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Abstract

In this thesis we introduce a new method for analyzing the diffraction integral for
evaluating the point spread function. The new method is based on the use of higher
order Airy functions along with Zernike and Taylor expansions. Our approach is
applicable when we are considering a finite, arbitrary number of aberrations and
arbitrary large defocus simultaneously. We present an upper bound for the complexity
and the convergence rate of this method. We also compare the cost and accuracy
of this method to traditional ones and show the efficiency of our method through
these comparisons. In particular, we rigorously show that this method is constructed
in a way that the complexity of the analysis (i.e the number of terms needed for
expressing the light disturbance) does not increase as either of defocus or resolution of
interest increases. This has applications in several fields such as biological microscopy,
lithography and multi-domain optimization in optical systems.
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Chapter 1

Introduction

1.1 Motivation

The importance of studying the effects of aberrations and defocus on the basis of dif-

fraction theory is very well understood [2] and recent new applications of it, such as

biological microscopy [8], lithography [13] and multi-domain optimization techniques

in optical systems [6, 11], which need high resolution and accurate value of the point

spread function, have called for a more comprehensive study. For instance, recent

articles have reported the use of intentionally adding aberrations for making more so-

phisticated optical systems. [6] Further steps in this direction require a more involved

analysis of the diffraction integral in the presence of aberrations and defocus, in order

to simplify the process of evaluating the point spread function.
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1.2 Background

Solving the diffraction integral to find an analytical form for the field distribution

on the image plane depends crucially on the defocus and aberration factors. The

original Nijboer-Zernike approach for this purpose can only lead to a reasonable

approximation when the wavefront deviation due to aberrations and defocus remains

within a few radians. [9, 2] Also, even when aberrations and defocus factors are small,

but many of them coexist, the Nijboer-Zernike method becomes too cumbersome to

follow. [9]

Recently, extensions of the original Nijboer-Zernike method have been developed

in order to make it applicable to larger values of defocus and aberrations. Nevertheless

the basis for all of those methods is the same as the original Nijboer-Zernike method

and some of the limitations of the original method still apply to all of the newly

developed versions. For instance, by considering more than one aberration term

(apart from defocus) the number of terms necessary for the diffraction integral and

the calculation involved increase significantly. [3, 9, 4]

1.3 Our Approach

We present a new method for attacking the diffraction integral problem. Our main

result is the following expansion for the point spread function h:

h(x, y; xo, yo) = A I J+ 1 (R) cos[m(e + <0)],nm R
n,m



where J,+I(R) is the (n + 1)th order first kind Bessel function, (x, y) and (xo, yo) are

Cartesian coordinate systems at the image and object planes respectively, R/e is

a polar coordinate system related to those two coordinate systems and r0 /#0 is the

polar coordinate system in the object plane. The coefficients A'm are polynomials

of the aberration constants and of the defocus coefficient multiplied by a factor that

is exponential on the defocus coefficient. Functions Jn(R) used in the expansion areR

denoted as higher order Airy functions. Our method for developing the above repre-

sentation for h is novel and requires a sequence of Taylor and Zernike expansions. The

expansions are combined so as to capture the physics of diffraction with a circular

aperture.

Our expansion for the point spread function exhibits several desirable properties.

It can be used to evaluate the point spread function for systems with an arbitrary

number of aberrations. It is also computationally tractable and numerically stable

over all ranges of defocus values. By taking advantage of the closed-form solution,

the diffraction integral may be evaluated within any arbitrary resolution using our

expansion. We show that, even though exact representation of h involves an infinite

summation of polynomials A'nm of infinite degree, the number of terms and polynomial

degree required to achieve a prescribed accuracy, scale gracefully with the system

parameters. Specifically, we establish an explicit bound showing that, in order to

achieve an accuracy of e, the required number of terms grows linearly with the values

of aberrations (excluding defocus), the maximum value of R of interest and log ,

and is independent of the remaining parameters of the system (including defocus).

Furthermore, numerical experiments show that the bound is loose and in practice



even fewer terms may suffice. This means that unlike previous methods [3, 9, 4], the

complexity of our expansion does not increase as either of defocus or resolution of

interest increases.

In the next chapter we formally state the problem; this includes the basic as-

sumptions for deriving the diffraction integral and the general aberration form. In

chapter 3, we present the main result which is the general form for the point spread

function. There, we consider the most general representation for aberration functions

and defocus. We also analyze the general result when all primary aberrations and

defocus are simultaneously present. In this chapter, we also present some examples

of point spread function in the case of primary aberrations. In chapter 4, we analyze

the complexity of our method. We present an upper bound for the number of terms

and degree of polynomials required in the expansion of h in order to achieve a pre-

scribed accuracy. In chapter 5, we compare the cost and accuracy of this method to

traditional ones and show the efficiency of our method through these comparisons.

We conclude in chapter 6.



Chapter 2

The Optical Point Spread Function

2.1 Introduction

In this chapter, we introduce the point spread function (PSF). Figure 2-1 shows the

configuration of an arbitrary optical system in the object plane, image plane and

pupil plane for computing the PSF. We assume that the usual Sommerfeld-Kirchhoff

assumptions hold, and that the chromatic aberrations are negligible. The PSF h is

used to calculate the image disturbance Q caused by a monochromatic coherent plane

wave illumination in an arbitrary plane parallel to the exit pupil in the presence of

an object P. In particular, at each point (x, y) on the image plane, we have

Q(x, y) = h(x, y; x 0 , yo) 15(xo, yo) dxo dyo, (2.1)
SA

where A is the whole object domain in the object plane.

The PSF h can be further specified as follows: Consider a point source of mono-
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Figure 2-1: Schematic view of the optical system under consideration.

chromatic light P and find the disturbance in an arbitrary point Q in space, assuming

a circular aperture of radius a. Let (xO, Yo) denote the ray entrance Cartesian coor-

dinates on the object plane at distance Sp from the entrance pupil and let roZ#o

represent the respective polar coordinates. According to Huygens-Fresnel principle,

the disturbance at an arbitrary point (x, y) (or in polar coordinates rLq) on the image

plane at distance SQ from the exit pupil is

/127rh(x, y; xo, yo) = C ei kw(PO,roo) eiRp cos (0-E) p dp dO. (2.2)

The image plane is not necessarily the Gaussian image plane, which is at distance

SG of the lens. In this formulation, p and 6, which are integral variables, are polar

coordinates in the exit pupil plane. Coordinates R and E are polar equivalents of the

point (u, v), which is related to (xo, yo) and (x, y) according to

S= -k a -r + -(2.3)

V = -k a + ,(2.4)



,2 X 2 + Yo 2 + SP2, (2.5)

s =x 2 + y2 + SQ2, (2.6)

where k = 27r/A is the wave number. The wavefront error w includes all aberrations

and defocus terms.

2.2 The Wavefront Error

According to Schwarzschild's Analysis [5], we have

nab

w(p, 0)0 , o,10) = E3 {fLj,Mj (ro2) (ap) 2 Lj [a p cos(9 - Oo)]MJ (2.7)
j=1

fLi,Mi = f1,o = DF = (2.8)
2 SQ SG

In Eq. (7), nab is the total number of aberrations under consideration. Note that

the particular value of Lj and Mj identifies the type of aberration which j is referring

to. In particular fi,o or DF is referred to as the defocus coefficient. We treat defocus

separately in order to make the complexity of the expansion independent of defocus.

