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Abstract

Reliable sonar perception is a prerequisite of marine robot feature-based navigation.
The robot must be able to track, model, map, and recognize aspects of the underwater
landscape without a priori knowledge. This thesis explores the tracking and mapping
problems from the standpoint of observability. The first part of the thesis addresses
observability in mapping and navigation. Features are often only partially observable
from a single vantage point; consequently, they must be mapped from multiple vantage
points. Measurement/feature correspondences may only be observable after a lag, and
feature updates must occur after a delay. A framework is developed to incorporate
temporally separated measurements such that the relevant quantities are observable.
The second part of the thesis addresses observability in tracking. Although there
may be insufficient information from a single measurement to estimate the state of a
target, there may be enough information to observe correspondences. The minimum
information necessary for a dynamic observer to track locally curved targets is derived,
and the computational complexity is determined as a function of sonar design, robot
dynamics, and sonar configuration. Experimental results demonstrating concurrent
mapping and localization (CML) using this approach to early sonar perception are
presented, including results from an ocean autonomous underwater vehicle (AUV)
using a synthetic aperture sonar at the GOATS 2002 experiment in Italy.

Thesis Supervisor: John J. Leonard
Title: Associate Professor of Ocean Engineering
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Chapter 1

Introduction

It looks like a torpedo, but this device doesn't explode. It searches for
mines and other objects that do. The Woods Hole scientists who built
it over the course of ten years dubbed their handiwork REMUS, for Re-
mote Environmental Monitoring UnitS. In their first-ever use in hostile
waters, the undersea drones were used as part of a team that helped to
clear mines from the Iraqi port of Umm Qasr, according to the US Office
of Naval Research. Their success allowed 232 tons of badly needed food,
water, blankets, and other supplies to reach Iraqi civilians over the week-
end. ... Before REMUS is put to work, two sound-emitting transponders
are placed in nearby waters and their positions set by portable global
navigation devices.

"Undersea drones pull duty in Iraq hunting mines", Jack Coleman,
Cape Cod Times, 2 April 2003.

1.1 Why Marine Robots?

Few environments justify mobile robots as well as the ocean. Ocean exploration

is hazardous and expensive - robots costing hundreds of thousands of dollars can

pay for themselves in weeks. This thesis investigates feature-based navigation in

which the goal is to enable an autonomous underwater vehicle (AUV) to build a map

of an unknown environment while concurrently using this map for navigation. This

capability is anticipated to significantly increase the autonomy and reliability of AUV

operations for a wide range of ocean applications.

20



Figure 1-1: The REMUS AUV, developed by the Ocean Systems Laboratory of the
Woods Hole Oceanographic Institution (Courtesy of Timothy Prestero).

As illustrated by the successful deployment of REMUS in the Second Gulf War,

the field of AUV research has advanced dramatically over the last decade. Other

successful recent AUVs include the Odyssey class of vehicles (Figure 1-2), developed

by MIT Sea Grant, and the Autonomous Benthic Explorer (ABE), developed at the

Deep Submergence Laboratory of the Woods Hole Oceanographic Institution (Fig-

ure 1-3). Ten years ago, these vehicles were being placed in the water for the first

time [11, 95, 84]. Today, these AUVs are highly capable and reliable platforms, and

many new applications are coming to fruition. Many difficult research issues, however,

still remain.

Deep sea exploration is expensive and dangerous. Ocean vessels typically cost

$25,000 per day to operate. Any device that can shorten the time needed to ac-

complish a mission will save money. Ocean exploration is dangerous. Manned sub-

mersibles are subjected to environmental extremes unseen in other applications and

require expensive life support systems. Underwater construction using compression

21

. ... ...... .... .. .. .. ........ ...



Figure 1-2: Top: MIT Odyssey IIb autonomous underwater vehicle with outer, free-
flooding hull opened, exposing payload pressure spheres. Bottom: MIT Odyssey III
autonomous underwater vehicle shown during the GOATS-2002 experiment (NATO
SACLANT Research Centre).

22
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Figure 1-3: The Autonomous Benthic Explorer (Courtesy of Albert Bradley).
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diving and exotic gas mixtures is risky. The use of robots potentially allows us to

avoid these risks and expenses.

For instance, towed sonar sleds are often used for deep sea surveying [45]. To tow

a sled at a depth of several kilometers, a significantly larger amount of cable needs to

be used since drag dominates the tension. While the drag of the sled is insignificant,

the drag of the cable dominates. A ship dragging a ten kilometer cable can take up

to twelve hours to turn around, at a cost of roughly $10,000 per turn. An untethered

survey robot can turn around in a fraction of a minute, and many robots can be

deployed by a single ship.

Oceanographers are interested in the temperature and salinity of ocean water

as a function of depth. Seawater density drives ocean flows. Assuming that the

density of seawater will vary inversely with temperature is often inadequate. As it

warms, seawater expands, reducing its density. However, at the surface evaporation

takes place, increasing the salinity and density. These two conflicting mechanisms

make ocean flows unstable [97]. To estimate ocean flows, oceanographers gather

conductivity, temperature, and depth (CTD) data. (The salinity is determined by

the conductivity.) A typical ocean survey uses a system of cannisters lowered on a

cable. At each relevant depth, a cannister opens and gathers water. This sort of

survey typically takes four hours.

The Flying Fish [16] AUV was developed to expedite such surveys. A streamlined

vehicle without a propeller, the Flying Fish is driven entirely by buoyancy. Initially

it has a chunk of lead in the nose and dives at 9, sampling water on the way down.

Once the vehicle reaches its bottom depth, the lead is released, and it surfaces at 91.

Using a unique recovering mechanism (it is snagged by a second robot), this AUV's

entire mission can be completed in forty minutes.

Manned exploration of the deep sea is expensive in part due to the necessity of life

support systems. First, the pressure makes the environment extremely challenging.

In space, the difference between the inside and outside pressure is one atmosphere, or

roughly 100kPa. Moreover, the pressure vessels are typically in tension. Underwater,

a "full ocean depth" vehicle has to withstand a compressive load of 600 atmospheres,

24



or roughly 60MPa. By convention, 6000m is considered full ocean depth, and a vehicle

designed for 6000m will be able to access the vast majority of the ocean. However,

when the Trieste bottomed out in the Marianas trench, it was closer to 11, 000m,

or a pressure of lIOMPa. Since these are compressive loads, pressures that a vessel

might withstand in tension can cause a buckling failure. To avoid buckling, spherical

pressure vessels are often used. The manned submersible Alvin has a 2m diameter,

four inch thick titanium sphere which has a limited fatigue life.

Near hydrothermal vents, water temperatures are high enough that, in the absence

of light, the rocks glow red hot. The water exiting the vents is hot enough to melt

the windows of Alvin.

A submersible can become entangled in seaweed, trapped under an overhang,

disabled due to a battery failure, or lose its life support systems. Once, Alvin came

under attack from a swordfish. The safety record of manned ocean exploration is a

testament to the engineers who design and maintain the craft. However, this comes at

a price, and clearly there is a strong rationale for unmanned exploration with robots

Even at a cost of hundreds of thousands of dollars, a robot that can save the

user $10, 000 every time it turns around can be economically justified. A robot that

saves thousands of dollars per CTD survey and dive multiple times per day can be

economically justified. A robot which spares the user the costs associated with saving

or losing human lives can also be justified. A tremendous amount of money is spent

on ocean exploration, and what would seem an outrageous sum for a land robot is a

sound investment in the marine community.

1.2 Enabling Technologies

There are a multitude of problems that must be solved for marine robots to become

pervasive. Five key marine robotics research areas are power, locomotion, navigation,

perception, and cognition.

Power consumption and energy source design are critical to any deployment.

Robots should be designed to minimize the hotel load (the non-propulsive power

25



draw) and travel at a velocity that optimizes range [15]. Batteries or alternative en-

ergy sources such as fuel cells need to be developed to provide the greatest neutrally

buoyant energy density [79, 1].

Locomotion is another serious design issue. The dynamics of a robot depend

substantially on the design goals. An AUV such as REMUS [89] that is designed to

perform sidescan sonar surveys could have a simple, streamlined design. An ROV

like JASON [7] that manipulates objects, such as amphora, might be better designed

as a hovering vehicle.

Navigation is a chronic underwater problem. GPS is unavailable because wa-

ter quickly attenuates electromagnetic signals. Inertial navigation systems drift over

time. Dead reckoning leads to unbounded error. The best solution is to use a cali-

brated network of underwater beacons. This is how REMUS and most other AUVs

navigate today. The use of beacons increases the cost and reduces the flexibility of

marine robot deployments. The ultimate goal for our research is for robots to navigate

relative to distinct aspects of terrain.

Navigating relative to terrain will require substantial advances in the fourth key

marine robotics research area: perception. Perception is the process of transforming

sensory data into higher level representations, or constructs. Simple examples of

perception include triggering on signals that exceed thresholds and rejecting spurious

measurements. High-level perception typically concerns object recognition and may

involve comparing high-level representations to other high-level representations. This

thesis will examine methods for processing sensory data towards the ultimate goal of

terrain based navigation.

Cognition is the final, and perhaps least explored, marine robotics problem. Given

that a robot has the perceptive capacity to develop an understanding of its surround-

ings, it would be desirable for the robot to autonomously achieve some broader goal.

Most marine robots are either directly controlled by people (such as ROVs) or are

preprogrammed to follow specific paths (survey vehicles such as the Odysseys, Ocean

Explorer, ABE, and REMUS). With the development of cognition, it will become

feasible to consider a richer variety of robot-feature interactions. We could consider

26



having robots perform minor tasks such as picking things up or repairing or building

simple structures.

The generic oceanographic array technology sonar (GOATS) concept, illustrated

in Figure 1-4 [83], provides a compelling vision for AUV technology development.

The overall goal is to enable networks of many AUVs to rapidly survey large areas

and to detect and classify objects in real time.

1.3 Thesis Goals

This thesis concerns feature-based navigation. At the most primitive level, the

feature-based navigation problem can be broken down into: 1) finding features, 2)

building a map of features, and 3) recognizing features. Finding and recognizing fea-

tures using sonar has received little attention in the robotics literature compared to

the equivalent problem in vision. The first part of the thesis develops a framework for

mapping partially observable features. The second part of the thesis develops meth-

ods for early tracking of features. Object recognition is left for future work. For the

purposes of this thesis, grouping measurements based only on measurements, without

knowing what the target is, over extremely short time scales, will be considered early

tracking or correspondence. Recognizing targets after prolonged periods without ob-

servations will be considered object recognition and will be left as future work. This

thesis will be restricted to very short time scales on the order of ten seconds.

We want robots to navigate. We want to send them places, have them get there,

and have them return successfully. We would like them to explore environments,

find noteworthy things, come back, and either tell us how to get to those things or

return to them themselves. On smaller scales, we would like for robots to develop an

understanding of an environment so they can maneuver around obstacles, manipulate

objects, and perform other high-level robot/object tasks.

Some robots possess some of these capabilities. Using GPS or inertial navigation,

robots have been able to visit predefined areas. Using homing beacons or predefined

targets, some robots have returned to areas and docked. Obstacle avoidance tech-
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Figure 1-4: The generic oceanographic array technology sonar (GOATS) concept.
The vision of GOATS is to enable a network of multiple AUVs to perform rapid
detection and classification of proud and buried targets over large areas using multi-
static acoustic sensing.
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niques have been developed for collision avoidance. Industrial robots have performed

manipulation tasks in highly controlled environments, but what we want goes further.

We want robots to enter environments and use their sensors to develop true situa-

tional awareness. We want them to do this without external beacons or homunculi.

We want feature-based navigation.

The goal of feature based navigation just leads to more questions. What does it

mean for a robot to be situationally aware? How should it use its sensors to develop

an understanding of its environment? How does this depend on the environment?

Are these goals achievable?

For the purposes of this thesis, we will restrict situational awareness to simply

understanding environmental geometry. In other words, the robot has to understand

where things are well enough to get around. This is still very open ended, as no

specific environmental representation has yet been chosen.

The perception problem, or how the robot should use its sensors to build an

understanding of the world, is arguably the toughest problem in robotics. The world

is ambiguous, partially observable, cluttered, complicated, and dynamic. What is

required of perception, and hence the form of the instantiation, depends significantly

on the selected world representation.

Conventional undersea sonar data interpretation is based primarily on an imaging

paradigm. The goal is to utilize as narrow beams as possible to attempt to create

sharp pictures that a human operator can readily interpret. For example, Figure 1-5

shows a 500 kHz sidescan sonar image for a set of undersea targets observed during

the GOATS 2002 experiment. Figure 1-6 shows data from a 675 kHz Imagenex

mechanically scanned sonar taken in a tank. Each of these sensors has a beamwidth

on the order of 1 degree. While these images display some acoustic artifacts, such as

multipath in the tank sonar image, a well-trained human operator can clearly make

some inferences about the structure of the scene being imaged.

Part of the rationale for the design of imaging sonars is to get as few pings as pos-

sible on a given target. Then, using many pings obtained systematically over a given

area, one can create a picture. However, if we look at the design of biosonar systems,
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Figure 1-5: A sidescan image of targets observed during GOATS 2002 using a Klein
DS5000 500 kHz sonar system. The narrow beams of the Klein sonar provide images
in which the shadows cast by objects are clearly visible. (Image courtesy of GESMA.)
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A

(a)

(b)

Figure 1-6: (a) Imagenex 675 kHz mechanically scanned sonar. (b) Sonar data ac-
quired with this sensor in a testing tank. The tank is roughly three by three meters
in dimensions with four cylindrical posts protruding upwards at several locations in
the tank.
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Figure 1-7: A bat chasing a moth (from [4]).

we see a divergence from the way that man-made sonar systems are developed.

A motivation for the approach that we follow in this thesis comes from the remark-

able sonar capabilities of dolphins and bats [4, 2]. In contrast to man-made imaging

sonars, bats and dolphins employ wide beams. They also utilize dynamic motion

strategies when investigating and tracking targets. For example, Figure 1-7 shows a

bat attempting to capture a moth. The motion of the bat clearly differs from the

way in which a man-made sonar sensor is typically scanned through the environment.

The question of how to exploit dynamic motion control for echolocation with a wide

beam sonar has not received much attention in the the undersea robotics community.

This is one of the key questions that we consider in this thesis. Can we use a wide

beamwidth to advantage? Is it possible to maintain contact with features so that we

can continually use them as navigational references?
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1.4 Thesis Outline

This thesis has two parts. The first develops a framework for mapping and navigation,

creating an explicit infrastructure for delayed perception and mapping of partially ob-

servable features. The second part investigates how to perform early sonar perception.

By early sonar perception, we mean the initial tracking of features, prior to modeling

and object recognition.

Chapter 2 reviews prior work in mobile robot navigation and mobile robot sonar

usage. Chapter 3 develops stochastic mapping with working memory, a new frame-

work for mapping and navigation in situations with partial observability. Chapter 4

develops an early correspondence technique based on the minimal information nec-

essary to track locally curved objects. Chapter 5 presents results from the GOATS

2002 AUV experiment. Finally, Chapter 6 provides a summary of our contributions

and makes suggestions for future research.
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Chapter 2

Problem Formulation

This chapter formulates our approach to the problem of feature-based navigation

using wide beam sonar. We begin by discussing the task of choosing a representation

for navigation and mapping. We proceed to review the feature-based formulation

of the concurrent mapping and localization (CML) problem, the approach that we

follow due originally to Smith, Self, and Cheesemman [87]. After discussing some of

the open issues in CML research, we proceed to formulate our approach to the sonar

perception problem. We discuss relevant work in computer vision, such as optical

flow, that inform our investigation of widebeam sonar perception for feature-based

navigation. The principle of natural modes [81] serves as a guiding principle for

developing percerptual models.

2.1 Representations for Navigation

It is necessary to identify and define the parameters of successful robot navigation.

For instance, suppose we want to send a robot to an arbitrary location. How should

it proceed, and how will it know that is has gotten there?

If the distance to be travelled is short, the robot could use dead reckoning [12]. By

estimating its heading and velocity, the robot can estimate its position, maneuvering

until it believes it is at the final location. Typically, when dead reckoning, the robot

uses a model of its dynamics, its control inputs, and measurements such as heading
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a compass or gyro and velocity from a Doppler Velocity Log (DVL). Unfortunately,

when the robot dead reckons, errors grow with distance travelled and time. An

inertial navigation unit could be used to reduce the error growth rate [56], but inertial

navigation also results in unbounded error growth.

For long transits, in which dead reckoning and inertial navigation are insufficient,

the robot will need to use external information. We need to define what external

information is required, and how the robot should use that information. This leads

directly to the heart of the feature-based navigation problem; the choice of a represen-

tation. There are two major forms of feature based navigation: procedural navigation

and globally referenced navigation.

If procedural navigation is used, the robot transits from place to place without

knowing where it is globally (ie having its position defined in a coordinate system).

Instead, it uses an ordered set of instructions. Navigation is decomposed into behav-

iors and cues. For instance, the following are directions, taken from an (uncorrected)

e-mail for how to get to an MIT laboratory.

NW13-220 You can get in either by showing your ID at the front door of
the reactor and heading up the stairs then down the hall make a right,
through the doors and my lab is right there, my office is inside or by going
in NW14 up the stairs down the hall a bit first left through the red doors,
all the way down the hall through another red door, then another, right
down the hall first left and my office is right before you get to the grey
doors.

Such instructions presuppose high-level object recognition such that one can rec-

ognize "the red doors" in order to turn left through them.

The advantage of this approach is that by decomposing navigation into paths and

cues, if one can recognize the cues and stay on the paths, then navigation is fairly

assured. Similar approaches have been used nautically. River navigators cannot stray

from their path, ignoring obstacle avoidance issues (trees and sandbars can be par-

ticularly hazardous) a navigator only needs to recognize when they approach the

appropriate city [26]. Navigation along coastlines proceeds similarly. Polynesian nav-

igators [64] travelled between islands using "star paths". By steering at the location
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where a sequence of stars appeared on the horizon, they could maintain a constant

heading and steer towards a distant island. For landfall, birds were observed at dawn

and dusk. At dawn, birds would fly out from shore to feed, at dusk they would fly

home. The heading of the birds defined a path to the island.

Consider a second example:

Hugh Durrant-Whyte: Where's the bathroom?
John Leonard: It's left, then another left, and on your left. Do you
want Rick to show you?
Hugh Durrant-Whyte: That's ok, I'll find it, it's left, left, and then
left?
(10 minutes pass)
Hugh Durrant-Whyte: Now how do I get to the airport?

Clearly, Durrant-Whyte's trip to the bathroom takes advantage of substantial

prior knowledge, but it is a very procedural trip. Leonard does not provide a globally

referenced bathroom position; rather he provides a set of instructions. Given sufficient

perceptive and cognitive capabilities, including some prior knowledge of hallways and

bathrooms, one can parse the instructions and arrive at the desired destination. One

might wonder about the phrasing of the questions. In the first, he asks "where",

in the second, he asks "how". Perhaps for things that are very close, a vectorized

approach is occasionally sufficient, but for distant objects, a procedural representation

is necessary. Or perhaps we have over analyzed his diction.

Examples of procedural navigation in robotics include the behavior based navi-

gation of Mataric and Brooks [18], the cognitive mapping of Endo and Arkin [31],

the semantic spatial hierarchy of Kuipers [55], and the usage of generalized Voronoi

graphs by Choset [24] .

Mataric and Brooks [18] developed a robot that navigated based on its reactions

to the environment. The robot had behaviors such as obstacle avoidance and wall

following. By establishing sequences of behaviors that resulted in the robot being in

specific locations, a sort of robotic portolan [26] was established.

Similarly, Endo and Arkin [31] created a cognitive map, which includes both

spatial and behavioral information. The goal was to create a representation that
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adequately represented the information needed to move between locations.

Choset [24] used a Generalized Voronoi Graph (GVG) for navigation. The GVG is

essentially a set of points that are equidistant from the closest objects. In the planar

case, a sort of lattice with curves is generated. The nodes of the GVG are of special

importance, for they define locations where numerous objects are equidistant. Once

a GVG is defined, localization can occur simply by knowing which nodes the robot is

between.

Globally referenced navigation differs from procedural navigation by representing

the robot position in terms of globally referenced coordinates. Such coordinates could

be latitude and longitude or a locally referenced coordinate system. The robot maps

terrain, and by reobserving terrain estimates its globally referenced position. Some

of the key questions include how terrain should be modeled, how the terrain should

be mapped, and when terrain is reobserved, how that information should be used to

improve the robot's estimate of it's locatoin?

Hybrid metric/topological representations, consisting of a network of places or

submaps, have been successfully exploited for mobile robot navigation and mapping

by a variety of researchers including Kuipers [55, 54], Gutmann and Konolige [40],

and Thrun [91, 94].

Arguably, one of the most successful feature based navigation approaches is the

globally referenced grid based approach of Thrun [91]. Using a combination of oc-

cupancy grids and particle filters, Thrun estimates the true probability distribution

of measurements, which is in turn used for navigation. However, discrete features

are not represented, so it is unclear how this scales to higher level operations such as

manipulation.

An alternative approach, termed "stochastic mapping" after a seminal article

by Smith, Self, and Cheeseman [87], breaks the world down into discrete modeled

features. By combining reobservations with an extended Kalman filter, measurements

of objects are used for navigation. This is the approach that we follow in this thesis.

In the next section, we review the stochastic mapping approach and illustrate it with

a simple two-dimensional example. In the following section, we discuss some of the
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active research topics in the field of CML today, such as the map scaling problem and

the data association problem.

2.2 Stochastic Mapping

Stochastic mapping is a feature-based, Kalman filter based approach to mapping and

navigation relative to a global reference that was first published by Smith, Self, and

Cheeseman [87] and Moutarlier and Chatila [70].

The stochastic map consists of a state vector x and the covariance P. The state

vector x[kIk] contains the robot state x,[kIk] and the feature states xf[k k]. We use

the variable k to represent discrete timesteps.

x[klk]- Xr[kjk] 1(2.1)
xf [kI k]J

For a two dimensional example, a robot's state could be its x and y coordinates,

its heading 6, and its velocity u

Xr[klk] =

Two point features, xf, and xf 2 , would be

Xf[klk] [
xf2 [k 1

In this case, xf[kIk] is the vector of features

vidual feature vectors.

