focal points, which are projected onto a single plane. Fluoroscopy, on the

other-hand, has two variants. The majority of the past research has used a single

fluoroscopic image plane[2, 6, 10, 11, 15, 20, 21, 29, 30, 32]. Recently researchers have

employed two fluoroscopic images, some in orthographic configurations, and others

in more conventional stereo modes[1, 4, 9, 16, 19, 18, 26, 31].

1.1.2 Algorithm Type

Pose recreation can be further classified based on the algorithms used for determining

pose. Most of these algorithms have their origins in machine vision algorithms and

computer graphics. In general they have been modified to meet the particular re-

quirements of the pose recreation problem. In general there are only two algorithms,

template matching and hypothesis and test.

Template Matching

Template matching for pose recreation in biomechanics was pioneered by Banks and

Hoff[2, 10]. In template matching the 3D model is first segmented into a library of

many different projections. Each library record contains a silhouette of the projected

model and the corresponding pose variables. Then by implementing shape matching

techniques, outlines in the library are matched to contours segmented from fluoro-

scopic contours. Libraries of outlines have been created using silhouettes normalized

for rotation, translation and scale. This can be done directly or by parameterizing the

contours with fourier coefficients. Similarity values are computed based on similarity

of normalized parameters or total amount of overlapping area.

Hypothesis and Test

Hypothesis and test is a very generic structure of pose estimation. The algorithm

consists simply of two parts, determining a "hypothesis" for the position of the ideal

pose and applying a "test" to determine the validity of the hypothesis[14]. In practice

the variations of the algorithm are best characterized by their methods of optimiza-
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tion and their formulation of objective functions. Optimization being the method of

determining a successively better hypothesis and the objective function a method of

testing validity and guiding the next hypothesis of pose.

1.1.3 Optimization

Due to the highly non-linear nature of any feasible objective function employed to

determine pose, the optimization methods used to date are either nonlinear global

algorithms or heuristic direct search methods. Classical gradient methods that have

been employed include: Levenberg-Marquardt Least Squares, and Feasible Sequen-

tial Quadratic Programming. Heuristic direct search methods include: Simulated

Annealing, Sequential Parameter Search and Powell's Method. Brief description of

these methods and several other suggested minimization routines are given below.

Levenberg-Marquardt Nonlinear Least Squares

This method was first used by Lavallee and later Zuffi and Yamazaki[16, 32, 30].

The method utilizes a trust region modification of the Gauss Newton algorithm, this

optimization method switches between gradient descent and Gauss-Newton for best

trade-off of speed and convergence.

Feasible Sequential Quadratic Programming

This is a further advancement of the Gauss-Newton scheme, and assumes the problem

is in quadratic form and all constraints are linearized. Feasible refers to only allowing

values of the dependent variables within a desired or computable range. Kanisawa,

Kaptein and Valstar have used this method of optimization[11, 13, 28].

Nelder-Mead Downhill Simplex Method

Yamazaki also introduced this method for finding the optimal pose[30]. A simplex is

the term given to a "figure" which has n+1 vertices in the n-dimensional search space.

The simplex is used for determining search directions and is continually expanded,
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contracted or reflected based on minimization of the vertices. Random steps are

interjected to help remove difficulties with local minima.

Powell's Method

Powell's method presents an optimization algorithm that does not require finding the

partial derivatives. It increments along a set of conjugate base vectors in order to find

a minimum. Simply put the algorithm starts with a set of initial vectors, computes a

function step and based on the results of the step re-computes the solution vectors.

This is repeated until a minimum is found. Tomazevic used Powell's Method for

minimization[27].

Simulated Annealing

A popular heurestic method for solving global optimization problems and used by

several authors [20, 31]. A search space is defined, a random generator modifies the

search variables based on a "temperature" and at each iteration the temperature is

"cooled" lowering the change in variables. The cooling schedule is predefined with

rules for when to change the step sizes.

Sequential Parameter Search

A very straightforward method utilized by Hoff[10]. Each variable in the search space

is sequentially minimized. Variations of this also introduce curve fitting techniques

in order to determine minimum basis directions that do not directly follow a single

parameter.

Swarming

A more recent heurestic search method of swarming was investigated by Schutte[23].

Random points in the search space are computed, the random cloud of search points

then moves towards the minimum point with the greatest "velocity". Based on the

total velocity of the cloud, these points move through the search space, until a global

minimum is reached.
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1.1.4 Objective Functions

The bulk of any variation of the hypothesis and test algorithm lies in defining a

procedure that will test the validity of a given pose and help to determine the next best

guess. This procedure is termed an objective function, cost function and sometimes

performance index in literature. In this paper it is referred to as an objective function.

Its purpose is to define a function which returns a scalar quantity that when minimized

results in an ideal match of the model pose from the given silhouette data.

Iterative Closest Point

The Iterative Closest Point (ICP) algorithm minimizes the distance between points

on the projected contour and the given contour[6, 12]. The distance compared is the

minimum distance for each point to the given contour, hence the name. When this

distance is minimized the projected contour should be exactly the given contour and

the pose found.

Non-overlapping Area

Non-overlapping Area (NOA) is also well described by its name[28]. After projecting

a silhouette from the model, any area that is not simultaneously covered by both the

projected and given silhouettes is summed. The NOA is then the union minus the

intersection of the projected and given silhouettes. When this area is minimized the

projected silhouette should perfectly overlay the given silhouette and the ideal pose

is recovered.

Iterative Inverse Point

In the Iterative Inverse Point (IIP) matching algorithm, rays connecting the focal

point to points on the given contour are constructed. Then, distance between the

model surface and the projected rays is minimized. When the rays form bi-tangents

on the model's surface the ideal pose is recovered. Pre-computed maps describing

the distance from the surface of the model have been used to reduce computational
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burden. These three dimensional distance maps are constructed using a specialized

quad-tree decomposition first implemented by Lavallee and later adopted by others[13,

16, 30, 32].

Digitally Reconstructed Radiographs

The algorithm for Digitally Reconstructed Radiograph (DRR) matching utilizes ren-

dering techniques in order to produce a projected raster image that simulates an

x-ray[20, 27, 30]. The simulated raster image is then compared to the given x-ray

image. When similarity between the two raster images is maximized the ideal pose is

recovered. Image similarity measures for the raster images are accomplished using a

variety of techniques used in image matching. Intensity values and edge overlap are

the most widely used metrics. However, quad-tree decomposition and cross correla-

tion have also been used successfully as measures of image similarity.

1.2 Motivation

Many factors affect the ability to recover the correct pose of a particular scene; how-

ever, the number of simultaneous radiographic views has the greatest impact. This is

because sensitivity of matching out-of-plane translation is far worse than translation

within the plane. In order to minimize error a procedure using two orthogonal radio-

graphs has been developed that combines the best attributes of magnetic resonance

imaging (MRI) and fluoroscopy[4, 9, 19].

This imaging procedure can be applied to most of the articulating joints in the

human body. This allows for highly accurate in-vivo study of joint kinematics and

dynamics, cartilage contact and ligament interaction. The technique is especially

attractive for accurate measurement of in vivo kinematics of patients with orthopaedic

implants because the 3D wire-frame model of the orthoses can be obtained directly

from the CAD model used for manufacturing. Information gained from this imaging

technique can be used for designing new medical devices, for pathological diagnosis

and for planning surgical procedures as well.
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Currently this procedure is accomplished manually, which is time consuming.

Also, because of the vagaries of human precision, overall consistency is not well de-

fined. Finally, the procedure necessitates the mastery of new knowledge and skills

to achieve accurate results. A fully automated procedure will accelerate the match-

ing process, stabilize repeatability and reduce the learning curve for the procedure.

Research of algorithm development, algorithm implementation and validation of the

procedure will ultimately realize a fully automated pose reconstruction. The purpose

of this research is to present a method for automating this procedure and providing

a thorough validation.
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Chapter 2

Pose Reconstruction Procedure

The method of pose reconstruction is conceptually simple. A computer generated

3D model is obtained and radiographs are taken of the subject in motion. Based

on the geometry of the radiographic setup it is possible to match 2D features in the

radiograph to points on the 3D model. When the features are matched the pose of the

3D model is recreated, which effectively gives one a 3D dynamic model. The process of

acquiring images with the dual-orthogonal fluoroscopic image system and recreating

in-vivo kinematics can be separated into three stages: imaging, image analysis and

matching. A flow chart of the manual process is shown in Fig. 2-1. Automating

each of these tasks increases the speed of the system and improves the repeatability;

however, this comes at a cost of lost sensitivity. When a balance between automation

and manual interaction is reached the system is efficient, robust and accurate. To

emphasize this balance, a discussion of the amount of human intervention accompanies

the description of each stage of the process. These algorithms are implemented in

Matlab software and listings can be found in Appendix A.

2.1 Imaging

Acquisition of the images is where the actual kinematic data is recorded. With the

technological advancements in magnetic resonance imaging (MRI) and x-ray machines

it is possible to recreate fully 3D anatomical models and also record human activ-
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Figure 2-1: Flow of the manual matching process.

ity in real-time. MRI provides a tool to recreate thee anatomy with sub-millimeter

precision. MRI can easily be replaced with computed tomography (CT) scans, or

other 3D reconstruction techniques, including computer aided design (CAD) models

of metal components; however, MRI is most often the least invasive method available.

Similarly, any x-ray method can be used, but pulsed fluoroscopy exposes the patient

to the least amount of radiation. The general imaging requirements of the process

are therefore a method of recreating the 3D geometry and the ability to capture two

orthogonal images of the 3D geometry's motion. This research explored MRI and

CAD for model generation and pulsed fluoroscopy for acquiring images of patient

motion.

24



2.1.1 MRI

In order to create 3D models of living anatomy MRI has been utilized to capture the

structure. For the knee joint, patients are asked to lie supine in an MRI having a

3 Tesla magnet. Using a knee coil, approximately 120 sagittal images are acquired

with a section thickness of 1 mm, a field of view of 160 x 160 mm and a resolution

of 512 x 512 pixels. Acquisition was accomplished with a flip angle of 25', imaging

frequency of 123.3 kHz, an echo time of 6.5 ms, and a 24 ms repetition time (Fig.