Also note that w is the deviation of the wavefront from the Gaussian reference sphere

in the exit pupil. In terms of optical path lengths, w is a function of the source

coordinate and coordinates of the exit pupil. fL,M are referred to as the aberration

coefficients.



2.3 The Normalized Point Spread Function

It can be shown that the coefficient C in Eq. (2.2) is [2]

C i k cos(6)
27rr's'

(2.9)

with 6 defined as the acute angle which satisfies

v(Xo + X) 2 +(yo + y) 2

tan(z) = z
(2.10)

Note that C is bounded in the whole region of integration as

CI < k27r1SpI\SQ1|
(2.11)

Thus, to attack the main problem of finding an analytic solution to the diffraction

integral, we may neglect the coefficient C in Eq. (2.2), and define h, the normalized

PSF, as

h(x, y; xo, yo) = - eik w(P'Oro'oo)eiRcos (O-e)pdp dO.
27r J0 fo

(2.12)

In this thesis we develop an expansion for h in terms of polynomials, in the presence

of aberrations and defocus. The expansion involves an infinite sum of polynomials,

but we show that, for any given accuracy, only a finite number of terms is required.



Chapter 3

Main Result

3.1 The Point Spread Function Expansion for Ar-

bitrary Wavefront Errors and Defocus

We now present a general expression for the PSF as an expansion in terms of higher

order Airy functions. We define the nth order Airy function as

nth orderAiryfunction = Jn+1(R)
R'

where Jn±i is the (n + l)th order first kind Bessel function.

We represent the PSF as a sum of polynomials of the aberration and defocus

coefficients. In this chapter, finitely many of the aberration terms in Schwarzschild's

analysis are considered. In practice, however, only a few of those (usually the primary

aberrations) are of real importance. We illustrate application of our result in one such
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case in the next section.

Our proposed expansion is of the form

h(x: y; xo, yo) (3.1)= 0 {n-mm6Anm cos [m(O + Oo)] Jn+1(R)

where 6 j, 6i and the coefficients Anm are given by Eqs. (3.2), (3.3) and (3.4) respec-

tively.

{f =

{f =

1 if i is even,

0 otherwise.

1

2

(3.2)

(3.3)
if i - 0,

otherwise.

Anm
n+1 imo
2M- e

(N,D)Cm

DO3N Sn kN(1).

m is a set of pairs of nab - 1 element vectors N = [N 2 , N 3, .

(3.4)

N b] and scalars

D defined as

IZ(MjN) = m+ 2k, D = 2 + 2k) ;k,nm =_ (N, D) (3.5)N, E V



where Mj is the proper parameter used in the definition of the jth aberration as in

Eq. (2.7). Function S7kN(0) is given by

S kN)
I 2LfJ2H eL)2 R"(p) pkN+1 dp,
0jEX1

where R"(p) is the Zernike polynomial introduced in Appendix B, and we have

Oj = ikfL,Mj (ro2 )a2Lj+M

(3.6)

(3.7)

(3 )N)N
jEX2

(3-8)

(3.9)kN = (2Lj + Mj)Nj,
jEX2

Xi = {Ij Mj = 0, j = 1,..., nab},

X2 {j I Mj f 0, j = 1, ... , nab},

X3 = {j M = 0, j= 2, .. , nab}

(3.10)

(3.11)

(3.12)

A derivation of the expressions above can be found in Appendix B. Note that

S,7kN (3) is defined implicitly in Eq. (3.6), requiring computation of an integral. An



explicit expression for the integral, which is based on a Taylor expansion of ejP2 Lj

(j E X3), can be found in Appendix C. The derivation is tedious but relatively

straightforward. It follows from this expansion that SnTkN () can be expressed as

a polynomial of aberration constants / multiplied by a factor that is exponential on

the defocus coefficient.

The number of terms in the summation in Eq. (3.1) and the degree of the poly-

nomials used to express S kN (/3) are infinite. However, in chapter 4 we show that,

for any desired accuracy E, a finite truncation of Eq. (3.1) as well as finite-degree

polynomials for Anm in Eq. (3.4) suffice for an appropriate approximation to h; i.e.

Eq. (3.1) converges to Eq. (2.12). We give an explicit bound on the number of terms

and degree required and show that they scale gracefully with the systems parameters

and c. This will be realized by giving an upper bound for n in Eq. (3.1) as well as

an upper bound for every Nj in Eq. (3.5). Note that a bound on Nj will determine

the number of terms of Taylor expansion of e2P'2 ,[cos(0-_o)]Mj which have been used

in our expansion.

In the next section we illustrate some of the applications of this expansion through

examples.

3.2 Examples

In this section we consider the primary (Seidal) aberrations and defocus (nab= 5)



i k (a)2L+M fL,M (ro2) =

71

72

73

74

-75

if

if

if

if

if

(L,M)=(1,0)

(L,M)=(2,0)

(LM)=(0,1)

(LM)=(0,2)

(L,M)=(1,1)

Defocus and Field Curvature,

Spherical Aberration,

Distortion,

Astigmatism,

Coma,

(3.13)

where for simplicity (xO, Yo) is assumed to be (0, 0). Substituting in Eq. (3.4) we have

Anm - _ i"x (3.14)

r N3 N4 N5
1

73 744 Ns m

D [ N4!JN! n,N3+2N4+3N5,
(N,D)Etm !

where

RM = {(N, D) = (N3, N4, N5,

N3 +2N 4 + N5 = m+

S nN 3 +2N 4 +3N 5 (71, 72)

D)I (3.15)

(m +2k)!
2k, D = (m+ k)! kN 3, N4, N5 EA T>22k k!(m +k)! 7

2 p4 R' N 3 +2N 4 +3N5+1 dp, (3.16)

and the derivation of S can be found in Appendix C. So Anm is a polynomial of '71,

... , -y. It also has one term in the form of exp(71). Although from the above equation

it seems that the order of this polynomial is infinity, as will be explained later, once



we set a target accuracy, all except for a few terms in Anm become negligible. As it

will be shown in chapter 4, the number of necessary terms in expression (3.14), scales

favorably with the desired accuracy of the representation.

Now to evaluate the transfer function, h, we can rewrite Eq. (3.1) as

00 n' J+(B

h(rLO) = E E n-momAnm cos[m( + 7)] r (3.17)
n=O m=O

where B = is obtained using Eqs. (2.3) and (2.4) and by setting (xo, yo) equal

to (0,0). As an example, the results using this method are shown in Fig. 3-1 for

Br < 20. -Y2 and _Y3 are zero in this figure.

Thus, we have (note that since -y3 = 0, (N, D) is a three element vector)

11 3 3 3
NO = (0,0, 1), (2,0, ), (0,1, ), (4,0 -), (2 1 -), (0 2 -), (3.18)

5 5 5 35 35
(4, 1, ), (2, 2, 5), (0,3 3, ), (4, 2' 328), (2, 3' 328 '716 16 16 128 128

35 63 63 231
'128 ' 256 ' 256' ''1024 J

Nl = {(3,4,1)},

N12 = {(4, 4, 1)} ,

and N, = {} otherwise. This means that Anm is zero for m > 12. Also in this special

case, Eq. (3.16) reduces to
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(n -m)/2 m

S,(Y) = (--71) C (2+, 22+k) >n - 21 + k) (3.19)
n~ E(2 21=0

n -2l+k

whr -
j=o

where C,,',, ils defined in Eq. (B.3).



