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Abstract
Numerical efficiency comparisons of a four-node finite element model (FEM), a

mass-spring lattice model (MSLM), and a mass-spring-dashpot lattice model (MSDLM) are
investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's
ratio and angle of incidence is evaluated in each model of an isotropic elastic solid. With regard
to phase speed, materials with constant N grid spaces per P-wavelength having Poisson's ratios
between 0.0 and 0.25 are modeled more accurately with the MSLM. Materials with Poisson's
ratios between 0.35 and 0.5 and N grid spaces per P-wavelength are more accurately modeled
with the FEM. Materials whose Poisson's ratio is between 0.25 and 0.35 are modeled equally
accurately. With regard to phase speed, viscoelastic materials modeled with FEM and MSDLM
show good agreement with known analytical solutions. The computational expense of all three
models is also examined. The number of floating point operations (FLOPS) needed to achieve a
specified phase speed accuracy is calculated for each different model. While the FEM and
MSLM have nearly the same computation cost, the MSDLM is 5 times more costly than either
the FEM or MSLM.
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Introduction
Nondestructive evaluation (NDE) techniques have been used for decades to characterize

materials and inspect products. For example, the U.S. Navy has developed a variety of NDE

techniques and systems for identifying defects in ship structures. These techniques and systems

are vital for finding defects before they impact the safety and mission readiness of a ship [1].

Most NDE systems contain an energy source used to probe an object, a receiver or detector that

measures how the energy has been changed by the object, and components and analyses to

record, process, and interpret the measurement data [2]. Many of these systems use ultrasonic

wave energy. Some advantages of ultrasonic testing (UT) are that small surface and subsurface

discontinuities can be detected. Ideally, the approximate size and orientation of the flaw can also

be determined [3]. Prediction and simulation of ultrasonic wave propagation provide valuable

analytical techniques in the interpretation of UT data.

Two approaches to numerical simulation of wave propagation are with a finite element

model (FEM) and a mass-spring-dashpot lattice model (MSDLM). Finite element procedures are

now a critical part of engineering analysis and design [4]. The versatility and ease of use of

commercially available finite element programs have contributed to their popularity. In recent

years, new research in mass-spring lattice models has taken place. Yim [5] discusses the

advantages of a mass-spring lattice model and the U.S. Navy has already begun research in

numerical simulation of thick, layered composites with mass-spring-dashpot lattice models [6].

In this thesis, FEM and MSDLM are compared with regard to phase speed accuracy and

computational cost.
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Problem Statement
Choosing an appropriate analysis method can be difficult without knowing which model

will most accurately represent a particular material or phenomenon.

Numerical anisotropy exists in each model and may affect computational results,

especially with regard to propagation direction [7]. It is well known that one method of reducing

error is by reducing mesh size. This does have the added effect of increasing computational cost.

This thesis proposes that by choosing carefully the model used, error and computational cost

may be reduced.

Introduction to Numerical Models
The mass-spring-dashpot lattice model (MSDLM) in Fig. 1 [8] is a modified version of

the mass-spring lattice model (MSLM) of Yim and Sohn [9] and Yim and Choi [10]. The

MSDLM is a heuristic, physical model where the inertia and viscoelasticity of a solid are

modeled as particles interconnected with springs and dashpots.

The spring constants and dashpot coefficients are derived from the exact partial

differential equations governing a two-dimensional standard linear solid [8]. The particle

velocities and displacements, as well as volumetric forces through each element are numerically

integrated with a fourth-order Runge-Kutta algorithm [11]. The MSDLM has been used to study

wave propagation phenomena in materials having attenuation and has been shown to agree with

analytical solutions in both steady-state and transient analyses [8].

12
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Figure 1. Schematic of an MSDLM at an interior plane-strain particle located at position (ij) [8].

To ensure stability and convergence of the Runge-Kutta algorithm in the MSDLM, the Courant

number C must satisfy

c At
C = m 1.30 (1)

h

where c,nxyp is the maximum P phase speed, h is the grid space, and At is the numerical time

step [8]. Phase speed is the speed at which the crest of a single-frequency wave travels.

The finite element method is an approach for solving partial differential equations (PDEs)

and integral equations [12]. Finite element modeling of a solution involves the mesh

discretization of a continuous domain into a set of discrete sub-domains and a finite number of

points called nodes. In Fig. 2, elements comprising the entire domain are connected at common

nodes and collectively approximate the shape of the initial domain. The elements
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are then approximated by a discrete set of piecewise continuous functions (polynomials) defined

using the nodal values of the continuous solution. The solution to the piecewise continuous

functions approximates the solution to the initial PDE. Finite difference methods are different

from finite element methods in that the differential operators are approximated rather than

represented by piecewise polynomials.
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Figure 2. Schematic of a four-node FEM at an interior plane-strain node located at position (ij).