2-2).

Figure 2-2: An example MRI slice on the left used to construct the 3D surface model
on the right.

2.1.2 Dual-Orthogonal Fluoroscopy

The dual-orthogonal fluoroscopic image system consists of two fluoroscopes (OEC

9800 ESP, GE, Salt Lake City) positioned with the two image intensifiers perpendic-

ular to each other (Fig. 2-3) [9]. A subject is free to move within the common imaging

zone of the two fluoroscopes. The subject is then asked to move through a series of

flexion angles which are imaged simultaneously by the fluoroscopes to acquire images

of the knee from two perpendicular directions. During this procedure, the average

subject receives 106 mrem of radiation for 20 seconds of pulsed fluoroscopy at 65

kVp and 0.80 mA. In addition to the subject images, a set of calibration images are

acquired. Calibration images are taken of a perforated plate for distortion correction

and a set of beads in a known configuration for the recreation of the fluoroscopic ge-
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ometry. The images are stored electronically with an 8-bit gray-scale and a resolution

of 1024 x 1024 pixels, corresponding to a 315 x 315 mm field-of-view. This procedure

records the in-vivo poses of the knee as a series of 2D paired orthogonal fluoroscopic

images.

Image Intensifiers

X-ray Sources

Figure 2-3: A dual-orthogonal fluoroscopic system for capturing in-vivo knee joint

kinematics.

2.2 Image Analysis

In order to extract kinematic data from the acquired images the data must first be

corrected for distortion, structural features then extracted and finally the fluoroscopic

imaging system must be recreated in simulation. While each step can be automated,

the entire process still requires a high level of human interaction. This is particu-

larly true for segmentation, and without development of powerful machine learning

algorithms, human operation will continue to provide the most efficient and reliable

results.

2.2.1 Distortion Correction

The fluoroscopic images suffer from small amounts of distortion caused by the slightly

curved surface of the image intensifier and environmental perturbations of the x-ray.

In order to remove "swirl" caused by electro-magnetic disturbance and "fish-eye"
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from the curved image surface a known grid is imaged and the subsequent image

is mapped to the known geometry. A global surface mapping using a polynomial

fitting technique adapted from Gronenschild is used to accomplish this [8]. Linear

interpolation and local distortion correction were compared, but it was found that

global correction provided the most consistent results.

A plexi-glass plate with a pattern of holes in concentric circles is used for the

reference geometry. This radial geometry was found to work best, because it conforms

well with the circular intensifiers and allows for a high density grid that is conducive

to solving the mapping problem. Distortion correction is accomplished by mapping

the distorted grid to the known grid using a set of two-dimensional polynomials. The

images themselves are corrected by using the spatial mapping to "move" pixels with

linear interpolation of the intensity values. Matlab code used for correcting distorted

images can be found in Appendix A.1.1.

2.2.2 Segmentation

Thresholding, region growing and edge detection have been explored as possible meth-

ods of extracting structural information from raster images. In order to generate

contours, edge detection is currently the most useful method. Most edge detection

methods are variants of a basic premise of determining the maximum gradient of im-

age intensity. Sobel, Prewitt, Roberts and Laplacian of Gaussian algorithms return

similar results for fluoroscopic and MRI images. The most favorable algorithm is the

one presented by Canny [3]. This algorithm improves on previous methods by adding

rules for discarding erroneous edges. The basic algorithm first smooths the image

using a Gaussian filter, then it computes the gradients from a Laplacian filter. Next,

the gradients are reduced by removing non-maximal values. The edges created by

the maximal values are further reduced by applying a threshold and examining con-

nectivity. Non-maximal edges connected to maximal edges are kept, while isolated

non-maximal edges are removed. Canny edge detection is implemented in Matlab and

used as a first pass for extracting structural information from MRI and fluoroscopic

images. An example of automatic segmentation is given in Fig. 2-4.
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Due to the complex geometry of most anatomical structures and the inherent lack

of an edge in biological images, the outlines from the edge detection are manually

reviewed. This is done by saving the segmented outlines as a list of 2D spatial points,

which in turn are used to create spline curves using a periodic spline algorithm [17].

These outlines can then be edited in CAD software. Manual editing is most often

required where soft tissue attaches to bone as there is a decrease in intensity gradient.

These edited curves are then used to create 3D models and define matching geometry.

Often it is more effecient to manually segment the images, as the results are often

more accurate albeit slightly less repeatable. A recent study by Mahfouz, et al. has

discussed these results[21]. The results of the segmentation are used to generate

3D models and 2D contours. To generate the 3D models, the contours are placed

spatially based on the MRI information and a mesh is created using a point lofting

method, a listing of which can be found in Appendix A.1.2. Splines generated from

the fluoroscopic images are saved along with the starting and ending values in order

to determine the valid limits of the splines. These models and contours are used later

in the process for recreating the pose of the patient.

Figure 2-4: Canny automatic segmentation of a fluoroscopic image.
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2.2.3 Environment Recreation

Before matching can occur a virtual replica of the dual-orthogonal fluoroscopic sys-

tem is constructed. This is accomplished from calibration data, which locates the

intensifier centers and the relative orientation of the fluoroscopes. By aligning the

solutions of each fluoroscope the relative alignment of the fluoroscopes is determined.

With this calibration data, two virtual source-intensifier pairs are created in a solid

modeling program (Rhinoceros, Robert McNeel & Associates, Seattle, WA) and the

virtual intensifiers are oriented so that their relative locations replicate the geometry

of the real fluoroscopic system (Fig. 2-5).

virtual source virtual source

Figure 2-5: A virtual dual-orthogonal fluoroscopic system constructed to reproduce

the in-vivo knee joint kinematics.

The splines of the TKA components obtained from the dual fluoroscopic images

are placed on their respective virtual intensifiers. Next, 3D models of the tibial and

femoral components are introduced into the virtual system. For TKA the models are

obtained from the manufacturer as non-uniform rational b-splines (NURBS) surfaces,

otherwise the models are obtained from MRI. Using the 3D modeling program a mesh

size is selected. The surfaces are tessellated, and the vertices of the mesh are used to

create a 3D point cloud of the model. Then, a local coordinate system is created for

each point model. The local coordinate system is related to the global coordinates

of the virtual fluoroscopic environment using a position vector and rotation matrix

(Fig. 2-6).
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Loca .Y

Figure 2-6: Definition of local and global coordinate systems and the transformation

of model points.

Using the 3D modeling program the point model can be manipulated in the vir-

tual environment to create an initial guess of the pose. With this CAD replica, a

mathematical model of the dual-orthogonal fluoroscopic system is constructed and

matching can commence.

2.3 Matching

The matching stage recreates the subject's position and orientation that was captured

by the fluoroscopes. This is accomplished by registering the projected silhouettes of

the 3D model with the 2D contours of the fluoroscopic images. Registration is done

by translating and rotating a virtual 3D model of the subject in a simulated envi-

ronment containing the fiuoroscopic images. When the 3D) model matches the 2D

images the virtual pose should match the pose of the subject during the fluoroscopic

imaging. This has been accomplished manually by employing solid modeling software

[9, 19]. However, the manual process is tedious, time consuming and lacks a quanti-

tative measure for repeatability. The qualitative aspect of manual matching requires

extensive experience to obtain the accuracy described in the previous publications

[9, 19]. In addition, the prospect of dynamic motion the number of images to match

greatly increases, thus increasing processing time. It therefore becomes desirable,
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perhaps even a necessity, to automate the matching process. Automatic matching

offers decreased matching time, a reduced learning curve and most importantly a

quantitative matching criterion that is independent of the operator.
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Chapter 3

Automated Matching

In the previous chapter the method for pose reconstruction was illustrated. The

basic processes of imaging, image analysis and matching, however, can be greatly

accelerated through automation. This chapter improves on the previous procedure

by presenting an automated algorithm for matching. A flow chart of the enhanced

process is shown in Fig. 3-1.

The automatic matching algorithm is formulated as an optimization procedure

that minimizes the error between projected model silhouettes and actual fluoroscopic

image outlines in order to determine the model pose. The model pose is defined by

the 6DOF position and orientation of each models local coordinate system relative

the global coordinate system. The objective function is expressed as a scalar function

with six independent variables. The independent variables are the three components

of the position vector locating the origin of the local coordinate system and the three

Euler angles of the local system in the global system (Fig. 2-6). The scalar function

value is the average distance between the 3D projected model silhouettes and the

segmented fluoroscopic outlines. A listing of Matlab implementations can be found

in Appendix A.2.
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Figure 3-1: Flowchart of the matching process, automation shaded in grey.

3.1 Objective Function

3.1.1 Transformation

The six independent variables are used to transform the points of the 3D model from

an initial pose to a new position and orientation which is illustrated in (Fig. 2-6).

Each point on the model, noted as mi, is transformed with the local coordinate system

to a new location and orientation in the global coordinate system, noted as iii in Eq.

3.1.

i = R(mi) + (t + o) (3.1)

The vector, o [-T, yo, zo], locates the origin of the local system in the global
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coordinates. The translation vector, t = [Xt, yt, Zt], is defined in the global coordinate

system. The rotation matrix, R, is defined as a Y-Z-X Euler sequence using the

angles a, f, and -y shown in Eq. 3.2.

cos(A)coS(y) sin(y) -sin(#)cos(,y)

-Cos(a)cos(O)sin(7)+sin(a)sin(,3) cos(a)cos(-y) cos(a)sin()sin(7 )+sin(a)cos(3) (3.2)

sin(a)cos(#)sin(-)+cos(a)cos(,) -sin(a)cos(y) -sin(a)sin()sin()+cos(a)cos(3)

3.1.2 Projection

Once the 3D model is transformed to a new pose, the locations of the virtual sources

are used to project the points onto the intensifiers of the virtual fluoroscopic system

(Fig. 2-5). The vector equation used to project the transformed 3D model points

onto a virtual intensifier is shown below in Eq. 3.3.

Pki = V ( - - 1k (iii - Vk) (3.3)
(mhi - vk) -nk

The ith projected model point for the kth intensifier is defined as Pki and ihi the

ith transformed model point. The vector Vk locates the kth source and nk the unit

vector normal to the kth intensifier plane. The scalar 1k is the distance between the

kth source and intensifier.