Chapter 4

Complexity Analysis

4.1 Introduction

In this chapter we analyze the complexity of our representation of the PSF. Specifi-

cally, we show rigorously that within a confined region of space (i.e. the exit window)

the PSF can be expressed within any arbitrary accuracy, using a finite number of

terms in Eq. (3.1) regardless of the value of defocus and desired resolution (Note that

by resolution, we mean the shortest distance between two points where we are inter-

ested to evaluate PSF). This means that, as we increase the resolution of interest or as

we change the defocus, the number of necessary terms within the prescribed accuracy

do not change. This is of great importance in many practical cases where numerical

simulation fails to generate the point spread function within the required resolution

and accuracy in a reasonable time. This issue is revisited in the next chapter.

Considering a desired accuracy, the complexity of the expansion in Eq. (3.1)

depends on three factors: (i) The maximum index of summation, n*, considered in

25



Eq. (3.1). (ii) The number, N*, of terms in the summation considered in Eq. (3.1);

this number is 0 ((n*) 2 ). (iii) The degree of polynomials involved in the expressions

of An, in Eq. (3.1). These polynomials are at most on the order of Nj* on Oj, the

Ith aberration coefficient, when Nj 5 Nj* in Eq. (3.5). We analyze all these three

factors.

4.2 Statement of the Complexity

With the finite summation bound n*, and the finite polynomial order Nj* for each

aberration coefficient #j, j = 2,... , , Eq. (3.1) is rewritten as

h *(x, y; Xo, Yo) = n-mmA cos[(( + 0o)] J, 1±I(R)z nm m R
n=O m=O

where A*j is defined as

(4.1)

(4.2)A*m = e "4 0o( D 3 SnkN
(N,D)ERN*

and N* and SnkN (3) are defined as

I'na (m±+2k)! .< *k
N =j(N, D) I (M3N3) = m + 2k D= 22 kk!(k)! NJ , k C

(=24(3
(4.3)



(n-m)/2 rj 1OpLjN
S[ 1= C("\ e,2 p 2 L - n-21+kN+1 dp. (4.4)

1=0 jEX3 N,=O N J!

Note that the only difference in the definition of R* and S,7kN(/)* and n and

SN (,3) is that Nj is bounded by Nj in W and SkN

As the accuracy of interest in Eq. (4.1) increases, the upper bounds for n and Nj,

i.e. n* and NVj., should also increase too. The change of these bounds as the desired

accuracy in Eq. (4.1) changes, is an expression of complexity of our expansion.

Theorem 4.2.1 provides us with such an expression, and is our main result in this

chapter.

Theorem 4.2.1. Let E, nab and R* be arbitrary and let

( 1
n* > max 5, eR* + 1, 210g 2 e(2e - 1)VfE

and

. * > m 42 1)6"1e e 3nab (1+ R*4/ 3)
gr(2e - 1)E

for all j = 2, ... , nab. Then we have

|h(x, y; xo, yo) -- (X, y; Xo, yo)| f



for all x, y, xO, yo such that the corresponding value of R is less than or equal to R*.

Theorem 4.2.1 provides us with an upper bound to the minimum necessary index

of summation in Eqs. (4.1) and (4.2) and proves that it is finite. In fact, numeri-

cal simulations in practice suggest that even smaller minimum necessary indices of

summation would suffice. A proof of Theorem (4.2.1) can be found in Appendix D.

Thus, we have shown that any arbitrary accuracy of the light disturbance in the

circle of R < R* can be achieved with a sufficiently large finite value of n* and Njs.

Theorem 4.2.1 states that as the radius of the region of interest, R*, increases, the

maximum necessary index of summation in Eq. (4.1), n*, increases linearly with R*.

It also indicates that the maximum necessary index of summation in Eq. (4.1), n*,

increases proportionally to log ., where c is the accuracy of approximation. We can

also see that the maximum necessary index of summation in Eq. (4.2) (as stated

in Eqs. (4.3) and (4.4)), Nj, or in other words, the maximum order of O( in the

expression of Anms, increases linearly with the corresponding aberration coefficient

and log -, where c is the accuracy of approximation. The log dependence of n*

and Nj on the accuracy (E) confirms the fast convergence of this method.

Considering the above analysis, we conclude that when we are interested in the

disturbance in a confined region, we only need to consider a few terms in Eq. (3.1).

Now we can move on to the second factor, i.e. N*. To find the total number of terms

necessary for a desired accuracy, we recall that Eq. (3.1) has the structure of Zernike

polynomials; i.e. n > m, n, m > 0, and n - m =even. Using elementary number

theory, one can conclude that the total number of necessary terms in Eq. (3.1) is



N* = 2  2  (4.5)

Apparently, the number of terms in Anm depends on tm and Sa7kN (3), which both

in turn depend on the value of Njs. This is due to the Taylor expansion that we

have used. Using the analysis in Appendix B and the values of Nj, we can determine

the complexity of the Anm. The coefficients Anm are polynomials of the aberration

constants of order no more than Nj* for each particular aberration coefficient. The

Anms also depend on the defocus coefficient both in the form of rational polynomial

of order no more than 1 + (n + m)/2 + Z)cx4 Nj* and in the form of exp( 1), where

X4 is in Eq. (4.6) . Hence, it is clear that increasing defocus does not increase the

complexity of coefficients Anm in a confined region of interest.

X4= {jLj # 0, j = 2,..., na} (4.6)

4.3 Numerical v.s. Theoretical Results

Although the above analysis gives us a comprehensive understanding of an upper

bound on the complexity of calculating the light disturbance within the exit window

R*, the bounds presented might be loose as suggested by numerical experiment. For

instance, for the case of R* = 40 and c = 0.001, using Theorem 4.2.1, n* = 81;



whereas experimental result suggests n* = 45. Nevertheless, Theorem 4.2.1 is the

tightest theoretical bound currently available.

Performing the same experiment for different values of R* suggests that n* =

FR*] + 5 suffices for e = 0.001. Replacing n* in Eq. (4.5) by its experimental value ,

i.e. [R*] + 5, one can get the following expression for the total number of necessary

terms in Eq. (3.1) (or Eq. (4.1)) for an accuracy of c = 0.001 in a desired range R*

N* = FR +7J [FR 1 . (4.7)
2 2

The above two equations show the necessary number of terms to express the

diffraction integral within a desired range and accuracy. This is of much greater

importance when we recall that the number of terms required in the expansion is

independent of the values of aberrations and defocus and the required resolution. In

other words, regardless of the properties of the imaging system, the above number

of terms is sufficient for calculating the light disturbance in the image plane. For

instance for an optical system with f = 50mm, f /# = 3mm and pixel-size= 5pim,

if we consider a circle with radius of 5 pixels around each pixel and accuracy of

E = 0.001, then R* is 47.5 and thus we do not need to consider terms with n > 53 no

matter how large our defocus or aberrations are or how fine our resolution is.