In structural mechanics, finite element methods are often based on an energy principle

such as the principle of virtual work. Polynomial shape functions are used to relate the

displacement at any particular point to the displacements at the FEM nodes. A model of a

material such as a standard linear solid can be generated using the displacements at the nodes,
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material properties, and constitutive relationships. FEM have been used to study wave

propagation and attenuation and have been shown to agree with analytical solutions.

To ensure accuracy and stability in a wave propagation finite element model, certain

criteria must be met. The length, Le,of a finite element must be

Le = Cmax At (2)

where c is the maximum wave speed and At is the corresponding timestep. For this analysis, an

explicit integration method is used which means the Courant-Friedrichs-Lewy (CFL) condition

must be met in order to obtain accurate results. Simply stated, the maximum allowable Courant

number C that an explicit time-integrator may use is 1.

c At
C = max (3)

Le

where Le corresponds to the length of the finite element h. While it is well known that C greater

than 1 causes a model to become unstable, a finite element model also becomes inaccurate as C

decreases to values less than 1 [12].

Fig.3 is a mass-spring-lattice model (MSLM). It is similar to the MSDLM in arrangement

of nodes but differs from the MSDLM in that it lacks dashpots. It is useful in modeling wave

propagation phenomena in elastic materials and has been shown to agree with analytical

solutions in both steady-state and transient analyses [5,9,10].
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Figure 3. Schematic of MSLM at an interior plane-strain particle located at position (i,j) [8].

Investigation into Accuracy of an Interior Point
In this example, the material is elastic and does not attenuate, so the mass-spring-lattice

model (MSLM) is used. The phase speed accuracy can be investigated using the MSLM and a

four-node FEM with an arbitrarily oriented plane wave propagating through an unbounded

elastic media.

The equations of motion in a plane strain isotropic medium having mass proportional

damping expressed in Cartesian coordinates, are

a2U 2 v a 2u p au

at2 ax 2  axay + P 2 at

a2V a2V a 2u a 2v p av
P =A+2p) +(A+P)---+p (5)

at 2 ay 2 & g, aX2 T at

where u is the displacement in the x-direction, v is the displacement in the y-direction, p is the

density, r is a time constant, and A and p are Lame elastic constants.
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The four node finite element model discretization of eqn. (4) and eqn. (5) give the

following equations written in component form at a particle position (ij) at time t.[Appendix A]

t+At 1 + =-'-^ p I +2ui, p 1 2(ii 2 + 2) 1t p 2At ) 'I (At)2UIj(PA + I (P(At zAt)

!A+p
+ 3 h2 ( ui +t ui- -2tui~) (ui +tui~- -2u (6

+ h2  ( u + ~~ u.+~ u + u - 4'u)6+ h2 h (6) t

vip 1+ p2

4 2 + vi],~ ViI'+ (+.1  ****-11 1 , -1'j-1)

j ((At) 2  r 2At (At) 2  z- 2At (At) 2

.3 2 + t +t t 2 ( IVi+ 1j 4t v)h h

A + ( 7
+ 6 h2 ' i + v + v +'v,, -4'vt, (7)

where At is the numerical time step and h is the grid spacing. (A similar analysis for the MSLM

can be found in reference [8].) For stability, the Courant number C must satisfy

C = , < 1 (8)h

where cp is the longitudinal wave speed given by

C,= +2p (9)
p

The shear wave speed cs is given by

CS = - (10)
p
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Analysis of accuracy
Taking the two dimensional discrete Fourier transform of eqn (3) and (4) and forming the

amplification equation yields [8]

l+AI u =G'u (11)

where

I= [U u t v '~A'U '-'V] (12)

t = I'/+U '+AtV tU 'V] (13)

a b c 0

G d e 0 f (4
G=L1 0 0 (14)

-0 1 0 0_

and where

2(2 3)(cos(kh)-1))-(Kh 2cos(kIh)-1)

+( 4(A +3p) j(cos(ky(hXcos(kh))-1) +
L =h2(t (15)

p p
(At) 2  2rAt

-2 L (sin(k h)sin(k~h))
b = (16)

(At)2 2z-At

p 
p

(At) 2  2zAt
(At2 2zAtlJ(7
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+ + (sin(kh)sin(k,h))
h

p +2P
(At) 2 2rAt

Cc2(2A +3p)
3h 2 I(cos(kh)-1) - j(cos(kxh) -1)

+ 4(A + 3p) (Cos(kh(cos(kh))-1)
6h ))

(At)2 2vAt
f = P

(At) 2 2rAt

In eqns. (12) through (17)

kX = k cos 0

k, = ksinO

The four eigenvectors of the amplification matrix G are 4 p, 4+s, -p, and c-s, where the subscripts

+ or - refer to the positive and negative phases.