3.1.3 Point Selection

To decrease computation time and improve the robustness of the algorithm, only the

outline points of the projected 3D model points are compared to the outlines of the

TKA components. An outlining set of the projected points is determined by estab-

lishing point connectivity and following an outer contour defined by the connectivity.

Connectivity is determined by automatically compartmentalizing the model points so

that a connected grid is produced (Fig. 3-2A). Using a left-looking, contour-following

algorithm, the grids that outline the projected points are determined (Figs. 3-2B-C).

For each contour grid, the point closest to the outside of the contour is selected (Figs.
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3-2D-E). This automatic procedure results in a set of points that form an outline of

the projected 3D model points (Fig. 3-2F).

(a) (b) (c)

(d) (e) (f)

Figure 3-2: Outlining procedure. (A) Compartmentalize projected points (B-C) De-

termine boundary grids with left-looking outlining technique (D-E) Select point in

each grid that is closest to the outer edge. (F) Completion of algorithm with selected

outline points.

3.1.4 Error Computation

The minimum distance between each outlined, projected 3D model point and the

fluoroscopic spline is determined (Fig. 3-3). Since the spline is represented as a

parametric curve, the secant method is used to determine the minimum distance

between a point and the spline (Eq. 3.4).

dki = mIn gk(t) - PkiI (3.4)

For the kth intensifier, dki is the ith minimum distance, Pki is the ith projected
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Figure 3-3: Representation of calculating the minimum distance between projected

points and a fluoroscopic outline.

model point, gk(t) is the parametric vector function of the fluoroscopic image spline,

and t is the parametric variable, whose range corresponds to the recorded endpoints of

the spline. For each intensifier, these distances are summed and divided by the total

number of points, qk, resulting in a normalized distance. The normalized distances for

each intensifier are then summed and returned as the value of the objective function,

I (Eq. 3.5).

2 qk

I= qk E dki (3.5)
k=1 qk =1

3.2 Optimization

As the objective function, I, approaches zero the 3D model closely approaches the ac-

tual TKA pose. Therefore, to accurately replicate the actual TKA pose the objective

function is minimized according to Eq. 3.6.

miT~) mn2 qk mn1

nyr) = Ey E y g (t) - Vk -(1;-Vk) (3.6)
k=1 qk =1 (ii-V)-n
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The vector, r, holds the 6 optimization variables, r = (x, y, z, a, 3, 7), that repre-

sent the position and orientation of the models local coordinate system with respect

to the global coordinate system. Any global optimization routine can be imple-

mented to perform the minimization of the objective function, I(r), Eq. 3.5. Heuristic

search methods, such as genetic algorithms and simulated annealing are also possible;

however, simple quasi-Newton methods appear to have the fastest convergence with

excellent results. Minimization of this function is accomplished with the Broyden,

Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton method and implemented in

Matlab software [5]. Utilizing the BFGS algorithm provides constrained line-search

minimization of the performance index. The basic BFGS quasi-Newton method is

formulated as a minimization of the quadratic in Eq. 3.7.

I(r) = -rTHr + cTr + b (3.7)
2

Where H is an approximation to the symmetric positive definite Hessian matrix

of the objective function, c is a vector of constants defining constraints, while b is a

scalar constant used to adjust for errors in approximating the Hessian. Minimization

occurs by solving for the appropriate solution vector that solves Eq. 3.8.

VI(i) = Hi + c = 0 (3.8)

Solving Eq. 3.8 results in the solution vector i = -H-1c. The method of BFGS

then presents an iterative solution for the Hessian, H, presented in Eqs. 3.9-3.11.

GjIHT(sisj)Hj
Hj+1 = Hj + 3 3 (3.9)Ts3 - sTH.sj%j 33

S3 = r,+1 - r3  (3.10)

% = VI(rj+1) - VI(r,) (3.11)

Upon implementation of the Hessian, the function gradients and search directions
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can be calculated to determine the optimal solution. Global convergence is improved

by randomly perturbing the initial guess and submitting these additional guesses to

the optimization routine. Convergence for each run is controlled by terminating the

minimization routine when the differential change in variables meets the required tol-

erance or the quantity of objective function calls exceeds a specified number. Globally,

runs that exceed the number of function calls and do not meet the required tolerance

are deemed non-convergent. The remaining runs are used to determine a confidence

interval and the match having the smallest performance index value is considered

optimal.

3.3 Summary

Dual-orthogonal imaging can be applied to most of the articulating joints in the

human body. This allows for highly accurate in-vivo study of joint kinematics and

dynamics, cartilage contact and ligament interaction. The technique is especially

attractive for in-vivo kinematics of patients with orthopaedic implants because 3D

wire-frame models of the orthoses can be obtained directly from the CAD models

used for manufacturing. Information gained from this imaging technique can be used

for designing medical devices, clinical diagnosis and planning surgical procedures.

Automation of the procedure accelerates the matching process, stabilizes repeata-

bility and reduces the learning curve required to produces accurate results. Automa-

tion is accomplished by applying BFGS optimization to an iterative closest point

objective function. Time savings from the algorithm allows for a large number of

poses to be matched, making analysis of dynamic motion feasible. By formulating

the matching problem as a mathematical process that can be computed, repeatability

is gained and user bias is reduced. Automation also reduces the learning curve re-

quired for determining an object's pose. Furthermore, statistical bounds of matching

error are readily determined for the process. In short, automation of the matching

process improves dual-orthogonal imaging by making it an easier and more robust

tool to use, facilitating highly accurate biomechanics research.
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Chapter 4

Validation and Application

Validation of the optimized matching algorithm was performed to demonstrate the

accuracy and repeatability of recreating pose. The algorithms implemented in Matlab

software were tested on a personal computer with a Pentium IV class processor (2.4

GHz, 512 MB RAM) running the Microsoft Windows XP Professional operating

system. Validation consisted of running the algorithm with idealized, controlled, and

real data using ten randomly generated initial pose estimates for each test. These

tests were used to isolate various causes of error; idealized tests to isolate errors with

geometry, standardized in-vitro tests to isolate errors caused by segmentation, and in-

vivo tests to observe the combination of errors. For all tests the matching algorithm

was set to record convergent solutions that did not exceed 800 objective function calls

and had a differential tolerance of less than 0.0005 for each variable.

4.1 Idealized Environments

Idealized environments were created in order to determine the automated matching

algorithms repeatability, accuracy, sensitivity to model point density and pose ori-

entation, and optimal parameters under controlled conditions. These tests gave a

basis for the ultimate potential of the algorithm. The idealized fluoroscopic setup

was created by replicating the fluoroscopic environment using the 3D solid modeling

software. Three-dimensional models were oriented in the virtual system in poses ap-
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proximating a deep knee bend. From these poses the models were projected onto the

virtual intensifiers, and the projections were used to create pseudo fluoroscopic out-

lines. Models in this configuration were then considered to be the gold standard. The

error of the matched poses was then determined by comparing the matched model

poses to the gold standard.

4.1.1 TKA Components

Method

For the TKA components the 3D models of the femoral and tibial components were

generated from manufacturer CAD data. With the idealized fluoroscopic setup the

effect of model point density was tested for one pose of the tibial and femoral com-

ponents (450 flexion position) using three different densities. The low point density

models used a coarse mesh with approximately 3,500 points. Medium density point

models were approximately 15,000 points and high density point models were made

with over 20,000 points. Three additional poses (30, 60 and 900 flexion positions) for

the medium point density models were matched to test the effect of pose orientation.

For each pose ten estimates for the initial guess were created for each component by

perturbing the models from the gold standard. The perturbations were created by

randomly generating values for the pose variables within the range of ±20 mm and

+20' using a Gaussian distribution. Next, the models were matched using fifty of the

projected outline points. The accuracy and repeatability of the optimized matching

algorithm in reproducing the femoral and tibial components position and orientation

in 6DOF was recorded for each convergent match.

Results

Accuracy for the idealized tests was measured as the error between the body fixed

local coordinate systems of the golden standard and the matched models. The sample

standard deviation of these errors was selected as the measure of repeatability. Root-

mean-square error (RMSE), or population standard deviation, values are also reported
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for comparison with previous methods. Results for different densities of the femoral

component are presented in Table 4.1. The pose of the femoral component was

recreated to within 0.01+0.04 mm in translation and0.05t0.160 in rotation for the

low point density model, 0.02+0.01 mm and 0.02±0.02 for the medium point density

model, and 0.02±0.01 mm and 0.07±0.010 for the high point density model. The

average time for matching a single pose was 200 see, 350 see, and 510 see for the low,

medium, and high point density models, respectively. The average number of calls

to the objective function was 640 for all model sizes. The results for four different

flexion angles using the medium point density model are listed in Table 4.2. The

average values of the pose variables were found to recreate pose to within 0.02+0.01

mm in translation and 0.02t0.03' in rotation.

3477 -0.001±0.016 [0.016] -0.006±0.037 [0.041] -0.009±0.021 [0.0301 0.007±0.030 [0.040] -0.050±0.099 [0.197] -0.038±0.160 [0.413]

14135 0.002±0.005 [0.014] -0.002±0.006 [0.0061 -0.018±0.012 [0.021] 0.004±0.004 [0.019] -0.017±0.020 [0.057] 0.015±0.019 [0.086]

21224 0.009±0.006 [0.024] -0.023±0.009 [0.0411 -0.005±0.003 [0.007] 0.002±0.008 [0.0111 0.068±0.006 [0.1021 -0.029±0.008 [0.047]

3608 -0.283±0.304 [0.403] 0.044±0.068 [0.078] 0.004±0.013 [0.013] 0.088±0.062 [0.106] -0.079±0.051 [0.0921 -0.747±0.706 [1.001]

14505 -0.069±0.043 [0.080] 0.029±0.018 [0.033] -0.009±0.003 [0.010] -0.163±0.080 [0.180] -0.042±0.036 [0.054] 0.069±0.102 [0.118]

35994 -0.049±0.018 [0.051] 0.016±0.009 [0.018] -0.011±0.003 [0.012] -0.074±0.010 [0.075] -0.011±0.010 [0.014] -0.189±0.104 [0.213]

Table 4.1: Accuracy (average error values), repeatability (standard deviations) and
root-mean-square errors (RMSE) of the automatic matching procedure in an idealized
environment using different model point densities. Accuracy and repeatability were

evaluated for ten initial positions.