The state vector describing the map wou

Xr

Yr 
(2.2)

Or

described by their respective coordinates

Xf1

(2.3)

Yf 2

and xf, [k k] and xf 2 [k k] are the indi-
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Exr[k~k] 1
x[klk] = j I

xf[klk]

Xr[k~k]

Xf, [k k]

X1f 2 [klk]

Xr

Yr

Or

U

xf,

Yf1

Xf2

(2.4)

The covariance P, which describes the uncertainty in the state vector, would be

p[Prr Prf
[Pfr Pif J

For the described two dimensional world, the covariance would be

(2.5)

[Prr PrI

-Pfr Pff

Prr

Pfir

Pf 2 r

Decomposing the robot covariance would yield

2
X~r, UXrYr 0*XrOr UXrU

%rr 2
Yr Xr ayr Uyr Or (-yr U

Or-r Xr JOr Yr 27

9Uxr (TUYr (7U~r

JOinU

2
ou

Similarly, the decomposed state covariance would be
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2
X 2 U U7rrOxrOr UXU QVxrx 1 X~ 0 UrYf1 XrXf 2 CrvrYf 2Xr r rYr r O rU orf or a (y

yrzr Y r 
0

yrU dYrXf 1 YrYf 1 YrXf2 GYrYf2

Orrr U0ryr U, U (7OrXfl UOr Yf 1 rOrXf2  UOrYf2

r UXr UYr CUOr dU JUXf1 GUYf 1 UUXf 2  Uyf2
Prr = r~ .X rf1Y 7fO rfU ( (2.8)

~Xlr Xl~ j.j~r
0
f1 ~Xf1 07Xf 1Yf 1 rXf 1Xf 2 rXf IYf 2

f 1Xr rYf1Yr UYf1 Or CfiU Yfi 1 f 1f %fif2 U2fyf2fiz Jyiyr69/0,Gyfn Jfizi yfi Jyfif2 GYflzf2

(T2
UXf2Xr 1Xf2Yr 1Xf 2 0r Xf2 U Xf2Xf1 UXf 2 yf X1 zf2 OXf2Xf2

(T a 2
Lf2Xr UYf2Yr %Yf2Or OYf2U %Yf2Xf1 UYf 2 Yf 1 OYf2Xf2 yf2 J

2.2.1 State Projection

As the robot moves, its positional uncertainty increases. This is due to the uncertainty

in velocity and heading, and process noise. A nonlinear function f(-) is used for state

projection. An initial state

x[klk] = [ lkf (2.9)
-xf [kk ]-

would become

x[k + 1k] = = l1 [(r[k1 ] (2.10)
xf [k + lk]X [ xf[kIk]

with u[k]) being the control input. For a two dimensional model with control input

u[k] = [60r 6u]T, the robot state projection would be

Xr + Ucos(Or) 6t

Xr[k +1Ik] = f(Xr[klk], u[k]) = Yr +u sin(Or)6t (2.11)
Or + 60r

U + Ju

The projected covariance matrix is
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P = FXPF, + Q (

where F,, is the Jacobian of the projection function f(.) and Q is the process noise.

In the two dimensional map with two features, the Jacobian would be

Fx =[Fxr
0 I

(2.13)

with the vehicle Jacobian Fxr being

Fxr =I+

0 0 -usin(Or)6t

0 0 u cos(0) 6t

0 0 0

0 0 0

cos(Or)St

sin(0,) 6t

0

0

(2.14)

2.2.2 Feature Mapping

Features are mapped by augmenting the feature vector xf of the state vector x using

the nonlinear function g(.). For a map with i features, a new feature i + 1 would be

mapped at time k using measurement zf,+1 [k] through the following state augmenta-

tion:

x[ kk] =
Xr[k k]

xf[k k]

Xr[k k]

gxf [kIk] (2.15)

Applying the two dimensional robot model, and measuring the range and bearing

to the target, zfi~l [k] = [r 0]T, the initialization function would be

g (xr[kIk], z,+[k]) =
x1i*

EYf+ J

[Xr + r cos(Or + 0)

yr + r sin(Or + 0)
(2.16)

Next, the covariance matrix is augmented using submatrices A and B
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(2.17)

where A and B are

A = GxPGxT + GRGT (2.18)

B = GxP. (2.19)

The state and measurement Jacobians G, and G, in this case would be

0

1

-r sin(Or + 0) 0 ... 0
r cos(Or +0) 0 ... oJ

(2.20)

(2.21)cos(0r + 0) -r sin (0, + 0)
G+ =)

Lsin(O, + 0) r COS (Or + 0)

If the range and bearing measurements

variance would be the diagonal matrix

or2
R =r

L0

If the range and bearing observations wer

nonzero off diagonal terms.

were uncorrelated, the measurement co-

.
(2.22)

e correlated, this would be reflected by

2.2.3 Measurement Update

When measurements of features are made, the state is updated using an extended

Kalman filter (EKF) [47, 9]. First, the measurement is predicted using the nonlinear

prediction function h(-). Then, the innovation v is calculated, which is the difference

between the actual and predicted measurement:
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v = z - h(().)

The associated innovation covariance S is calculated using the measurement Ja-

cobian H,, the state covariance P, and the measurement covariance R

S = HxPHx T + R. (2.24)

Next, the Kalman gain is calculated

K = PH TS-1 (2.25)

Using the Kalman gain, the updated state and covariance can be calculated

x[k + Ilk + 1] = x[k + 1lk] + Kv (2.26)

P=P-KSK (2.27)

For instance, for a robot in a map with a single point feature

x[k k] =

Xr

Yr

Or
'U

Xf,

Yf1

(2.28)

making a measurement z = [r 9 ]T, the predicted measurement would be

h(x(k + ilk)) = [/(Xf - X,) 2 + (yf1 - Yr)2

arctan( Yf_Yr _ 0 rXf )-Xr

and would have a measurement Jacobian
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O_4X r aY r 0O 9- OuOxf 1 
6Yf 1  (2.30)H =aor aor 00 ao ao, ao^,(.0Kxr yr 0 5U OXf1 ayfJ

or EXr-Xfi Yr-Yfl 0 0 Xf 1 Xr Yfl Yr1

HX r . (2.31)Yr-Yfl Xf 1 Xr-1 0 Yf 1 Yr XrXf(
L r r2  r2  r2

2.3 Research Issues

The Smith, Self, and Cheeseman approach to the CML problem has had a profound

impact on the field of mobile robotics. Recent events such as the "SLAM Summer

School" [25] document the high level of recent interest and progress in the problem

of robot navigation and mapping. Topics of recent research in CML include the

problems of map scaling, data association, and operation in dynamic environments.

The map scaling problem has been a key issue in CML research. The ideal so-

lution to the map scaling problem would simultaneously satisfy the "Three C's" of

consistency, convergence, and computational efficiency. The basic Kalman formula-

tion of CML by Smith, Self, and Cheeseman suffers an 0(n2 ) growth in computational

complexity in which n is the number of environmental features. Some methods can

reduce the computation by a constant factor but still incur the 0(n2 ) growth. These

include postponement (Davison [27] and Knight [50]), the compressed filter (Guivant

and Nebot [39]), sequential map joining (Tard6s et al.[90]), and the constrained local

submap filter (Williams [101]). Approximation methods that achieve 0(1) growth of

complexity include decoupled stochastic maping [61] and sparse extended information

filters [94, 93]. Recently, Leonard and Newman have developed a submap approach

that achieves asymptotic convergence for repeated traversals of the environment while

maintaining consistency and 0(1) growth of complexity [57].

One criticism of the Kalman approach to CML is the assumption that Gaus-

sian probability distributions can effectively represent uncertainty and can cope with

nonlinearities in models for vehicle dynamics and sensor measurements. Several ap-
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proaches have been published for a fully nonlinear approach to CML, including the

factored solution to simultaneous localization and mapping (FastSLAM) [68], and the

use of a sum of Gaussians models for representation of errors [66].

The Atlas framework of Bosse et al. [13] uses a hybrid metric/topological rep-

resentation for CML to achieve real-time CML in large, cyclic environments. The

approach combines and extends elements of Chong and Kleeman [22] and Gutmann

and Konolige [40].

Another assumption of most recent in CML is that the environment consists of

static features. Research that lifts this assumption, to integrate tracking of dynamic

objects with mapping, has recently been performed by Wang et al. [96] and Hdhnel et

al.[41].

The data association problem concerns determining the correspondence of mea-

surements to environmental features. Many SLAM researchers have used nearest-

neighbor gating [8] for determing correspondence. Joint Compatibility Branch and

Bound (JCBB), an improved method that simultaneoulsy considers associations to

multiple features, has been developed by Neira and Tard6s [75].

Nearly all of the work in CML listed above assumes that sensors provide complete

observations of environmental features from a single vehicle position. This assump-

tion, however, is violated in many important scenarios, notably when sensing with

wide beam sonar data. In effect, CML assumes perception has been solved. However,

as argued in Chapter 1, we feel that perception is arguably the toughest problem in

robotics.

2.4 Perception

Perception is the process of transforming raw sensory data into a useful representation

so a robot can interact with its environment. Raw sensory data is the output of a

sensor. For a simple acoustic sensor, the output could be a waveform or a time of

flight (TOF) for ranging. A camera would output an image, typically a bitmap.

A laser scanner might output a set of ranges and angles. Sensors typically do not
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output high-level constructs such as, "my thesis advisor is looking skeptically at this

sentence." Perception is what transforms raw data into high-level representations.

Sonar research typically differs from vision research in its goals. Quite often, sonar

researchers are trying to create an image that a human can process, rather than a

representation for automated processing. (For example, see Figure 1-5 in Chapter

1.) When humans process visual images, they have the benefit of a highly evolved

visual cortex, and substantial prior knowledge and reasoning. It would be desirable

to develop sonar processing without having to replicate the human visual apparatus.

Most robotic perception work using sonar has concerned either obstacle avoidance

or feature detection for navigation. Nearly all commercially available land mobile

robots come equipped with a ring of Polaroid sonar sensors. Many researchers who

have attempted to use sonar data in land robotics have been disappointed due to a

fundamental misunderstanding of the nature of sonar data. The Polaroid sonar is

a wide beam time of flight sensor (TOF) that typically triggers on specular echoes

and which may trigger on multipath reflections. Multipath is when the sound does

not travel directly between the transducer and the target but strikes an intermediate

object. When multipath occurs, the range to the target is no longer simply the path

length divided by two.

The SICK laser scanner became widely available in robotics in the mid-1990s.

Reseachers have been much more successful with laser data. Figure 2-2 shows a

comparison of SICK laser and Polaroid sonar data taken in a corridor at MIT. The

layout of the corridor is shown in Figure 2-1. Both data sets are smeared by dead

reckoning error; however, it is readily evident that the laser data provides a much

better match to a visual map of the environment.

A smaller number of researchers (such as Kuc, Kleeman, Wijk, Choset, Brooks,

Leonard, and Durrant-Whyte) have investigated how to use sonar in robotics, de-

veloping approaches that take advantage of its strengths while accommodating the

weaknesses of specific sonar units.

What form the high-level representation takes depends heavily on the cognitive

algorithm. For many feature-based navigation approaches, such as Leonard and
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Figure 2-1: Hand-measured model of a corridor (total length approximately 25 me-
ters).

Figure 2-2: Laser (top) and sonar (bottom) data taken with a B21 mobile robot in the
corridor shown in Figure 2-1, referenced to the dead-reckoning position estimate. The
vehicle traveled back and forth three times, following roughly the same path. Each
sonar and laser return is shown referenced to odometry. The laser data is slightly
smeared due to a latency between the odometry and the laser data.
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Feder [61, 34, 58], Moutarlier and Chatila [71], Smith, Self, and Cheeseman [87],

Tard6s et al.[90], Newman [77, 29], and Wijk and Christensen [98, 100, 99], the out-

put must be geometric observations of individual, modeled features. So perception

determines which measurements go with which features (the correspondence prob-

lem) and establishes correct models for the features (point, plane, cylinder, sphere,

amphora, etc.).

Other approaches require less of perception. For instance, by devising a sufficiently

complex estimator, Thrun [92] was able to abstract away all aspects of physical real-

ity. Rather than decompose the world into features or objects, the world is modeled

as a probability distribution. Measurements simply change the world distribution.

Alternatively, Mataric and Brooks [18] bypassed traditional cognition, connecting

perception directly to control. Rather than use high-level features, very simple per-

ception, such as feature tracking, was used to provide an appropriate input for control

behaviors.

2.4.1 Analyzing the Perception Problem

Early perception researchers had to address two problems simultaneously. In addition

to solving the problems of their field, they had to define a rigorous methodology for

approaching them.

Marr [67] proposed an "information processing" approach, by which perceivers do

"what is possible and proceed from there toward what is desirable." Rather than

try to transform raw data into a desired representation in a single step, a sequence

of transformations is performed. Each transformation is specifically designed with

respect to the others and each transformation is rigorously grounded in physics. The

information processing transformations were described at three levels.

The first level, the Computational Theory, describes the inputs, outputs, and

transformation of a processing stage. An input should be justified based on what can

reasonably be expected of precursor processing stages. Any stage that requires an

impossible input will likely fail in practice. Similarly, the output of a processing stage

should be justified in terms of the broader goal of the processing. Transforming data
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from one representation to another provides no utility unless the new representation

is useful. The output should be justified as an input to an appropriate next stage of

processing. Finally, the process by which the input is transformed into the output

must be explained. The physical basis for the transformation should be provided to

demonstrate why the desired output will be uniquely computed from the input.

At the second level, Representation and Algorithm, the specific representations

of the input and output are determined as is the algorithm for the transformation.

Unlike the first level, which addresses questions of whether processing is possible and

appropriate, this stage addresses the practicalities of implementation. Some ideas,

such as exhaustive multiple hypothesis testing (MHT) [85], are optimal at the level

of Computational Theory but intractable at the algorithmic level.

The final level, Hardware Implementation, addresses selecting the most appro-

priate architecture for the representations and algorithms. While many perceptual

approaches are justified by the performance of humans and animals, digital computers

are very different from animal brains. The form of the hardware will impact the selec-

tion of the representation and algorithm and may make certain desirable approaches

impractical.

Richards [81] approached the perception problem in a manner similar to Marr's

approach. He described four stages for analyzing a perceptual process. First, goals

and givens must be identified. Second, a Theory of Competence is developed to show

how a reliable and accurate representation can be determined from the input. Third,

the representation and algorithm behind a processing stage is determined. Finally, a

visual system is tested to establish the veracity of the suggested algorithm.

Richards also developed the Principle of Natural Modes [51, 51]:

Structure in the world is not arbitrary and object properties are clustered
about modes along dimensions important to the interaction between ob-
jects and environments.

Essentially, sensor data will be structured because the world is structured. Physics

explains the structure. To develop algorithms that reliably interpret the regularities
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in sensor measurements, the underlying physics must be understood.

2.4.2 Visual Perception

Considering that the visual perception problem has received far more attention than

sonar perception, it is worth studying for general information about how to proceed.

Marr [67] strongly believed that the problem had to be broken into well defined

subproblems, and that single step algorithms were unlikely to succeed.

Finally, one has to come to terms with cold reality. Desirable as it may
be to have vision deliver a completely invariant shape description from an
image (whatever that may mean in detail), it is almost certainly impossible
in only one step. We can only do what is possible and proceed from there
towards what is desirable. Thus we arrive at the idea of a sequence of
representations, starting with descriptions that could be obtained straight
from an image but that are carefully designed to facilitate the subsequent
recovery of gradually more objective, physical properties about an object
shape [67].

In line with this reasoning, the vision community has developed several compe-

tences for use in visual processing. Three of these competences, edge detection, shape

from shading, and optical flow, will be discussed to demonstrate the style of the ap-

proaches taken by the vision community. Subsequently, we will discuss these concepts

in the context of the sonar perception problem.

Edge Detection

The simplest approximation of camera physics, perspective projection, uses a pinhole

camera description [44]. The image is formed on an image plane, which is defined

to be at position z = -f'. At the origin is the "pinhole", which all rays are defined

to pass through. Relevant points in the world exist in positions (x, y, z), with the

restriction that z > 0. A new coordinate system (x', y') is defined in the image plane,

describing the inverted, or real, image.

- = : (2.32)T'
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Y Y (2.33)
f' z

A camera outputs a bitmapped image or pixels with intensity values. The image

intensity, or irradiance, is the power per unit area hitting the image plane. The

irradiance of an image is defined as E(x, y).

Edges are lines or curves in an image along which there is a strong discontinuity

in image intensity [67]. Edges occur for a variety of reasons. If the reflected light

from two objects differs, and one object occludes another, then there will be an

edge along the occlusion boundary. If the incident light falling onto an object has

a sharp boundary, perhaps because of a shadow, then the reflected light will have a

sharp boundary, leading to an edge. Since the reflectance of a surface may be angle

dependent, a sharp change in the slope of an object may cause an edge in an image.

Different materials often have different reflectance properties; as materials in a surface

change, edges are often observed [102].

To find the sharp discontinuities in image intensity or image intensity gradient

that are edges, the derivatives of the image intensity E(x, y) are examined. Typically,

the Laplacian of the image, V 2 E, is used. The Laplacian is desirable because it is

rotationally invariant and because it preserves the sign of the brightness difference

across the edge [44].

Images are noisy, so the derivatives of images are noisy. Also, structure occurs on

a variety of scales. To overcome this, an image is often processed using multiple edge

detectors, each tuned to a different image scale.

Unfortunately, calculating the Laplacian can be difficult. Camera pixels are often

arranged in a grid. If an edge truly has a sharp gradient, on the order of a pixel, then

only the immediately adjacent pixels have information [44].

Shape from Shading

The reflectance of a surface often depends on its orientation with respect to the

incident light. For constant illumination and material properties, the brightness of
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a surface will change as the slope changes. Unfortunately, when the orientation of

the surface with respect to the source and receiver can be determined, there is one

additional rotational ambiguity. If boundary conditions can be applied and the surface

assumed to be continuous, shape can be reconstructed.

The reflectance map, R(p, q), is a function which describes reflectance as a function

of the surface normal angle. At a point (x, y) with surface gradient (p, q), the image

intensity is written E(x, y), while the reflectance map predicts a radiance R(p, q) [44].

Unfortunately, the local slope has two components, but the intensity of a point only

provides one constraint. The orientation of the surface cannot be determined without

additional information.

If it is assumed that the depth of the point (x, y) is known, and the slope (p, q) =

(k, !) is also known, it is possible to start to reconstruct the shape of the surface.

If a subsequent point (x + 6x, y + 6y) is chosen, the depth will be perturbed by

an amount z = p6x + q6y. The surface orientation is perturbed by

6p= Ox + Oy = 6X + a2Z (2.34)
ax ay ax2 axlgy

aq =q a2z _2Z

6q = _6X + 6y = 6x + 26y. (2.35)ax ay ayax ay2

Perturbing by some distance s yields

Op p aax ap ay _2Z Ox a2z ay- =-- + -- =- (2.36)as ax as ay as ax2 as axayas

Saqa x O ay a2z ax a2z Oy
q = s + + (2.37) OX 0s Oys aS 1yoxs j9 y2 aS

Differentiating the image intensity E(x, y) = R(p, q) with respect to x and y, and

using a chain rule expansion, one can get

aE _ Raop aRaq _ Ra82z aR a2zax a -- + -- = x2- + aq ay (2.38)OX OP 19x ig ix 19p 19X2 aq ayogx
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E = - + OR q - OR z ORO2 Z (2.39)
Dy Op ay q qy Op 0xay + q ay2

If the change in the image plane position is in the direction of the reflectance

gradient

Ox
as

OyasRq

(2.40)

(2.41)

then the slope in depth is

az
as

= pRp + qRq (2.42)

and the the image gradient is used to determine the change in surface slope

Op
=s E x

as

=q Ey.
18

(2.43)

(2.44)

Subject to very specific boundary conditions, the shape from shading equations

can be solved to reconstruct a body. The general case, without constraints, is unsolv-

able [44].

Optical Flow

Optical flow is a technique for tracking objects in an image [44]. If at a point (x, y)

in the image at time t, the image intensity is E(x, y, t), and if the image velocity of

that point is u(x, y) and v(x, y), then at time t + 6t the point would have moved to

(x + u6t, y + v6t. Those two points would have the same intensity

E(x + u6t, y + v6t, t + 6t) = E(x, y, t).
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Taking a Taylor series expansion of the left side yields

E(x, y, t) + 6x + 6y + 6O = E(x, y, t). (2.46)
Ox 19y at

Removing terms that cancel, and dividing by at, the equation becomes

DE 8x OE y OE
OEOx+ -+ = 0. (2.47)ax at ay at at

2.5 Sonar Perception

Sonar sensors can provide strong geometric target constraints. An active sonar can

provide very precise ranging information. Sonars provide less accurate bearing infor-

mation. The bearing resolution of a sonar depends on the aperture. A transmitter

with a large aperture can create a very narrow beam, greatly constraining a target's

location. However, a narrow beam will rarely be on any given target, making it dif-

ficult to continuously observe a target for navigation. A wide beam sonar can more

easily continuously observe a target, but, with no other information, cannot provide a

strong angular constraint. The key is having more information. By using more than

one receiver and measuring the delay between the arrival at the various receivers,

wide beam sonars with the angular resolution of narrow beam sonars can be created.

The angular resolution of a receiving array is a function of the aperture, or size. The

larger the array, the more precise. However, robots can only carry arrays of limited

size.

Leonard and Durrant-Whyte [60] developed a clustering technique for classifying

features to build geometric maps of features from polaroid sonar data. Applying the

Freedman [37] model of echo formation to a scanning wide beam sonar, measurement

artifacts known as RCDs (regions of constant depth) were extracted.

The Freedman model of echo formation predicts the echoes from a faceted surface.

For a flat, relatively smooth surface, it predicts strong specular reflections. For a

monostatic sonar (the same transducer acts as transmitter and receiver), these are

normal reflections. So the Freedman model predicts normal reflections from surfaces
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when using a monostatic sonar. For bistatic or multistatic sonars, in which there

are a transmitter and one or more receivers, the angle of incidence would equal the

angle of reflection, leading to more complex echo paths. The Freedman model also

predicts echoes in which there are discontinuities in a surface. For a faceted surface,

the edges would scatter sound in all directions. Combining these two methods of echo

formation, the Freedman model predicts than the return from a target will be a series

of impulses.

Using the Freedman model, Leonard and Durrant-Whyte [60] recognized that

the echo formation model depended only on position, not transducer orientation,

and that range is rotation invariant. However, transducers are not omnidirectional.

Based on their shape or aperture they have a beam pattern. This beam pattern

describes the intensity of the outgoing sound and the sensitivity to incoming sound.

The beam pattern of a sonar is based on the aperture and transmission frequency and

typically has multiple intensity lobes. The main lobe has the highest intensity; the

side lobes lower. However, the Polaroid sonar does not really have side lobes. Because

it transmits a broadband pulse, it has a white spectrum. The overall beam pattern

for the sonar is a combination of the beam patterns of the respective frequencies,

leading to a single main lobe [52]. Approximating the beam pattern as a sector, the

Freedman model was applied to targets in that sector. It was assumed that targets

outside that sector likely received little energy. As was the convention at the time,

sonar returns were plotted as if the object were directly in front of the sonar. If the

sonar was rotated, or scanned, the object would be seen over a range of angles. When

this was plotted, an arc covering some sector was observed. For a solitary target with

polar coordinates (r, 6) with a beam half angle of 6b, scanned measurements would

form an arc from (r, 0 - Ob) to (r, 6 + Ob). Since this arc has a constant range, this

was called a region of constant depth.

Classification was performed by comparing observations from multiple vantage

points. The Freedman model predicts that edges will yield reflections, so a clustering

technique was developed to find edges. Since all reflections from edges originate from

the same point, the clustering technique looks for RCDs that intersect at a common
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point, or nearly intersect at a common point.

The Freedman model for planes predicts normal reflections for a monostatic source.

The RCDs from a planar surface should have a common tangency.

Using these two clustering techniques, mapping was done with accurate naviga-

tion, and localization was done with accurate maps.