The positive phase change in one time step is found from the exact dispersion relation as

e1act At = kcAt (23)

(24)eactAt = kcsA

and the positive phase change from the numerical approximation is [13]

0 numericalAt = Im{ln( ,,)}

(onumericalAt = Im{ln( ,s)}

(25)

(26)

where 4j, and 4s are the eigenvectors that correspond to the pressure or P- and shear or S-waves.

19
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The numerical phase change can be written in non-dimensional form as

O)numericalAt = fcn{C, v, kh, 0, cor} (27)

where v is the Poisson's ratio, or is a non-dimensional frequency, k is the wavenumber, and h is

the grid spacing. (A similar analysis for the MSLM can be found in reference [8].)

Percent phase error in the numerical phase change relative to the exact phase change is defined

OnumericalAt - exactAt x 100% (28)
exact

Multiplying eqn. (25) by

I/k 
(29)

1/k

yields

= cnumerical Cexact X 100% (30)
Cexact

which is simply the percent error in wave speed.

Consider the exact and numerical dispersion relation for an elastic material with v=0.30

and a plane wave propagating along the x-axis (0=0) as shown in Fig. 4. For this example and for

the remainder of this paper, C=1 will be used. As seen in the figure, the phase error of P-waves

of both FEM and MSLM rapidly decrease despite the small number of grid spaces per

wavelength. This phenomena is due to the fact that the FEM and the MSLM solutions are equal

to the exact solution for this Poisson's ratio v=0.30 and angle of orientation 6=00. The S-wave

propagation of the FEM and MSLM differ as the normalized wavelength increases. It is

interesting to note that the S-wave phase speed error is the same for both models at Poisson's

ratio v =0.3 and angle of orientation 0=0.

Fig. 5 shows the case where Poisson's ratio v =0.3 and angle of orientation 0 =45'.

20



The only difference between Fig. 4 and Fig. 5 is the angle of orientation. The FEM P-wave error

is now significantly different due to the change in 0. The P-wave solution changed from the

exact solution to a solution that has an error inversely proportional to the number of grid spaces.

In the FEM, the P- and S- wave phase speed errors are nearly equal but the errors in the P- and S-

waves for the MSLM are different by a factor of two. The unusual behavior of the MSLM S-

wave is disregarded due to the small number of grid spaces per wavelength. At two grid spaces

per wavelength, both models are extremely inaccurate.

While it is well known that the phase errors in most numerical models vary as 6 varies, it

is interesting to note that the phase error in each model varies as v varies as well. In Fig. 6, 0=

450 and v = 0.2. The phase error of the MSLM is clearly less than the phase error of the FEM.

The difference in error between the FEM and the MSLM equates to roughly one less grid

spacing per wavelength.

In Fig. 7, 0= 450 and v =0.4. The phase speed error for the P-wave speed in the FEM is

slightly larger than the phase speed error in the MSLM. However, the S-wave speed error is

nearly one order of magnitude smaller in the FEM than in the MSLM.

21
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Figure 4. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson's ratio v =0.3 and

angle of orientation 9=00 for (a) FEM and (b) MSLM.
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Figure 5. Percent error in phase speed as a function of grid spaces per wavelength, where the Poisson's ratio v =0.3

and angle of orientation 0 =45'.
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Figure 6. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson's ratio v =0.2 and

angle of orientation 0 =45*.
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Figure 7. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson's ratio v =0.4 and

angle of orientation 0 =45'.

Typically, in engineering applications an acceptable error is known and grid spaces per

wavelength N are determined and given by

N, = 21r (31)
kph

Ns = 21r (32)
ksh

where Np and Ns are the number of grid spaces per P and S wavelengths respectively, kp and ks

are the respective wavenumbers, and h is the grid space.

Figure 9 is the number of grid spaces required by the MSLM to achieve 1% error or less

in phase speed as functions of Poisson's ratio and angle of incidence. Fig. 10 is the same plot for

the FEM. Note that for both the FEM and MSLM, Np and Ns are symmetric about 9= 450, which

follows from the symmetry of the models for interior particles as shown in Fig. 2 and Fig. 3. In

24



both models, the phase error of P-waves decays to zero as 0 --+0 . Holding 0=00 or 90', Ns is a

monotonically increasing function for both FEM and MSLM

There are differences in the models. In the MSLM, Np decreases as v increases while

holding 6= 45*. In the FEM, holding 0=45' and increasing v increases Np slightly. Holding