Results for the tibial component are presented in Table 4.1 for different densities of

the model. Pose was recreated to within 0.28t0.30 mm in translation and 0.75+0.71'

in rotation for the low density model, 0.07+0.04 mm and 0.16+0.100 for the medium

point density model, and 0.05+0.02 mm and 0.19±0.10' for the high point density

model. The average time for matching a single pose was 110 sec, 210 sec, and 220 see

for the low, medium, and high point density models, respectively. For each model size
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1 0.002±0.005 [0.0141 -0.002±0.006 [0.006] -0.018±0.012 [0.021] 0.004±0.004 [0.019] -0.017±0.020 [0.057] 0.015±0.019 [0.0861

2 -0.003±0.010 [0.010] -0.010±0.009 [0.013] -0.004±0.008 [0.008] 0.005±0.025 [0.023] 0.001±0.008 [0.007] -0.008±0.011 [0.012]

3 -0.000±0.009 [0.008] 0.001±0.014 [0.012] -0.001±0.005 [0.004] 0.005±0.011 [0.012] -0.003±0.021 [0.019] -0.009±0.023 [0.023]

4 -0.006±0.011 [0.011] -0.002±0.010 [0.009] 0.000±0.007 [0.006] -0.013±0.023 [0.025] 0.009±0.018 [0.018] -0.001±0.027 [0.024]

1 -0.069±0.043 [0.080] 0.029±0.018 [0.0331 -0.009±0.003 [0.010] -0.163±0.080 [0.1801 -0.042±0.036 [0.054] 0.069±0.102 [0.1181

-0.013±0.032 [0.033] 0.005O.024 [0.0241 -0.001±0.011 [0.010] 0.003±0.012 [0.0121 -0.005±0.019 [0.0191 -0.020±0.084 [0.083]

3 -0.010±0.057 [0.056] 0.010±0.170 [0.164] 0.013±0.034 (0.035] -0.009±0.023 [0.024] 0.011±0.043 [0.043] -0.042±0.138 [0.139]

4 0.012±0.096 [0.092] -0.008±0.041 [0.039] 0.003±0.025 [0.024] -0.004±0.051 [0.048] -0.013±0.041 [0.041] 0.163±0.389 [0.403]

Table 4.2: Accuracy (average error values), repeatability (standard deviations) and

root-mean-square errors (RMSE) of the automatic matching procedure in an idealized

environment using four different pose environments with a model point density of

15,000 points. Each position was evaluated for ten initial positions.

the average number of objective function calls was 650. Results from four different

flexion angles for the medium point density model are listed in Table 4.2. The average

values of the pose variables were found to recreate pose to within 0.07±0.09 mm in

translation and 0.16±0.180 in rotation for the tibial component.

4.1.2 Natural Knee

Method

For the natural knee 3D models of the femur and tibia were generated from an MRI of

a cadaver. Three poses (30, 60 and 90' flexion positions) for low point density models

(3,500 points) were matched to test the effect of pose orientation. For each pose ten

estimates for the initial guess were created for each model by perturbing them from the

gold standard. The perturbations were created by randomly generating values for the

pose variables within the range of ±20 mm and ±20' using a Gaussian distribution.

Next, the models were matched using fifty of the projected outline points. The

accuracy and repeatability of the optimized matching algorithm in reproducing the
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femoral and tibial components position and orientation in 6DOF was recorded for

each convergent match.

Results

Accuracy for the idealized natural knee tests was measured as the error between

the body fixed local coordinate systems of the golden standard and the matched

models. The results for three different flexion angles using the medium point density

model are listed in Table 4.3. The average error in recreating pose of the femur

was 0.12±0.33 mm in translation and 0.14+0.31' in rotation. Average pose error for

the tibia was 0.39±0.33 mm in translation and 0.23+0.20' in rotation. The sample

standard deviation of these errors was selected as the measure of repeatability. The

average time for matching a single pose was 30 seconds and the average number of

calls to the objective function was 160.

1 0.00±0.36 [0.32] -0.01±0.34 [0.31] 0.04±0.11 [0.11] 0.05±0.06 [0.07] -0.01±0.03 [0.03] 0.04±0.19 [0.17]

2 0.08±0.07 [0.10] 0.38±0.32 [0.48] 0.06±0.33 [0.30] -0.15±0.25 [0.271 0.00±0.10 [0.09] -0.26±0.31 [0.38]

3 0.03±0.18 [0.17] 0.33±0.89 [0.86] 0.18±0.38 [0.38] -0.32±0.93 [0.89] 0.04±0.03 [0.05] -0.41±0.89 [0.89]

Error in Tibia Pose Parameters

1 -0.70±0.47 [0.81] -1.56±1.03 [1.811 -0.02±0.13 [0.11] -0.06±0.06 [0.08] 0.02±0.07 [0.07] 0.81±0.53 [0.941

2 0.01±0.11 [0.10] 0.07±0.19 [0.18] 0.03±0.09 [0.09] 0.05±0.08 [0.08] -0.01±0.05 [0.04] -0.02±0.11 [0.10]

3 0.09±0.11 [0.13] 0.59±0.46 [0.72] 0.42±0.39 [0.55] 0.46±0.37 [0.57] 0.09±0.14 [0.15] -0.53±0.43 [0.66]

Table 4.3: Accuracy (average error values), repeatability (standard deviations) and
root-mean-square errors (RMSE) of the automatic matching procedure with an ideal-
ized natural knee using three different pose environments with a model point density
of 3,500 points. Each position was evaluated for ten initial positions.
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4.2 Standardized In-vitro Environments

In an attempt to quantify accuracy of the system while in a working environment,

controlled experiments were developed. The principle behind these tests was to image

geometry with known structure and position. This was accomplished by employing

highly precise geometry to enforce a relative distance and also by accurately trans-

lating known geometry.

4.2.1 Spheres

Method

A standardized test in the manner of Short, et al was performed consisting of eight

spheres 12.70 mm in diameter each having a tolerance of +0.01 mm[24]. Five of the

spheres were stainless steel, two were ceramic (spheres 2 & 7), and one was tungsten

(sphere 5). The spheres were arranged in a fixed pattern (Fig. 4-2) and imaged with

the dual-orthogonal fluoroscopic system.

Figure 4-1: A virtual environment for the standardized in-vitro sphere test.

Using the solid modeling program a spherical model 12.70 mm in diameter was

created and converted into a point cloud containing 2,500 points. Next, the model was

placed centrally in the virtual fluoroscopic environment. Then, ten estimates for the

initial pose were created for each component by perturbing the model from the placed

configuration. The perturbations were created by randomly generating values for the

pose variables within the range of t20 mm using a Gaussian distribution. Next, the
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Figure 4-2: Geometry of standardized test. Spheres two and seven were ceramic,
sphere five was tungsten and the remaining spheres were stainless steel. The spheres
were stacked in the vertical plane.

models were matched using sixty of the projected outline points and the convergent

matches were recorded. The accuracy of the matching algorithm was determined by

comparing the distance between the adjacent matched spheres and the true distance

of one diameter, 12.70 mm.

1 to 2 12.76 ± 0.04 [0.07]

2 to 3 12.72 ± 0.03 [0.03]

3 to 4 12.56 ± 0.01 [0.14]

4 to 5 12.72 ± 0.02 [0.03]

5 to 6 12.66 ± 0.04 [0.06]

6 to 7 12.75 ± 0.06 [0.07]

7 to 8 12.68 ± 0.05 [0.06]

Table 4.4: Standardized test validating accuracy and precision of the dual-orthogonal
fluoroscopic system under actual conditions with spheres of different materials using
ten initial positions.

Results

For the standardized test, the distance between each adjacent pair of spheres was

calculated (Table 4.4). A maximum distance of 12.76 mm was calculated between

sphere 1 and sphere 2 and a minimum distance of 12.56 mm was calculated between
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sphere 5 and sphere 6. The average distance between matched pairs of adjacent

spheres was 12.69 mm, 0.01 mm less than the actual distance data, with a standard

deviation of +0.06 mm. The average time for each match of a single sphere was 15

sec with 380 calls to the objective function.

4.2.2 Natural Knee

Method

For the natural knee 3D medium point density models (15,000 points) of the femur

and tibia were generated from an MRI of a cadaver. The cadaver knee was mounted

in a tensile testing machine (QTest 5, MTS, Minneapolis, MN), which has a linear

accuracy of 0.001 mm. The knee was then imaged as it was translated to five positions:

0, 2, 5, 10, 15 mm. The translation distance between poses was considered the gold

standard. For each pose ten estimates for the initial guess were created for each model

by perturbing them an initial match. The perturbations were created by randomly

generating values for the pose variables within the range of +20 mm and ±200 using

a Gaussian distribution. Next, the models were matched using fifty of the projected

outline points. The accuracy and repeatability of the optimized matching algorithm

in reproducing the femoral and tibial position and orientation in 6DOF was recorded

for each convergent match.

Results

Accuracy for the standardized natural knee tests was measured as the error between

the translation of three body fixed points and the known displacement imposed by

the tensile testing machine. The distance from the initial position was calculated for

each position and listed in Table 4.5. The average error was found to be 0.14 mm for

the femur and 0.54 mm for the tibia. Repeatability of all poses was found to be less

than +0.85 mm, where the sample standard deviation of these errors was selected

as the measure of repeatability. The average time for matching a single pose was 90

seconds and the average number of calls to the objective function was 500.
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5 0.20 ± 1.25 0.47 ± 0.95

10 -0.05 ± 0.69 0.31 ± 0.82

15 -0.02 ± 0.58 0.82 ± 0.91

Table 4.5: Standardized test validating accuracy and precision of the dual-orthogonal
fluoroscopic system under actual conditions with a cadaver knee translated known
distances.