We have also performed experiments for finding the minimum number of Taylor

expansion terms necessary for each aberration, N7, for an accuracy of c= 0.001 and

range of interest of R* = 20. These results are shown in Fig. 4-1. One can notice
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Figure 4-1: Variation of partial number of the terms necessary with /L,M for c = 0.001
and R* = 20.

the gap between the theoretical and experimental bounds by comparing Theorem

4.2.1 and Fig. 4-1. For instance for 13 1 = 5, using Theorem 4.2.1 one gets N7 = 29,

whereas experimental results suggest N! = 11.

Note that without considering the number of aberrations present and their range

of values, we cannot state a general result about the absolute or relative errors of this

approximation (Eq. (3.1)) in the whole infinite image plane; i.e when R* -+ oc. For

instance, when the distortion aberration coefficient (73) is large, the PSF peak can

shift out of the exit window, causing the absolute and relative approximation errors

to increase without bound. This example is shown in Fig. 4-2.
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Chapter 5

Discussions

5.1 Overview

Eqs. (3.1) and (3.4) are general expressions for the study of the effect of aberrations

and defocus on PSF on the basis of diffraction theory. Two important points that

are hidden in these equations are their ability to handle high defocus cases without

facing any numerical problems and the potential of this method to consider the effect

of as many aberrations as needed at the same time as defocus. In fact any arbitrary

aberration can be approximated using Eq. (2.7) and then its effect on the imaging

system will be immediately available.

This latter property is very useful in Wavefront Coding (WFC). [6, 11] In this

technique we use general aberrated optical elements (traditionally aspheric) and dig-

ital post processing together to increase the performance and/or decrease the cost of

imaging systems. In another work [1] which is under preparation, the advantages of

using this new approach for solving the diffraction integral in WFC are investigated.
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Figure 5-1: Time required for evaluating the PSF at 400 different points v.s. defocus

(f = 0.1%).

5.2 Convergence Speed

Another important fact about this method is its fast performance compared to direct

calculation. It is often the case that direct ray tracing does not suffice for practical

needs and one has to analyze the effect of aberrations and defocus using diffraction

theory. In that case, our method proves to be very efficient. Figure 5-1 shows the

time required to evaluate the PSF at 400 different points in the image plane. It

can be seen that for all values of aberrations and defocus, the time required by the

new method is significantly smaller. The ratio of time needed varies from 150 for zero

defocus to more than 2000 for defocus of 785 wave numbers (or 125 waves or 125A mm

or 01 = 785 i). It should be noted that in all of the calculations in this figure, the

accuracy has been kept at 0.1%.

It is to be noted that the traditional method mentioned in Fig. 5-1 is the direct

evaluation of the diffraction integral. It is a common practice to use fast Fourier

transform (FFT) rather than direct integration, to enhance the speed of calculation.

Although FFT method is almost invariant to defocus and aberration coefficient values,
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time required to evaluate the PSF at 400 different points in the image plane. It

can be seen that for all values of aberrations and defocus, the time required by the

new method is significantly smaller. The ratio of time needed varies from 150 for zero

defocus to more than 2000 for defocus of 785 wave numbers (or 125 waves or 125A mm

or 01 = 785 i). It should be noted that in all of the calculations in this figure, the
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It is to be noted that the traditional method mentioned in Fig. 5-1 is the direct

evaluation of the diffraction integral. It is a common practice to use fast Fourier

transform (FFT) rather than direct integration, to enhance the speed of calculation.

Although FFT method is almost invariant to defocus and aberration coefficient values,



(3.1) and maximum necessary degree of polynomials for Eq. (3.4) which together

provide us with an accurate approximation within the region of interest. This the-

orem also supplies an upper bound for the maximum necessary index of summation

and maximum necessary degree of polynomials. Nevertheless numerical experiments

suggest that even smaller bounds would suffice. Equation (4.7) provides us with one

such experimental result. It shows the total number of terms necessary in Eq. (3.1)

for an accuracy of E = 0.001.

5.3 Other Advantages

Another interesting property of our expansion is its advantage in facilitating the

process of calculating the amplitude transfer function (ATF), optical transfer func-

tion (OTF), and modulation transfer function(MTF) for an imaging system. This is

due to elegant choice of basis functions; for instance, to move from the the PSF do-

main to OTF domain, one needs to change the basis functions only. In other words,

this process does not demand any extra calculation and the coefficients that have

been calculated for point spread function domain, can be used directly for other do-

mains too. This subject will be thoroughly discussed in another work which is under

preparation.



Chapter 6

Conclusions

In this thesis we introduced a new method for analyzing the diffraction integral and

evaluating the PSF. The new method is based on the use of higher order Airy functions

along with a novel use of Zernike and Taylor expansions. This method is applicable

when we are considering several aberrations and large defocus simultaneously. We

have shown rigorously and verified by numerical simulations that the complexity of

our expansion is independent of defocus and that it is stable in all ranges of defocus.

The efficiency of the method compared to traditional ones has also been investigated

and it is shown that the method not only does extremely faster than its alternates

but also requires computational time that is independent of defocus.

The use of higher order Airy functions plays a key role in capturing the effect of

different values of defocus in a simple expression which its complexity is independent

of defocus. It was also shown in Theorem 4.2.1, that any arbitrary accuracy in any

arbitrary region of interest could be achieved by a finite number of terms in the

approximate function (Eq. (4.1)).
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The complexity of this expansion is also invariant to resolution. This means that

the time required for evaluating the PSF will not increase as the desired resolution

increases. This could be a potential solution to some of the current problems in bio-

logical microscopy [8] and lithography [13] where having a high resolution information

of PSF is critical. By providing an analytical solution for the diffraction integral, this

approach, among other things, may also facilitate the process of multi-domain opti-

mization, where the optical system and post-processing system are optimized together

to increase the performance and/or reduce the cost of imaging systems. This ana-

lytical expression for PSF may also help developing analytic treatment of incoherent

imaging systems.



Appendix A

Table of Symbols

Term

Point spread function (PSF)

Normalized PSF

Approximated normalized PSF

Coefficient of the diffraction integral

h

h

C

Eqs. (2.2)

Eqs. (2.12) (3.1)

Eqs. (4.1)

Eq. (2.9)

First index of expansion

Second index of expansion

Coord. system in image plane

Polar coord. system in image plane

m

(x,y)

r/q5

Fig. 2-1

Fig. 2-1

continued on next page
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continued from previous page

Term Symbol Definition

Coord. system in object plane

Polar coord. system in object plane

Axillary coord. system

Polar axillary coord. system

Coord. system in pupil plane

Polar coord. system in pupil plane

Simplified coefficient of expansion

Main coefficient of expansion

Approximated main coefficient of expansion

Matrix of image

Matrix of object

One point at image plane

One point at object plane

Area of interest in object plane

Wave number

Circular aperture radius

(X0, yo) Fig. 2-1

rozeo

(u, v)

RLE

pLO

Anm

Anm

A*m

Fig. 2-1

Eqs. (2.3) (2.4)

Pol. equiv. of (u,v)

Fig. 2-1

Pol. equiv. of((,rg)

Eq. (3.4)

Eq. (4.2)