0-450 , Ns for MSLM has a minimum at v =0.3 before increasing dramatically. The FEM has a

minimum Ns at v = 0.43 before increasing. The errors in S-wave speed for the case when 0=45'

and v varies from 0.0 to 0.5 is shown in Fig. 8.
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Investigation into Accuracy of a Point at a Traction Free Surface

Wave propagation problems involving a surface excitation and a surface response in an

elastic half-space have become known as Lamb's problems due to the efforts of Horace Lamb in

1904. Lamb's work is based on Rayleigh's discovery of surface waves in 1887. Lamb discovered

Rayleigh waves are a direct function of the source kinematics and that P- and S-waves are a

function of the time derivative of the source function [14]. An analytical solution exists for these

types of problems. (Refer to [8] or [15] for a detailed discussion of the analytical solution.)

Previously in this paper, FEM and MSLM were compared to each other for phase

speed accuracy at an interior point. FEM and MSLM displacement accuracy will be compared to

an analytical solution for a point on a traction-free boundary.

Two dimensional schematics of the FEM and the MSLM discretization of a plane strain

30
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elastic solid at a traction free boundary are shown in Fig. 11 and Fig. 12. The corresponding

equations of motion in indicial notation for the FEM are

I t-At u..- ' t+At Ut-At U +t+At U , t U
A t -] 2Ath

2 \t Uijl_ i,j/h2

+ h2 + -2u) (33)

2 2 \ i-l,-I - +,j- 2 2 \ i-1,j tv i+t j

p (tAt V-2t v +^v )+ tAtv + 4 2p23 ('vj- 1 v
At 2  " r 2At h 2

+ t ti+,j -
h (34)

* 2 \ ii-,j--iji+,j-, i j

*2h2 2 u P(IU- tui~- 2 h2 2 P( ui, U-

where At is the numerical time step, and u, and vi, are horizontal and vertical displacements

respectively. (A detailed analysis of the corresponding equations of motion of the MSLM can be

found in reference [8].)
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Figure 11. Schematic of an FEM at surface plane-strain particle located at position (i,j).

boundary face

h/2

h

Figure 12. Schematic of an MSLM at surface plane-strain particle located at position (z j) [8].

Input Signal Shape
The surface excitations in the two-dimensional numerical simulations are point loads.

The frequency content of the time-varying point load is dictated by the Gaussian-modulated

cosinusoid depicted in Fig. 13. The numerical function is
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u(O, t)= u, exp -(2 f~t - 3)2) cos(274t - 3ff-' (35)

0.

___f10.3

0 0.5 /1 1.0

U Iff 3.0

S0

2nf, Af 2_

(Time)/(Period at Center Frequency)

Figure 13. Gaussian-modulated cosinusoidal input.

where up is the peak displacement, f, is the standard deviation cyclic frequency, and f, is the

center cyclic frequency. The maximum effective frequency of the input signal is f, +3 f,.

Maximum effective frequency relates to the minimum propagating wavelength. This minimum

wavelength is used in accuracy calculations.

Figure 14 shows the surface displacement of a particle 3.5 P-wavelengths from the point

source in the MSLM. Figure 15 shows the surface displacement of a particle 3.5 P-wavelengths

from the point source in the FEM. Twenty grid spaces per minimum wavelength are used in each

model. This grid spacing is selected to ensure less than 1% error in phase speed for an interior

particle for both the FEM and the MSLM.
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Accuracy
Both the FEM and MSLM reproduce Lamb's solution for surface displacements of an

elastic material due to surface excitation. As shown in Fig. 14 and Fig. 15, the difference

between the analytical solution and the numerical solution is small. In the FEM and MSLM, the

phase error in both the horizontal and vertical directions is less than 2%. A detailed summary of

Lamb's solution appears in Appendix C.
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0.15f

0
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00
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0 1 2 3 4 5 6 7

(Time)/(Period at Center Frequency)

Figure 14. Horizontal and vertical displacements of the surface particle located 3.5 P-wavelengths from a point

source in the MSLM.
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Figure 15. Horizontal and vertical displacements of the surface particle located 3.5 P-wavelengths from a point

source in the FEM mode.

Attenuation analysis of FEM and MSDLM
Attenuation is a decrease in the amplitude of a wave due to the material's absorption of

energy. Damping is the tendency of a material or system to reduce the amplitude of oscillations.

The attenuation of a signal is the result of damping in a material through which a signal is

traveling. In lumped parameter models damping is modeled by an element retarding force is

proportional to the velocity across it. As shown in Fig. 1, the MSDLM includes dashpots, which

act as dampers.