4.3 In-vivo Environments

Testing the algorithm with actual subjects is the most important validation of perfor-

mance. In-vivo validation utilizes images acquired from living subjects and provides

a metric for determining the algorithm's repeatability. TKA subjects were imaged

performing a lunge activity and this data was used for the validation.

4.3.1 TKA Components

Method

In-vivo images taken with the dual fluoroscopic system of the right knee of a patient

after TKA. The images were acquired under IRB approval and with informed consent

of the patient. The patient had a cruciate retaining component and images were

taken during a lunge (NexGen CR TKA, Zimmer, Inc, Warsaw). Poses selected for

matching were for images taken at 100 and 50' of flexion of the patient. Using the solid

modeling program the component models were converted into point clouds containing

15,000 points. Next, the models were manually matched to the fluoroscopic contours

in the virtual fluoroscopic environment. Then, for both flexion angles each model
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Figure 4-3: A virtual environment for an in-vivo TKA test.

was perturbed ten times to create estimates of the initial pose. The perturbations

were created by randomly generating values for the pose variables within the range of

+20 mm and ±20' using a Gaussian distribution. Sixty projected outline points were

used for the matches and the convergent solutions were recorded. Since the accurate

position and orientation of the patient TKA is unknown, this test was designed to

evaluate repeatability of the algorithm in determining the position and orientation of

in-vivo TKA components.

Results

Repeatability was measured by comparing the variation of matched models when

different initial guesses were used in the optimization procedure. Results are tabulated

for two poses of both the tibial and femoral components in Table 4.6. Maximum

translational deviation for both poses was t0.12 mm for the femoral component and

+0.29 mm for the tibial component. Maximum angular deviation for both poses was

±0.12' for the femoral component and ±0.250 for the tibial component. The average

time to match a single pose for each component was 500 sec with 600 calls to the

objective function.
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1 1 0.018 0.016 0.086 0.050 0.086 0.019

2 0.038 0.010 0.116 0.117 0.087 0.017

1 0.106 0.294 0.042 0.218 0.109 0.070

2 0.124 0.270 0.031 0.250 0.067 0.068

Table 4.6: Repeatability of the automatic matching procedure in reproducing the two
in-vivo poses of the femoral and tibial components of a TKA patient for ten initial
positions.

4.4 Summary

Results of the validation demonstrate the algorithms robustness and capability of

realizing a pose from a variety of initial poses. Under idealized conditions, poses

of a TKA system were recreated to within 0.02±0.01 mm and 0.02t0.03' for the

femoral component and 0.07+0.09 mm and 0.16±0.180 for the tibial component.

Using the idealized setup with a natural knee, pose for the femur was recreated to

within 0.12+0.33 mm and 0.14±0.310 and the tibia pose was recreated to within

0.39±0.33 mm and 0.23±0.200. By employing a standardized geometry with spheres,

the translational accuracy and repeatability under actual conditions was found to be

0.01±0.06 mm. Using the standardized setup with a natural knee, pose for the femur

was recreated to within 0.14±0.85 mm and the tibia pose was recreated to within

0.54+0.85 mm. Application of the optimized matching algorithm to a TKA patient

showed that the pose of in-vivo TKA components can be repeatedly located, with

standard deviations less than ±0.12 mm and ±0.120 for the femoral component and

+0.29 mm and ±0.25' for the tibial component. This methodology presents a useful

tool that can be readily applied to the investigation of in-vivo kinematics.
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Chapter 5

Discussion

5.1 Algorithm Operation

Idealized testing gave an empirical measure of the accuracy of the optimized matching

algorithm and provided a controlled environment for examining the optimal point

model density, number of matching points, and effect of initial poses. Results showed

that increasing the model point density improved repeatability; however, accuracy

remained roughly constant. Point density affects the sensitivity of rotational accuracy

more than positional accuracy. For this reason model point density has a greater

effect on the "axis-symmetric" tibial component. Since calculation time increases

roughly linearly and error decreases quadratically, the point of diminishing returns

for accuracy and repeatability of matching femoral and tibial components occurs at

approximately 15,000 model points. In general, the optimal model point density

occurs when the entire model surface is covered with an evenly distributed number

of points that accurately capture the geometry.

The number of projected outline points used for matching affects the robustness

of the matching algorithm and is dependent on model geometry. The optimal number

of points should be sufficient to characterize a given projection geometry. However,

characteristic points are difficult to define automatically. A simple method for circum-

venting manual placement is to automatically select a set of equally spaced points.

Experience has shown that selecting a point every 4 mm on the projected outline of
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TKA components adequately captures the geometric character. Interestingly, using

large numbers of outline points does not significantly improve accuracy; however,

fewer iterations are required for convergence.

The idealized testing environment also determined the effect of initial pose es-

timates on resulting component pose. It was found that perturbations within the

range of 1-20 mm and 0.5-20* from the ideal position and orientation resulted in sim-

ilar results for a range of model orientations. These data showed that the optimized

matching process is forgiving of the initial pose estimate and allows for minimal op-

erator intervention. Standardized testing allowed for evaluating the accuracy and

repeatability of the optimized matching procedure with the actual dual-orthogonal

fluoroscopic system.

Standardized geometries allowed for known relative poses, which is difficult to

achieve using actual TKA components. Different materials for the spheres were used

to simulate possible edge loss from overexposure and edge blooming from x-ray scat-

ter due to differences in material density. In addition, cases of occlusion were also

present, because of the geometry of the spheres. These image artifacts caused incor-

rect or incomplete segmentation of the fluoroscopic images; however, most artifacts

were not severe in both views and the combined information of the two orthogonal

views reduced the difficulty of matching. The results of these tests showed that the

accuracy and repeatability for the standardized and idealized tests had similar orders

of magnitude and that the different materials did not disrupt the optimized matching

algorithm's ability to recreate the spheres' pose. Furthermore, noise, occlusion and

distortion may affect the quality of the edges, but due to the geometry of the imaging

system and "fitting" nature of the algorithm, these errors are often obviated. Edge

quality is of greater concern when imaging natural joints and soft tissue; however, the

positive results of this study allude to the possibility that this optimization method

could be applied to in-vivo kinematics of intact knees with further validation.

To prove the capabilities of the optimized matching algorithm for use with TKA

kinematics, the method was applied to an actual TKA patient. The data demon-

strated that the optimized matching procedure was highly repeatable when different
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initial guesses were used. Repeatability for the femoral component was better than

the tibial component because of the symmetry of the tibial component. This phe-

nomenon was also observed in the idealized testing (Table 4.1). Symmetric objects are

more difficult to match than objects of irregular geometry because of the reduced sen-

sitivity in the projected silhouette. As sensitivity decreases, the optimization routine

is less likely to converge.

5.2 Comparison with Previous Algorithms

Fluoroscopic techniques have been used extensively in recent years for determining

in-vivo TKA kinematics[2, 15, 30, 32]. These techniques offer advantages over roent-

gen stereophotogrammetry (RSA) and conventional X-ray because of the reduced

radiation exposure and non-invasive methods. In the pursuit of improved accuracy

using fluoroscopy, recent studies have developed a dual-orthogonal fluoroscopic sys-

tem for determining 6DOF TKA and normal knee kinematics when combined with

MR image-based 3D knee models[4, 9, 18]. These methods have been shown to be

accurate using a manual process, but for investigation of joint motion, which requires

many fluoroscopic images, an optimized image matching process is desired[1, 19]. The

automated image matching algorithm for determining 6DOF poses presented in this

thesis compares favorably to previous fluoroscopic methods which have employed a

variety of techniques for determining the pose of 3D objects from 2D images, see

Tables 5.1 & 5.2.

These methods can be broadly grouped into either template matching or hypoth-

esize and test methods[2, 10, 14]. Template matching techniques compare segmented

outlines from fluoroscopic outlines to a library of previously calculated silhouettes of

component models. Hypothesize and test methods first "hypothesize" a location and

orientation of a model, and then test the validity of the pose based on fluoroscopic

images.

Template matching techniques were implemented in early works by Banks and

Hoff[2, 10]. With the evolution of computing power these techniques have recently
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been eclipsed by hypothesize and test methods. Hypothesize and test methods can

be further classified based on the type of "test". The most common tests are iterative

closest point (ICP) [6, 7], iterative inverse point (IIP)[16, 30, 32], and digitally re-

constructed radiograph (DRR)[20, 24, 31]. The ICP method minimizes the distance

between projected model points and points on the fluoroscopic outlines. IIP methods

minimize the distance between a model's surface and the rays connecting points on

the fluoroscopic outline to the virtual x-ray source. DRR methods use ray-tracing

algorithms to render simulated fluoroscopic images of TKA components and correlate

the intensity values of the pixels and matching of segmented features to the actual

fluoroscopic images.

IP and DRR methods are significantly more complex than ICP algorithms, but

are gaining ground due to the recent advances in computing power and accessibility

of high-power graphics software. ICP and IPP methods may be more susceptible

to segmentation errors, but provide a more stable optimization problem than DRR

methods[21].

Algorithm Accuracy Using Data from Simulated Cases
Accuracy

Author In-plane Out-of-plane Algorithm Type
mm deg mm deg

Bingham 0.07 0.16 0.07 0.16 Dual Plane Hypothesis & Test (ICP)
Lavallee[16] 0.43 0.32 0.43 0.32 Dual Plane Hypothesis & Test (IIP)
Kaptein[13] 0.15 0.07 0.15 0.07 Dual Plane Hypothesis & Test (IIP)
Zuffi[32] 0.40 0.40 2.00 0.40 Single Plane Hypothesis & Test (IIP)
Yamazaki[30] 0.08 0.20 0.85 0.20 Single Plane Hypothesis & Test (IIP)
Banks[2] 0.20 0.30 2.00 0.30 Single Plane Template Matching
Hoff[10] 0.37 0.21 1.51 1.35 Single Plane Template Matching

Table 5.1: A comparison of the reported accuracy of the major algorithms when
operating on ideal data.