The Arc Transversal Median (ATM) method [74] was developed to provide a

robust means for constructing a Generalized Voronoi Graph (GVG), a topological

representation. The GVG is a set of points that are equidistant from the closest

objects. If sonar is to be used, resolution is an immediate issue. If the sonar cannot

resolve two targets, but instead fuses them into one, then the GVG is constructed

with respect to a third more distant target. For land robots, insufficient resolution

may preclude the robot from finding doorways.

The ATM approach modeled sonars as RCDs [60]. Since door edges were of

interest, RCD intersections were explored. Noting that many intersections are ill-

conditioned, only transverse intersections were used. Transverse intersections were

defined as intersections at angles exceeding 30'. Clusters were created, using arc

intersections. To find the location of the edge, the median was used as a robust

estimator.

Using this approach, the edges of the entrance to a corridor were found, which

the robot successfully explored.

Triangulation Based Fusion (TBF) [99, 100, 98] was a method developed for map-

ping vertical edges from sonar data. A sliding window is used to store recent sonar

measurements. The most recent set of measurements are compared to prior measure-

ments in the window to find triangulation points. By assuming perfect navigation,

ranges from two positions are intersected to estimate the potential location of an

edge. If a measurement from the most recent timestep, when intersected with past

measurements, consistently yields the same intersection, an edge is found.

The Hough transform has been applied to processing Polaroid sonar data for

feature-based navigation [63]. For each feature type, a grid based feature space is

created. Measurements are projected into the feature space and used to increase the
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occupancy of the relevant grid elements. For instance, to find points using a Polaroid

sonar, a cartesian space is used. When a measurement is added, the pixels which the

RCD passes through are incremented by one. Feature space locales of high occupancy

indicate features.

Mataric and Brooks [18] were interested in sonar-based behaviors. A land robot,

Toto, was constructed to negotiate an office environment. It was given a simple

feature tracking behavior. Essentially, the robot maintained a fixed distance from a

feature while driving forward. Decisions were made based on the robot's path. If,

while staying a fixed distance from the feature, the robot drove in a straight line, the

feature was judged to be a wall. If, while tracking a wall, the robot started to turn, this

was a cue that the wall had ended. The robot established paths based on sequences

of behaviors and cues. Although often overlooked in the history of robotic sonar

perception, this work is noteworthy because features are tracked without explicit

models and because cues are used to indicate transitions in the nature of tracked

features (ie wall to corner).

Specialized sensors have been developed to disambiguate sonar measurements.

Since it is often useful for a land robot to be able to differentiate between walls and

corners, specialized sensors have been developed for their classification.

Barshan and Kuc [10] developed a sensor which differentiated between convex

corners and walls using amplitude measurements from two transducers. Both trans-

ducers were able to transmit and receive. Because each could receive the transmission

of the other, there were four observable acoustic paths. Using the method of images,

each path's amplitude for the two hypotheses (corner and wall) was predicted. By

comparing the measured amplitudes of the paths, corners and walls could be classified.

Using the path lengths, the position of the corner or wall was then determined.

Kleeman and Kuc [49] used the method of images to distinguish corners and walls,

using a sonar with two transmitters and two receivers. Each time a reflection occurs,

the virtual image of the transmitter flips. For a single reflection, it flips once, for

two reflections, it flips twice (which is the same as not flipping at all). If, from the

received signal, the virtual image of the transmitter can be resolved, then the corners
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and walls can be classified by observing whether or not the virtual image is flipped. It

was determined that, "Two transmitters and two receivers are necessary and sufficient

for discriminating planes, corners and edges in two dimensions" [49].

Similarly, Peremanns et al. [78] developed a tri-aural sonar for estimating the range

and bearing to targets. Using path lengths, planes and edges were classified. However,

sensor noise made curvature estimation difficult.

Using a binaural sonar, Kuc [53] was able to classify targets based on their wave-

forms. The system would adaptively move with respect to the object, searching for

"unique aspects". Using the waveform for recognition, the sonar could differentiate

between heads and tails of a coin and identify targets such as o-rings.

Similarly, to differentiate between a diver and a remotely operated vehicle (ROV),

Ruiz [82] developed a classifier for a sector scanning sonar. The classifier performed

supervised classification using discriminant functions. Sonar images of training set

objects were processed using typical vision techniques and used to generate a set of

statistics describing the respective feature classes. Using what was learned from the

training objects, the classifier was able to differentiate between a diver and an ROV.

One way of avoiding explicit perception algorithms is Multiple Hypothesis Testing

(MHT). In the extreme case, all possible combinations of sensor data [85] are exhaus-

tively evaluated. By representing all possible explanations, it is possible to guarantee

a represention of the correct solution. In practice, there are far too many possibilities.

For instance, in [85], after 5 timesteps there were 2 x 10249 hypotheses. For MHT to

be successfully implemented, extremely aggressive pruning strategies must be used.

Towards this end, clustering, nearest neighbor gating, and delayed track initiation

were used by Leonard and Feder [58, 33] for mapping and navigation. Leonard et

al. [58] post-processed forward looking sonar data from a navy vehicle. Features were

mapped without prior knowledge of the environment. Measurements were clustered,

large clusters triggered mapping, and new features were added using the most recent

observations. Feature reobservations were established using nearest neighbor gating.

All features were treated as points. This limited the implementation. The robot did

not have the capacity to process a prominent ridge, and the authors concluded that
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more advanced sonar perception was needed. Likewise, Feder [33] used clustering,

nearest neighbor gating, and delayed track initiation to map and reobserve point

targets in an MIT testing tank experiment.

2.6 Non-accidental Features

Many have argued that the perception problem is solvable because of world structure.

By understanding this structure, measurements can be reliably interpreted.

Consider the Kanizsa triangles in Figure 2-3, taken from Donald Hoffman's ex-

cellent book Visual Intelligence [43]. In both cases, a viewer constructs a large white

triangle in the middle. The reason for this is that each image contains a large number

of redundant dimensions, or codimensions. Consider the bottom edge of the triangle

in the image on the left. It is defined by the centers of the bottom two circles. Now,

the bottom two circles have wedges cut out of them, giving them a "Pacman" shape.

In each circle, one of those edges is colinear with the triangle bottom, meaning they

share a common dimension. This reduces the total dimensionality of the figure by

two. Notice the the lowest "V". The upper termination of the "V" occurs at the

bottom edge of the white triangle. Since this occurs for the two lines, this further

reduces the dimensionality by two. Without looking at the rest of the triangle, we

have already found four redundant dimensions, or codimensions. It is these redun-

dant dimensions that cause the triangle to jump out at us. The triangle on the right

has even more codimensions.

Next, consider the white squares in Figure 2-4, again borrowed from Hoffman [43].

For the left and middle squares, because the line terminations are colinear, there

is a substantial dimensional redundancy, causing a viewer to construct a square.

(Although well outside the scope of this thesis, the right square is weak because the

lines intersect at their termination. In the first two, the colinear terminations implied

occlusion. However, it is unlikely that an occlusion would take place at colinear

intersections, so we less vividly construct an occluding square in the final case.)

As a final example from Hoffman, consider the glowing blue square in Figure 2-
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Figure 2-3: The Kanizsa triangle [43].
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5. In the left square, a viewer sees glowing blue where the paper is white. The

codimensions cause the viewer to believe it is being occluded by something blue;

hence, that is what is constructed. The square on the left is less vivid because of

the termination points; they imply there is some other explanation for the transition

from black to blue.

Now, the reader may wonder what this has to do with sonar. This is important

to sonar processing because it demonstrates how to approach the problem. We need

to understand the underlying physics of the problem, to understand what sorts of

regularities will exist in sensory data. Once we understand the dimensionality of

the sensing process, we can determine when codimensions will exist in sensor data.

Consider the data from an ocean experiment in Figure 2-6. On the right, we see

a the path of the robot as it circled the target field(blue). The dots correspond to

globally projected sonar measurements(red). The +'s correspond to measurements

that originated from a single feature, and the solid dots along the robot trajectory

correspond to the positions from which the robot made those measurements. This is

the typical representation used in robotics. Now consider the plot on the left. The x

axis is range; the y axis is time. The measurements that are the +'s in the left figure

are plotted in the right figure. Notice the high degree of codimensionality of the figure.

There are roughly 80 measurements, yet the entire sequence could be adequately

described by a third or fourth order polynomial. The massive dimensional redundancy
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Figure 2-6: On the right, a global projection sonar data. The robot is circling a target
field. Its sonar measurements are shown as dots. The +'s correspond to measurements
of a specific target; the solid dots along the robot's trajectory are positions from which
it measured the target. On the left, the same measurements are plotted in a different
coordinate system. The x axis is range, the y axis is time. Clearly, the representation
on the left has a high degree of codimensionality.

allows us to infer that the measurements had a common origin. It is just this sort

of redundancy that we will exploit in the sonar perception portion of this thesis. We

will determine the minimum information needed to establish codimensionality in the

tracking problem, so we can efficiently group measurements of common origins.

2.7 Summary

In this chapter we have posed the problem under study in this thesis: CML for AUVs

with wide beam sonar data. We have discussed alternative approaches to sonar data

interpretation, selecting the biosonar characteristics of bats and dolphins (dynamic,

wide-beam) for inspiration, in comparison to more traditional narrow-beam sonar

imaging systems currently in use. We have reviewed previous work in CML, focusing

on recent CML approaches with sonar, and we have highlighted the difficulty of coping

with partial observability in prior CML approaches. Chapter 3 will describe a new

CML framework, based on an approach called Working Memory, which handles these

issues. Finally, we have motivated a novel approach to achieving correspondence for

wide-beam sonar data acquired by a moving observer, called Trajectory Perception,

62



which is described in Chapter 4.

63



Chapter 3

Stochastic Mapping with Working

Memory

Stochastic Mapping works if perception occurs instantaneously and features are fully

observable from a single measurement. This is unreasonable to expect in the general

case; perception is very difficult and features may be of arbitrary complexity. In this

chapter, the stochastic map is enhanced to include a short history of robot positions.

This short history of positions, also known as working memory or short term memory,

is used to accommodate partial observability and delays. Two experiments using this

approach are presented at the end of the chapter.

3.1 Motivation

Stochastic mapping assumes instantaneous perception. When a robot initially ob-

serves a feature, it must model and map the feature from the first observation, or

information is lost. For instance, Feder [33] used delayed track initiation to determine

whether measurements were spurious. Under this scheme, only the last observation

could be used in the feature initialization process. Stochastic mapping also assumes

that features are fully observable from a single observation. This is not always valid.

For instance, querying a Long Baseline (LBL) navigation beacon provides a range

measurement. Range defines a sphere around the robot, not a point. With measure-
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ments from three positions, three spheres could be intersected to find possible beacon

positions (with an ambiguity due to the quadratic). More than one observation is

needed for mapping.

When features are reobserved, it is assumed that the robot will recognize them

immediately. If the robot cannot immediately recognize a feature, the measurement

cannot be used, and information is lost.

In this chapter, the stochastic map will be modified to include a history of robot

positions to accommodate these sorts of operations.

We present two different types of experimental results with the method. In Sec-

tion 3.6, we present a series of simplified examples that use manual data association

to demonstrate the processes of multi-vantage point initialization and batch measure-

ment processing. The results also demonstrate mapping of composite features and

the initialization of a new robot position into a stochastic map. In Section 3.7, we

describe the use of the method within a complete, real-time implementation of CML

that uses the Hough transform [90] to find features. The results are for a B21 mobile

robot navigating in typical indoor environments, such as a corridor, using odometry

and Polaroid sonar data. Finally, in Section 3.9, we provide a further discussion of

related research and describe a number of interesting topics for future research.

3.2 Problem statement

3.2.1 General formulation of the problem

CML is somewhat unconventional as a state estimation problem for two reasons: (1)

data association uncertainty, and (2) variable dimensionality. Initially, the number

of features in the environment is unknown and there are no initial location estimates

for any features. The initial state vector is restricted to contain only the initial

state of the robot. As the robot moves through its environment, it uses new sensor

measurements to perform two basic operations: (1) adding new features to its state

vector, and (2) updating concurrently its estimate of its own state and the locations
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of previously observed features in the environment. The robot also has to maintain

its map, which can incorporate the fusing of two features that are hypothesized to

be the same object [5, 22] and the deletion of features that are hypothesized to no

longer be present [59]. In this manner, the number of elements in the stochastic map

(and hence the size of the state space) varies through time.

Let us assume that there are n features in the environment, and that they are

static. The true state at time k is designated by x[k] = [Xr[k]T xf[k]T]T, where x,[k]

represents the location of the robot, and xf[k]T = [xf, [k]T ... xf" [k]T]T represents

the locations of the environmental features. We assume that the robot moves from

time k to time k + 1 in response to a known control input, u[k], that is corrupted by

noise. Let Uk designate the set of all control inputs from time 0 through time k.

The sensors on the robot produce mk measurements at each step k of discrete

time. The set of sensor measurements at time k is designated by Z[k], which is

the set {zj[k]lj = 1 ... mk}. Let Zk designate the set of all measurements obtained

from time 0 through time k. We assume that each measurement originates from

a single feature, or it is spurious. For each measurements zj[k] E Z(k), there is a

corresponding assignment index aj. The value of aj is i if measurement zj[k] originates

from feature i, and it is zero if zj[k] is a spurious measurement. Let Ak designate

the set of all assignment indices from time 0 through time k. The cardinality of the

sets Zk and Ak are the same. Let nk designate the number of features that have

been measured up through time k (the number of features that have at least one

measurement in Ak).

The objective for CML is to compute recursively the probability distribution for

the location of the robot and the features and the assignments given the measurements

and the control inputs:

p(x[k], Ak|Zk,Uk-1) = p(x,[k], xf,[k],..., xfk[k], AkZk, Uk-i). (3.1)

Before considering strategies for computing Equation 3.1, consider first the more

restrictive problem of localization and mapping with prior knowledge of all the fea-
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tures and with no data association uncertainty. With perfect knowledge of A[k], one

could discard the outliers and combine the remaining measurements of Z[k] into a

composite measurement vector z[k]. With prior knowledge of the number of features,

and prior state estimates for all features, we are left with a "conventional", fixed-

dimension state estimation problem. The general recursive solution applicable for

fully non-linear and non-Gaussian systems is well-known [19, 88] and given by the

following two equations:

p(x[k] IZk-1, Uk-1) = p(x[k]ifx[k -1], u[k -1])p(x[k -1] Zk-1, Uk-2)dx[k-1] (3.2)

and

p(x[k] Zk, Uk-1) = ckp(z[k]Jx[k])p(x[k]Zk-1, Uk-1), k = 1,2, ... (3.3)

where g = fp(z[k]Jx[k])p(x[k] Zk-1, Uk-1)dx[k]. Equation 3.2 is the Chapman-

Komolgorov equation, and represents the use of the dynamic model p(x[k] x[k -

1], u[k - 1]) for state projection. Equation 3.3 is Bayes theorem, where p(z[k]Ix[k])

is the measurement model. The direct application of Equations 3.2 and 3.3 entails a

computational burden that grows exponentially with the number of features, render-

ing such application computationally intractable for typical feature-based CML ap-

plications in environments with hundreds or more features. Recent work in sequential

Monte Carlo methods [30] has achieved successful performance for many challenging

nonlinear, non-Gaussian state estimation problems; difficulties are encountered, how-

ever, in the application of sequential Monte Carlo methods in high-dimensional state

spaces [65].

Equations 3.2 and 3.3 assume that the correspondence problem is known. When

data association uncertainty (the correspondence problem) is added to the formula-

tion, one is left with a hybrid (mixed continuous/discrete) estimation problem. Mori

et al. [69] published a general recursive non-linear, non-Gaussian algorithm for state

estimation with assignment ambiguity. Their solution generalized an earlier linear-

Gaussian method by Reid [80], known as multiple hypothesis tracking (MHT). The
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solution builds an exponentially growing tree of hypotheses, with each leaf of the tree

implementing a different solution to Equations 3.2 and 3.3, based on different hypoth-

esized assignments. Probabilities are assigned recursively to each discrete hypothesis,

and pruning is used to restrict the number of hypotheses. While the Mori et al. [69]

solution can accommodate general non-linear, non-Gaussian models, to our knowl-

edge it has never been implemented without simplifying assumptions. Even with the

linear-Gaussian assumptions made by Reid's algorithm, the method is exponentially

complex due to the combinatorics of discrete decision making. The problem bears

some resemblance to object recognition in computer vision [381.

It is unclear how to incorporate variable-dimensionality (initialization of new fea-

tures based on state estimates for the robot and other features in the map) into the

Mori et al. [69] algorithm. Hence, it is unclear if one can consider the Mori et al. [69]

as the general solution to Equation 3.1 for the CML problem. Our current opinion is

that, because of the interactions between uncertainty and computational complexity,

from a general theoretical perspective CML is an "unsolved" problem.

3.2.2 Linear-Gaussian Approximate Algorithms for CML

The method published in Smith, Self, and Cheeseman [86] is a linear-Gaussian ap-

proximation to the general solution of Equations 3.2 and 3.3. Nonlinear functions

are linearized via a Taylor series expansion, and all probability distributions are ap-

proximated by Gaussian distributions. State updates are performed with the EKF.

With these approximations, and assuming that data association is known, the com-

putational complexity is reduced to 0(n2) [711.

The method recursively computes a state estimate k[klk] = [kr[klk]T -f[k]T]T at

each discrete time step k, where - [klk]T and -f[k]T = [kf[k]T ... kf.[k]T]T are,

respectively, the robot and feature state estimates. Based on assumptions about

linearization and data association, this estimate is the approximate conditional mean

of p(x[k]I Zk, Uk-i):

k[klk] ~-1. E(x[k]|1ZkIUk-1).(34
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Associated with this state vector is an estimated error covariance, P[klk], which

represents the errors in the robot and feature locations, and the cross-correlations

between these states:

Prr[k k] Prfi[kIk] ... Prf,[kIk]

P[klk] [Prr[klk] Prf[klk] Pfir[klk] Pf1f1 [kjk] ... Pfin[klk] ()
Pfr [kIk] Pff[kIk] -..

P,,r[klk] Pfnfl[klk] --- Pf5fn[klk]

The method uses three models, a plant model f(-), a feature initialization model

g(.), and a measurement model h(.). This chapter focuses on g(-) and h(.), presenting

a generalized model for feature initializations and measurement updates from multiple

uncertain vantage points. The plant model f(.) is used to make predictions of future

vehicle positions based on a control input. For a more general discussion of these

models, see Feder and Leonard [34] or one of the other references on feature-based

CML listed in Chapter 2. Before considering the problem of feature initialization in

more detail, we provide a discussion of the data association problem for CML.

3.2.3 Data Association

To use the models h(.) and g(.) properly, stochastic mapping algorithms must make

decisions about the origins of measurements. Spurious measurements must be ignored;

however, it is often unclear which measurements are spurious. Measurements that are

determined to originate from previously mapped features are used via h(.) to perform

a state estimated update. Measurements that are determined to originate from a new

feature are used with g(.) to add the feature to the map.

While there is no mention of the data association problem in Smith, Self, and

Cheeseman [86], it is a crucial aspect of the CML problem. The options for data

association are rather limited. Powerful tools exist, such as MHT [80] or probabilistic

data association filter (PDAF) [8], but the computational burden of these approaches

is very high when these techniques are applied to CML. The usual alternative is to
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employ "nearest-neighbor" gating techniques. For each feature in the state vector,

predicted range and angle measurements are generated and are compared against

the actual measurements using a weighted statistical distance in measurement space.

For all measurements zj [k] that can potentially be associated with feature kf, [k], the

innovation vij[k] and the innovation covariance Si3 [k] are constructed, and the closest

measurement within the "gate" defined by the Mahalanobis distance

vi [k ]Sij[k]-'vij[k] < -y, (3.6)

is considered the most likely measurement of that feature [8]. Such an approach will

fail if the features in the environment are too close to one another.

In addition, simply testing the proximity of observations to predicted measure-

ments for previously mapped features provides no indication of when a measurement

comes from a new feature. Feature initialization is typically based on looking for

several consecutive unexplained measurements that are close to one another, and far

from any previously matched features. This policy is referred to as delayed track

initiation [60, 34, 29]. In general, there is a tradeoff between being more likely to

assign a measurement to an old feature versus using it to initialize a new feature.

If one is is able to perform feature fusion [22], then it is probably better to err on

the side of new feature creation. This is the strategy employed in the experiments in

Section 3.7.

A variety of methods for attacking the correspondence problem have been devel-

oped in vision, such as RANSAC [35]. The general idea is to use techniques from

robust statistics to find sets of measurements that collectively reinforce one another

and yield a single, consistent interpretation. Recently, Neira et al.[75] have presented

a joint compatibility testing method for data association that exploits correlation in-

formation when considering potential assignments for groups of measurements. The

method succeeds in ambiguous situations when standard nearest neighbor gating fails.

The general policy of looking for consensus among multiple measurements to resolve

ambiguity is similar in spirit to RANSAC. Other data association strategies specific
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to sonar have been proposed. For example, Wijk and Christensen [99] have recently

developed a technique called Triangulation-Based Fusion (TBF) that provides ex-

cellent performance for detection of point features from ring sonar data. The TBF

method looks for sets of sonar returns obtained from adjacent positions that could all

have originated from the same point object by efficiently computing circle intersection

points and applying angle constraints. The method runs in real-time and has been

successfully used for occupancy grid mapping, model-based localization, and reloca-

tion [99]. CML has also been implemented using the TBF for points features [103].

In this chapter, we use manual data association in Section 3.6 to illustrate various

new types of feature initialization, and we use a Hough transform voting technique

(fully documented in Tard6s et al. [90]) to perform initialization of new point and

line features when performing real-time CML in Section 3.7.

3.3 Solution to Stochastic Mapping Shortcomings

The limitations in the stochastic map are temporal in nature. The desired operations

involve using temporally separated measurements. The stochastic map needs to be

enhanced to allow measurements to be used asynchronously or simultaneously. This

provides the robot with a "working memory", or the capacity to remember a few of

its past states. The robot will be able to adaptively "remember" the information

needed to use measurements and then forget what is no longer needed. Using this

infrastructure, the robot will be able to escape the mechanical tedium of the Kalman

filter cycle and process measurements more flexibly at its leisure.

3.4 Stochastic Mapping with Working Memory

The stochastic map consists of the state vector x and the covariance P. The state

vector x[kIk] contains the robot state x,.[kIk] and the feature states xf[kIk].
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x[klk] = Xr[klk] (3.7)
Xf[klk]

The first k in the [klk] notation is the time index of the state. For the robot

state Xr[klk1, it indicates the robot's location at timestep k. The second k defines

the information that is being used to estimate the state. So Xr(kjk) means that

measurements through timestep k are used to estimate the state of the robot.

The prediction of the robot's next state would be Xr[k + 1k]. The k + 1, the time

index, implies it is the next state. The k means that this is a prediction, and only

measurements through timestep k have been used. Once measurements from timestep

k + 1 are used to update the state, the robot state would become Xr[k + 1k + 1].

The representation needs to be expanded to include a "short term memory" of

robot positions, to allow the robot to briefly remember where it has been. For in-

stance, suppose the robot needs to remember where it was five timesteps ago. The

state vector would be augmented to include the old state

Xr[kk]1

x[klk] = xf [kI k] (3.8)

Xr[k - 5|k]

The additional robot state, Xr[k - 51k], is a smoothed state. The information index

k indicates that measurements from after the time index have been used to improve

the estimate. Because more recent information can be used, smoothed estimates

typically are better than real time estimates. If no measurements are available, and

no updates took place after the real time state estimate, the smoothed state will be

the same as the real time estimate.