The FEM does not model damping in the above manner. A damping matrix cannot be

constructed in the same way as the stiffness matrix in Appendix A. Rayleigh damping is used

instead. The equation for Rayleigh damping is [12]

C = aM +)6K (36)
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Where C is the damping matrix, M is the mass matrix, K is the stiffness matrix, and a and / are

constants determined from two given damping ratios that correspond to two unequal frequencies

of vibration. Thus damping in the FEM is not proportional to velocity but is proportional to

mass.

In this thesis, one characteristic of damping is penetration depth (Q) (Appendix D). This

is the depth an input signal travels into a material before the amplitude of the signal is reduced to

e~" (about 4%) of its original amplitude. Initial results indicate that a damped FEM does agree

with numerical solutions determined by the MSDLM. In Fig. 16, the phase speed error of a

material with Q- 25 is shown.

7 -
EXACT P-wave

-----.-- FEM P-wave
EXACT S-wave

6- -----. FEM S-wavc

5-

0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 1

kh/2ir

Figure 16. Phase speed error of a FEM of a material with Q=25 and angle of orientation 0=45'.

In Fig. 17, the same material is modeled with varying grid spaces per wavelength. This

shows good agreement with an analysis of the MSDLM in reference [8].
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Figure 17. Percent error in phase speed as a function of grid spaces per wavelength, where Q=25, angle of
orientation 0=45'.

Computational cost of FEM and MSDLM models
Accuracy is not the only issue of importance for numerical simulation. Computational

cost is another issue considered in this study. Theoretically, given enough time and computing

power, extremely accurate numerical models can be generated using any numerical simulation

method. In most engineering analyses, there are limits on time or computing power available for

a specific model. A trade-off study can be completed in order to maximize accuracy while

minimizing cost. In most cases, there comes a point where additional improvement in accuracy is

not beneficial enough to justify the additional computational effort. This point varies depending

on the type of engineering problem being analyzed.
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One method of measuring computational cost is by estimating the number of floating

point operations (FLOPS) per time step or iteration. For the FEM, the MSLM and the MSDLM,

this involves determining the number of nodes and multiplying that number by the numerical

operations (multiplies, adds, divides and subtracts) per node.

Since the FEM and MSLM use the Central Difference Method, the number of FLOPS

can be easily determined. For the FEM, the number of numerical operations can be found by

examining eqn. (6) and eqn. (7). The number of nodes can be determined by using the desired

accuracy to find the number of elements needed to reach this accuracy. There are 38 numerical

operations per time step per node for the FEM.

The discretized equations of motion for the MSLM are

t+At u,, - 2 'ui,, + '-^'Ui,= (+ p+tu

P- (A&t)2 h h2 u,,,,Q -2 ui,,j u-

+ 2 (u,+1, ,+'ui 1 ,_,_ +u,,j1 +'ui1 ,1 +1 -4'u,1 ) (37)

+ 4h2  ('v,,,+ 'v,_ _ 'i+Iv

t+tvi, -2' vi, +'t-^' vi, (t + ij, p2v~ ,'P+ (At) 2  = h2 vv1  -2 +

+ ('v, +'vi, _ + ,+ ' v +'v,_ l -4'vi,) (38)

+ 4h2  ui+,j+ '+ ,_,1- u ,- u

There are 34 numerical operations per time step per node for the MSLM. Figure 18 is a

plot of the number of FLOPS per S-Wavelength required for 1% phase speed error for S-waves

as v varies from 0.0 to 0.5 angle of incidence 6 =45*.
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Figure 18. Number of FLOPS per S-Wavelength required for 1% phase speed error for S-waves as v varies from 0.0

to 0.5 angle of incidence 0 =45'.

Determining the FLOPS for the MSDLM is more difficult, since the integration method

used is a fourth order Runge-Kutta. Once the number of numerical operations is determined by

examining eqn. (36) and eqn. (37), that number must be multiplied by four. Some computational

savings are found since the MSDLM requires a Courant number of 1.3. This larger Courant

number leads to a larger time step, therefore, there are fewer nodes in the model. The stress-

dynamic equations for the MSDLM are
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2 \-ui+,j - i,j + (i-Mj
dt T & 2

+ r(ui+,j+ i-,j- + i+,j-+1 i--,j+l i,j/

+r( - M)-
+ 2 (i+ 1,j+1 + i-,j-1 i+,j-1 i-1,j+

4t2 (40)

+ H 2 M (i+ - 2i +i-

M ( + + + + _,+ -4)

+ -M. . .+ 4h2 i+l,j+l + i-1,-~,j-1 j -1 E-,j+l,

+_ - (41)*

2 \ -i,j+ -i,j 4,j- dt p rh

2rM2

" \ - i+lj+ i-I,j-1 bi+z,j- fi-),j(I4442 +,j -,- +,- -,+ (40)