P

Q(x,y) Fig. 2-1

P(xo, yo) Fig. 2-1

A -

k

a

27r/A

Fig. 2-1

Distance from each image point to the

continued on next page
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Term Symbol Definition

center of pupil plane

Distance from each object point to the

center of pupil plane

Distance between image plane and

pupil plane

Distance between object plane and

pupil plane

Distance between Gaussian image plane

and pupil plane

Wavefront error

Defocus coefficient

Index of different aberrations

Aberration coefficient

Final aberration coefficient

Aberration Taylor expansion index

Vector of different aberration's Taylor

expansion indices

S Eq. (2.6)

r Eq. (2.5)

SQ

SP

W

DF

L,M

fL VI

13j

N

Fig. 2-1

Fig. 2-1

Eq. (2.7)

Eq. (2.8)

Eq. (2.7)

Eq. (2.7)

Eq. (3.7)

Eqs. (3.6) (4.3)

Eqs. (3.6) (4.3)

continued on next page
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Term Symbol Definition

Value of an integration

Set containing all feasible pairs of

N and D

Approximated set containing all feasible

pairs of N and D

Vector containing all final aberration

coefficients

Multiply of final aberration coefficients

according to the values of N

Power of p

S function

Approximated S function

Polynomial part of the Zernike function

Zernike function

Index of coefficients of Zernike polynomial

Zernike polynomial coefficients

D

NM

R*M

kN

Eqs. (3.6) (4.3)

Eq. (3.6)

Eq. (4.3)

I~.

Eq. (3.8)

Eq. (3.9)

Eq. (3.6)

Eq. (4.4)

Eq. (B.2)

Eq. (B.1)

Eq. (B.3)

Eq. (B.3)

nkN

SnkN

R mn

V m

1

l

Defocus and Field Curvature aberration

continued on next page
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Term Symbol Definition

final Coefficient

Spherical aberration final coefficient

Distortion aberration final coefficient

Astigmatism aberration final coefficient

Coma aberration final coefficient

Distortion Taylor expansion index

Astigmatism Taylor expansion index

Coma Taylor expansion index

Scaling factor between R and r

focal length

focal number

The critical radius of interest

The minimum necessary index of summation

in Eq. (4.1) necessary for a given accuracy

The minimum necessary number of terms in the

Taylor expansion for each aberration

necessary for a given accuracy

Theorem 4.2.1

Theorem 4.2.1

Theorem 4.2.1

continued on next page

71

'Y2

.-4

"y5

N3

N 4

N5

B

f

Eq. (3.13)

Eq. (3.13)

Eq. (3.13)

Eq. (3.13)

Eq. (3.13)

ka/s'

f/ 2a
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Term Symbol Definition

The minimum total number of terms in Eq. (4.1)

necessary for a given accuracy N Eq. (4.5)



Appendix B

Derivation of the Expansion for the

Point Spread Function

We now derive expressions in Eqs. (3.1) and (3.4) for the PSF. Rather than

following the traditional approach of expanding the wavefront phase, w, using Zernike

polynomials [2], in the first step of analyzing Eq. (2.12), we expand the exponential

of the wavefront phase, exp (i kw), using the set of Zernike polynomials, V,' (p, 0)

V' (p, 0) = R"NI(p)eimO. (B.1)

Here n>2 0 and m are integers, n ml and n - Iml is even. Furthermore R"'(p)

is defined as

(n-Iml)/2

RI' (p) - C"pn-21, (B.2)
=0
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where

(-1)l(n - )!

1![(n + m)/2 - I]! [(n - m)/2 - 1]!'

Thus we can rewrite the wavefront eiku(POro,'o) as

ei k w(p,O,ro,6o) = E

n=O Im=0
-mAnmRI"I (p)emo ,

where 3j is equal to 1 if i is even and 0 otherwise. Anm in Eq. (B.4) is defined as

j1Jf27TAnm = n + 1

7
ek w(pOrooo) V,'(p, 0) p dp d0. ( B.5)

Recalling the definition of h in Eq. (2.12) and using (B.4), we have

h(x, y; xO, yo)
27 I l

j 27r

Ln~o
j

jm1=O

e iRpcos (0-0)p dp dO.

Using the definition of Bessel function [12], we have

I 27r

0
eiMoeiRpcos(-E)dO = 2reimO i mJM(Rp),

therefore we can rewrite Eq. (B.6) as

NX, Y1 xO, Yo)
0 00 n

Sn=O |m1=0
nAnmRlm7 (p)eime i m Jm(Rp)

(B.3)

(B.4)

[n-mAnmRI " (p)eimo] } (B.6)

Cm = -

p dp. (B. 7)



Now applying the following property of Zernike polynomials [2]

RI (p) Jm(Rp) p dp = 2( ) Jn+1(R) (B.8)

we can evaluate the integral in Eq. (B.7) as

h(x,y;xo,yo) = E [ n-mAnmeimei l)m 2 +1 (R)] (B.9)
n=O m=0 I-I

Now we are concerned with evaluating the Zernike coefficient. This is equivalent

to evaluating the integral in Eq. (B.5). Although at first sight it appears that solving

Eq. (B.5) and Eq. (2.12) are both equally hard, as it will become clear Eq. (B.5)

has several advantages over Eq. (2.12). The most important advantage is that we

can evaluate the integral analytically in this new expression without expanding the

defocus term (This is addressed in more detail in Appendix C). This allows us to have

the result of arbitrarily large defocused system readily available. Another important

property of this method is its fast convergence which is discussed in chapter 4 and

Appendix D. To solve Eq. (B.5), we first partially expand eik w(p,Oro,+o) using Taylor

series as follows:



i k w (p,9,ro,#90)
(B.10)Sei k ZJ2'[fL.AIJ (ro2) (ap

2 Lj (ap cos(9-No

e +=1 Co ( a-$ os(0-00 ) '

e [ 2Lj+A x 2Lj+Mj C--)]

e eexk I2 j eiEjEX2 [/3j~EI[]PL 2Lj~±Mi COS~i(o 9 5 ]

e x1 P2 L 17 ep I Cosi_(0-p0 )

jGX2

eyjExi [3jP 2
L X

[O3 p2Lj-+Mj CosM (0 _ 0)] N

JI2 I , }
where Nj is the summation variable for each of terms in aberration function which

have been Taylor expanded and !3j is defined as

0j ikfL,M (r02 )a
2Lj+M (B. 11)

Substituting Eq. (B.10) in Eq. (B.5), we have

Anm
1n + 1 1 27r eFaExl xOj P

2
Lj I

O 3 p2Lj+Mj cosMi(0_ 0)] Ni

YNj! x
j3X2 N3= 

V m (p, 0) pdpd0.