A new vector, Xr[k~k], will be defined. Like xf[klk], the vector of feature states,

Xr[k k] will be a vector of robot states. Similarly, for occasions when it is desirable

to maintain a temporal history of features (i.e. for dynamic features), the vector of

states of the ith feature would be xf1 .

For a map containing m dynamic features and a history of n states, the expanded
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view of the state vector would be

x[kk Xr[kk]
x~kk =k Ik

Xr[klk]

Xf1 [kI k]

Xf2 [klk]

Xf. [kk]

Xr[klk]

Xr[k - 1|k]

Xr[k - nlk]

Xf,[k Ik]

Xf, [k - 1|k]

XfJ[k - nrk]

Xf, [k - nrI k]

(3.9)

To keep a history of robot states, the prediction process must be modified. Rather

than replace the old robot state with the predicted robot state, the state vector is

augmented with the predicted state

x[klk] =

xf [k Ik]

ff(xr[k k], u(k))

Xr[klk]

_ xf[klk] J
(3.10)

Similarly, the covariance matrix is augmented using submatrices A and B

BT

P
(3.11)

where A and B are

A = FxPFxT + Q

B = FxP.

(3.12)

(3.13)

When the state of a dynamic feature is projected, the corresponding vector of
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feature states is augmented. For instance, if the k + ith state of feature i was being

predicted, the i feature vector would be augmented

Xf[k + Ilk] [f(xf[k + 1Ik])1

X Xfk [k+ Ik] J (3.14)

x[k +lIlk]= Xr[klk]

Xf[k + ilk]L k+ |k j

Xr[k k]

Xf1 [kIk]

Xf 2 [klk]

Xfi[k + 1|k]

Xf. [kk]

Xr[klk]

Xf1 k k]

Xf2 [kk]

f(xf,[k + 1k])

Xf. [k k]

Xf.[kI k]

Because the state vector is augmented in the middle, the covariance matrix aug-

mentation is slightly more complicated. First, the covariance matrix is subdivided

into submatrices

P = P 2 T

LP2 P3j

(3.16)

with submatrices

P 1 =

Prr

Pfir

Pf_ 1r

Prfi

Pf 1 f

Pfi-ifi

... Prfi_1

.-- Pf f. 1

- Pfi_ 1f 1

(3.17)
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Pfiolr Pfiorfi ... Pfriofi_1

P PA+2 r Pfi+2f1 ... P(23.-1 3-18)

Pfmr Pfmrf ... Pff* _

Pf~iIAl i li+ ... Pfi~-f

PA+2 Arl P 2 A+2 ... f+ 2 f(3.19

P3 = 4 +62---E+r'.(3.19)

Pfmfi Pmfmfi+ 2  ... Pfmfm

The augmented covariance then has the form

P, B1T P2

P= B1 A B 2 T (3.20)

-P2 B2 P3

with submatrices

A = FxPFxT + Q (3.21)

B 1 = Fx [, (3.22)
[P21

B2 = Fx , (3.23)
P3

where Q is the feature's process noise.

If it is desirable to have more than one robot in the map, additional robots can be

used to augment the robot vector Xr. If the robot state vector is expanded to include

multiple robots, the state vector becomes
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Xri[k k]

Xri[k - 1|k]

Xri[k k] Xr 2 [klk]

Xr 2 [klk] Xr2 [k -1k]

x~kl] Xr [klk]
x[/kI] Xf,[kIk] = Xr[k -nk] (3.24)

J Xf2 [klk] Xf,[k k]

Xf[k-1|k]

_xf.[kIk]
Xf1 [k - nrk]

Xf.[k - nrk]

To project the states of secondary robots, the state vector is augmented in the middle,

as is done for dynamic features.

3.4.1 Delayed Decision Making

Once a robot has a short term history of states, or working memory, it no longer

has to instantaneously process measurements. It can delay making decisions until

sufficient information is available. Once a measurement is understood, it can be used

for a state update.

In the delayed update case, the predicted measurement h(-) of feature j is a

function of a past robot state Xr[k - ilk]. The innovation is

V = Zf, [k - i] - h(x[klk]) z j[k - i] - h(Xr[k - ilk], xfj [klk]) (3.25)

The measurement Jacobian's nonzero terms correspond to the robot state from

timestep k - i and to feature j
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Hx = [0 H,[kilk] 0 H,[kilkl 0] . (3.26)

The state vector is updated using the standard Kalman update equations. If,

after using the measurement, the corresponding robot state is no longer needed, it

can be discarded. If the unneeded state x,[k - ilk] has four elements and takes up

rows [ai a 2 a3 a 4 ]T, then to remove the element, simply remove those elements from

the state vector, and remove rows and columns [a, a2 a3 a 4 ]T from the state vector.

3.4.2 Batch Updates

If the robot can update measurements after a lag, it can also update an entire sequence

of measurements in one step. Very often, the reason a delay allows the robot to

make a decision is because additional information can remove ambiguities. When

this is true, often a single additional measurement will explain an entire sequence of

measurements. In this case it is desirable to update all the measurements at once.

To update m measurements, a stacked innovation vector is created, which is a

vector of innovations

V1 z1 - hl(-)

- h2(.) (3.27)

vm zm - hm(-)

with the subscripts [1 2 ... m]T corresponding to the different measurements. The

batch update Jacobian is a vector of the Jacobians corresponding to the respective

measurements

Hx1

Hx2
H = (3.28)

Hxm
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Using the stacked innovation v and Jacobian H., the state update is calculated

using the Kalman update equations.

3.4.3 Delayed Initializations

Often, when the robot initially observes a feature, it cannot tell for certain whether

or not the measurement was spurious. It is undesirable to map noise. Consequently,

the robot should wait until there is enough information to support the existence of

a feature. Once the robot decides to map the feature, it may be desirable to map

the feature using a past measurement. In this case, the mapping function g(.) is a

function of a past robot position and measurement

g(x[klk], z,,[k]) = g(xr[klk], Zk) = g(x,[k - jk], zfi,[k - j]). (3.29)

The nonzero terms in the initialization Jacobian G, now correspond to the k - j
robot state

Gx = [0 Gr[k-jk] 0] (3.30)

Using the measurement initialization function f(.) and the initialization Jacobian

GX, the feature is mapped by augmenting the state as in standard stochastic mapping.

Additional measurements can be added using a batch update.

3.4.4 Mapping from Multiple Vantage Points

Features are not always fully observable from a single measurement or position. For

instance, mapping a Long Baseline (LBL) beacon requires a minimum of three mea-

surements. If three spheres are intersected (This assumes they do intersect. When

poorly conditioned intersections are combined with measurement noise there exists

the possibility that the spheres will not intersect. For instance if the robot stands

still and makes three readings, noise may give three different readings, yielding three
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concentric spheres with no intersections.) there are two resulting points. Often a

fourth measurement is needed to disambiguate the intersections. For convenience,

assume there is no ambiguity because only one of the intersections corresponds to

an underwater point, and since the air/water interface is a pressure release surface a

reflection would cause a 1800 phase shift which the robot did not detect, and because

the water is deep enough that the bottom is far away, removing the possibility of

more than one surface bounce. Also, assume a known turn around time (TAT). The

turnaround time is the delay between when the beacon receives the querying signal

and when it transmits the reply. The TAT is often on the order of .25s; ignoring a

.25s TAT will cause an error of roughly 187.5 meters. If the TAT were unknown, a

fourth measurement would be needed to estimate the beacon's relevant properties;

however, we will assume the TAT is known. Subject to those assumptions, it is valid

to assume that an LBL beacon can be mapped from three ranges. If observations

were made at times k - ji, k - J2, and k - j3 , feature m + 1 would be mapped using

an equation of the form

g(x[klk], Zk) = g (xr [k -ji Ik], zf,[k -ji], xr [k -j2Ik], z+ [k-j2], Xr[k -j3 Ik], zf, [k -a)

(3.31)

The feature initialization Jacobian G, would have nonzero terms corresponding to

the respective robot states

Gx = [0 Gr[k-ji] 0 Gr[k-j 2] 0 Gr[k-j3] 0 . (3.32)

Again, once the initialization function and measurement Jacobian have been defined,

the state augmentation occurs as in traditional stochastic mapping.
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3.4.5 Using Partially Observable Measurements (Long Base-

line Navigation)

Sometimes measurements cannot be fully observed from a single vantage point. For

instance, if the robot is moving and makes an LBL time of flight (TOF) measurement,

it will transmit and receive from different locations. The distance of flight is the

distance from the transmit location to the beacon plus the distance from the beacon

to the reception position. When the measurement is a function of two robot positions,

from timesteps k - ji and k - j2, the prediction is of the form

h(x[klk]) = h(x,[k - ji Jk], xr[k- j2 1k]). (3.33)

Functions of even more vantage points are possible. For instance, when the robot

observes it own reflection off the surface, it transmits the signal from one position,

the signal reflects off the surface, reflects off the robot at a second position, reflects off

the surface again, and finally is received by the robot at a third position. As long as

all the relevant robot positions are represented in the state vector, the measurement

can be used.

3.4.6 Mosaicking and Relative Measurements

Features do not necessarily need to be mapped for their measurements to be used.

Since estimates of features are simply transformations of observations, the observa-

tions can be used directly for updates. However, some caution is necessary. Measure-

ment noise is assumed to be uncorrelated with the state covariance; however, once an

update is performed, the measurement is implicitly correlated. If a measurement is

used to update more than one other measurement, all the updates must be done at

once. If they are done sequentially, the correlation must be explicitly represented.

Using the two dimensional robot model, assume two range and bearing measure-

ments are made of a point feature at timesteps k-ji and k-j 2. The first measurement

could be used to initialize the feature, but instead it will be used to create a temporary
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feature state that will not be used directly.

xp[k - jill [Xr[k - jil + rk.., COS(Oksj, Or,kj) (334)
yp[k - j2] J y [k - Wi] + rk- 1 sin(Okj1 + Or,k-j)

A second measurement could be predicted as

rk-hJ 1 [v(X[k - j2] - Xr[k - i2]) 2 + (y[k - j2] - yr[k - j2])2l

S 1 [ arctan( y[k-i2]-Yr[k-i2]- 0 J (.35L. J_ _ xp[k-j2] -xr[k-j2] , j

Substituting for the temporary variables yields a predicted measurement that is a

function of the prior measurement and the two robot states. Defining two temporary

variables,

AX =zXr[k - ji] - Xr[k - j 2] (3.36)

,y=yr[k -ji] - yr[k - j 2] (3.37)

k - (AX)2 + (Ay)
2 

+ r2_ + 2rk-ji (cos(Ok-ji + 0r,k-j )Ax + sin(Ok-jl + Or,k-i )Y
h(x, Zk) = 1 321 - A +k-p sin(k -ji +9r,k-jl ) . (3.38)

[6k-3 2 j arctan ( AY+-k.- Skji , ) - r, k-j

A Kalman update is now possible using only robot states and measurements with-

out intervening features. This is a useful technique for the mosaicking problem, in

which images are correlated to produce an aggregate image as well as a reconstructed

robot trajectory. Using this approach for mosaicking was the subject of Fleischer's

Ph.D. thesis [36]. The working memory framework was developed simultaneously

for delayed decision making and initializing partially observable features. It was

not immediately recognized that working memory could be applied to the mosaicking

problem. Likewise, Fleischer did not apply smoothed vehicle states to non-mosaicking

applications.
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3.4.7 Spatiotemporal Mahalanobis Testing

The Mahalanobis distance is a statistic which is commonly used for data association.

Essentially, it determines which isoprobabilistic surface of an n dimensional ellipsoid

a given innovation lies upon. Given the measurement function h(.) and the measure-

ment Jacobian H., the expanded and contracted forms of the Mahalanobis distance

are

= (z - h())T (HxPHT + R)- 1 (z - h(k)) (3.39)

72 = vTs 1 v. (3.40)

The Mahalanobis distance is used most frequently in stochastic mapping to per-

form nearest neighbor gating [33, 75]. Observations of individual features are com-

pared against predicted observations of individual features to try to determine corre-

spondence.

Delayed gating allows future information to smooth the robot estimate for a given

timestep, resulting in a more precise gate.

More generally, numerous observations taken through time of individual features

can be tested to see whether or not they fit broader hypotheses. Using this form,

measurements can provide context for other measurements. In this case, an expanded

v of the form utilized in the batch update would be used.

Most generally, observations taken throughout time of more than one feature can

be tested to establish a metric for the broadest form of hypotheses.

3.5 Cooperative Stochastic Mapping with Work-

ing Memory

If the robot is to use information from other robots for mapping and navigation, it

will need to represent their states in its state vector. It will also need some method
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of communication. Underwater communications are slow, and acoustic transmission

rates are low compared to electromagnetic rates in air. Modems can also be jammed

by other sound sources so that transmissions may have to be scheduled for when other

acoustic instruments are silent. This will cause delays. These delays will have to be

accommodated by explicitly representing a history of the secondary robots states.

3.5.1 Cooperation with Perfect Communication

The simplest case would be if instantaneous communication were available. Obviously,

this is not realistic, but examining this case is useful.

If the robot wants to use robot n's observation of feature m, and robot n's state

is in the state vector and feature m is mapped, the robot simply performs an update

using an update equation of the form

h(x) = h(X,, Xfm). (3.41)

If the robot wants to use the nth robot's observation of the m + ith feature to map

it, a mapping function of the form

g(x, z[k]) = g (xrn, zy" [k]) (3.42)

is used.

3.5.2 Cooperation with Delayed Communication

In reality, delays occur. Robots will need to maintain estimates of where the other

cooperating robots have been. If the robot wants to use the nth robot's measurement

of the mth feature at timestep k - j, it must use a measurement prediction equation

of the form

h(x) = h(Xrn[k - j k]). (3.43)

If the robot wants to map the feature [m + 1] using the nth robot's observation

83



at timestep k - j, the mapping equation is of the form

g(x) = g(x,[k - j nk], z[k - j]). (3.44)

3.5.3 Cooperation with Communication Dropouts or Robots

of Opportunity

Sometimes it is impractical to recreate where a cooperating robot has gone. For in-

stance, suppose a cooperating robot has not been seen for days. Should our robot

demand to know everything that the collaborator has done over that interval? If the

primary robot knew every control input and every observation of the collaborator

during the communications dropout, it could most accurately estimate that robot's

present state. However, that is impractical. It requires an immense amount of com-

munication. Moreover, it is a violation of the collaborator's privacy. Perhaps this is

information that should not be shared with other robots, or perhaps it is undesirable

to broadcast to the world where specific robots have been. In such cases, it will be

necessary to remap the second robot.

Similarly, if a robot of opportunity shows up and offers to be useful, the robot

should be able to incorporate the collaborator into its map and use its information.

The immediate idea one has is to merge the two robot's maps. This is a bad idea.

If the two maps were entirely independent, then they could be merged flawlessly, but

if information had been exchanged, they would be correlated. If they were correlated,

merging the two maps, while assuming them to be uncorrelated, would result in

information being reused. If the two robots had previously merged their maps, they

would be correlated. If the first robot had merged its map with a third robot, which

in turn merged its map with the second robot, then the first and second robots' maps

would be correlated. Merging correlated maps and reusing information causes the

robots to become overconfident, which is bad. If care is not taken, repeated map

mergings can implicitly cause the same measurement to be used over and over again,

essentially turning a single observation into several.

84



The easiest way to remap a cooperating robot, or map a robot of opportunity, is

to use its observations of known features. The easiest case is if the second robot has

sensors for measuring its orientation and velocity, in which case those components of

its state can be directly initialized. To estimate position, the initialization calculates

where the robot must have been to have made the observations it made. For instance,

in a two dimensional environment, assuming the nth robot's heading 0 could be

measured using a compass, and assuming its observation of mth feature, a point

object at [Xp y,]t, at timestep k - j was [r 4]T, the initialization function would be of

the form

Xr[k - j] xP- r cos(O + )

g (XZ k) = g (xf (kIk)Z[k-j]) Yr[k - j] yp - r sin(O + ()
0r[k - j] Orn[k - j]

Ur,[k - j] Ur,[k - j]

If, instead, the robot heading and velocity are unknown, the initialization is more

problematic. In an experiment in Chapter 6, two sequential positions of a second

robot are initialized. Those two positions are used to infer the second robot's heading

and velocity.

First, by combining robot n's range measurements of two known features Xfm

and Xfm 2 at sequential timesteps [k - j] and [k - j + 1], the two positions can be

initialized as

g,(X, Zk) = g 1 (x/m (k k), zrn [k - j], zr- [k - j]) = X[4 [k - j] (3.46)
fYrn [k - j]

and

gZk) (Z k- k(x[k - j + 1]
92 (X, Z 9) =g(Xfl"2 (k Ik), f-2 [k -j+1], , 2 [k - J +1]) = r .k-J'+1 (3.47)
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Next, a second initialization function g 3 is used to estimate the initial robot head-

ing and velocity. This initialization function does not directly use measurements, only

the new state variables

1r, [k-j+1]Xrn. [k-j]
3W =g3 (g ),g 2() Or, [k - j] arctan( Y, [k-j+1]-yr, k-j]

g(xU [k - j] [k-j+1]-rn[kj]) 2 +(y, [kt+1] yr [k-j])2

tk-j 1 tk-j

(3.48)

In this function, tk-j+1 - tk-j is the time difference between states k - j+ 1 and k - j.

Since the numerator of the velocity initialization is distance traveled, the denominator

must be the time difference.

Finally, if a control input exists, it can be used in the initialization of the second

heading and velocity

6,,[k- j 1] ,,[k- ]+-60.
g4 (x) = g 4 (xr[k - jlk], u[k - j]) = . (3.49)

Urj[k - j + 1] Urn[k - j] + 6u

3.5.4 Cooperative Mapping of Partially Observable Features

One problem with partially observable features is conditioning. If the state is not fully

observable from a single vantage point, moving a small amount may make the feature

barely observable but ill-conditioned. For instance, in a two dimensional environment

using range only measurements, a robot may want to find a point by intersecting two

circles. If the radii of the circles are large compared to the distance between their

centers, the intersection of the circles will be ill-conditioned. A small change in either

radius (due to measurement noise) will substantially alter the intersection point, as

will small changes in either circle center (due to navigation error).

Additional robots can help address the conditioning problem. Appropriately po-

sitioned, multiple robots can make observations that yield a very well conditioned

initialization. In this case, the initialization function g(.) is a function of the different

robot states and their respective measurements. For instance, to use measurements
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from two different robots re, and r, 2 taken at timesteps k - ji and k - J2 to initialize

a feature fm+, the initialization function would take the form

g(x, Zk) = g(Xr,, [k - ji k],] 1[k - i17Xr12[k j2lk],ZrIk - j2) (3.50)

3.5.5 Cooperative Spatiotemporal Mahalanobis Testing

Not only can multiple robots be used for mapping and navigation, but they can help

each other understand their measurements. Single robots can use spatiotemporal

Mahalanobis testing to test multiple measurements simultaneously, with each mea-

surement providing context for other measurements. When information is available

from multiple robots, all of their measurements can be tested jointly to provide the

broadest possible context for measurement interpretation.

While the approach is generally applicable using any state estimation framework,

in this chapter we describe the implementation of the approach in the context of

stochastic mapping, yielding a method we refer to as "delayed stochastic mapping".

The new method is summarized in Figure 3-1. The new components of the framework

include trajectory state management, perceptual grouping, multiple vantage point

initialization, and batch updating.

The growth of the state vector in this manner increases the computational burden

as 0(n2 ), so caution must be taken. The new problem of trajectory state management

is introduced. Old vehicle trajectory states and associated terms in the covariance

need to be deleted once all the measurements from a given time step have been either

processed or discarded. In practice, we have seen excellent performance by keeping

the number of trajectory states restricted to a fixed size of 40. With a fixed window

size, the process of adding past states is similar to a fixed-lag Kalman smoother [3].

3.5.6 Perception

The next step in the framework is to apply a perception algorithm to examine col-

lectively the entire set of data that came from the current and past vehicle positions

currently in the map. Instead of being forced to make an instantaneous decision about
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1: while active mission do
2: k(k k - 1) = f(i(k - IIk - 1), u(k)) {state projection}
3: P = FXPF' + Q {covariance projection}
4: !(k) = h(k(kjk - 1)) {sensor prediction}
5: (a, -a) +- (z(k), i(k)) {data association}
6: S = HxPH' + R {innovation covariance}
7: K = PHxTS-1 {Kalman gain}
8: k(klk) = k(klk - 1) + K(Za - ia) {Kalman state update}
9: P = P - KSKT {Kalman covariance update}

10: k klk) - k(k Ik) ~10: ((kkk) +- [{k),z a) {mapping state}

P PG T
GP GxPGT + GzRG {mapping covariance}

12: k k + 1
13: end while

1: while active mission do

2: x(klk - 1) < [(kr(k - 1k - 1) u(k)) {state augmentation with projection}
W~ -1Ik -)]

FxPF + Q FXP
:L PF P {covariance augmentation with projection}

4: i(k) = h(k(klk - 1)) {sensor prediction}
5: (a, -,a) <- (z(k), i(k)) {data association}
6: S = HxPH T + R {innovation covariance}
7: K = PH TS-1 {Kalman gain}
8: k(klk) = k(klk - 1) + K(Za - ia) {Kalman state update}
9: P = P - KSKT {Kalman covariance update}

10: k~lk) - (klk)10: (kk) = k( za)] {mapping state}

P PG T
11: P G[P G + GRG] {mapping covariance}

12: Contract the state x and covariance P to remove unnecessary trajectory states and
associated terms in the covariance matrix

13: k = k + 1
14: end while

Figure 3-1: Comparison of conventional stochastic mapping (top) and delayed
stochastic mapping (bottom). The notation is summarized as follows: x is the state
vector, P is the covariance, F, G, and H are the Jacobians of their respective nonlin-
ear functions, Q and R are the propagation and measurement covariance matrices,
u is the control input, z are the observations, a labels associated observations, -a

labels unmatched observations.
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the origins of current measurements, delayed decision making is now possible. In gen-

eral, a wide variety of perception algorithms are possible, such as the RANSAC [35]

and Least Median [32] methods that have been successfully employed in vision. The

subject of delayed decision making is very broad in scope, and in this chapter, we

focus on the state estimation aspects of the problem only. For now, we assume that

some perception has been employed to classify and associate measurements. Further

discussion of perception is contained below in Section 3.7.

3.5.7 Composite Initialization

In general, the feature initialization function can use any of the information in the

state estimation i for the stochastic map, including the locations of other previously

mapped features as well as as previous vehicle states. The new feature location can

be a function of one or more previously mapped features, one or more measurements,

and the robot state estimate corresponding to these measurements. For example, one

can initialize a line that passes through a point feature xf, and is tangent to one sonar

return zj(k). In this case, the feature initialize function is of the form:

Xf. = g ( X-f, :Rr(k), zj (k)). (3.51)

Alternatively, one can initialize a point that lies at the intersection of a line currently

in the map and a new sonar return. The equations for these two initialization scenarios

are described in Appendix A. One can also initialize a new feature without any

measurements, for example, hypothesizing the constraint that a new point feature

exists at the intersection of two line segments currently in the map. Examples with

real data for several of these scenarios are given below in Section 3.6.