It should be noted that single plane implementation of these methods are limited

in their accuracy for determining accurate 6DOF TKA kinematics because of the

discrepancy between in-plane and out-of-plane accuracy. By looking at Tables 5.1 &

5.2 one can see the advantage of using additional images in the matching procedure.
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Algorithm Precision Using Data from In-vivo TKA Cases
Accuracy

Author In-plane Out-of-plane Algorithm Type
mm deg mm deg

Bingham 0.29 0.25 0.29 0.25 Dual Plane Hypothesis & Test (ICP)
Kaptein[12] 0.06 0.05 0.14 0.10 Dual Plane Hypothesis & Test (ICP)
Valstar[28] 0.16 0.34 0.16 0.34 Dual Plane Hypothesis & Test (NOA)
You[31] 0.23 1.20 0.23 1.20 Dual Plane Hypothesis & Test (DRR)
Mahfouz[20] 0.66 1.50 3.21 1.50 Single Plane Hypothesis & Test (DRR)
Tomazevic[27] 1.24 1.35 N/A N/A Single Plane Hypothesis & Test (DRR)
Yamazaki[30] 0.12 0.70 1.44 0.70 Single Plane Hypothesis & Test (IIP)
Fukuoka[6] 0.28 0.33 4.17 0.26 Single Plane Hypothesis & Test (ICP)
Banks[2] 0.50 1.10 6.60 1.10 Single Plane Template Matching
Hoff[10] 0.13 0.30 0.26 0.30 Single Plane Template Matching
Kanisawa[11] 1.20 0.80 4.00 0.80 Single Plane Template Matching

Table 5.2: A comparison of the reported repeatability of the major algorithms when
operating on in-vivo TKA data.

A recent parametric analysis of single imaging techniques showed that for a desired

accuracy in the out-of-plane direction, the in-plane accuracy needed to be at least an

order of magnitude better[9, 19]. Another recent article by Garling et al. illustrated

that with an in-plane accuracy of less than 0.17 mm in translation out-of-plane error

could reach 1.9 mm [7]. Other studies using single fluoroscopic techniques have also

reported similar results[2, 6, 20, 30].

In order to improve on previous methods, this study implemented a modified

ICP method that matches projected model points to spline curves on two orthogonal

image intensifiers. Using a dual-orthogonal fluoroscopic system significantly improves

accuracy over single fluoroscopic systems. This is because out-of-plane errors of one

fluoroscope are the in-plane errors of the other fluoroscope. In addition, the use of two

orthogonal contours for matching significantly amplifies the global minima and the

use of splines smoothes the matching space, thus improving algorithm convergence.

Results from this study confirm statements from similar studies that the use of dual-

orthogonal fluoroscopy can dramatically enhance accuracy for true sub-millimeter

accuracy of in-vivo TKA kinematics in 6DOF[1, 12, 22, 24, 28, 31]. Run-times are
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also favorable at around four to eight minutes and compare with similar methods[12,

16, 31].

It is important to state that using dual images is not new. Marker and model based

RSA, which use two X-ray beams, has been used to determine knee, ankle, and shoul-

der kinematics[13, 24, 31]. Application of two X-rays has also been used to determine

normal knee kinematics combined with CT image-based knee models[1, 22, 28, 31].

Not surprisingly, these studies presented accuracies similar to the dual-orthogonal

fluoroscopic methodology. However, the higher radiation doses, stationary equipment

and limited field-of-view associated with conventional X-ray present difficulties when

determining in-vivo TKA motion. The dual-orthogonal fluoroscopic technique bridges

the accuracy of RSA and the minimal invasiveness of fluoroscopy, to bring together

the best attributes of both methods. This synergy produces an improved tool for

investigating joint kinematics. Combining the dual-orthogonal fluoroscopic system

with the optimized image matching procedure developed in this research provides a

powerful tool for processing large quantities of image sets rapidly.

5.3 Single vs. Dual Fluoroscopy

The difference in accuracy of single versus dual fluoroscopy is not generally contended.

It is well known that having a single viewpoint greatly reduces depth perception. If

you attempt to shoot baskets with one eye covered you will have a difficult time,

because you lose depth accuracy. This is similar in the case of single and dual flu-

oroscopy. With a single viewpoint, the out-of-plane accuracy must be worse than

the in-plane accuracy; however, when utilizing two orthogonal viewpoints the out-

of-plane accuracy of one view is the in-plane accuracy of the second view. A large

question is to what extent the out-of-plane accuracy is degraded by using a single

fluoroscope. By using the geometry from a clinical fluoroscope one can use similar

triangles to show that for an arbitrary object out-of-plane error will be an order of

magnitude greater than in-plane error (Fig. 5-1), which has been corroborated by

Garling et al. [7].
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In-plane
error

Out-of-plane error

Figure 5-1: A schematic showing the relation between in-plane and out-of-plane error
when employing a single viewpoint.

In order to determine the effect of multiple planes on automatic matching a series

of idealized tests were run. The first test was constructed to determine the sensitivity

required of the optimization routine to produce accurate results when using single or

dual plane data. The second test used a TKA femoral component in several poses

to determine the effect of geometry on sensitivity. The idealized virtual fluoroscopic

environments for these tests were constructed with parameters taken from in-vivo

measurements.

The first test used a solid modeling program to construct a spherical model 50

mm in diameter and containing 9,500 points. Next, the model was placed centrally

in the virtual fluoroscopic environment and virtual outlines were created to produce

the "gold standard". Then, ten initial poses were created by perturbing the model

from the placed configuration. The perturbations were created by randomly gener-

ating values for the pose variables within the range of ±20 mm using a Gaussian

distribution. Next, each pose was matched using a single contour and then with both

contours. Additionally, for each match the tolerance of the optimization routine was

adjusted sequentially with the values: 0.05, 0.005, 0.0005 and 0.000005. This effec-

tively controls the maximum error allowed in the objective function Eq. 3.6. The

accuracy and repeatability of the optimized matching algorithm in reproducing the

sphere position was recorded for each convergent match.

The results of the first test, shown in Table 5.3 and Figure 5-2, confirm that

with simple geometry the addition of a view greatly enhances the matching process.
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Single vs. Dual Plane Accuracy
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Figure 5-2: Comparison of the accuracy and repeatability of automatic matching to

single vs. dual plane data when using spherical geometry.

3.88±6.69 3.11±4.68 0.5189±2.126 0.9667±2.093

0.005 0.40±0.65 2.73±4.42 0.0004±0.011 0.0008±0.010

0.0005 0.20±0.55 1.34±3.76 0.0002±0.002 0.0007±0.002

0.000005 0.16±0.44 1.09±3.04 0.0002±0.001 0.0006±0.001

Table 5.3: Data comparing the effect of single

matching when using spherical geometry.
vs. dual plane data on automatic

By examining Figure 5-2, one can see out-of-plane error is consistently an order of

magnitude greater than in-plane error when only a single view is used. It is also

important to notice that while precision increases with tighter tolerance for the dual-

view data, precision remains constant for the single view. For this particular test one

can see that the accuracy of the automatic matching is compromised if only a single

view is used, and sub-millimeter accuracy is feasible.

It has been argued that irregular geometry intensifies sensitivity of the matching

process, which would increase the accuracy of single plane matching. The second test
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was developed to determine the extent of the increased sensitivity and whether this is

enough to produce sub-millimeter accuracy when using single plane data. The second

test was constructed by placing a TKA femoral component having 14,000 points

into three different virtual environments. Next, the model was placed in a position

approximating 900 of knee flexion in the virtual fluoroscopic environment and virtual

outlines were created to produce the "gold standard". Then, ten initial poses were

created by perturbing the model from the placed configuration. The perturbations

were created by randomly generating values for the pose variables within the range

of ±20 mm using a Gaussian distribution. Next, each pose was matched using a

single contour and then with both contours and utilizing an optimization tolerance

of 0.0005.

1 0.24±0.44 2.20±3.75 0.0005±0.001 0.0000±0.001

2 0.05±048 0.44 053.81 0.00050.001 0.0002±0.001

3 0.09±0.38 1.14±4.63 0.0066±0.003 0.0024±0.002

Rotation Error in Pose Parameters

(Avg S-td Dev In deg)

2 0.28±1.47 0.41±2.13 0.000±0.000 0.0090.006

3 0.08±0.76 0.02±1.25 0.007±0.011 0.041±0.00

Table 5.4: Data comparing the effect of single vs. dual plane data
matching when using geometry from a TKA femoral component.

on automatic

Table 5.4 shows the results of the second test. These results do not show a

significant change in matching ability for either the single or dual plane data. This

is better illustrated in Table 5.5, which presents a side by side comparison of the
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TKA Femur 0.13±0.43 1.26±4.06 0.0025±0.002 0.0009±0.001

Sphere 0.20±0.55 1.34±3.76 0.0002±0.002 0.0007±0.002

Table 5.5: Comparison of the single and dual plane data on automatic matching when

using geometry from spherical and TKA femoral component geometries.

matching results for the spherical and femoral TKA component geometries. This

shows that single-plane sensitivity is not increased when matching objects of irregular

geometry. It should also be noted that the rotational accuracy suffers when only a

single view is employed; even when highly irregular geometries are used. The data

from this test show that rotational errors with single plane data are an order of

magnitude greater than dual plane data.

In summary, sub-millimeter accuracy is not feasibly achieved with this automatic

matching algorithm when employing only a single view. The highest accuracy of

the automatic matching algorithm occurs when two views are utilized. Furthermore,

sensitivity and precision are greatest when using two views and the additional view

reduces the rotational error of the automatic matching.

5.4 Future Work

This work provides a solid algorithm, which can be improved upon through more

efficient software implementation, next-generation hardware and better minimization

routines. The current automatic matching algorithm is coded in Matlab software,

which is a run-time language. Coding the algorithm into a compilable program would

greatly increase the speed of the algorithm. Also, the algorithm lends itself well to

utilizing the capabilities of modern graphics hardware and software libraries. Ad-

vancements can also be made as the imaging hardware improves. Higher quality im-

ages will allow for more accurate segmentation and increased precision of the method.