(B.12)

Integrating over 0 yields



Anm = _ eiMO] e jX [OjP 2 LIRI (p)

[E p2Lj+Mj] Ni p dp

(N,D)ENm jEX2 N

where we have used the orthogonality property of trigonometry functions

Vm, m,

Vm >'m

Vm < m' = m + 2k + 1

Vm < m' = m + 2k

j sin(mO)

: cos(mO)

j cos(mO)

: cos(mO)

(cos(9)) m dO = 0. (B.14)

(cos(6)) m dO = 0,

(Cos(o))m+2k+1 dO = 0,

(Cos(O))m+2k dO = 2(k + 2k)!
22 k+m-lk!(m + k)!'

where n, m' (m -i m') and k are positive integers. Note that this leaves us with

only a few sets of cross terms to deal with as stated in Eq. (B.13) (rather than

an infinite number of terms of the Taylor expansion of the aberrations for the term

Anm). N = [N 2, N3 , ... Nnlab] in Eq. (B.13) is a vector containing the values for all

Njs. Furthermore, Im, which is a set containing all pairs of vectors in the form N

and scalars D, is defined as

=( D)Z(MN)=|m + 2k,D= (+2k)! N EA .}NMj(N, D) Ij=2 N) +2k 22kk!(m + k)! .,N zj (B. 15)

(B.13)



Also using the special dependence of Eq. (B.13) on m and by defining Ji as one

when m = 0 and as two otherwise, we can further simplify Eqs. (B.9) and (B.13) as

h(x, y; xo, yo) Jn+1(R)}
= { n-m6mAnm cos [m(1 + 0)]

n=O m=O

= _N1 i n

(N,D)E~m

DO3N SMkNC(),

and consider m to be a positive integer. Note that ON and SnlkN (3) are defined as

S kN(03 ) = j J e13

jEX1

S2L R(p)pkN+I dp,

#N) -
2l ( -

jEX2 31

And we have

kN= (2 Lj + Mj)Nj.
jEX2

(B.16)

Anm (B.17)

(B.18)

(B.19)

(B.20)



Appendix C

Derivation of the Srk() in
n,kN

Equation (3.6)

Using Eqs. (3.6) and (B.2) and considering the fact that m > 0, we have

1 (n-m)/2

S~k( 3 M j 1  i e'i 2
Lj En/ 0 m71n-2+kN+1 dp. (C. 1)

0 jEx1 1=0

Assuming that the summations involved are finite (which means that the number

of aberrations under consideration is finite), we have

(n-m)/2
S -#N (n-3 )/ = M~ fJ efl3 p 2 Lpn-21+kN+l dp. (C.2)

1=0 0jGX1

Using Eqs. (B.14) and (B.20) we can see that kN > 0 and kN = m + 2k. On

the other hand from the definition of the Zernike polynomials we know that n + m is

also an even number. Thus it follows that n - 21 + kN is an even number. This is an

important property of our expansion and a key factor in the derivation that follows.
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The next step is to replace each term of el3i P2
L in Eq. (C.2) by its Taylor expansion

(n-m)/2 0Oj2,N

SOkN 1=0 '1jrn /
2 c 1  E X 31P 2 3) [M eL,3, p n-2+kN+1 dp. (C.3)

Thus the solution of the above general form requires the solution of the integral

Ie'31p2 P2,r+l dp, (C.4)

where r = f+ 2kN + X3 LjNj is an integer number. Note that since Nj E A(, there

will be infinite number of fundamental integral to solve. However to remain in the

range of desired accuracy, we only need to use NE {0, . . . , Nj }, where Nj depends on

the problem specification and the respective accuracy. Theorem 4.2.1 provides us with

an upper bound for Nj for a prescribed desired accuracy and problem specifications.

To solve the fundamental integral in Eq. (C.4), we can use the technique of

integration by parts r times to get

2 k
.k=0 .

Using this result, one can find the general formula for S. For instance when

,L,0 = 0 for L > 2, we have



S-7kN

~(C"1 -<2+-+N) (ni - 21 +_kN)!

l=0
n--2

1
+kN

1 - e1

j=0 -

Here SnmkN ( 3) is a rational polynomial of order 1 + (n + k)/2 of 31. There is also

one exp(3 1 ) factor in the structure of SnmkN ($). Thus we can conclude that in case of

primary aberrations SnTkN(/) is a rational polynomial of order 1+(n+m)/2+Ns.A.*+

Ncoma* of 03[. In general the order of this polynomial is 1 + (n + m)/2 + ZjX Nj*.

For any given accuracy, there is a value of 11 for which, it may be more efficient

to use the method of stationary phase. For instance when e = 0.001, for I/311 > 700,

it may be more efficient to use the method of stationary phase. In what follows we

consider such a case. Note that in practice this is equivalent to the case that the

defocus is large enough that the PSF will become almost constant.

Using the fact that kN = m + 2k, by changing the variable of p2 to p and 31 to

il (3 E- R), we can rewrite Eq. (C.1) as

(C.6)



(n-m)/2

z eiI p2 + dp (C-7)

[cos(/3p) + i p sin(/3p)] dp

(n-m)/2

~E Cnj f1=0

(n--m)/2 me

1=0
(n-m)/2

l=0

e0A

C m

In the above derivation, we have assumed that kN > 0; if this is not the case, i.e.

kN = 0, then using the same method one can show that

ef + (-2)
S.7, (3 )= O

SnkN 0')

(C.8)

C Mn'l fo

I



Appendix D

Complexity Proofs

Lemma D1. For all Anm defined by Eq. (3.4), we have the following bound

Anm I 'n + 1.

Proof: Using Eq. (3.4) we have

An = n+ 1 fI f2 7r

r j 0 j 0

eikW('"o o ei"o R"(p) p dp d6,

jAnm| < 2(n + 1) /;
1

Using the Cauchy-Schwarz inequality, we have
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(DI)

thus

(D2)

(D3)|R" (p) I p dp.



b

'IF(u) du K
a

b

I 2 (u) du,
a

for any real valued integrable function T, and real numbers a and b. Now considering

the fact that in Eq. (D3), p E [0, 1] and thus p > 0, we can define Vu = p. Replacing

' with IR'(p)I and setting a = 0 and b = 1 in Eq. (D4) yields

jI R (p)I pdp = fIRn (f)|du (D5)

[R (/f)]2du
~2 J00 n /

[R (p)]2 pdp

where the right-hand-side integral is readily available from orthogonality analysis of

the Zernike polynomials [2]

f [R (p )]2 pdp 
1 .

0 n 2(n + 1)
(D6)

Hence, we have

o |Rm (p)Ipndp < 1
n ~2 vn +1

(D7)

(D4)



Substituting this result in Eq. (D3), we have

IAnmI 5 n + 1 (D8)

Let Tf(x) be the nth term in the Taylor expansion of f(x) around x0 = 0, then

we have the following Lemma about the accuracy of the Taylor expansion.

Lemma D2. Let

f (x) = ebx'

where b is an imaginary number and x C [0,1]. If

p* = max (4, 2e Ibi
e

+ 1, log 2
(2e - 1) 2f

Then we have

f(x) -
mp*

nT=() O e~f(X)I.
n=O

Proof: Using Taylor Theorem we have

00

= Td (X)
n=mp*+1

f n(0)n

n=mp*+I

f(x) -
mp*

Z Tn(x)
n=O

(D9)



Using the definition of f, we have

f"(0) ={
0 if n -4 mp ,

(DIG)
n!p if n = mp.*p!nm.

where p is a positive integer. Substituting this in Eq. (D9) and changing the index

of summation from n to p, we have

f(x)

mp *
- Tf(x)

n=O

00

P=p*

"mp (D11)

00bP

00

p=p*< bp

=P*P
00

p b|P

P* Ip*P--P*

_ jbIp 0

*

< Ib _ .p*!S
p=p*

b| P

2e1 )P

bIp* 2e

p*! 2e - 1

The first inequality follows from x E [0,1]. The third inequality follows from

p! > p*!p*P-P*. The fourth inequality follows from p* > 2e JbI + 1. We can further

simplify this expression as in Eq. (D12).