3.6 Examples Using Manual Association

We now present several illustrations of the concepts presented above using real sonar

data sets with manual data association. The first experiment uses 500 kHz underwa-

ter sonar data acquired in a testing tank, and the second uses data from a ring of 24

Polaroid sonar sensors. Both experiments employ manually-guided data association
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strategies that exploit a priori knowledge of the environment. While both environ-

ments are highly simplified, they are useful in illustrating the state estimation process

for mapping from multiple uncertain vantage points. Fully automatic data associa-

tion is used in the experiments in Section 3.7 as part of an integrated system that

can perform CML in real-time using odometry and wide-beam sonar measurements.

An experiment was conducted using a robotic gantry to emulate the motion and

sensing of an underwater vehicle. A 500 KHz binaural sonar was used [52, 4]. To

show mapping of partially observable features, bearing information was discarded.

Two objects were placed in the tank, a metal triangle and a point like object (a

fishing bobber). The gantry was moved through two trajectories, one to the left and

one to the right of the objects, emulating cooperative CML by two vehicles. All

processing was post processing. Data association was done by hand since it is not the

focus of this chapter. The manually-associated returns used for feature initialization

are labeled in Figures 3-4 and 3-7 and are listed in Table 3.1. The initialization

strategies used for each feature and for the position of the second robot are listed in

Table 3.2. We consider the set of measurements from the right side of the objects to

originate from "robot 1" and the measurements from the left side to be from "robot

2".

The gantry operates in a tank that is 10 meters, 3 meters wide, and 1 meter deep.

The mechanism provides ground-truth good to a few millimeters. Simulated speed

and heading measurements were generated and used for dead-reckoning. Initially, the

sensor dead-reckoned through a trajectory of 11 positions as shown in Figure 3-2.

Upon completing this trajectory, the robot had a state vector and covariance matrix

which contained only robot states, one estimate for each position. In Figure 3-3,

the correlation coefficients for the x components of the trajectory are plotted. Each

line represents the correlations between one timestep and all other saved timesteps.

Because this is a short dead-reckoned trajectory, each curve has only one maxima;

more complex trajectories may have numerous local maxima.

The assumed range measurement standard deviation was 3 centimeters for each

measurement. The added process noise had a standard deviation of 1 cm per time

step in x and y and 2 degrees per time step in heading.

The data processing was performed as follows. First, state projection was per-
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formed and trajectory states were created for robot 1 for time steps 1 through 11

without any measurements being processed. The three-sigma error bounds for the

dead-reckoned (x, y) trajectory of robot 1 are shown in Figure 3-2. The correlation

coefficients between the x coordinates of the robot trajectory states are plotted in

Figure 3-3.

Having an entire trajectory of positions, robot 1 starts to construct its map.

Because the robot uses range measurements only, features must be observed from

multiple vantage points to be mapped. By combining returns 1 and 5 (labeled in

Figure 3-4), the robot initializes the point object at the bottom of its map (Figure 3-

4). Similarly, by intersecting two more arcs (returns 2 and 6), the bottom corner

of the triangle is mapped. The equations for arc intersection are given in Appendix

A. Next, return 4 is used in conjunction with the estimated location of the bottom

corner of the triangle to add the right wall of the triangle to the map. Finally, by

intersecting return 3 with the estimated line corresponding to the right wall, the top

corner is added to the map. Using these observations, the point object and the side

of the triangle are initialized (Figure 3-5).

The wall is represented in the map by an infinite line with two parameters, p and

0, which are the angle and offset of the normal with respect to the origin. The dashed

lines in Figures 3-4 and 3-5 show the extension of the estimated line.

After initializing the features, all other observations are used for a batch update

of the newly initialized features (Figure 3-6). Mapping and navigation are improved

substantially. Robot 1 obtained 29 total measurements. Of these, six were used for

initialization and 23 were used for batch updating.

Next, robot 1 tries to use information from robot 2. We assume that there is no a

priori information for the initial location of robot 2 and that hence, robot 2 must be

initialized into the map using shared measurements of features seen by both robots.

It is determined that robot 2 has observed features in robot l's map. From the

ranges to the point object and the bottom corner of the triangle, (returns 7 through

10 as labeled in Figure 3-7) robot 2's first two positions can be observed. Those

two positions are initialized into the map. Their initialization function is of the

form g(xfy, Zr2), meaning that robot 2 is added to robot l's map using robot 2's

observations of features that have been previously mapped by robot 1 (Figure 3-8).
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Next, using the first two estimated positions for robot 2, the initial heading and

velocity of robot 2 are mapped. Using this information, along with the control inputs,

a dead-reckoned trajectory for robot 2 is established (Figure 3-9). Because neither

compass nor velocity observations are available, and because the initial estimates of

velocity and heading for robot 2 are imprecise, the trajectory is imprecise and has

large error bounds.

Having a dead-reckoned trajectory for robot 2 and its measurements, robot 1 then

maps the (otherwise unobservable) backside of the triangle and performs a batch

update to get an improved map and an improved estimate of where robot 2 traveled

(Figure 3-10) . Robot 2 obtained 22 total measurements. Of these, four measurements

were used to initialize the position of robot 2 in the stochastic map of robot 1. Two

measurements were used in initializing features on the left side of the triangle, and

the remaining 16 returns were used in batch updating.

The error bounds for robot 2 do not exhibit the growth profile that is normally

seen. Typically, since the robot starts with an initial position estimate and then

moves, the uncertainty grows with time. In this case, since the second robot is mapped

and localized with respect to previously mapped features, the smoothed estimate of

its trajectory has the least uncertainty in the middle (Figure 3-11).

The next experiment uses data from a simple "box" environment made of plywood,

demonstrating the processes of multiple vantage point initialization, batch updating,

and composite feature initialization. The data association and feature modeling tech-

niques utilize the a priori knowledge of the structure of the box, namely that each

corner of the box was created by two walls and that each wall was bounded at each

end by a corner. The input data consists of 600 sonar returns acquired from a se-

quence of 50 positions that form one-and-a-half loops around the inside of the box.

The vehicle started in the lower left corner facing upward.

The data processing proceeded as follows. First, state projection was performed

and trajectory states were created for time step 1 through time step 50 without any

measurements being processed.

At each processing cycle, a new vehicle trajectory state was added to the system

state vector. The dead-reckoned vehicle trajectory is shown in Figure 3-13(b). After

fifty cycles, a manually-guided search strategy was performed to find nine returns that
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Figure 3-2: Dead-reckoned trajectory of robot 1. The robot started at the bottom and
moved upwards. The ellipses represent the 99% confidence interval for each position.
The triangle is an aluminum sonar target, and the small filled circle at the position
x=-1.0 and y=0.0 is a fishing bobber, which served as a "point" object.

Table 3.1: Details for the ten manually-selected returns used for feature initialization.
Return number Robot Time Step I'Odometry X (m) J Odometry Y (m) Range (m)

1 1 1 0.0 0.0 1.0036
2 1 1 0.0 0.0 1.8058
3 1 3 .0045 .4992 1.8380
4 1 8 -. 0399 1.7637 .9504
5 1 11 -. 0235 2.537 2.7205
6 1 11 .0235 2.5373 1.4192
7 2 1 (unused) (unused) .9773
8 2 1 (unused) (unused) 1.7851
9 2 2 (unused) (unused) 1.0054
10 2 2 (unused) (unused) 1.5692
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Figure 3-3: Correlation coefficients between the x components of robot l's trajec-
tory. Each line represents the correlations between a specific timestep and all other
timesteps.

Figure 3-4: Set of observations used to initialize the side of the triangle and the
point object. Two observations are needed to initialize the point target, two more
are needed to initialize the corner of the triangle. Given the constraint of the corner,
only one measurement was needed to map the wall. Given the wall, only one more
measurement was needed to map the top corner of the triangle.

Table 3.2: Method of initialization for features.
Feature Initialization Method

Point object Return 1 and Return 5
Lower right vertex of triangle Return 2 and Return 6

Right plane of triangle Lower right vertex of triangle and Return 4
Upper right vertex of triangle Right plane of triangle and Return 3

Position 1 for robot 2 Point object and Returns 7 and 8
Position 2 for robot 2 Point object and Returns 9 and 10
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Figure 3-5: Initial map. 99% confidence intervals for the corners and the point object
are shown.

4
experiment 4: complex initializations of partially observable objects
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Figure 3-6: Map after a batch update. Note the improved confidence intervals for the
features and the robot.
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Figure 3-7: Adding in the second robot. The true trajectory for robot 2 is the line on
the left. Observations of the bottom corner of the triangle and of the fishing bobber
are reversed to find the first two vantage points.

Table 3.3: Comparison of hand-measured and
features (in meters).

estimated feature locations for points

Hand measured CML estimated
Feature x y xJ y

Point object -1.0 0.0 -1.0054 .0109
Lower right vertex of triangle -1.0 1.5 -. 99 1.5045
Upper right vertex of triangle -1.0 2.05 -. 9922 2.0837

Left vertex of triangle -1.4763 1.77 -1.4908 1.7846
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Figure 3-8: First two position for robot 2 are mapped. Using these two positions is
is possible to estimate the initial heading and velocity. Confidence intervals for robot
2's positions are shown in blue.
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Figure 3-9: Using the estimated initial heading and velocity for robot 2, along with its
control inputs, a dead-reckoned trajectory is constructed. With poor initial estimates
of heading and velocity, and no compass or velocity measurements for updates, the
trajectory is very imprecise.

98

. ..... ......... . ..... ...... ........ . .............. ....... ... ...



experiment 8: cooperative using a robot of convenience
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Figure 3-10: Using information from robot 2, robot 1 is able to map the back side of
the triangle, which it otherwise could not observe. After the batch update its estimate
of robot 2 improves considerably.
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Figure 3-11: Error in the smoothed estimate and three-a confidence interval for robot
2's x position. The minimum uncertainty is in the middle of the trajectory due to
forward/backward smoothing.
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Figure 3-12: B21 mobile robot in the plywood box.

were used to initialize nine features (the four corners and four walls of the box and a

prominent "crack" on the bottom wall"). The nine returns and the nine features are

each labeled in Figure 3-14, and details of the initialization sequence are shown in

Tables 3.4 and 3.5. Azimuth information from the sonar returns was used for gating

but not for estimation. The processing proceeded as follows. First, returns 1 and 2

were used to initialize corner 1, using a two position range-only initialization (circle

intersection). Next, return 3 was used in conjuction with the state estimate for corner

1 to initialize plane 1, and return 4 was used in conjuction with the state estimate

for corner 1 to initialize plane 2. After this, return 5 was used in conjuction with the

state estimate for plane 1 to initialize corner 2, and return 6 was used in conjunction

with the state estimate for plane 2 to initialize corner 3. Likewise, return 7 was used

in conjuction with the state estimate for corner 2 to initialize plane3, and return 8

was used in conjuction with the state estimate for corner 3 to initialize plane 4. Next,

return 9 and plane 4 were used to initialized the crack on plane 4. Finally, the state

estimates for plane 3 and plane 4 were used to initialize the final feature, corner 4.

After the initializations, nine constrained features (shown in Figure 3-14) were

mapped using nine range measurements (shown in Figure 3-15). Once these features

were initialized, nearest-neighbor gating was performed between all of the remaining

sonar measurements and the newly initialized map features. A total of 217 of the
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Figure 3-13: (a) Set of all measurements processed, from 50 vehicle positions. Each

sonar return is shown as a circular arc with rays drawn from the center of the dead-

reckoned robot position to the center of each arc. (b) Dead-reckoned vehicle trajectory

with 3-a- error ellipses.
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Figure 3-14: Nine measurements used to initialize nine new features, starting with the
corner in the upper left of the figure, building in both directions around the room,
and closing the box in the lower right hand corner. Three-sigma error ellipses are
shown for the dead-reckoned vehicle positions for each of the returns.

Table 3.4: Details for the nine manually-selected returns used for feature initialization.
teturn number Time Step [ Odometry X (m) ] Odometry Y (m) Odometry Heading (deg) Range (m) ] Azimuth (deg)

1 27 .0058 .0002 -3.8264 1.5486 -.3927
2 44 1.1949 .5997 -7.8248 2.0303 4.3197
3 44 1.1949 .5997 -7.8248 .8706 3.2725
4 49 1.1998 .0044 -8.9705 1.8202 -.3927
5 16 1.1990 .1490 -1.5643 1.4352 2.7489
6 36 .0004 .5950 -6.2571 1.3806 -1.9635
7 21 1.1995 .0063 -3.1013 .6280 3.272 5
8 42 1.1949 .5997 -7.1450 1.1788 -. 6545
9 50 1.1998 .0044 -9.3471 .8658 .6545

Table 3.5: Method of initialization for the feature primitives and
measured and actual locations for the four corners of the box.

comparison of hand-

Hand measured CML estimated
Feature I Initialization Method x y x y

Corner 1 Returns 1 and 2 -0.6240 1.4153 -0.6564 1.4287
Plane 1 Corner 1 and Return 3
Plane 2 Corner 1 and Return 4
Corner 2 Plane 1 and Return 5 1.7652 1.4153 1.7838 1.4605
Corner 3 Plane 2 and Return 6 -0.6240 -0.5550 -0.6050 -0.6243
Plane 3 Corner 2 and Return 7
Plane 4 Corner 3 and Return 8
Crack Plane 4 and Return 9

Corner 4 Plane 3 and Plane 4 1.7652 -0.5550 1.7652 -0.5550
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Figure 3-15: State estimates and 3-- error ellipses for the nine DOF object.

original 600 measurements were uniquely matched to one of the nine features shown

in Figure 3-16(a). Finally, Figure 3-16(b) shows the result when all these measure-

ments were applied in a single batch update, resulting in a dramatic reduction in the

uncertainty ellipses for the estimated feature locations and in the complete trajectory

of the vehicle.

3.7 Integrated Concurrent Mapping and Localiza-

tion Results

In collaboration with Leonard, Newman, and Bosse [62], the framework described

above has been implemented as part of an integrated framework for real-time CML,

which incorporates delayed state management, perceptual grouping, multiple van-

tage point initialization, batch updating, and feature fusion. These results utilize a

Hough transform method for grouping and classifying measurements of point and line

features kindly made available by J. Tard6s, J. Neira, and P. Newman [90].

For these experiments, a fixed size of 40 trajectory time steps was utilized. Every
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Figure 3-16: (a) Sonar measurements that uniquely gated with the nine initialized
feature primitives to be used in the batch update. (b) Feature location estimates,
vehicle trajectory, and error ellipses after the batch update.
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odometry trajectory and measurements referenced to the odometry trajectory
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(a)
cml trajectory and measurements referenced to the cml trajectory

-0.5 0 0.5 1.5

(b)

Figure 3-17: (a) Raw sonar data for experiment with two point objects, referenced
to odometry. (b) Sonar returns matched to the two features, referenced to the CML
estimated trajectory. The experiment was 50 minutes long. The vehicle moved con-
tinuously under manual control at a speed of 0.1 meters per second, making about
15 loops of the two cylinders.
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Figure 3-18: Estimated error bounds for the experiment. (Top plots: three-sigma
bounds for x and y of the vehicle; next plot: x-y correlation coefficient; next plot:
three-sigma bounds for vehicle heading; bottom four plots: three-sigma bounds for
the x and y locations of the two features. While there is no ground-truth for this

experiment, the vehicle returned to within a few inches of the start position, com-

mensurate with the CML algorithm state estimation error.
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Figure 3-19: Raw data for corridor experiment, referenced to odometry.
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(a)

(b)

(c)

Figure 3-20: (a) CML estimated trajectory for corridor scene and estimated map
consisting of points and line segments. Three-sigma error bounds are shown for the
location of points. (b) Same plot as in (a), but with three-sigma error bounds for
lines added. (c) Same plot as in (a), but with hand-measured model overlaid.
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40 time steps, perceptual grouping was performed using the sonar returns from the

past 40 time steps. In general, a wide variety of strategies for making delayed data

association decisions are possible within this framework. In this chapter, we do not

attempt to describe a single definitive decision-making policy, rather our goal is to

illustrate the process with a few representative examples with sonar data. For the

results reported here, we use a Hough transform technique documented in Tard6s et

al. [90]. A brief summary of the technique follows [63].

The data from a standard ring of Polaroid sonar sensors can be notoriously difficult

to interpret. This leads many researchers away from a geometric approach to sonar

mapping. However, using a physics-based sensor model, the geometric constraints

provided by an individual sonar return can be formulated [601. Each return could

originate from various types of features (point, plane, etc.) or could be spurious.

For each type of feature, there is a limited range of locations for a potential feature

that is possible. Given these constraints, the Hough transform [6] can be used as a

voting scheme to identify point and planar features. More detail on this technique is

contained in Tard6s et al. [90]. The method is similar in spirit to the TBF method

of Wijk and Christensen [99], but can also directly identify specular planar reflectors

from sonar data, which is vital in typical man-made environments with many smooth

walls.

The output from the Hough transform gives sets of measurements with a high

likelihood of originating from a single point or plane feature. Each candidate set

from the Hough typically contains between 10 and 40 sonar returns hypothesized to

originate from a new feature. For each candidate set, two returns are chosen to serve as

"seed" features for the initialization to be used in the function g(-), and the remaining

returns are used in a batch update. The first of the two "seed" measurements is

chosen to be the return in the candidate set that originates from the earliest vehicle

position from the set of trajectory states. The other seed measurement is chosen to

be the earliest return that, when combined with the first seed measurement, achieves

a sufficient minimum baseline for feature initialization (typically 0.6 meters). Once a

new feature is initialized, it is discarded if it has too small of a baseline. To successfully

distinguish doors from the walls in the corridor experiment shown in Figure 2-1, a

minimum valid line length of 1.2 meters is required for adding a feature into the
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map. (This restriction can be removed if the joint compatibility method of Neira and

Tard6s [75] is applied.)

For state estimation, one has a choice between two basic strategies: (1) attempt

to match individual measurements to pre-existing features, or (2) use measurements

exclusively for new feature initialization and batch updating, followed by feature

fusion with previously mapped features to obtain error reduction. A hybrid strategy

that mixes both policies is also possible. While we have had good success with either

(1) only, (2) only, or a mix of both, in this chapter we focus on option (2), namely

new feature mapping followed by feature fusion. See Ayache and Faugeras [5], Chong

and Kleeman [22], Tard6s et al. [90] and Williams et al. [101] for further discussion

of feature fusion. To determine when features should be fused together, we use the

Mahalanobis distance and nearest neighbor.

To illustrate the performance of the implementation, we present results from two

different simplified settings: one experiment with two point objects only (cylinders of

known radii), and one experiment in the corridor shown in Figures 2-1 and 2-2.

The method has also been implemented running in real-time under manual control.

To our knowledge, this is the first successful feature-based CML implementation using

sonar sensing for which the robot was continually in motion and the CML output was

generated in real-time. (Chong and Kleeman [22] implemented sonar-based mapping

with a high-performance sonar array that stopped to perform mechanical scanning

for each data acquisition cycle.) The method uses the standard Polaroid sonar array

on the B21 robot and could be readily ported to any B21 mobile robot. Such a result

has not been achieved before because it has not been possible without the expanded

representation accounting for temporal correlations described in this chapter.

The approach presented in this chapter also has been used extensively in two

other experimental systems. With sonar, using RANSAC for perceptual grouping

and the ATLAS framework for scalable mapping [13], Bosse et al. have mapped a

large portion of the MIT campus and demonstrated closure of large loops, using only

sonar and odometry data. Additionally, Bosse et al. have used a similar methodology

to perform 3-D mapping of vanishing points and 3-D lines from omnidirectional video

data [14].
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3.8 Related Research

The notion of incorporating segments of the robot trajectory in the state vector (in-

stead of just the current robot state) employed in this chapter is similar in some

respects to the work of Thrun [91] and Gutmann and Konolige [40], which also use

the vehicle trajectory as one of the key elements of the map representation. In our

work, we only save partial segments of the vehicle trajectory, on an "as-needed" basis

to resolve data association and feature modeling ambiguity. We believe that it is

possible to pose the problem of stochastic mapping without features, using only tra-

jectory states. The basic update operation would be to correlate the observed sensor

data from one position with that observed at another position and to formulate a

measurement update function h(.) that involves only trajectory states. For example,

Carpenter and Medeiros [20] have reported CML results using multibeam sonar im-

ages. Fleischer has employed smoothing to good effect in a stochastic framework for

undersea video mosaicking [36].

The methods of Thrun [91] and Gutmann and Konolige [40] can compute position

offsets for the robot by correlating the current laser scans with another previously

obtained laser scan. A benefit of this type of approach is that the data association

problem does not need to be solved for individual sensor measurements. Very impres-

sive experimental results have been obtained with both approaches. With sonar, the

raw data is usually too noisy and ambiguous for these correlation-based approaches

to work.

Recent work in feature-based CML has shown the importance of maintaining spa-

tial correlations between the state estimates for different features in order to maintain

consistent error bounds [21, 28]. The representation of spatial correlations results in

an O(n 2) growth in computational cost [71], where n is the number of features in

the environment. This has motivated techniques to address the map scaling problem

through spatial and temporal partitioning [27, 61, 39]. The current chapter has not

addressed the map scaling problem; however, it provides a framework for increasing

the reliability of local map building. It is anticipated that this will greatly expand

the range of environments in which CML can be successfully performed. For a given

new type of environment, it is essential to establish reliable local mapping before

considering the large-scale mapping problem.
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An alternative to achieve the sonar mapping results presented here is to use a

custom sonar array that can classify and initialize geometric primitives from a single

vantage point. The state-of-the-art in this area is exhibited by the work of Kleeman et

al. [48, 42, 22, 49]. For example, Chong and Kleeman [23] have used custom advanced

sonar arrays to very good effect in testing large-scale CML algorithms. Since this was

a scanning sonar, the robot has to stop and scan at each location. However, more

recently, Heale and Kleeman [42] have demonstrated a small, multi-element sensor

that performs rapid classification to enable mapping while moving.

Nevertheless, attempting to perform CML with the standard ring of Polaroid

sensors is an interesting and important problem from both a practical and a basic

science perspective. The challenges of range-only interpretation explicitly capture

many important uncertainty management problems posed by CML. The fundamental

essence of sonar as a range-only sensor providing only sparse information is maintained

in a manner that can be applied to alternative, more general situations, such as multi-

robot mapping.

3.9 Conclusion

This chapter has described a generalized framework for CML that incorporates tem-

poral as well as spatial correlations, allowing features to be initialized from multiple

uncertain vantage points. The method has been applied to Polaroid sonar data from

a B21 mobile robot, demonstrating the ability to perform CML with sparse and

ambiguous data. These experiments illustrate the benefits of adding past vehicle po-

sitions to the state vector, enabling stochastic mapping to be performed in situations

in which the state of a feature can only by partially observed from a single vehicle

position and the ambiguity of individual measurements is high.