+ T h 2 M (i,j+l - 2*in - v )~

+M

'u', = d~i (41)
dt

''', = *in (42)
dt

-zi (f x + f x (43)
dt p iJ ~

'''j~ = (fbz + fz (4
dt =p i.* ij(4

There are 288 numerical operations per time step per node for the MSDLM. Stress-

dynamic equations are used for the MSDLM to account for changes in volumetric forces. These

forces must be included for the stress relaxation mechanism in the MSDLM.
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The surface stress-dynamic equations for the MSDLM and the equations of motion for

the FEM and the MSLM are different from the interior equations. For most engineering

problems, the number of surface particles is minuscule compared to the number of interior

particles and so are neglected in this study. The computational cost of a four-node FEM is

approximately the same as that for the MSLM. The computational cost of the MSDLM is on the

order of 5 times greater than the cost of the FEM and MSLM.

Conclusions
Finite element, mass-spring lattice, and mass-spring-dashpot lattice models are powerful

numerical simulation tools. For modeling elastic materials with Poisson's ratio between 0.0 and

0.2, the mass-spring lattice model has the lowest computational cost for phase speed error less

than 1%. For modeling elastic materials with Poisson's ratio between 0.35 and 0.45, the finite

element model is more accurate but costs just slightly more than the mass-spring lattice model.

For modeling materials with attenuative properties, the MSDLM is more accurate but is nearly 5

times more expensive than the finite element model. Both the FEM and MSDLM model

attenuative materials accurately.
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APPENDIX A - Derivation of the indicial notation for the 4-node finite
element model

The finite element method (FEM) is a widely used tool in engineering analysis [A. 1]. The

four-node element is one of the simplest, but it is still a powerful and useful tool in the solution

of practical engineering problems. In this appendix, a plane strain isotropic medium having

mass- proportional damping is discretized.

The equations of motion in the interior of a plane strain isotropic medium having mass-

proportional damping is expressed in Cartesian coordinates as

2U a2u a2v a 2u p au
P 2 =(A +2p) 2 + (A + p) + (A.1)

ax axy y at
a2 aX2 2~ + 2

a2 V a2V a2U ___ (A.2
p_ = (A +2p) + (A~ + p (A.2)Pa~V~~ Y axay ax 2 atat 2 a22

where p is density, u and v are horizontal and vertical displacements, respectively, A and p are

Lame elastic constants and r is a characteristic time.

The corresponding elemental equilibrium equation for a lumped mass element can be

expressed in matrix form as

M +AI (el) -2' U(el)+tAtU(eI) + I (el) t+A+ - (el) tA(el)+ K(el)u el) F (el) (A.3)
(At) 2  r 2At

where Mel) is the elemental mass matrix.

I

1

M (el) = ph 2  1 (A.4)
4 1
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and 'V(e') is the elemental displacement vector

I (e) _

tU

t U
2

t U
3

t 
4

V
1

V
2

V
3

V4

(A.5)

A schematic of a square four-node element having grid spacing h is shown in Figure Al.

3

F-

y, VA

x ,

4

h

Figure A 1. Schematic of four-node element.

The elemental stiffness matrix K ") may be calculated as

K(el) = f f B(el)T C B(e)B(e)dxdy

h

(A.6)
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H(el) is the displacement interpolation matrix for a four-node square element i with sides of

length h

He') = h
10

h2 h3 h4  0 0 0 0
0 0 0 h h2 h 3 h4

where

I 2xh, =.-Ci+-7J1i
h 4 h

12x
h2 = - h 1

4 h

(A.8)

(A.9)2y)

(A.7)

h3 = I ( _ (A.10
4 h h

h4 = - (+ 1 (A.11
4 h 2h

B (e) is the corresponding strain-displacement matrix corresponding to the local element degrees

of freedom, given as

hB,)
B (el= 0

_h,,

h2,x h3j h4j 0 0 0 0

0 0 0 h1 , h2,, h3, h4 ,

h2,, h3 , h4,y h1 , h2,x h3 h4,x

(A.12)

where
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1+2 J
2 h

hI ! C ( Y2(A.13)2 h

1+ 2

h2,x = h h (.4

2 h

1-2-

1h

h -1 ( (A.16)
2 h1+2-

1h

h4,y I (C_+22 (A.216)
2 li

hie r (2 j (A.17)
2 h

1-2-
1h

h2,y = 2 h A.8

-2 h

h3,y = 2) h(.19)

-2 h

h4,= 2 h (.0

C' is the generalized stress-strain matrix for isotropic materials subject to plane strain

conditions, given as

A+2p A 0

C' =el A A +2p 0 (A.2 1)