_IbIP* 2e
p*! 2e - 1

=bI 2e

v/2,p*p*+o.5e-p* 2e - 1

(b, e)
P*

2

- 2

5 (Ib)*

p 2e
(2e - 1) 277rp*

2e

(2e - 1) 27rp*

e

(2e - I)\/rW

< E

If(x)IC.

In the first inequality, we have applied the following lower bound to p*!, based on

Stirling's approximation:

2p*P*+0. p*) <p*

The second inequality follows from p* > 2e Ibi + 1. The third inequality follows from

p* > 4. In the fourth inequality we have used p* > log2 (2e -)-. In the fifth

inequality we have used Iexp (i x) I = 1 for all x E R.

f(x) -
mp*

ZT(x) (D12)



Lemma D3. For all R E R we have

1)3/2 Jn+1(R)j <(n +
-n=0

Ie2 (1 .

Proof: The first kind nth order Bessel functions have two classical bounds [7, 14, 10]

IJn(R)| V 2

IJn(R)I
(R/2)"

where in the second one, J > 0.7857. .. , the constant derived by Landau [10].

Since these two bounds are always true, we can define fn(R), a special upper bound

for the first kind nth order Bessel function, as

for 0 < R <

(D14)

for R ;>

Using this equation, we have

LeR] 2
1: n3/2 21

n=1

= 1+ 12.

p 3/ 2 (R/2)n+
0R

n=[eR]+1

Now we consider each term in the right-hand-side of Eq.

(D13)

(R/2)n

IJn(R)j < fn(R) =

2 1
W R1/

n +
n=0

(D15)1)3/2|1Jn+1 (R) I

(D15) separately. For



the first term we note that for 0 < R < 1, we have

I1 = 0.

Now, we assume R> 1 and we have

2 [eRj
I1 = n3/2

n=1

2 1 feR+1

ir R 1/3  x312dx

2v/2 (eR + 1)5/2 _ 1

5,l R1/3

< 2F2 1/3-ev/e(R) 4/3 [1 +
5V-

(eR + 2)4/3

(D17)

= 2e/2e R [1 + (eR + 2) 4 /3]

The first inequality follows from the definition of integration. The second inequal-

ity follows from (eR + 1)5/2 - 1 < e,/FR4/ 3 [1 + (eR + 2)4/3] for f .e

together Eqs. (D16) and (D17), we have

< 2ev R
51 < R

Putting

(D18)

for all R > 0. As for I2 we first consider R > 1 as

(D16)

[ 1 + (eR + 2 )4/3] .



00 (D n

12 = S 3/2(R/f) (D19)
n=[eRJ+1

< z0 (R/2)n
I:e~+ (n - 2)!n=[eR]+1

R 2  oo (R/2)n
4 E n!

n=[eRJ-1

R2 00 (R/2)n
< 4 E ([eRJ - 1)!([eRJ - 1)n-(LeRJ-1)

n=eRJ-1

R2 (R/2)(LeRJ-1) 00 R

4([eR] - 1)! 1:2([eR] - 1)

< ( 2 R2 (R/2)(LeRJ- o )

4(e -(LeRJ - 1)! e-

(e - 1)R 2 (R/2)(LeR-1)

4(e - 2)([eR - 1)!

(e - 1)R 2 
2(l)J-[eRJ1

4 (e - 2) V27r( eRj - 1)

(e - )R 3/ 2 (ell) LeRJ-1 2

4(e-2)v/2Vr

v/e -- R3/2 ( e11) [eRJ-1

4 (e - 2) /iK

v/e - 1R 3/ 2 ( )eR-1

4(e - 2)v

< (e - 1) e-1 R

-~ 4(e - 2) V/7
e - 1

< - R.
2 2T5/ (e - 2)

The first inequality follows from n 3 /2 < n(n - 1) for n > 3. The second inequality

follows from n! > (LeRJ - 1)!(LeRJ - 1)"LeRi-). In the third and fifth inequality

we have used R < for R > 1. In the fourth inequality, we have applied the



following lower bound to ([eRj - 1)!, based on Stirling's approximation:

v'2-(LeRJ - 1)eRJ-1+o. 5 exp [-([LeRJ - 1)] < (LeRJ - 1)!

In the fifth inequality we have also used 2(LeRJ- < -1 for R > 1. In the

sixth inequality we have used x > [xj for all x. The seventh inequality follows from

V'/ > (e - 1)eR for R > 1.

In a similar way, it could be shown that the bound for I2 in Eq. (D19) holds for

0 < R < 1 too. Now by combining Eqs (D15), (D18) and (D19) together, we have

+ 1)3/2 Jn+ 1(R)I
2ev/e

5 Wr
[1 + (eR + 2)4/3] + e - R (D20)

2 V/'7(e - 2)

2ev/e
5

[1 + (eR + 2) 4 / 3] +
e - }

2(e - 2)

< v/3e 2 (1+ R4/3)

= e2 (1 + R4/ 3 ) R.

Before presenting Lemma D4 and proof of Theorem 4.2.1 we will define some

relevant parameters. Let Anm be the exact values of coefficients in Eq. (3.1) from Eq.

(D21) and let A*m be the approximated value of these coefficients from Eq. (4.2) as

stated in Eq. (D22).

R
= 7



- 1 f1 f27r nab

Anm = 0 e 2 17 fL,M, (p, 9) VnKm(p, 0) pdp dO. (D21)
o o j=2

1 127r nab

A*m = n+1 j2 T L,,Ni(p,)Vnm(p,0) pdpdO. (D22)
j=2

Also let fL,M, (p, 9), TLj,Mv (p, 9) and CLj,M, (p, 9) be short form expression of the ex-

ponential factor of the aberration (Lj, Mj), exp [/3jp 2Lj+Mj cosMi (9 - Oo)], the Taylor

expansion of this exponential expression and the error of this expansion corresponding

to the first N3 * terms of the expansion respectively. Also let

h(x, y; xo, yo) =n-momAnm cos[(E + 0)] Jn+ 1(R), (D23)
n=O m=1

n* n

n*(x, y; xo, Yo) = 5 n6-mA~ A cos[(E + 0)] n+1(R)

n=O m=1

be the normalized exact and approximated PSF respectively. There, 6m is one if

m = 0 and it is two otherwise and 6j is one when i is even and it is zero otherwise.

We recall that h(x, y; xo, yo) in Eq. (D23) is the exact PSF and n* (x, y; xo, Yo) is the

approximate PSF whose accuracy is under investigation.

Let R* be the radius of the region of interest (exit window) and let nab be the

number of aberrations present in an optical system. We will prove that to have an

arbitrarily accurate result in this region we only need a minimum necessary index of

summation, n*, in Eq. (D23) and a minimum necessary number of terms of Taylor

expansion for each aberration, Nj*, in Eq. (D22). Note that both summation indices



are independent of the value of defocus.

Lemma D4. Let us assume we have finitely many aberrations (nab) in an optical

system. If

fL4,Mj(P,O) - TL,Aj(p,O) = -L,Mj(P,O)fL,Mj(P, 6), (D24)

max (4, 2e 1/3 ,I +1, log 2  .e
(2e - I)v/2-7 c

(D25)

nab in the system. Then we have

|6Lj,Mj < E.