In this chapter, we have assumed that the association of measurements to features

is understood. In the next chapter, we develop methods for tracking features from

wide beam sonar data.
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Chapter 4

Trajectory Sonar Perception

We want to determine the minimum information necessary to determine correspon-

dence between measurements of static features. We would like to do this without

knowing what or where the feature is. This is appropriate because the modeling

problem is greatly simplified if correspondence is known. In this chapter, a method

for tracking locally curved objects will be developed, and the tradeoffs between sen-

sor design, robot dynamics, and computational complexity will be analyzed. Two

experiments using this approach are presented at the end of the chapter.

4.1 Introduction

Based on prior work on the general perception problem, it is reasonable to expect that

it will be extremely difficult to transform raw sonar data into a high level description

of the environment in a single step. Applying lessons from the vision community,

it would seem reasonable to break the sonar perception problem into a sequence of

processing stages. Each stage, or competence, is heavily grounded in physics and

performs a limited but well defined transformation efficiently and reliably. To solve

the perception problem, the precise sequence of competences must be determined,

and each competence must be rigorously established.

Since this is the first attempt at breaking sonar perception down in this manner,

any proposed architecture would certainly have speculative aspects. Nevertheless, it

is appropriate to propose such an architecture, so that it can be implemented, tested,
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and refined.

Therefore, for the purposes of this thesis, the following sequence of competences

will be assumed. First, there is an active sonar, which transmits and receives some

waveform. The raw signal is processed by the first competence, a matched filter.

The matched filtered output is passed to the second competence, a beamformer. The

beamformed signal is thresholded to create measurement tokens. These measurement

tokens are higher level constructs such as range and bearing. Next, measurement

tokens are used to track unknown features. In the fifth competence, tracked features

are modeled using Mahalanobis testing. In the sixth stage, features are mapped and

recognized. In this case, recognition is done by comparing high level features, rather

than comparing measurements to features.

The first three competences are basic signal processing functions. The fifth and

sixth competences, Mahalanobis testing and mapping groups of temporally separated

measurements, were established in the first half of the thesis. The fourth competence,

feature tracking, is not rigorously defined and is the subject of this chapter.

Prior approaches have attempted modeling and correspondence in a single step,

using forms of clustering. Separate clusters are required for each possible model.

Each model type has required a separate cluster. Moving beyond points and planes

towards a more general environment, it will be difficult to maintain models for all

possible features. It would be desirable to develop generalized techniques that are

applicable to all features.

Correspondence and modeling could be considered separate processes. Correspon-

dence can be thought of as the process of grouping measurements of common origins.

Modeling can be thought of as the process of determining the properties of the com-

mon origin. Because Mahalanobis testing offers the possibility of modeling feature

given accurate correspondences, it makes sense to investigate a competence for estab-

lishing correspondence - specifically, a competence that can track features without

knowing the feature model.

Most prior work tries to extract features from large sets of data, assuming that

a feature existence will show up in the data as some large regularity and that in

some appropriate measurement space there will be a large cluster of measurements.

Most algorithms try to correctly identify these clusters. Unfortunately, the act of
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projecting measurements into those sorts of spaces often requires the incorporation

of navigational uncertainty, implicitly smeering those piles.

Rather than trying to identify clusters, rather than attempting to determine corre-

spondence and models in a single step, and rather than maintain separate hypotheses

for different feature types, a simpler approach will be attempted. This section of the

thesis will investigate the minimum information needed to establish correspondence

between two measurements regardless of feature model.

This chapter will assume that objects are locally curved. Echoes are assumed to

reflect normally from targets. If, after moving a small amount, a second measurement

is made, it is assumed that there exists a sphere that would cause those two measure-

ments to occur. Such as sphere is described by its center of curvature and its radius

of curvature. Points have zero radius of curvature; planes have a radius of curvature

of oo. A positive radius of curvature refers to a convex target; a negative radius

of curvature refers to a concave target. This model is valid for small perturbations,

specular echoes, diffractive edges, and anything that is pointlike.

4.2 A Simple Feature Constraint

One easy way to track features is by overconstraining them. This is analogous to the

binary constraints of [38].

We consider a two dimensional environment and a sonar that provides ranges and

bearings of specular echoes from targets. If the environment consists entirely of point

objects, it would be possible from an initial measurement to predict a subsequent

measurement, assuming positions were known. If the sensory degrees of freedom are

denoted as m, and the feature degrees of freedom are labelled as n, this is the case

where m = n, since a two DOF sensor is observing a two DOF feature.

If, instead, there are both points and lines in the world, the features would have

three degrees of freedom. The state of a point would be (x, y, p = O)T; the state of

a line would be (nt, ny, p = 00)T, where nr and ny are the vector components of the

normal to the line from the origin. With a 2 DOF sensor, it would not be possible

to determine the third degree of freedom, point or plane, from a single measurement

since m < n. If the sensor had a third degree of freedom, so that m = n, it might
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be possible to resolve this difference. In Chong and Kleeman [23], power is used as

a third degree of freedom to differentiate walls and corners since edge diffraction is

much less intense than specular echoes.

Suppose instead of points and lines, a two dimensional world only has one type of

feature: circles. Circles have three degrees of freedom, (x, y, p)T. Points are the lim-

iting case where p -+ 0 and planes are the limiting case where p - oo. With range

and angle measurements from a single location only, curvature cannot be estimated;

the feature state is only partially observable from a single measurement. Because the

robot can only use the two geometric degrees of freedom, mi = 2 and n = 3.

A second measurement with m 2 degrees of freedom must lie in some region of

the m2-dimensional measurement space. How well the second measurement can be

predicted depends on n - mi. If n - mi = 0, the second measurement should be

perfectly predicted. If n - i > 0, there are n - mi unconstrained degrees of freedom.

If M 2 < n - mi, the number of unconstrained degrees of freedom exceeds the number

of degrees of second measurement, and no strong constraints can be imposed on it

(exempting special circumstances, such as a stationary robot in a static environment).

However, if m 2 > n - m1 , or n < Mi 1 + M 2 , then the second measurement can be

constrained to lie upon some function in measurement space. If it is assumed that

M1 = M 2 = M, the if m < n < 2m, given a prior measurement, it is possible to

predict some function that a second measurement must lie on. For the most general

case, if (k - 1)m < n < km, then a minimum of k - 1 measurements are needed to

find a constraint function for the kth measurement of a feature. In general, to avoid

a combinatorial explosion, it is preferable to design a sensor such that 2m > n. For

this reason, we discourage the use of range only sonars, preferring more advanced

sensors such as binaural sonars.

Given an initial robot position, an initial range and bearing measurement to a

surface, and a second robot position, this constraint can be applied as follows. p is

the unknown variable in this 2D analysis. First, the state of the circle is calculated

as a function of the unknown variable p:

Xc(P) = Xri + (r1 + p) cos(Ori + 61) (4.1)
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YC(p) = Yri + (r, + p) sin(Orl + O). (

Then, a predicted measurement is made using (xc(p), yc(p), p):

r 2 (p) = V (c-- Xr 2 )2 + (Yc - Yr2) 2 - p (4.3)

02(P) = arctan( C ) - 0r2 (4.4)
Xc - Xr2

assuming that xe does not equal Xr2.

The innovation is calculated, but instead of having a value, it is a function of the

unknown variable

v(p) = ]- [ . (4.5)
L 2 J 2 (P)

The Mahalanobis distance also becomes a function of the unknown variable p.

-y(p) = v(p)T S(p)-v(p). (4.6)

If the minimum value of -y(p) is below an appropriate threshold, the robot cannot

rule out a possible correspondence between two measurements. At this stage, the

robot is not trying to accurately assign correspondence, it is merely trying to eliminate

the most unlikely correspondences.

If objects are assumed to be locally curved, then sequential observations of such

objects can utilize this curvature constraint.

A two dimensional form of this equation, using globally referenced angles, is

- (x 2 - xi)(sin(6r 2 + 62) - sin(Or, + 01)) + (Y2 - yi)(cos(Or 2 + 62) - cos(Or, + 01))

sin(6r1 - 0r2 + 61 - 62)
(4.7)

Unfortunately, this approach requires the feature to be fully observed. It assumes

that all aspects of a feature can be observed and that measurements are a function

of all aspects. However, in some cases, far fewer aspects of a feature are observable.
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For instance, if the robot drives directly towards a target, the reflection point does

not change. Only that reflection point is observable; however, it is also sufficient to

predict future measurements provided the robot continues on its path. Processing

measurements while only observing part of a target's state is examined in the next

section.

4.3 Trajectory Perception

Trajectory Perception models the geometric relationship between a robot and a fea-

ture as a potential field. This is similar to the derivation for Optical Flow [44]. As a

moving observer passes through a field, the rate at which measurements of the field

change is known as the substantial derivative [76]. For a field 1, the substantial

derivative would be defined as

Dt at 09X

Dt - t 8
(4.8)

Given a previous measurement of 4i_1, 4i could be predicted through a Taylor

series expansion of substantial derivatives

D___1 D 2 @Iy 1 zt2

=.i-1 + At + + h.o.t.
Dt Dt2 2!

(4.9)

Suppose an initial observation of a target is [ro 00 0 ]T. A subsequent measurement

could be predicted through a Taylor series expansion of substantial derivatives.

ri r + t + t2 Dr + h.o.t.

01 = Oo + AtD O + h.o.t.

OA + LtDO + h.o.t.L0 + Dt

The Taylor series for range includes a second order term. As

second substantial derivative of range is equivalent to the firs

of the angles. The second substantial derivative of range is

. (4.10)

will be shown later, the

t substantial derivatives

D2 rm &2 rm Or
D 2r r+25-V m +.Vrm+T(VV T rm)k.

Dt Ot2 at
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4.3.1 2D Trajectory Perception

Rather than jump directly to a six degree of freedom robot, a simplified two dimen-

sional case will be used to demonstrate the concept. Assume a simple, streamlined,

non-holonomic robot. The robot's state describes its (x, y) position, its orientation

6r, its velocity V, its yaw rate 6 r, and its acceleration V.

x

y

x Or (4.12)
V

The robot is assumed to have only a forward velocity and acceleration. It has

neither vertical (heave) nor side (sway) velocities.

Assume it is observing a locally curved target with center at (xe, Yc) and radius

p. The measured range rm is then

rm = V(X7 - x) 2 + (yc - y) 2 - p (4.13)

while the range to the center of curvature is

rc = I(_X - X) 2 + (yc - y) 2 . (4.14)

The radius of curvature is unknown. So while it is possible to measure rm, the

distance rc = rm - p cannot be directly measured. Nevertheless, rc is mentioned

because it arises frequently in calculations.

The target bearing 0 depends on the location of the robot with respect to the

target and the robot's orientation 0,

0 = arctan( Yc - Y ) - Or. (4.15)
Xc - x

The first substantial derivative of range will be examined initially. Noting that

the x and y velocities are V cos(Or) and V sin(Or) respectively, the first substantial
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derivative is

Drm Orm Or Or
"= "a+5-Vrm= "m+VCos(Or) ",+V sin(0) ". (4.16)

Dt Ot at Ox Oy

Examining the relevant derivatives, it is first assumed that at is zero. This assumes

the target to be static and the water column to have temporal constant properties.

Examining the derivatives with respect to x and y, we immediately see the unob-

servable 1/rc term. However, when combined with the numerator, these derivatives

become trigonometric functions of the bearing, so they can be forced to drop out.

Orm xe -x xe -x=-=- - cos(Or6 + ) (4.17)
Ox I(xc-x)2 + (yc - y) 2

arm _C YcY C- Y _
- E ~E - 4 =-sin(Or + ). (4.18)ay V(x -x)2 +(yc - y)2 rc

Substituting, the range derivative becomes

Dr" = 0 - V cos(Or) cos(Or + 0) - V sin(Or) sin(Or + 0) (4.19)
Dt

Dr" = -Vcos(6). (4.20)
Dt

This is intuitively correct. We would expect that the change in range would

depend on the robot velocity and the target bearing, but not global quantities.

The second substantial derivative of range is more complicated. In a compact

form, it is

D2rm O2rm Or
D + 2 - V m +i Vrm +x k(VVTrm)k. (4.21)
Dt 0t2  ai

As an initial simplification, assume the feature to be static and the water column

to have constant properties so the } terms can be eliminated. The second substantial

derivative becomes

D 2 rm

Dt X. Vrm + kT(VVT
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Expanding this yields

.. Orm
-XOx

+ Orm
+ y + :2 O

2rm
OX 2 + 2 iy r

Ox19y
+2 02 m
+9y (4.23)

The relevant velocities and accelerations are

k = V cos((Or) (4.24)

(4.25)y = V sin(Or )

(4.26)X =Vfir sin(6r) + V cos(,)

S= Vfr cos(Or) + #Vsin(Or). (4.27)

The first partial derivatives are the same as those used to calculate the first sub-

stantial derivative, but three second partial derivatives are needed. They are

(Yc - Y)2

((xc - x)2 + (Yc - y)2)3/2

(xc - x)2

((xc - x)2 + (Yc - 2)3/2

(xe - X)(Yc - Y)

((xc - x) 2 + (yc - y)2)3/2

sin2 (Or + 6)

V'(Xc - x) 2 + (yc - y)2

Cos2 (Or + 6)

V(Xc- x)2 + (yc - Y)2

COS(Or + 0) sin (Or + 0)

(x - x) 2 + (yc - y)2

sin2 (Or + 6)

cos 2 (Or + 0)

rc

(4.28)

(4.29)

COS(Or + 0) sin(Or + 0)

(4.30)

Solving for rr yields

V 2 sin 2() - V r sin(0) - V cos(0).

Again, the relative motion of the stationary object depends entirely on the relative
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Ox2
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position, not absolute position, which is intuitively correct.

The first substantial derivative of bearing is derived similarly to that of range.

Again, the bearing 0 is

0 = arctan( Y Y) - Or.
xc - x

(4.32)

The first substantial derivative of bearing is

DO 00

Dt = - + X -VO. (4.33)

Assuming the partial derivative with respect to time to be zero, the first substantial

derivative is

DO 0x 00 00 -
Dt iOx + 19Y + 19 Or. (4.34)

In this case, since the substantial derivative is a chain rule expansion, and since Or

is a state variable that is relevant to the calculation of the bearing, a partial derivative

with respect to Or is included.

The relevant partial derivatives are

Yc - Y
(xC - x)2 + (Yc - y)2

sin(Or + 0)

V(XcX x) 2 + (yc - y) 2 rc

xc - x

(xc - x) 2 + (yc - y)2

cos(Or + 0)

f( xc- x)2 + (yc -y)2

cos(Or + 0)

1.

Substituting, the first substantial derivative in bearing is found to be

DUt V s1in )

Dt I(xc - x)2+ (yc - y)2

V sin(0)
(4.38)

Revisiting the second substantial derivative of range and moving the terms around,
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00
Ox

sin(Or + 0)

00
0 y

(4.35)

(4.36)

(4.37)



it is apparent that the equation contains the first substantial derivative of bearing.

Fortuitously, it is the part that contains the unobservable 1/rc term.

D2r

Dt2
V sin (0)

- (Vin() )V sin(0) - V cos(0).
rc (4.39)

Substituting, a second trajectory perception constraint is found

D2 rm DO
D = V sin(0) - Vcos(0).

Dt2 Dt
(4.40)

4.3.2 2D Trajectory Constraint

Having established the equations governing the evolution of measurements, we want

to test whether a set of measurements are internally consistent.

Assume three measurements (ro, 0), (rI, 01), and (r2, 02). The two constraints are

Drm = -V cos(O)
Dt

(4.41)

and

D2rm
Dt2

DO
V sin(6) - cos(O).

Dt
(4.42)

By fitting a parabola to the three range measurements and using least squares to fit

a line through the three bearing measurements, D-, D
2
rm,Dt 
2 and L are shown to be

tl - t2

(to - t1)(tO - t2)

t2 - 2t1t2 + 2tot1 -t
r

to - t1
(t2 - t1)((to - t2)

(4.43)

D 2rm

Dt2

DO
Dt

r2(to - t1) + r1(t2 - to) - ro (t2 - ti)

(t2 - t 1)(to - t 1)(t 2 - to)

(2to - t1 - t2 )O0 + (2t1 - to - t2 )0 1 + (2t2 - to - t102

2(t2 + t2+ t2 - tot1 - tOt 2 - t 1t 2 )

This leads to a hypothesis test of the form
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Dt

(4.44)

(4.45)



Drm + V cos(O)
V DD (4.46)

Dt
2  V sin(0) Do

4.3.3 3D Trajectory Perception

Unlike the two dimensional case, for the three dimensional case, the target will be

placed in body coordinates. Its motion with respect to the robot will be modeled. The

robot will be at the origin of the frame of reference, and the target will be assumed

to be static. The center of curvature of the locally curved surface is at

Xc

xc= y (4.47)

zC

The center of curvature will appear to move as the robot translates and rotates.

The apparent velocity of the center will be denoted as

' c

c= y . (4.48)

The apparent velocity due to translation is

[a

Va Va (4.49)

The apparent velocity Va is the negative of the robot velocity v.

The apparent roll, pitch, and yaw of the particle with respect to the vehicle (ro-

tation around the xc, yc and ze axes) are denoted as Pa, qa, and ra, and the vector Wa

will be the vector of apparent rotation rates

Pa

Wa =qa .(4.50)

Ta
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The apparent rotation rate Wa is the negative of the true robot angular rate W.

The apparent velocity of the center of curvature due to rotation is Wa x xc. Com-

bined with the apparent translation velocity, this yields the apparent velocity

ic = Va + Wa X Xc. (4.51)

Expanded, the apparent velocities are

FOc 1
Yc

e J

Ua]

= Va

Waj

qazc - rayc

+ raXc - PaZc

[PaYc - qaxcJ

(4.52)

The apparent acceleration of the center of curvature can be similarly derived.

Xc = Va + W X va + WJa X Xc + Wa x (Wa x xc) (4.53)

Expanded, the accelerations become

[Es

c

Le ZJ

[Ua + qawa - rava + qazC - rayc + (qaYc + razc)Pa - (q2 + rx

ia + raua - Pawa + raxc - Paze + (Paxc + raZc)qa - (p a +

aa + PaVa - qaua + PaYc - qaxc + (Paxc + qayc)ra - (p2 + q )zc

(4.54)

4.3.4 3D First Substantial Derivative Range

The measured range to the target, rm, is the distance to the center of curvature, rc,

minus the radius p.

rm = rc - p =x2 + y2 +Z -p.- (4.55)

The rate at which the measured range changes, the first substantial derivative, is

Drm

Dt
_ rm .

at +Cat
Orm

at + OrC+xc
. .arm+ yc (4.56)

By assuming a static target and a water column with constant properties, the first

term can be set to zero
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arm = 0. (4.57)
at

The denominator of the partial derivatives of rm with respect to xc, yc, and ze is

VX + y2 + z2, which is unobservable, since the distance to the center of curvature is

the measured velocity plus the unknown radius of curvature. The respective numera-

tors are also unobservable. However, combined, we can easily recognize each quantity

as a trigonometric functions of the azimuth and elevation, which are observable.

arm, _ _____ = cos(O) sin(o). (4.58)
8xc fC + yC + z

arm _ Yc = sin(O) sin(). (4.59)

rm C - cos(#). (4.60)
Bzc fzC + yC2 z

Combining these terms, the first substantial derivative in range becomes

Dr" = c cos(0) sin() + yc sin(0) sin(#) + , cos (). (4.61)

Substituting in the equations for the velocities, the rotational rates drop out,

yielding

Drm _

Dt = Ua cos() sin(#) + va sin(6) sin(4) + Wa cos(#). (4.62)

Intuitively, it makes sense that the first substantial derivative of range is indepen-

dent of rotational rates. If the robot is stationary, turning should bring it no closer

to a static target.

4.3.5 3D First Substantial Derivative in Azimuth

The azimuth angle

0 = arctan( ) (4.63)
zc
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has the first substantial derivative

at a x+
.c00 .06a
cy +zc

0y zc.
(4.64)

Again, by assuming a static target, the first term can be set to zero.

06
0. (4.65)

The other partial derivatives are partially observable. Like the partial derivatives

of range, trigonometric functions of observable angles can be substituted into the

equations. However, the x and y partial derivatives are left with the unobservable

radius of curvature in the denominator. Because 0 is independent of z, the z partial

derivative is zero.

YC

X2 + y2

0
Oyc

xc

xe

sin(6)

sin(#) VX2 + y2 + z2

cos(0)

sin(#) ( x + y2 + z2

sin(0)
sin(#)(rm + p)

cos(0)
sin(#)(rm + p)

06
= 0.

azc

Consequently, the substantial derivative of bearing contains the unobservable ra-

dius of curvature p

sin(6)ua - cos(O)va

sin(0)(rm + p) +
pa cos(0) cos(#) + q, sin(0) cosQ$)

sin(#)

4.3.6 3D First Substantial Derivative of Elevation

The elevation angle

# = arccos( XC )
ha + +s s t dza

has the first substantial derivative
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DO 
_O

Dt a

06
Oac

(4.66)

(4.67)

(4.68)

DO
Dt

- ra. (4.69)

(4.70)



Dt at
+ x

a= +x
. &#

+ YC 00
+yc azc

(4.71)

The relevant partial derivatives are

(4.72)

zcxc

(XC + yC + z)(XC + y!);

ZCYC

cos(O) cos(O)

rm + p

sin(6) cos(#)

rm+ p

azC
V/xC + yC

- Y )

Substituting, the substantial derivative is

cos() cos(0)ua + cos () sin(0)va - sin(0)wa

rm+p
- Pa sin(6) + qa, cos(O). (4.76)

4.3.7 Second Substantial Derivative of Range

The second substantial derivative of range is

D2 rm

Dt
a2 rm

at2 + arm (5c, Vrm) + :c . Vrm + kTVVTrmkc.at+ (4.77)

Expanded, while assuming a static feature and constant water column, this be-

comes

D 2 rm

Dt2
Orm .

= Ua+

,92 rm2
ax2  

a

C

rm 
.a

Oyc

2

+ rm 2
a. Vaay

Orm .
+ Wa (4.78)

+ 2m 2
a Dzy a

2 r M
+2 UaVa

OXcOyc
+2 02 rm

axcazc
+2 VaWa.

aycazc

The relevant second derivatives are
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aYc

(4.73)

(4.74)

sin()
S+ p

D _
Dt

(4.75)



y + zC
= 3 =

( + y + z)s

_ x 2+ z _
C -

~ XC + yc+ zC 2

sin(O) 2 sin(0) 2 + cos(#) 2

rm + p

cos(O) 2 sin(0)2 + cos(#) 2

rm + p

x2 + y2

(x C z

XCYC

xczc

(x+yC + z 2)

(X + yC +z2) 2

sin(0) 2

rm + p

cos(6) sin(O) sin(0) 2

2 + y2 + z2

cos(O) sin(#) cos(#)
2 + y2 + z

sin(6) sin(#) cos(#)

X2 + y2 + z2

Substituting these terms, the resulting form of the second substantial derivative

contains the unobservable radius of curvature.