0 0 P_
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The elemental K matrix is

K(el) =

k3  k4  k5  k6  k7  k8

k4  k3  k8  k7  k6  k5

ki k2  k7  k8  k5  k6
k k6  k5  k 8 k7

k k4  k3  k2

k k2  k3

ki k4

where

ki 1 A + p
3

k2 = p
3 2

k3 = - -
6

k4 = -2
6

2

k5 = IA+ Ip
4 4

k6 = AI p
4 4

k7 = 4- I A p
4 4
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(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)



k8  1
k - -A +-p

4 4
(A.30)

Interior Element

Through careful examination of the matrices centered at (ij), the global degrees of

freedom can be identified through use of the local degrees of freedom and the matrices listed

above.

h

h

i-1,]-1

L

A U

w

h

pp

h

Figure A 2. Interior elemental matrices centered at position (ij).
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The four-node finite element discretization of eqns. (A. 1) and (A. 2) yields the following

equations written in component form at position (ij) and time t.

+ t+At U.) 3_2i t u +.u1 , -2tu , 1 )h

12+1
T2 (,it~ + I tj, 2 i

h

+ 6 2 +(tt +1 +11 1 , -4'u ,)

+ 4 h 2 4 ( v. 1*1 l-I il~~ It. 1  vi-j 1  -ti],

P 1 
( -vt-AtU + tvAt U

z- 2At

PAt

h 2 i+ 1j i-i,]

ht+Ay ( 3h,2+1 vij - 2v )

-2tv, 1 )

I A + I
+ 6 2 2P+ v +'v, +'vi1,j+_ -4'v )

+ h4 2 4 ui ~ ~ - ui~~- + ui_,_ _u )1j

P 1 (1-Atv. + t+A v
-r 2At

where At is the numerical time step.
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(t-At vi, -2 v.,



Surface Element

Through examination of the matrices centered at (ij), the global degrees of freedom can

be identified through use of the local degrees of freedom. A two-dimensional schematic of the

FEM discretization of a plane strain elastic solid along a traction boundary is shown in Figure A

3.

h

A

F

y, v

xui-1j

h

boundary face

i~i

F!

Figure A 3. Schematic of a surface element centered at (i,j).

The corresponding equations of motion are
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2t-At t+At )t-At u + t+At +, 3,+I ( + t t
A r 2At h

2 

( Uijt _1 U i~ lj-
h

+h2 Q - v+tUi+j- -2u-)

+ 2 h2 2 r( tjvi' -I'v- 1 21 h 2 2t ViI' )tVi

1t-2,j 
r 2At j

2 \ i-,jvi+,j -2'v,j)

h
+ 2 (t~i, -+tvi+11j-1 -2'v )

I2 I
+ 2 211t 1-u h 2 2 (tu tu)

Where At is the numerical time step, and uj, and vi, are the horizontal and vertical displacements,

respectively.
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APPENDIX B - Dispersion Relation/ High frequency assumption
In order to make numerical analysis of elastic wave phenomena possible, assumptions

concerning the dispersion relation and frequency of the wave must be made. In this appendix, the

dispersion relation for a material having mass-proportional damping is derived.

Equilibrium equation

The equation of motion for a one-dimensional material having mass-proportional

damping is

EaU 2 a a

ax + at C2  (B.1)

where E is the governing elastic constant, u is the displacement, p is the density, and r is a

characteristic time.

Consider a propagating harmonic wave having the form

u(x,t) = U~e-"+i(->t) (B.2)

where U is the peak displacement, a is the attenuation, k is the wavenumber, and o is the radial

frequency.

Solving for the partial derivatives yields

a2 2 = U 0 (a 2 -k 2 + > - U0 (2aik)e -+ika (B.3)

11lt = UOicte-cf+'(kx-"> (B.4)

a2u at2 = -UCO22e-c+ika) (B.5)

After substituting eqns. (B.3) through (B.5) into eqn. (B.1) and simplifying, the

dispersion relation becomes
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E(a2 -k 2 )pco 2 = E(2aik) - ico

Separating the real and imaginary parts of eqn. (B.6) yields

E(a2 -k 2 )+pCo 2 =0

E(2aik) - --io = 0
T

Solving eqn. (B.8) for the wavenumber yields

k = P o
zE2a

Substituting eqn. (B.9) into eqn. (B.7) yields

2)

E a2 _ (
a L+ CO2 = 0

P

Let

S= Cmax
p

Multipyling eqn (B. 10) by a2 and substituting eqn. (B. 11) into eqn. (B. 10) yields

4 2 2a2
a- 4

2A 4 + 2=0
Cmax
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(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
T 4cmax



Solving for a2 yields

a 2 CO -+ I+1
2C max l2 2- a ))

Substituting eqn (B. 13) into eqn. (B.7) yields

k2=W 2 2 +

2cmax2

At high frequencies,

k -'
Cmax

1
a-

2 cmax T

At low frequencies,

k

1+ j2

1

2vc max

a -+
2a2
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(B. 14)
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(B.16)

(B.17)
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APPENDIX C - Lamb's Solution
This appendix summarizes Lamb's solution for surface displacements due to surface

excitation [C-I]. Consider a normal point line source, having peak magnitude Q and temporal

variation q(t), acting at the origin of a half-space (y<O) having Lame constants A and u, and

density p.