62



As computational power increases and the code becomes more efficient search based

minimization will become more feasible. Global search methods have been drastically

hindered by the small search pool required by time constraints. With large popu-

lations, genetic algorithms, simulated annealing and direct search methods should

produce excellent results. Using these optimization methods will possibly make tex-

ture and intensity matching a robust measure, which can then be used in conjunction

with edge matching for improved automatic matching. Automatic matching will cer-

tainly progress as hardware and software improves. It should also be noted that this

algorithm has its origin in machine vision. Advances in technology and application

of this algorithm could potentially be used with high accuracy robotics applications.

Furthermore, these algorithms might help to one day provide realtime visualization

of in-vivo kinematics, and become a beneficial tool for clinicians to provide patient

specific surgeries.
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Appendix

Matlab Source Code
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A.1 Environment Setup
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A.1.1 correctImage.m

XX Program Name: correctImage
U/ File Name : correctImage.m

XX Arguments : selectedPoints .n x 2 matrix - Ordered control points from
XX distorted image.
XX knownPoints. . .n x 2 matrix - Ordered control points from
7.7. original geometry.
XX image. . . . . .p x q matrix - Intensity values that make up
%% the distorted image.
XX
XX output : correctedImage .p x q matrix - Intensity values that make up
XX the corrected image.
XX
XX Description : An ordered set of matching distorted and original control points
XX are passed in. The first point defines the center of the image
U7 and the second point the orientation. A minimum of 15 control
XX points is required. Using these points the distorted image
7%. is corrected to match the original control points.
XX
M7 Example : correctedImage = correctImage( selectedPoints, knownPoints, image)

%/ Bioengineering Laboratory /
X/ Jeff Bingham
%/ March 24, 2005
X/ Revision: March 24, 2005 /

function correctedImage = correctImage( selectedPoints, knownPoints, image)

sz = size(image);

offset = selectedPoints(i,:)-knownPoints(i,:);

knwVec = knownPoints(2, :)-knownPoints(i,:);
knwVec = knwVec/norm(knwVec);
selVec = selectedPoints(2,:)-selectedPoints(i,:);
selVec = selVec/norm(selVec);
theta = acos(dot(selVec,knwVec));
rotation = [ [ cos(theta) sin(theta) ]

[ -sin(theta) cos(theta) I ];

knownPointsAligned = (rotation*< knownPoints(:,I)-knownPoints(i,i) ...
knownPoints(:,2)-knownPoints(1,2) ')';

knownPointsAligned = [ knownPointsAligned(:,i)+knownPoints(1,1)+offset(i) ...
knownPointsAligned(:,2)+knownPoints(1,2)+offset(2)];

TFORMI = cp2tform(selectedPoints,knownPointsAligned,'polynomial',4);

correctedImage = imtransform(img, TFORMi, 'bicubic', 'size', sz, ...
'udata', [ 0 sz(1) ], 'vdata', [ 0 sz(2) ],
'xdata', [ 0 sz(i) ], 'ydata', [ 0 sz(2) ]);
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A.1.2 assembleMesh.m

1 %X./ .X/..X..%/X.. XX% X X%% X X. XX7777.=%%XX..7X/.X XXX.XX %/I/// %/7.7.7.X././%%=///
%% Program N
U. File Name

.% Arguments

7.A

%% output

U.7 Descripti
U.7

UX

ame

on

assembleMesh
assembleMesh.m

: pointMatrix. . .q x 1 cell -

closed . . . ..boolean -

gap. . . . . . .real -

: faces. . . . . .m x 3 matrix -

verts. . . . . .n x 3 matrix -

: From a level set of curves that
mesh is constructed.

Each cell contains a r x 3
matrix containing ordered.
points that make up contours
A boolean value for determining
how the mesh should close at an
endpoint.
Specifies the maximum gap to
still create a mesh face.

A triangle made up of the
indicies of verts.
The vertices of the mesh.

have been divided into points a

21 UX Example [ faces, verts ) = assembleMesh(pointMatrix, closed, gap)
22 17

24 %/ Bioengineering Laboratory /
25 A/ Jeff Bingham
26 A/ February 23, 2006 /
27 A/ Revision: June 5, 2005 /
28 X////////////////
29 function [ faces, verts J = assembleMesh(pointMatrix, closed, gap)
30

31 verts=[];
32 faces=[];
33

34 sliceAbove = pointMatrix{1};
35 verts = sliceAbove;
36 aI = [ 1:size(sliceAbove,1), 1 ];
37 sz=0;
38

39 for i=2:length(pointMatrix)
40 T=[];
41 sliceBelow = sliceAbove;
42 sliceAbove = pointMatrix{i};
43 verts = [verts; sliceAbove];
44 nBelow=size(sliceBelow,1);
45 nAbove=size(sliceAbove,1);
46 bI = aI;

rB = floor(rand*(nBelow-1))+I;
bI = [ bI(rB):nBelow, i:bI(rB) 1;
[abV, abI] = closestPt(sliceBelow(bI(i),:), sliceAbove);
aI = [ abl:nAbove, 1:abI J;

if(dot(sliceAbove(aI(2),1:2)-sliceAbove(aI(),1:2),sliceBelow(bI(2),i:2)-sliceBelow(bI(),1:2))<0)
if(dot(sliceAbove(aI(end),1:2)-sliceAbove(aI(end-1),i:2),sliceBelow(bI(end),i:2)-sliceBelow(bI(end-1),1:2))<0)

aI=flipdim(aI,2);
end

end

indxBelow = 1;
nxtBelow - indxBelow+1;
indxAbove = 1;
nxtAbove = indxAbove+1;
shortFS=I;
shortBS=1;

while(indxBelow<=nBelow 11 indxAbove<=nAbove)
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67

68 distFS = (sliceAbove(aI(nxtAbove),i)-sliceBelow(bI(indxBelow),i))^2 + ...

69 (sliceAbove(aI(nxtAbove),2)-sliceBelow(bI(indxBelow),2))-2 + ...

70 (sliceAbove(aI(nxtAbove),3)-sliceBelow(bI(indxBelow),3))-2 ;
71 distBS = (sliceAbove(aI(indxAbove),1)-sliceBelow(bI(nxtBelow),1))^2 +'...
72 (sliceAbove(aI(indxAbove),2)-sliceBelow(bI(nxtBelow),2))-2 + ...

73 (sliceAbove(aI(indxAbove),3)-sliceBelow(bI(nxtBelow),3))-2
74

75 if(shortFS*distFS<shortBS*distBS)
76 T = [T;[ aI(indxAbove)+nBelow bI(indxBelow) aI(nxtAbove)+nBelov ]);
77 if(~closed)

78 if((aI(indxAbove)==1&& al(nxtAbove)==nAbove)l(al (indxAbove)==nAbove&& al(nxtAbove)==))
79 Tend,:)=[];
80 distFS = 0;
81 end
82 if(distFS>gap && isempty(T))
83 T(end,:)=[];

84 end
85 end
86 indxAbove = indxAbove+1;

87 nxtAbove = indxAbove+1;

88 else

89 T = [T;[ aI(indxAbove)+nBelow bI(indxBelow) bI(nxtBelow) ]1;

90 if(closed)

91 if((bI(indxBelow)==i&& bI(nxtBelow)==nBelow)ll(bI(indxBelow)==nBelow && bI(nxtBelow)==i))
92 T(end,:)-[];

93 distBS = 0;
94 end
95 if(distBS>gap && ~isempty(T))
96 Tend,:)=[];
97 end
98 end
99 indxBelow indxBelow+i;

100 nxtBelow = indxBelow+1;

101 end
102
103 if (indxAbove > nAbove)

104 indxAbove = nAbove+i;
105 nxtAbove = nAbove+1;

106 shortBS=0;
107 end
108

109 if(indxBelow > nBelow)
110 indxBelow = nBelow+1;
111 nxtBelow = nBelow+i;
112 shortFS-0;
113 end
114 end
115 faces=[faces;T+sz];
IN sz=sz+size(sliceBelow,1);
117 end
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A.2 Automatic Matching
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A.2.1 FINDPOSE.m

7U Program Name: FINDPOSE
7.7. File Name : FINDPOSE.m
%% Arguments : model. . . . . . . m x 3 matrix - Each row is a point
7.04 in 3-space describing 3D model.
UX modelAxes. . . . . 4 x 3 matrix - Each row is a point
77 Row 1) Origin, 2) X-axis, 3) Y-axis,
U 4) Z-axis.
UX silhouetteXZ. . . .m x 3 matrix - Each row is a point
%% in 3-space describing match-contour.
.. silhouetteYZ. . . .m x 3 matrix - Each row is a point
%% in 3-space describing match-contour.
UX environment . . . . 8 x 3 matrix - Each row is a point.
U7 Row 1 : XZ Viewpoint
%% Row 2-4: XZ Plane location
U7 Row 5 : YZ Viewpoint
%% Row 6-8: YZ Plane location
77 settings. . . . . .12 x I cell - Contains all parameters
7. for optimization convergance and
7,7, vizualization. (initialGuess,
%% lowerBound, upperBound, DiffMinChange,
U7 DiffMaxChange, TolX, TolFun, MaxIter,
U7 MaxFunEvals, Display, gridSize,
UX OutputFcn)
UX
%. Output : PARAMETERS . . . . 4 x 1 cell - Contains the
%% optimization return parameters: x -
U. x - vector of six scalars that
UX describe the translation and rotation
U. necessary to move specified model to
7U a configuration matching the specified
7% contours. ( x y z alpha beta gamma J
U. fval - the final performance index
7U value.
U. exitflag - whether the optimization
7U routine converged, or exited properly.
%% output - various optimization
U7 information like number of iterations,
%% etc.

.7 Description : Function takes a set of 3D points describing a 3D model
U7 and using the algorithm listed below determines the
U7 required rotation and translation to recreate the pose of
7. the 3D model from the supplied 2D contours.
UX

.7 Algorithm : 1) Initialize envronment geometry.
%% 2) Begin Optimization
%% a) Calculate new translation and rotation values.
U7 b) Transform model.
U7 c) Project and flatten points.
U. e) Outline points.
7. f) Compute distance error.
77 i) Find minimum distance of silhouette curve to a point.
U7 ii) Repeat (i) for all outline points.
77 iii) Return total normalized "error" distance.
U. g) Test if distance is sufficiently small. If so stop else goto (a)
%7 4) Return transformation values that fit the 3D model to the 2D outlines best.