D2 rm _

Dt2
ul(sin(0)2 sin(#) 2 + cos(#) 2 ) + v2(cos(O) 2 sin(0) 2 + cos(0) 2 )

rm + p
(4.85)

w sin(0) 2 - 2UaVa cos(0) sin(O) sin(0) 2 - 2UaWa cos(O) sin(#) cos(O) - 2Va Wasin(O) sin(#) cos(#)
rm + p

+(cos(O) sin(O)ita + sin(O) sin(#)ia + cos(#)zba

+ cos(O) sin(#)(rava - qawa) + sin(O) sin(O)(pawa - rapa) + cos(#)(qaua - Pava)).
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&2 rm

e92rm

ay2

(4.79)

(4.80)

a2 rm

0Z4

a 2rm

axcayc

O2rm

0xc~zc

O2rm

aycazc

(4.81)

(4.82)

(4.83)

(4.84)

_



4.3.8 3D Trajectory Constraint

The first substantial derivative in range is observable from state information and

measurements. It can be used as a constraint.

Drm u cos(0) sin(#) + v sin(0) sin() + v cos(#) (4.86)
Dt

The first substantial derivatives of azimuth and elevation and the second substan-

tial derivative of range are not fully observable; they are functions of the unknown

radius of curvature. However, by combining the three equations, the unknown quan-

tity can be removed. The resulting equation for the second substantial derivative of

range is

D2 ,m

Dt2  ita cos(O) sin(0) + ?a sin(9) sin(#) + ba cos(#) (4.87)

DO D
+(-Ua sin(O) sin(o)+va cos(0) sin(#)) Dt+ (Ua cos(0) cos(k)+va sin(0) cos(#)-wa sin(0)) .

Dt Dt

This equation is a function of the angles 0 and q, the apparent velocity Va, and

the apparent acceleration vector v a. The feature is assumed static. Once again, the

apparent velocity Va is the negative of the actual robot velocity.

For a non-holonomic, streamlined robot, it may be reasonable to assume that the

heave velocity v = -Va, the sway velocity w = -Wa, the heave acceleration v = -Va,

and the sway acceleration tb = -ba are zero. Substituting the robot's forward velocity

V for the apparent object velocity -Va yields a non-holonomic form of the equations

Drm = V cos(0) sin(#) (4.88)
Dt

and

D2 rm DO D#bD2r= -V cos() sin(0) + V sin(0) sin() - _ V cos(O) cos(#) . (4.89)Dt2 Dt Dt

Assume three measurements (ro, 00, Oo), (ri, 01, #1), and (r2 , 02, 02 ). By fitting

a parabola to the three range measurements, and using least squares to fit a line
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through the three azimuth and elevation measurements, D rm , and D areDt'Dt2  Dt'ar

shown to be

Dr,, t1 - t2 2i - 2tlt2 + 2tot1 - to , to - r1

Dt (to - t1 )(to - t2) '0 (to - t1)(to - t2W(2 - t1) (t2 -t1) (to -t2)'

(4.90)

D 2rm = 2r2 (to - t1 ) + ri(t2 - to) - ro(t2 - t1 )
Dt 2  (t2 - t1)(to - t 1)(t 2 - to)

DO _ (2to - t1 - t 2 )90 + (2t1 - to - t2 )61 + (2t2 - t0 - 14.92)
Dt 2(t2 + t2 + t2 - tot1 - tOt2 - t 1t 2 )

Do _ (2to - ti - t2 )0 + (2t, - to - t 2 )0 1 + (2t 2 - to - ti)#2  (4.93)
Dt 2(t2 + t2 + t2 - tot1 - tOt2 - t1t2 )

This leads to a hypothesis test of the form

Dm+ V COS (0) sin (#)
V = ~ .t (4.94)

M + V cos(0) sin(#) - V sin(0) sin(#)g + V cos(6) cos(#)= D2 DtVosO siD$)t-1 (

4.4 Bat Tones

Certain bats have been observed to transmit a constant frequency tone while flying.

By transmitting a long tone, they guarantee themselves very high frequency resolu-

tion, but little temporal resolution. In other words, they detect Doppler shifts very

well, but range poorly if at all.

Muller et al [72, 73] demonstrated that a bat, using the first and second derivatives

of the Doppler shift, could determine the range to the target. We will present a

method for estimating range from only the first derivative of the Doppler shift.

The Doppler shift is the first substantial derivative of range multiplied by a con-

stant. For the two dimensional non-holonomic case the Doppler shift fd would be

fd = V cos()= - f Drm (4.95)
c c Dt
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where c is the sound speed and f is the frequency of the transmitted tone. Likewise,

the substantial derivative of the Doppler shift is

Dfd f DO f D2 r (.6D = -(V cos(0) - V sin(9) ) = -- 2  (4.96)
Dt c Dt c Dt2

Assuming the Doppler shift rate Dfd can be measured accurately, the bearing rateDt
DOcan be predicted asDtcabep

DO _ cos(0) - __

Sf Dt(4.97)
Dt V sin(6)

Alternatively, the Doppler shift rate can be used to infer the distance to the center

of curvature of objects r,

V 2 sin2 ( 0)
c= JI Dfc(4.98)

V + Vub -f 7CT

where 0 b is the bat's yaw rate. If points are tracked, the range to the target surface

is the same as the range to the center of curvature. In addition to measuring the

Doppler shift rate and the bearing to the target, it is assumed that the perceiver

knows its velocity. The should be a reasonable assumption. The perceiver ought

to be able to judge its velocity based on the highest observed Doppler shift or the

Doppler shift of targets directly in its path.

4.5 Non-dimensional Analysis

We wanted to find the minimum information necessary to track targets. What we

found was the information necessary to predict the rates at which measurements

change. Next we will establish when those rates are necessary and how robot dynamics

and sensor configuration affect what is needed to determine those rates.

One immediate idea is to predict that the next measurement of an object will be

the same as the last. If the update rate is high, the measurement may not move enough

to be observable. For instance, suppose that the sensor's standard deviation in range

is -, and that measurements are made at a sampling frequency f,. If I Z 1< 0 r f,

then the change in the measurement will not be observable. Similar constraints apply
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to the bearing rates and to the second substantial derivative.

We will assume that the minimum resolvable change in range is a quarter wave-

length, . If this is true, and if T2- r1 < , then no derivatives are necessary and4.4

r2 rl. On the other hand, if r2 - r1 > , then those higher order terms need to

be modeled. Alternatively, we may ask if At; > 4. Typically, the maximum value

of 21 occurs for objects directly in front of the observer, when D is equal to the

negative of the forward velocity. This leads to the nondimensional number N1, which

is the ratio of the distance traveled between pings and the wavelength of the signal,

where f, is the frequency at which the robot pings.

Ni = . (4.99)
Afs

If the quarter wavelength resolution assumption is valid, and if N > 4, then the

first substantial derivative of range should be used. A representative velocity for a

dolphin is 1 , a representative ping rate is 10 Hz, and a representative frequency is

100kHz, which has a wavelength of .015m. So, for a dolphin, N1 _ 7 > . One might

object that 1 is slow for a dolphin, but a faster dolphin would only have a larger

N1, pushing it further into this regime. For a dolphin to have N1 = , the velocity

would have to be .03751, which is very slow.

Similarly, the second substantial derivative of range will be necessary when its

contribution exceeds a quarter wavelength.

ZAt2 D2r A'A2D2r> -. (4.100)
2! Dt 2  4(

The second substantial derivative of range can be thought of as having three

parts. The first applies to a constant velocity robot driving straight. The second de-

scribes a turning robot. The third describes an accelerating robot. For a streamlined

non-holonomic robot, the first part is maximized when the target is at broadside.

Normalizing with respect to the wavelength, a non-dimensional number describing

this quantity would be

V 2

N2 = 2 .fArj (4.101)

If N2 is less than 1, the second derivative of range due to pure translation is4,
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small. Unfortunately, this depends on the distance to the center of curvature, which

depends on the target. It is probably wiser to calculate this quantity for points at

the minimum range of the sonar. This changes the quantity to

V 2

N2 = 2f.Armin (4.102)

If the robot had a forward looking sonar with a maximum beamwidth 6max, this

quantity would more accurately be

V 2 sin2 (Omax)
N2 2fArmin (4.103)

This may be a significant change. For instance, if the beam half angle is 30',
the N2 value will be reduced by 1. If we assume that a dolphin has a beam half

angle of 300, using the previously mentioned numbers, we find that the translational

component of second order effects is observable for targets closer than roughly Im.

This is for a velocity of 1. If 41 were chosen this would jump to roughly 5m. If theS

dolphin could see objects at broadside, these numbers would jump to 11m and 21m

respectively.

The second part, which depends on the vehicle's turning rate, is also maximized

for a target at broadside. Since most vehicles yaw, the maximum turning rate will be

labelled T. A nondimensional description of the turning contribution is

VT
N3 = 2fA* (4.104)

A robot with a forward looking sonar with a fixed beam width would be better

described by

V Tsin(Omax)
N3 = . (4.105)

For the dolphin we have described, the maximum turning rate for which N3 <

is 8 5degrees, if V = 1. If V = 4, then the maximum yaw rate is roughly 2 0 degrees
S S S

Even the second yaw rate may seem very high, but it is reasonable to expect that a

dolphin can turn 3600 in less than 18s.

The last contribution to the second substantial derivative of range comes from
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acceleration. This is maximized for a target directly in front of the robot. Essentially,

as the robot accelerates, can it track the object directly in front of itself. This is

described by

N 4 = Max (4.106)
2fs2A*

If a dolphin accelerates at greater than .751, the acceleration will observably

contribute to the change in range measurements.

Finally, we examine the angular rates. The angular rates can be broken into two

parts. The first is for linear motion, it describes how the bearing to a target changes

as the robot moves in a straight line. The second describes how the bearing to the

target changes as the robot turns.

One difficulty in non-dimensionalizing the bearing rate is determining an appro-

priate measure of angular resolution. For a given array, the angular resolution is a

function of angle. Resolution is typically highest at broadside and lowest at endfire.

For simplicity, the broadside resolution a will be used, which assumes once again

that a quarter wavelength can be resolved. For uniformity, the will be left out of the

non-dimensional quantities, so that if the user wishes two change the resolution crite-

ria they may. In addition to simplicity, the broadside resolution is chosen because it is

the most conservative, because robots often use broadside arrays because they allow

the largest aperture, and because it is possible to design mechanically scanned planar

arrays so that the broadside resolution is appropriate at any angle once fixation has

occurred.

The first non-dimensional number describing the first substantial derivative of

bearing depends on the velocity, the target bearing, and the range to the center of

curvature. It is maximized at broadside.

N5 = VL (4.107)
rminAfs'

With a fixed beam width, this would be

VL sin(Omax)
N rminAfs (4.108)

A crude guess for the size of a dolphins head is .2m. If the dolphin is moving at
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17, the bearing rate is observable for targets inside of about 3m. For a 41 dolphin,

the transition occurs at around 11m.

The non-dimensionalized yaw rate contribution is

T L
N6 - .L (4.109)

Af8

For a dolphin, the maximum yaw rate without entering the bearing rate regime would

be about 1 0 dege..s
second

4.6 Effects of Ocean Waves

When the robot is near the surface, it will be perturbed by ocean waves. It is

important to understand the magnitude of those effects and their impact on the

selection of a kinematic model.

Consider a simple, linear, planar wave with amplitude A and wavelength A in

deep water. (Surface waves are described by many of the same quantities as acoustic

waves, such as wavelength and angular frequency. To avoid confusion, the "little"

acoustic waves will be described by lowercase variables, while the "big" ocean waves

will be described in the uppercase.) If the wave is propagating in the x direction, the

surface perturbation 7(x, t, ) is

rq(x, t) = A cos(Kx - Qt) (4.110)

where K is the wave number K =2 and Q is the angular frequency. From the

dispersion relationship [76] for deep water we know that Q = V/Kg, where g = 9.81.

The dispersion relationship relates the group and phase velocity to the wavelength;

the velocity of an ocean wave does not depend on its amplitude. The fluid velocities

are

u = QAeKz cos(Kx - Qt) (4.111)

and

w = QAe Kz sin(Kx - Qt). (4.112)
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There are only velocities in the x and z directions, not in the y direction. Because

this is a plane wave, there are no variations in the y direction to drive such a flow.

The amplitude of u and w scale with the amplitude of the wave A. They occur at the

same frequency as the surface wave. The horizontal velocity u peaks at the lowest

and highest point on the wave. The vertical velocity is highest when r/ = 0. Both

velocities decay exponentially with depth. At a depth of -A the velocity magnitude

has decayed to QAe-2 ", which is considered small. Perhaps most interesting, the

two velocities are 900 out of phase, leading to what are known as "particle orbits".

Over the period of a wave, a particle in the water column will traverse a circular

orbit radius AeKZ. It is important to remember that the horizontal displacement is

comparable to the vertical displacement (This is for deep water. In shallow water the

horizontal displacement may be much greater than the vertical displacement.). The

components of the fluid acceleration are

u = -Q 2 AEKz cos(Kx - Qt) (4.113)

and

w = -Q2 AE Kz sin(Kx - Qt). (4.114)

In shallow water with depth h, or bottom at -h, the velocity and accelerations

are

S1 gAK cosh(K(z+h)) cos(Kx - t)I cosh(z) 
(4.115)

[w AK sinh(K(z+h)) sin(Kx - Qt)Q cosh(zh)

and

n [gAK cosh(K(z+h)) cos(Kx - Qt)cosh(zh)(416

[b -gAKsinh(K(z+h)) sin(Kx - Qt)

Wave effects differ in shallow water because the flow cannot penetrate the bottom.

The new form of the equations occurs when the vertical velocity is constrained to be

zero at the bottom. Unlike the deep water case, in which the particle orbits were

circular, in shallow water the orbits are elliptical with the horizontal velocity being

greater than the vertical velocity. The shallow water equations apply when Kh is

much less that one [76].
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Now, one may wonder why this flow matters. Robots are big and strong, why

worry about a little drag? These effects do matter, and they are significant. These

effects are properly characterized as added mass effects, rather than as drag. Drag

occurs on a body at steady state. Added mass is a force associated with accelerations

due to potential flow effects. It is as if the body carries a portion of the water column

with it. A sphere has an added mass equal to its displacement. Accelerating a

neutrally buoyant sphere in water requires twice the force it would take in air. This is

also true for a decelerating body. It is much harder to slow an underwater body. An

underwater vehicle typically is neutrally buoyant, small compared to the wavelength

A, and many vehicle lengths underwater. Under these circumstances, the vehicle will

tend to act like a particle, taking on the accelerations of the water column. The forces

necessary to overcome these accelerations may be quite high and perhaps a waste of

energy.

Assuming the robot does not try to overcome the effects of surface waves, it is

necessary to determine when they are relevant. A new form of N will be developed

to determine whether the robot moves more than a quarter wavelength due to wave

effects. Since the velocity from the wave will be AQeKz, this non-dimensionalizes as

A~eKZ
N7 = fA (4.117)

fsA

If N7 is large, a robot's motion cannot be described by only its forward velocity

and the holonomic model is necessary.

A similar number describes the motion in shallow water. Since the horizontal and

vertical velocities have unequal amplitudes, the horizontal amplitude will be used.

N 8 =AK cosh(K(z + h))
Q f A cosh(Kh)

4.7 Complexity Analysis

Having established non-dimensional numbers to determine when the respective regimes

are relevant, the computational complexity of tracking in those various regimes will

be examined for various sensor and robot designs.

First, consider a range only sonar. If N > 1, and N2, N3 , or N4 are less that -1, the
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farfield regime can be used (i.e. D2 can be ignored). Without angular information,

the range rate cannot be predicted, even if the velocity is known. If two measurements

were known to have a common origin, they could be used to infer the range rate, but

we cannot know they have a common origin from two measurements alone. From three

range measurements of a target, it is possible to predict the range rate, and validate

it. In the linear regime, the range flow has two degrees of freedom. If the robot is not

tracking anything and making n observations per timestep, then a naive search for

features is 0(n3 ). This implies that all possible measurement combinations need to be

considered. This is naive, because the range rate is bounded by the maximum robot

velocity. If, instead, we say that the number of observations is proportional to the

maximum range of the sensor rmax, then the naive search is 0(rax). By bounding the

maximum velocity, the general initialization complexity is reduced to 0(rmax V

The search to determine whether a single initial measurement originated from a target

is O(vmax). Once a measurement trajectory has been initialized, the naive search is

O(rmax), and the improved search is 0(v

If N2 , N3, or N4 are greater than , then 2 is relevant as well. In the sonar only

measures range, four measurements are required in the general search to initialize a

trajectory, with a computational complexity of 0(rmax ) Once the target has

been initialized, the complexity remains 0(v ax)

Consider now a sonar that measures range, azimuth, and elevation. If N is greater

than -, but N2 , N3 , and N4 are all less than 1, the farfield regime is applicable. If4 4,

the robot's velocities are known, then a second measurement can be predicted from

a prior measurement. The general search for correspondences is O(rmax v- 7). If the

velocities are unknown, one of two approaches can be taken. If there are enough

features, the robot's velocity can directly estimated. For the non-holonomic case, in

which the robot's motion is described entirely by its forward velocity, a minimum

of two features must be observed. The robot's velocity is estimated from the first

pairing and validated by the second. Any arbitrary pairing will yield a velocity.

However, because the true velocity is the one that is observed from correct pairings,

a codimension is necessary for validation. If the robot is holonomic, such that all

three velocities must be inferred, a minimum of four features need to be tracked.

In practice, a single noisy codimensional constraint may not be sufficiently precise to
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Figure 4-1: A naive search for correspondence compares a given range measurement
to all other ranges at a subsequent timestep. A better approach is to only search
the diagonal region, since the range rate typically does not exceed the maximum
robot velocity. This can be massively beneficial. For instance, given an initial range
measurement, the naive search to initialize it is O(r2), the more restrictive search
is O(11). If the maximum range is 50m, and the robot moves .5m between pings, the

naive technique is 5= 10000 times as computationally intensive.

140

'qYdt



infer that many dimensions, so more features should probably be tracked. If sufficient

features are unavailable, then the range rate can be inferred from a temporal sequence

of measurements, allowing tracking. Once trajectories are initialized, the search for

subsequent observations remains small.

If N1 is greater than , and either N2, N3, or N4 are greater than 1, then D 2
,4' 4' Dt2

needs to be used. Ideally, N5 or N6 is also greater than .1 Given two measurements, a

third can be predicted, so the initial search is O(rx -V ax). If, for the non-holonomic

case, the velocity and acceleration are unknown, they can be inferred by tracking a

minimum of two features. For the holonomic case, the minimum is four features.

If both N5 and N6 are less that ., it may still be possible to track a feature using

the second substantial derivative of range. Essentially, it is estimated by comparing

the difference between measured ranges to the predicted slope. The error should be

primarily due to second order effects if solidly in the second order regime. If that

error is consistent, then the prediction of the second substantial derivative is essentialy

predicted error in the first derivative.

4.8 Experimental Results

Two experiments were conducted in a testing tank. A binaural sonar [52] was used

to measure the range and bearing to targets. A binaural sonar is a simple line

array with a central transmitting transducer and two receiving "ear" transducers.

Detection was performed using the method employed by Kuc [52]. First, the signal

was rectified, logarithmically compressed, and low-pass filtered to yield the filtered

log-envelope. Then, the signal was thresholded. Upcrossings that were preceded by

a period without upcrossings were used to determine the times of flight (TOFs) for

the left and right sensors, denoted T and T,. Correspondence between sensors was

found by constraining the difference in TOFs to be less than 2D/c, where 2D is the

separation between the sensors and c is the speed of sound.

Using T and T, ranges and bearings were determined as in [52]:

(cT) 2 + (cTr)2 - 2D 2  (4.119)
2c(Ti + Tr)

141



(c2 TTr + D2 )(cT - cTr) (4.120)D(c2T1
2 + c2T - 2D 2 )

Using the above approach, the raw waveform is reduced to a set of measurement

tokens with each token being a range and bearing measurement.

The minimum range of the sensor was rmin = .7m. The minimum range was de-

fined by the intersection of the beams of the left and right transducers; the respective

cones do not intersect until roughly .7m. The resonant frequency of the transducers

was 500kHz, corresponding to A = 3mm. The separation between the left and right

transducers was L = 9.4cm.

In the first experiment, the robot drove straight at a constant velocity so T = 0

and Vmax = 0. The robot velocity was Vmax = .1timmtep The robot's sample rate

was f= timestep. The robot was able to mechanically fixate on the targets, so the

broadside form of N 2 is appropriate. Using these values, the relevant non-dimensional

quantities are N1 = 33.33, N2 = 2.381, N3 = 0, N4 = 0, N5 = 4.48, and N6 = 0. Since

#1 > , D is necessary. Since N2 > -, was also relevant. Had the robot slowed,

the sample rate been increased, and/or the minimum range at which features were

observed been increased, this would not have been necessary. The first derivative of

bearing is also observable, since N5 exceeded 1. This was due to linear motion, not

due to the yaw rate, since the robot only yawed because of added process noise.

In the second experiment, the robot moved at .15 tim.tep. It had a maximum

yaw rate of T = 15 dgre, = .26 tiedp. It drove at a constant speed, so Vmax = 0.

Otherwise, the quantities were the same as in the previous experiment. The six non-

dimensional quantities were N1 = 50, N2 = 5.36, N3 = 6.5, N4 = 0, N5 = 6.71,

and N6 = 8.15. Since the only insignificant contribution was from acceleration (N4

was zero since the robot never changed speed), all three substantial derivatives were

necessary.

The data for experiment 1 is shown in Figures 4-2 and 4-3. In this experiment,

the sensor moved past a triangular target and two point objects (fishing bobbers).

The side of the triangle was mapped, and the two fishing bobbers were tracked and

mapped, as shown in Figure 4-5.

The data for experiment 2 is shown in Figures 4-6 and 4-7. This experiment was

fully "autonomous" in the sense that the desired sensor motion was computed online

in response to the sensor data. The robot adaptively fixated on a cylinder using

142



3- -

+ +
2.5- +

2-i~ + + +

++ *:+ +

1.5-

+ ++

_ + + ++

0.5-+

-0.5-

-1
-5 -4 -3 -2 -1 0 1 2

x position (m)

Figure 4-2: Sonar measurements displayed in a cartesian projection. Detected returns
are back-projected along the sensor line of site to create a map from time-of-flight
values. The correspondence of different returns is unclear.

a reactive sensing strategy [17, 18]. After detecting the cylinder, the sensor drove

toward it and began to circle it, while periodically scanning backwards to map two

point objects located behind it. The extracted measurement trajectories are shown in

Figure 4-8. The algorithm concurrently estimated the curvature and center position

of the cylinder, the (x, y) positions of the point objects, and the sensor trajectory

(Figure 4-9).

4.9 Conclusion

This chapter has investigated the sonar perception problem. We have developed a

measurement flow model for wide beam sonar data obtained from a moving observer in

an environment with static objects. Using data from an experiment in a testing tank,

we have demonstrated the effectiveness of this model for associated measurements

obtained from multiple vantage points and using these correspondences for CML. In

the next chapter, we apply this methodology to oceanic sonar data from the GOATS
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Figure 4-3: Detected returns displayed in a range vs. angle plot. In comparison to
Figure 4-2, the human eye easily picks out "measurement trajectories" when viewed
in this manner.
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Figure 4-4: Extracted measurement trajectories for experiment 1. (Compare with
Figure 4-3).
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Figure 4-5: Estimated trajectory and map for experiment 1.
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Figure 4-7: Range vs. time for detected returns for experiment 2. Returns that are
not grouped into a trajectory are discarded.
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Figure 4-8: Extracted measurement trajectories for experiment 2.