For x < 0 the horizontal and vertical surface displacements, u and v respectively, are

Q Q 2* s 02-s -L2 ST _2
Q Hq(tsT T 2 q(t- Ox)d (C.1)

II PZS,(20 2) 1604(02 -SL2S T _02)

Q 1 sT2 (202 -ST2 W2 -SL2 q t_9x)d
f (202 2Y +164(02 ~ 22 2)

S S 1 L XT -2(C.2)

+Q 1 fsT 2 -sL -q(t - OxcdO
A sT22 -sT -4 L 2 s2  T

where sT is the transverse wave slowness (inverse wave velocity) given by

ST = (C.3)

SL is the longitudinal wave slowness given by

sL (C.4)
S+ 2p

sR is the Rayleigh wave slowness given by the real root of the equation

(2sR2 ST 224SR2 2SL S =0 (C.5)

Also,

H =L 5 R sT (C.6)
F
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where

4 -2ss2 sR L3( S T 4sR ~ 4,R5  4sR3  R ~sL2 5R2 7ST -8ST 2SR (C

s2 ~S2 R2 T2
SR SL ISR ST

P in eqn. (C.2) denotes the principal value of the integral [C-2]. A non-integrable singularity

exists at 0= sR and the integral must be defined as

b 'C-6 b

P f(#4 = Jim ff( )d + ff( )dj (C

where a<c<b and the non-integrable singularity exists atf(c).

The surface displacements for x<0 are given by replacing (t - ;x) with (t + 4x) in eqns.

(C.1) and (C.2) and reversing the sign of the horizontal displacements in eqn. (C.1).
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APPENDIX D - Penetration Depth
Let the penetration depth Q of an attenuative material be the number of wavelengths required for

a cyclic input signal to decrease in amplitude to e-" where a is the attenuation and x is the

distance.

e-aQA = e-n (D.1)

where A is the wavelength

aQA = rc (D.2)

Q = '' (D.3)
F a A

For a standard linear solid [Dl] having a relaxation time r , under the frequency assumption

COr >> (D.4)

where co is the circular frequency. Frequency-independent attenuation is

1
a =

2-c

where c is maximum phase speed. Recall,

c = Af

where f is cyclic frequency. The relationship between co andf is

co= 27f

therefore

(O
f= -

Substituting eqn. (D-5) into eqn. (D-3) yields

ff2rc -
=. Q

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

Substituting eqn. (D-6) into eqn. (D-9) yields
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;r21f = Q (D.10)

Substituting eqn. (D-8) into (D- 10) yields

rc = Q (D.11)

Recall,

CO
c=- (D.12)

k

where k is the wavenumber. k can be rewritten as

k= O I+ + (D.13)
-cmax

The phase speed error between the exact solution and the numerical approximation can be

written as

error = c - max (D.14)
C max

Substituting eqn. (D-12) into (D-14) yields

(O

error = k m (D.15)
Cmax

Substituting eqn. (D-13) into (D-15) yields

error = 1 1+ I+ 2 -I (D.16)

Figure D 1 is a plot of the error with respect to cor. The error decreases as the frequency

increases. As wor increases, Q increases. Therefore a material having a high penetration depth,

which is equivalent to a low attenuation, is modeled more accurately.
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Figure D 1. Phase speed error as a function of cor.

Error in attenuation

Attenuation may be written as

a = O -+ 1 + IT 2
r al tmeca22lJ

recall that numerically

_1
amax~

2rcmax

The error between the exact and numerical attenuation can be written as
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error = amax -a
amax

Substituting eqn. D- 18 and C-19 into eqn. D- 17 yields

error =1I-Fir{-1+ 1+ 2

Figure D 2 is a plot of the attenuation error as a function of cor. As Cor increases, the error

decreases.
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Figure D 2. Attenuation error as a function of cnr.
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If a material is attenuative, its penetration depth decreases. Since penetration depth is a

function of wcr , the frequency decreases as well. This decrease in frequency causes errors in

phase speed modeling.
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