Proof: By referring to Eq. (D24), we set p* = Nj, b = #j cosMI(0 - 0), x = p and

m = 2Lj + MA we can rewrite Eq. (D25) to get

p* = max (4, 2e ibI + 1, log 2  )
(2e - 1)v/2

Now using Lemma D2, we have

and

for all j = 2.

for allj = 2. .. nab.

(D26)

Nj * =



fLi ,A (p, 0) - TLiIMj (p, 0) _ I fLj,MA (p, 0) .2

Substituting the left-hand-side from Eq. (D24), we have

ELj,Mj(P, OfLjAj(p, 0) (p C I fLj,MY (p, 0)| . (D28)

Simplifying Eq. (D28) yields

CLAM.| <C . (D29)

D

Proof of Theorem 4.2.1: We first define the error of Taylor expansion, EL,M(P, 0)

as in Lemma D4

ELjU3 (p , 0) =
TLj ,MJ (P, 0) - fL3 ,M (p, 0)

fLJ,MJ (p, 0)

Using the definition of Am and A*m we have (from here on for the sake of simplic-

ity we will not write the dependence of fL,Mj, TL,M, 6 L,AI and V on p and 0 explicitly)

(D30)

(D27)



n + 1 f2f1  nab nab eolp 2 V d
=~r nL + 1 j - r Lj,M e Vj p dp dB

7r 0 j=2 j=2

n+1 1 21 nab nab
= +L-,M, - Lj,fj (1 + ELjMj

7r Jo J =2 j=2

= + 1 j 1 f 2 [(fL M ) 9 e '31p2 Vm p dp dO

In the second equality we have used Eq. (D30). The third equality follows from

the definition of g in Eq. (D32).

nab

g= 1 - J(1+ EL),M)
j=2

(D32)

nab

= Z Lj,Mj
j=2

nab

+ S ELj,MjELk,Mk
j,k=2

nab

+ + fl Lj,M-

j=2

Taking absolute values, we have

Anm - A*m (D31)

e 01p
2Vm p dp d9



nab nab nab

1g E ZfLj,Mj + 3 ELj,MfLk,Mk +"' + JJELj,M3  (D33)
j=2 j,k=2 j=2

< (fab-) nab-1 /2 + (ab-i nab- 1

<_1n+b(21 + +---+-1

nanb 2 nab!f, a

< (Gla)C' + (2b) E + + (:'nab

< iabc(+ 2 +.+ (1/2)nab)
21 nab!00

= nabE\/Ni

The second inequality follows from applying the Lemma D4 by setting

e2 ( + R*4/3) (D34)
2 v/53e e2 nab(1 + R*43

as the desired accuracy. Note that the Nj required for this accuracy is precisely

what is stated in the expression of Theorem 4.2.1. The fourth inequality follows from

nab' < - (This follows from Eq. (D34) by considering the facts that E < 1 and

R* > 0). Now, taking absolute values in Eq. (D31), we have



\Anm - A*m < n+1 jj 21r tgI R'(p)| pdpdO

nabE eV(n + 1) jjI12, |R"(p)| pdpd6

j1IR"(p)| pdpdO= 2nabEVe(n +1)

2nab'e(n+1) 1
2 /ne +1

t nboeo n + .

The second inequality follows from Eq. (D33). The third inequality follows from

Eq. (D7) in Lemma D1. Now using the definition of the normalized exact and

approximated PSF in Eq. (D23), we have

- hn*(x, y; Xo, yo)=
n* n

EZ6mn-m

n=O m=O

+ E E m~n-mAnm cos [m(9 + ho)]
n=n*+1 m=O

Taking absolute values, we have

(D35)

h(x, y; xo, yo)

(Anm - A*m) cos [m(E +

(D36)

00)] Jn+l(R)

Jn+1(R)
R



h(x, y; xo, Yo) - hn* (x, y; X0 , yO) <

n* n

E m6n-m (Anm - An*m) cos [m(E + #o)] Jn+1(R)

n=O m=O

+ E E 6mSn-mAnm cos [m(E +
n=n*+1 m=O

(D37)

00)] Jn+1(R)
ft

= I+ 12.

Now we analyze each part of the right-hand-side of Eq. (D37). After rearranging,

the first term, I1, simplifies to

6mn-m |Anm
n* n

n=O m=O
(D38)- A*mI Jn+1 (R)

ft

n* n - J+ R
< EZZ6m abV~e'n +n+1R

n=O m=O

nfabC/ e (n
n=O

+ 1)3/2 Jn+1(R)
ft

-Tab~Ve Z(n + 1)3/2 1Jn+(R)|

n=O

abV 2 (1 + R4/3) RRft

nabEeV2

< nabE 2 V

(I + 4/3)

(1+ R*4/3)

2

The second inequality follows from Eq. (D35). The third inequality follows from



Lemma D3. The fourth inequality follows from R < R*. The last equality follows

from Eq. (D34).

By considering the fact that n - m is always even in Zernike polynomials (Note

that this has been transferred to Eq. (D37) through the definition of 6n-m), we can

further simplify the summation over m in 12 in Eq. (D37) to get

12 i f n + I Jn+J(R) 6n + 2
M=1

6n-mI cos [m(e + 0o)] (D39)

We can further simplify Eq. (D39) to get

I2 if? [(n

n~n*+1

Now we can use Eq. (3.5) in Lemma D3 to get

00

12 :5 E
n=n*+1

(n +1)1
1 (R) n-1

2n! k2JJ
(D41)

Since for n > 5 we have n(n - 1) > (n + 1)2, we can rewrite Eq. (D41) as

R
12 5 -

-4 £*
[1(R "n]

-n.!
(D42)

+ J)n+(R) 1+ 1)2 R (D40)



From Eq. (D42), it is clear that the right-hand-side reaches its maximum, when

R = R*. Thus

00

12 < Z
n=n*-1

R* 00
- 4

1! R* "
2 )- (D43)

(R*fl
n* - 1 )n*-n-(n*-1)

R* (T)n*1

4 (n* - 1)

R* (R* )*-l

4 (n* - 1)!

00(1)e

eR* (R*)n*-l

2(2e - 1) (n* - 1)!

n* -1 ()n*1

2(2e - 1) (n* - 1)!
n-1

eR*
< * - 1 2(n*-1)J

- 2e(2e - 1) 27r(n* - 1)

Vn *- 1 ,1_
<- 2n*l1

2e(2e - 1) /

1 1

2e(2e - I) /27 22
- 6

The second inequality follows from (n - 1)! > (n* - 1)!(n* - 1)n-(n*-1). The third

and forth inequalities follow from n* > eR* + 1. In the fifth inequality, we have

applied the following lower bound to (n* - 1)!, based on Stirling's approximation:

V2W(n * - 1)n*-1+0.5 exp (-n* + 1) < (n* - 1)!.

(R* n
2(n* - 1))



In the sixth inequality, we have used n* - 1 > eR*. In the seventh inequality, we have

In 2used vf/- < 20'5 for all n. In the eighth inequality, we have used n* > 2 10g 2 2e(2e-1)Vrf:,

Substituting from Eqs. (D38) and (D43) in Eq. (D37), we have

h(x, y; xo, yo) - hn.(x, y; Xo, yo) 1 E. (D44)

LI
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