+ ++ +

+ + +

+ +

+ ++

1.5 2 25 3 3.5 4 4.5 5 5.5 6

Figure 4-9: Raw data, estimated sensor trajectory, and object locations for experiment
2.
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Chapter 5

Results From an Ocean

Experiment

In this chapter, results from an ocean experiment using an AUV are presented. Using

the MIT Odyssey III synthetic aperture sonar system, we demonstrate the process of

extracting measurement trajectories from in water sonar data. These trajectories are

processed to generate a preliminary CML result.

5.1 Experiment description

In June 2002, in conjunction with the NATO SACLANT research center in La Spezia,

Italy, we conducted a set of experiments to investigate using AUVs for mine counter-

measures (MCM). The experiment we will describe was conducted using the Odyssey

III AUV Caribou, built by Bluefin Robotics (Figure 5-1). The Odyssey III is a stream-

lined, non-holonomic vehicle design with a vectored thruster. Its sensory payload was

an active sonar, consisting of a broadbeam transmitter aimed at broadside and a 16

element tuning fork receiving array. The sonar was originally designed for synthetic

aperture (SAS) missions. In post-processing we used its data to demonstrate feature

tracking and CML. Figure 5-2 shows a representative set of received signals obtained

from the sonar. Figure 5-3 shows a detector output for these waveforms. The receiv-

ing array was constructed by the engineering staff of the NATO SACLANT Undersea

Research Centre. The SAS sonar system was developed and integrated into Caribou
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by D. Eickstedt, W. Xu, T.C. Liu, P. Newman, R. Damus, S. Desset, and J. Morash.

5.2 Selection of the Trajectory Sonar Equations

For the experiment, a representative robot velocity was 111, a representative acoustic

wavelength was .Am, and the sampling frequency was 3Hz. This made #1 =

which exceeds , necessitating the first order range term. The maximum velocity

at which first order terms could be neglected was - .0751. Heave and sway4 8

velocities between .11 and .251 were routinely observed, necessitating the modeling
S S

of all three velocities.

Although ranges that were less than the twenty meter water depth were discarded,

a minimum range of rmin = 10m will be used in calculations. The maximum yaw rate

and acceleration were approximately T - 1 0 degrees = .17451 and Vmax = .1 m. The

non-dimensional numbers relevant to the second substantial derivative were #2 = .13,

#3 = .15, and #4 = .06. The contributions were all under a quarter wavelength, and

the minimum range was artificially low; consequently, we could safely ignore second

order effects.

The non-dimensional quantities relevant to the angular rates were #6 = .7 and

#7 = .4072. They were both slightly greater than the threshold value of ., possibly

implying that angular rates were observable. Unfortunately, the angular measure-

ments were very noisy, and angular rates could not be estimated from pairs of mea-

surements. In fact, the raw angles were too noisy for the first order range derivative,

so the median of the last 5 angles was used.

5.3 Experimental Results

Data from the experiment was post-processed. First, using a two-dimensional de-

lay and sum beamformer, each ping was beamformed over 1500 angles. The range,

azimuth, and elevation of targets were constructed by thresholding the output.

It should be noted that the beamformer was very slow. The sonar transmitted

three pings per second. After each transmission, the robot recorded for a tenth of

a second at 100 kHz on 16 channels, meaning each ping led to 16 vectors of 10,000

149



samples. Forming this data over 1500 angles was extremely computationally intensive;

processing a ping took roughly 10 minutes on a 1 GHz PC. Processing an entire

mission on a single PC took roughly a month. It is expected that this process can be

expedited using DSPs, faster computers, and parallel processing.

Once the signals had been processed to provide range and two angles, features were

easily tracked using the first order variant of the trajectory sonar perception equations.

The measurement trajectories in Figure 5-4 reflect the measurement triggers from

Figure 5-3. A larger set of trajectories from a larger time frame is shown in Figure 5-

5. The entire set of measurement trajectories is shown in Figure 5-6.

To truly perform concurrent mapping and localization, high level feature modeling

and object recognition is necessary. This thesis stopped short of that, only investigat-

ing early tracking. As such, features were mapped as if they were points. Recognition

was performed based on proximity. If two features appeared to be "close" using a

Mahalanobis test, they were fused. The sets of measurements used to map two fea-

tures are shown in Figure 5-8 and Figure 5-11. Using the entire set of measurement

trajectories, the CML was performed. The robot's map and trajectory are shown in

Figure 5-14.

Figure 5-16 shows a comparison of the CML mapped target locations with in-

dependent measurements of the same objects performed by the AUV REMUS. A

high-resolution image of the target area for this map is shown in Figure 5-17, which

was obtained by GESMA using a Klein DS5000 sidescan sonar system. One can see

that our CML algorithm succeeds in detecting objects in locations that are generally

correct; however, the algorithm fails by generating multiple features in its map that

correspond to a single feature in reality.

The competence of trajectory perception has been developed solely for the "early"

perception problem of associating measurements that originate from the same feature.

Our results are encouraging because they demonstrate this capability extremely well

with real ocean data. Future research is necessary, however, to address the higher-

level problem of acoustic object recognition - to decide autonomously that a revisited

object is the same as an object that was previously observed. This task remains for

future work.
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Figure 5-1: Odyssey III AUV with SAS sensor.
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Figure 5-2: 100 pings of input data for an eight-element line array (broadside beam-
former output). Pings occurred approximately three times per second. The data was
acquired by the Odyssey III AUV Caribou operating in about 20 meters water depth.
Most of the visible echoes in this image correspond to reflections from the bottom
and/or sea surface. However, there are also many echoes corresponding to objects on
the sea bottom (supports for an undersea cable, shown in Figure 1-5).
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Figure 5-7: Measurement trajectories projected into cartesian coordinates from a
dead reckoned robot. The spurious measurements have been removed. These are
only the "good" measurements. Notice the substantial degradation of the structure.
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Figure 5-8: Initializing a feature based on measurement trajectory 89.
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Figure 5-10: Global projection of the measurements in trajectory 89, based on a dead-
reckoned robot path. The black dots along the robot path correspond to locations
where the robot observed the target. The black +'s are the measurements from the
trajectory projected into cartesian coordinates.
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Figure 5-13: Target initialization for feature 89.
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experiment. The red path is what was calculated by the CML algorithm without
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Figure 5-16: The ellipses are the 3-o bounds for the mapped targets. The dots at the
center of the ellipses are the estimates of the target locations. The points without
ellipses correspond to where the AUV REMUS mapped targets using a sidescan sonar.

Figure 5-17: A sidescan image of the CML targets observed during GOATS 2002
(Klein DS5000 500 kHz sonar system image, courtesy of GESMA). The orientation
of the linear array of targets is rotated 90 degrees counter-clockwise in relation to
Figure 5-16.
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Chapter 6

Conclusion

6.1 Summary

This thesis has presented a framework for CML and a method of preparing sonar data

for CML. Most prior CML work has been concerned with stability, convergence, and

computational complexity. The ability to process sensory data is typically assumed.

Unfortunately, by designing an estimator while assuming perception, in some cases

estimators have been designed which precluded perception. Early work implicitly

assumed that a robot could instantaneously establish measurement to feature corre-

spondences; we know, however, that this is not always true. It was also implicitly

assumed that features were fully observable from a single measurement or vantage

point. This is certainly not true for all features and types of sensors. By providing

the robot with a "working memory" or history of robot positions, we have established

a capability to perform CML in more generic circumstances.

Having developed a framework that better meets the constraints of perception,

a new approach to sonar processing was created. First, a new representation was

presented. Rather than processing measurements in a cartesian or feature space,

measurements were left in a raw form with their temporal structure intact. Next, a

computational theory to enable a dynamic observer to track locally curved features

was developed. Based on continuity arguments, it was shown that a feature could be

tracked without an explicit model. An algorithm was developed for tracking features

without an explicit model.
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The representation, computational theory, and algorithm were validated using

data taken by a robot in the ocean. Our experiments demonstrate the capability to

extract measurement trajectories from wide beam AUV sonar data. A preliminary

CML result was generated to illustrate the potential of this approach for feature-based

AUV navigation. Additional experiments are necessary, however, to fully "close the

loop" to demonstrate real-time CML on an AUV using trajectory sonar perception.

6.2 Conclusions

We have demonstrated that robots need some sort of working memory. The move-

sense-update cycle of the Kalman filter is too restrictive. Robots need more flexibility

for perception, especially in light of the partially observable nature of the world.

They need to be able to sit back and let the world tell its own story, making a final

determination about sensory data only once there is a preponderance of evidence.

Robots should act deliberately and judiciously, rather than haphazardly. Working

memory allows the robot to put its observations into a broader context.

We have also demonstrated that a streamlined non-holonomic robot with a for-

ward looking sonar which measures range, azimuth, and elevation needs the least

information to track objects. As a rule of thumb, robots should be designed to max-

imize the sensory degrees of freedom and minimize the dynamic degrees of freedom.

We have also shown that the traditional cartesian representation used to process sonar

data obscures most of the structure and should not be used. Data should be left in a

raw form for as long as possible.

In regards to how one should approach robotics research, it should be noted that

most of the insights occurred when the robot was viewed as a complete system. By

investigating navigation, we were forced to investigate perception. By investigating

perception, we discovered that we needed to change the form of the estimators used in

navigation, and we found that robot dynamics influenced the minimum information

needed for perception. What one might conclude is that, at least occasionally, robots

need to be viewed holistically.
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6.3 Recommendations for future work

First and foremost, the approaches from this thesis need to be implemented in real

time in the ocean. The expense of ocean experimentation makes it appropriate to

initially test techniques in post-processing. However, nothing is as convincing as a

real-time robot performance in the ocean.

Also, the techniques need to be tested in natural terrain. Although we certainly

had no prior knowledge regarding the exact properties of the targets, they were still

man made objects. It will be interesting to see how the algorithm performs with

rocks. (Note to future researchers: be careful what you wish for. Apparently the

Navy has a "standard rock".)

Methods for operating in dynamic environments need to be explored. Using the

approach in this thesis, governing equations for dynamic objects can easily be derived.

For instance, consider a locally curved target moving at velocity V with heading Ot

in a two dimensional environment. For a robot moving at velocity V with heading

0, and with the target at bearing 0, the first substantial derivative of range in the

non-holonomic case can be shown to be

Dr -V cos(0) + V cos(O + 0, - Ot) = -V cos(O) + V cos(O + A Ot). (6.1)
Dt

Obviously, the dimensionality increases, but the problem can still be set up to

guarantee codimensionality. The difficulty occurs with complex shapes. How can a

robot recognize a moving target?

It was always accepted that this thesis was simply a stepping stone to object

recognition. Although many have tried single step algorithms, it was felt that it

would be wise to step back and create a solid foundation for higher level work. If one

assumes that such a foundation has been created, then one might suggest moving on

to higher level feature modeling and object recognition. However, at the level of early

correspondence, a very important line of research has not been exhausted. Very little

work has been done analyzing the importance of waveform selection. The Doppler

shift is proportional to the first substantial derivative of range, and the Doppler shift

rate is proportional to the second substantial derivative. If a perceiver can directly
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measure those Doppler quantities, the contribution of dynamics can be abstracted

away. This can simplify tracking, if the range to the target can still be measured.

Similarly, the constraints of perceiver design can be relaxed. If the perceiver/target

geometry is such that it is in the second order regime (i.e. Dt2 is observable) then

angular rates need to be observable for tracking. This may require a large aperture.

With good Doppler information, much smaller apertures may be allowable, permitting

smaller sonar perceivers. Bats have developed elaborate waveforms, featuring both

chirps and tones. Many bats clearly use Doppler information for hunting; some

identify moths by the Doppler shift of their beating wings. How Doppler information

is used in navigation is less well established, but worthy of further study.

Towards modeling and object recognition, it will be important to evaluate the

coupling between large scale motion and sonar sensing (this thesis has concerned small

scale motion). Much dolphin sonar work has concerned their performance during "bite

plate" experiments. In these experiments, the abilities of an immobilized dolphin are

evaluated. In nature, dolphins are not stationary (Nevertheless, from the perspective

of this thesis, they are well suited to early feature tracking. They are streamlined with

a forward looking sonar, and their ear separation is sufficient for second order feature

tracking, assuming quarter wavelength resolution). The paths dolphins follow while

observing targets can be quite elaborate. Further investigation of the relationship

between path selection and target modeling is warranted.

Finally, one might suggest designing future robots around perception. Too often,

perception is an after thought, because it is difficult. We have shown in this thesis

that perception is central to robot design. As such, why not make it the central design

criterion?

Artificial intelligence researchers are fond of pointing out that AI is often
denied its rightful successes. The popular story goes that when nobody
has any good idea of how to solve a particular sort of problem (e.g. playing
chess) it is known as an Al problem. When an algorithm developed by
AI researchers successfully tackles such a problem, however, AI detractors
claim that since the problem was solvable by an algorithm, it wasn't really
an Al problem after all. Thus AI never has any successes. But have you
heard of an Al failure?

I claim that AI researchers are guilty of the same (self) deception. They
partition the problems they work on into two components. The AI com-
ponent, which they solve, and the non-Al component which they don't
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solve. Typically, Al "succeeds" by defining the parts of the problem that
are unsolved as not Al. The principal mechanism for the partitioning is
abstraction. Its application is usually considered part of good science,
not, as it is in fact used in AL, as a mechanism for self delusion. In AL, ab-
straction is usually used to factor out all aspects of perception and motor
skills. I argue below that these are the hard problems solved by intelli-
gent systems, and further that the shape of solutions to these problems
constrains greatly the correct solutions of the small pieces of intelligence
which remain. -Rodney Brooks [18]

If, through this thesis, we have truly gained a toehold on the sonar perception

problem, having developed an understanding of early perception as a function of

sensing and dynamics, then perhaps it is time to build the world's first pure sonar

perceiver.
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Appendix A

Initialization Functions

A.1 Functions for Initialization of Features from

Multiple Vantage Points

A.1.1 Initializing a Point from Two Range Measurements

Observing the range from the robot to a point defines a circle which the point must

lie upon. Two observations define two circles, the intersection of which defines two

points. Hence we can observe the location of a point object, subject to the ambiguity

inherent to any quadratic equation. The ambiguity is resolved through the use of

additional information, usually a third range measurement or a beamwidth constraint.

If the robot observes the point (x, y) from vantage points (x1 , Yi) and (x2 , Y2),

measuring ranges r1 and r 2, two circles can be defined:

X - X1)2 + (y - y1)2 - r2= 0 (A.1)

and

(X-X2 +(y-y2 -r (A.2)

Expanded, these equations become:

x+y -2x 1 x - 2yy + X2 +y -r = 0 (A.3)
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Figure A-1: Two range observations of the point (x,y).

and
2 2 + 2 + 2 _ 2(A4x +y -2x 2 x-2y 2 y+x2 +y 2 -r 2 =0 (A.4)

Taking the difference of these two equations yields

2x(X2- xi) + 2y(y2 = 0) + X2 - x + y - y2 + r2 - r = o. (A.5)

How one proceeds from here depends on which denominator is chosen. For now,

the derivation will continue as if (x 2 - Xi) is not equal to zero. The case of it equaling

zero, but (Y2 - Y1) not equaling zero, will be derived afterwords. If both (X 2 - XI)

and (Y2 - Yi) are equal to zero there is no real solution, because a point object is only

partially observable from a single vantage point.

Presuming that (x2 -XI) is not equal to zero, we can further reduce Equation A.5:

Y2 - 1 -
_x + Y - y2 + r2 - r2 Y = 1  .21y2  2 1  (A.6)

X1 - X2 2(xi -X 2 )

Reduced further, this becomes

X = a1Y + a2 (A.7)
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Y2 - Y1

X1 - X2

2 -
_x + y2 - y + r2 - r 2 1 X2 + 1 Y2 + 2 1

2(xi - X2 )

Substituting Equation A.7 into Equation A.1 yields

y2 (1 + Ce2) + 2y(aia2 - aizx - yi) + a2 - 2a2x 1 + X2 + y2 - r = 0

which can be reduced to

Ayi 2 + A2Y + A3 = 0

A, = ( a 2)1

A2 = 2(aia 2 - aix - yi)

A3 = a - 2a2X 1 + X2 + y2 r2.

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

Solving this quadratic and substituting the result into Equation A.7 results in two

possible locations for the point:

--A 2  -4 A3

Y 2A,

- A2 t A - 4A1 A 3x =a 2i + a2 .

(A.15)

(A.16)

If (X2 - XI) is equal to zero, but (Y2 - Yi) is not, a second derivation is needed:
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X2 - X1

Y1 - Y2

02 =

x2 2 2 2 2A+r2 -r2 1X 2 + 1 Y2 2 -
2 (y, Y2)

S= (1+?).

(A.17)

(A.18)

(A.19)

(A.20)72 = 2(#i#2 - #1Y1 - xi).

73 = 02 - 2 02Y1 + x2 + y1 - r.

S Y2 V Y - 4yy,3
27y1

-72 N72 - 73
Y= 13i + 82.

(A.21)

(A.22)

(A.23)

A.1.2 Initializing a line from two range measurements

There can be as many as four lines which are tangent to two circles. Considering only

the cases in which the two circles are tangent to the same side of the line, there are

two possible lines.

Given two circles (xi, Yi, ri) and (x2, Y2, r 2 ), we want to find the two lines (pi, 01)

and (p2, 02).

First, calculate the distance between the centers of the two circles d and the

bearing 012 of the second circle with respect to the first.

d = \(X2 - X1)2 + (Y2 - Yi) 2 . (A.24)

012 =arctan 2(y 2 - Y1, X2 - X1 ). (A.25)

The line connecting the centers of the two circles bisects the angle formed by the
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Figure A-2: Two lines tangent to two circles.
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Figure A-3: Two range observations of the point (x,y).
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two lines. Half of that angle is

rl - r2
9 = arccos .

d
(A.26)

The normals to the two lines are therefore

01 = 012 + 0.

02 = 012 - 0.

(A.27)

(A.28)

Next, the offset from the origin is determined. First, contact points on the first

circle are found.

Xc1

Lyc1 J

Xc2

-yc2

1 + 1 * COS 01

Lyi + ri * sin 01J

x, + =1 COS 02

yi + r*sin 02

(A.29)

(A.30)

Then, the distance of the contacts from the origin is calculated.

a1=

i X2 + yC1.

a 2 = 2 2-

(A.31)

(A.32)

Similarly, their bearings from the origin are calculated.

1 = arctan 2(yi, xc1).

/2 = arctan 2(yc2 , Xc 2 ).

(A.33)

(A.34)

Having constructed two right triangles with hypotheni and angles of (ai, #1) and

(a2, /32), it is straightforward to calculate the length of the legs which are normal to

the desired lines.
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Figure A-4: Two range observations of the point (x,y).

P1 = ai cos(01 - #1). (A.35)

P2 = a 2 cos(02 - 02). (A.36)

A.1.3 Initializing a Line from a Range Measurement and a

Colinear Point

Initializing the line which is tangent to circle (x1 , yi, ri) and passes through point

(x2, Y2) is equivalent to finding the line which is tangent to two circles when one of

the circles has zero radius. There are two solutions. Without proof, the two results,

(pi, 01) and (p2, 02), are

d = V(X- X1 ) 2 + (Y2 - y1) 2 . (A.37)

OC =arctan 2(y2 - Y 1, X2 - X1 ). (A.38)
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= arccos(-).

01 = a +.

02= a -.

cl x, + r, * COS 01

ci- -y1+ r *sin 01

c2 x, + r, * COS 02

c2 y1 + r, * sin 02

: =+ yla, c

a 2 = xc2 + y2.

= arctan 2(yc1 , xci).

32 = arctan 2(yc2 , Xc2 ).

pi = a, cos(01 - i1).

P2 = a 2 cos(0 2 - /2).
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(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)



A.1.4 Initializing a Point from a Line and a Range Measure-

ment

A robot position and a range define a circle (x, y, r). Provided that the circle intersects

the line (p, 6), we want to find the intersection points.

First, we find the distance from the center of the circle to the line, which is defined

as

d = lp - x sin(O) - y cos(O)|. (A.50)

This is the first leg of a right triangle. The hypotenuse is the range measurement.

The angle between two is

d
# = arccos(-). (A.51)

r

Knowing the bearing to the line is, by definition, 0, the two intersections are

therefore

x1 x + Pcos(6-/3) (A.52)

Ly1j y + p sin(O - #

and
Xi x +Pcos(O+) (A.53)

Y1_ y +psin(O +)

A.1.5 Initializing a sphere from four spheres

An LBL beacon in the ocean has four degrees of freedom. If it is to be mapped,

one must determine its position and its turnaround time. If a beacon is treated as

a sphere, it is as if the robot measures the far side. If only range information is

available, to estimate the state of a beacon the robot must determine the sphere

which is tangent to four spheres.

Assume four robot positions [Xi Y1 zi]T, [X 2 Y2 z2 ]T, [X 3 Y3 z3 ]T, and [X 4 y 4 z4 ]T.

Also, assume four ranges ri, r2, r 3, and r4 . Calculate the following temporary vari-

ables.
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A1  X2-X1

rl -r2
B, Y2 -- Y1

B 1  -2 (A.54)
C1  

Z2-Z1
rl -r2

2 2 2- 2 2 2 2

D x-x 2 +y 1 -y 2 +z -z 2 + r2 -r1
2(ri -r2)

A 2  rl-r3

B 2 -rl-r3 

(A.55)
C2  r -r3

D2 1y 2 y32+z? -z3+rTs-r,2
2(ri -r3)

A 3  rl-r4

B 3  r -r4 (A.56)
C 3  -Z4 1 -

D3 z ri -r4

2(ri -r4)

Using these temporary variables, calculate a new set of temporary variables.

El B1-B2
1 A2-A1

F, = 1 -C2 (A.57)
- A2-Al

G, D-D2
. 1. .A2-A1_j

E B1 -B1
E2 A3-A1

F2  I-C . (A.58)F2 A3-A1

G2 D1-D3
L 2 _ _ A3-A j

Using these temporary variables, create more temporary variables.

H F-F
= E2-E I (A.59)

G1 -G2

L E2-E j

K iH + [ HF] (A.60)

L E1J + G

181



M A1K + B1 H + C1 A.1H [AK Bl Cll(A.61)
N A 1L + B1 J + D1

Finally, we set up a quadratic to solve for the z coordinate of the center. The quadratic

has the following coefficients.

P[ 1+H2 +K 2 -M 2

Q = -2z, + 2HJ - 2yH + 2KL - 2x 1K - 2MN - 2r1M . (A.62)

R z 2 + y2 - 2y1J + j2 + X2 -- 2x1L + L 2 - r2 - 2r1N - N 2

Solving this quadratic yields two values of the center of the sphere, zei and Zc2.

-Q+ Q 2 -4PR~
ZC1 2P (A.63)

-Q-- Q 2 -4PR
Zc2. 2P .

From these values, we can determine the states of the two possible spheres. Since

this is a quadratic, there are two solutions.

XCI Kzc1 + L

YC1 Hzc1 + J
(A.64)

zc1 zc1

P1 Mzc1 + N

and

Xc2 Kzc2 + L

Yc2 Hzc2 + J
(A.65)

Zc2 Zc2

P2 Mzc2+ N
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