.7 Example : PARAMETERS = FINDPOSE( model, modelAxes, silhouetteXZ, ...

%% silhouetteYZ, environment, ...

%% settings )

%/ Bioengineering Laboratory /
%/ Jeff Bingham
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67 %/ November 6, 2004 /
68 %/ Revision: September 16, 2005 /
69 XIIIIIIIIIIIIIIII
70

71 function PARAMETERS = FINDPOSE( model, modelAxes, silhouetteXZ, silhouetteYZ, environment, settings )
72

73 centerofrotation = modelAxes(i,:);
74

75 flatSilXZ = silhouetteXZ(:,1:2);
76 flatSilYZ = silhouetteYZ(:,1:2);
77

78 [ viewpointXZ, normalVectorXZ, normalMagnitudeXZ, flatXZR, ...

79 flatXZT I = environSetup(environment(1:4,:));
80 [ viewpointYZ, normalVectorYZ, normalMagnitudeYZ, flatYZR, ...
81 flatYZT ] = environSetup(environment(5:8,:));
82

83 xO = settings.initialGuess;
84 LB = settings.lowerBound;
85 UB = settings.upperBound;
86 gridSize - settings.gridSize;
87

88 minOPTS = optimset('DiffMinChange', settings.DiffMinChange,
89 'DiffMaxChange', settings.DiffMaxChange,
90 'TolX', settings.TolX, ...
91 'TolFun', settings.TolFun,
92 'MaxIter', settings.MaxIter,
93 'MaxFunEvals', settings.MaxFunEvals,
94 'Display', settings.Display,
95 'LargeScale', 'off');
96

97 if(isequal(settings.OutputFcn, 'on'))
98 minOPTS.OutputFcn = QlookFun;
99 end

100
101 [x,fval,exitflag,output] = fmincon(CobjFun, xO, [0,[],0,], LB, UB, [], minOPTS);
102 PARAMETERS.x = x;
103 PARAMETERS.fval = fval;
104 PARAMETERS.exitflag = exitflag;
105 PARAMETERS.output = output;
106

107 % I %l % 777%%....%%..%%..%%%..%%%%%%%%%%%%..%%%..%%%%%..%%%%%..%%%%%..%
108 % OBJECTIVE FUNCTION - START
109 .X./%I%/.I./%/. X.X.XXX%% %X I%// I/ //X.7.7. IX II I/ II// %.%% %...%%..//.%% %%
110

111 function error = objFun( params )
112 T = [ params(i) params(2) params(3) ];

113 R = eulerAngles([ params(4) params(5) params(6) J);
114

115 nevModel=transform(model,-centerofrotation);
116 newModel = transform(newModel, R, centerofrotation+T);
117

118 pXZ = project( newModel, viewpointXZ, normalVectorXZ, ...

119 normalMagnitudeXZ, flatXZR, flatXZT);
120 pYZ = project( newModel, viewpointYZ, normalVectorYZ, ...

121 normalMagnitudeYZ, flatYZR, flatYZT);
122 olXZ - bound(pXZ, gridSize);
123 olYZ - bound(pYZ, gridSize);
124

125 distXZ = 0;
126 distYZ = 0;
127 for i=i:size(olXZ,i)
128 distXZ = distXZ + dist2curve( flatSilXZ, olXZ(i,:));
129 end
130 for i=1:size(olYZ,1)
131 distYZ = distYZ + dist2curve( flatSilYZ, olYZ(i,:));
132 end
133

134 if(size(olXZ,1)<2)
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135 error=100;
136 else
137 error = distXZ/size(olXZi);
138 end
139 if(size(olYZ,I)<2)
140 error=error+100;
141 else
142 error = error + distYZ/size(olYZ,1);
143 end
144 end
145 f//I//IX//X///I///XX//IXX//XX/XI/IX/I/X/XXI//X//IXIIXIX/X//X/X/XXIX/I//
146 % OBJECTIVE FUNCTION - END
147 h/I//XIXIX/I//I//I/I I/I//I//I/I lI/I//I/I/I I//I//I/I/I /.///.//////X/XXI/I/X I
148

149 /1//I/I I/I/h/I/h//I I//I/I/I//I I//I//I/I/I I/I/I//I/ XXX/I XXXXXXXXXXX%
150 % VISUALIZATION - START
151 I/I/I/IXXIX//I/I/I//IXIX/I// XXI/ XXI/I//I/IlXIX//X//IX/X/X///X.////hhl/ Il/IXI
152 function stop=lookFun(x,optimValuesstate)
153 stop=[];
154 switch state
155 case 'iter'
156 T = x() x(2) x(3)];
157 R = eulerAngles([x(4) x(5) x(6)J);
158 newModel=transform(model,-centerofrotation);
159 newModel = transform(newModel, R, centerofrotation+T);
160 pXZ = project( newModel, viewpointXZ, normalVectorXZ, ...

161 normalMagnitudeXZ, flatXZR, flatXZT);
162 pYZ = project( newModel, viewpointYZ, normalVectorYZ, ...

163 normalMagnitudeYZ, flatYZR, flatYZT);
164 olXZ = bound(pXZ, gridSize);
165 olYZ = bound(pYZ, gridSize);
166

167 figID=figure(313);
168 hold off;
169 subplot(2,2,i)
170 plot(flatSilXZ(:,i),flatSilXZ(:,2),'k.');
171 hold on;
172 plot(pXZ(:,1),pXZ(:,2),'m.');
173 plot(olXZ(:,1),olXZ(:,2),'go');
174 title(nun2str(x(1:3)))
175 axis equal
176 hold off;
177 subplot(2,2,2)
178 plot(flatSilYZ(:,i),flatSilYZ(:,2),'k.');
179 hold on;
180 plot(pYZ(:,1),pYZ(:,2),'m.');
18:1 plot(olYZ(:,1),olYZ(:,2),'go');
182 title(num2str(x(4:6)))
183 axis equal
184 drawnow;
185 case 'done'
186 end
187 end
1888 //h///hI/////////// lI/I/Il/Ill Ill/Il/I/lI I//I/I/I//I Il/Il/Il//I/Il//I/I
189 % VISUALIZATION - END
190 I/h/I/IXI///I/h/X/IXlI/I/I/I/IXI//I//I//hI/I/I//I//IXI/XXI/IXIXIXI/IXI/
191 end
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Name
me
ts

ns

tion

XX Program
XX File Na
%X Argumen

XX

"XX

Xe'
%% output

XX Outside
XX Functioi
XX Called
XX
XX
XX
XX
XX
XX Descrip
XX
XX
XX
XX
XX
XX
XX
XX Example
XX

30 ////////////////
31 %/ Bioengineering Laboratory /
32 %/ Jeff Bingham
33 %/ October 22, 2004 /
34 %/ Revision: January 25, 2005 /
35 ////////////////
36

37 function BOUNDARY = bound(points, grid)
38

n = size(points,i);

[minX minXindx] = min(points(:,1));
[minY minYindx] = min(points(:,2));
[maxX maxXindx] = max(points(:,1));
[maxY maxYindx] = max(points(:,2));

width = maxX-minX;
height = maxY-minY;

if width>height
gridLength=height/grid;

else
gridLength=width/grid;

end

try
pts=[points(:,1)-minX points(:,2)-minY];
if (~(gridLength==0))

rows = ceil(height/gridLength);

cols - ceil(width/gridLength);

pts=pts/gridLength;
pts=[ pts(:,i)+0.5 rows-pts(:,2)+0.5 1;

X Number of points in point-cloud.

X Find the left-most point and its index.
X Find the bottom-most point and its index.
X Find the right-most point and its index.
X Find the top-most point and its index.

X Determine the width of a bounding rectangle.
X Determine the height of a bounding rectangle.

X
X Determine the smallest grid size for a specified
X number of divisions based on the orientation of the
X point cloud.

X
X
X
X

Determine the number of "pixels"
in the height direction.
Determine the number of "pixels"
in the width direction.

74

A.2.2 bound.m

: bound
: bound.m
: points. . .m x 2 matrix - coordinates of the points to be

bounded.
grid. . . .scalar specifying number of divisions of

projection grid.

: BOUNDARY. .m x 2 matrix - coordinates of points on
the outline.

: PERIMETER, NORMALDIRECTION ] = contour( BlackAndWhiteImage, StartingPixel)
Function finds perimeter pixels of bw images.

FARTHESTPOINT = farthest( points, quadrant )
Function finds the point in the specified quadrant
that is farthest from the centroid of the points.

: This function takes a cloud of 2D points, digitizes them
so that each point represents a pixel on a grid, then
finds the perimeter of these pixels. Next the
"outermost" point in each of the pixels is found. These
points are returned as points bounding the 2D point
cloud.

: BOUNDARY = bound(pt-cloud, grid)
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binaryImage = zeros(rows,cols);
cellSorted = cell(rows,cols);
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81
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% Build a blank "grid canvas" to plot points on.
% Build a matrix of vectors to hold
% the list of points in each "pixel"

for i=i:n
r= round(pts(i,2));
c= round(pts(i,i));
if(r>rows)

r=rows;
end
if(c>cols)

c=cols;
end
cellSorted{r,c} = [cellSorted{r,c} i ];
binaryImage(r,c) = 1;

end

[ol,dir] = contour(binaryImage, ...

[ rows-floor((points(minXindx,2)-minY)/gridl
floor((points(minXindx,1)-minX)/gridLength)+

for i=i:size(ol,i)

indx = cellSorted{ol(i,I),ol(i,2)};
cellPoints = [points(indx,1) points(indx,2)]
BOUNDARY(i,:) = farthest(cellPoints,dir(i));

end
else

BOUNDARY=[];
end
catch

BOUNDARY=[];
end

75

% Record which points go to which pixel.
% Plot pixels on "grid canvas".

% Find the contour of the
.ength) ... % digitized points, also returning
1 ]); ' the normal direction for each pixel.

' Find a single point in each perimeter
' pixel that represents the outline.
' All points that represent
'% the same pixel.
' Find the point that is closest to
' the "outside" of the perimeter.
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