
Automated Verification of Shape and Size
Properties via Separation Logic

Huu Hai Nguyen1, Cristina David2, Shengchao Qin3, Wei-Ngan Chin1,2

1Singapore-MIT Alliance, 2Department of Computer Science, National University of Singapore, 3Department of
Computer Science, Durham University

Abstract— Despite their popularity and importance, pointer-
based programs remain a major challenge for program verifica-
tion. In this paper, we propose an automated verification system
that is concise, precise and expressive for ensuring the safety of
pointer-based programs. Our approach uses user-definable shape
predicates to allow programmers to describe a wide range of
data structures with their associated size properties. To support
automatic verification, we design a new entailment checking
procedure that can handle well-founded inductive predicates
using unfold/fold reasoning. We have proven the soundness and
termination of our verification system, and have built a prototype
system.

Index Terms— Verification, Separation Logic

I. INTRODUCTION

In recent years, separation logic has emerged as a con-
tender for formal reasoning about heap-manipulating impera-
tive programs. While the foundations of separation logic have
been laid in seminal papers by Reynolds [16] and Isthiaq
and O’Hearn [10], new automated reasoning tools based on
separation logic, such as [2], [8], are beginning to appear.
Several major challenges are faced by the designers of such
reasoning systems, including key issues on automation and
expressivity. This paper’s main goal is to raise the level of
expressivity and verifiability that is possible with an automated
verification system based on separation logic. We make the
following technical contributions towards this overall goal :
• We provide a shape predicate specification mechanism

that can capture a wide range of data structures together
with size properties, such as various height-balanced
trees, priority heap, sorted list, etc. We provide a mech-
anism to soundly approximate each shape predicate by
a heap-independent invariant which plays an important
role in entailment checking.

• We design a new procedure to check entailment of
separation heap constraints. This procedure uses un-
fold/fold reasoning to deal with shape definitions. While

Wei-Ngan Chin is with the Department of Computer Science, School of
Computing, National University of Singapore,3 Science Drive 2, Singapore
117543, Republic of Singapore. Email: chinwn@comp.nus.edu.sg

Cristina David is with the Department of Computer Science, School of
Computing, National University of Singapore,3 Science Drive 2, Singapore
117543, Republic of Singapore. Email: davidcri@comp.nus.edu.sg

Huu Hai Nguyen is the author for correspondence. He is a student
in the Computer Science Programme, Singapore-MIT Alliance. Email:
nguyenh2@comp.nus.edu.sg

Shengchao Qin is with the Department of Computer Science, Durham
University. Email: shengchao.qin@durham.ac.uk.

the unfold/fold mechanism is not new, we have identified
sufficient conditions for soundness and termination of the
procedure in the presence of recursive user-defined shape
predicates.

• We have implemented a prototype verification system
with the above features and have also proven both its
soundness and termination.

II. USER-DEFINABLE SHAPE PREDICATES

Separation logic [16], [10] extends Hoare logic to support
reasoning about shared mutable data structures. It adds two
more connectives to classical logic : separating conjunction
∗, and separating implication −−∗. h1 ∗ h2 asserts that two
heaps described by h1 and h2 are domain-disjoint. h1−−∗h2

asserts that if the current heap is extended with a disjoint heap
described by h1, then h2 holds in the extended heap. In this
paper we use only separating conjunction.

We propose an intuitive mechanism based on inductive
predicates (or relations) to allow user specification of shapely
data structures with size properties. Our shape specification
is based on separation logic with support for disjunctive heap
states. Furthermore, each shape predicate may have pointer
or integer parameters to capture relevant properties of data
structures. We use the following data node declarations for
the examples in the paper. They are recursive data declarations
with different number of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right;

node3 parent }
We use p::c〈v∗〉 to denote two things in our system. When

c is a data name, p::c〈v∗〉 stands for singleton heap p 7→[(f :
v)∗] where f∗ are fields of data declaration c. When c is
a predicate name, p::c〈v∗〉 stands for the formula c(p, v∗).
The reason we distinguish the first parameter from the rest is
that each predicate has an implicit parameter self as the first
one. Effectively, self is a “root” pointer to the specified data
structure that guides data traversal and facilitates the definition
of well-founded predicates. As an example, a singly linked list
with length n is described by :

ll〈n〉≡(self=null∧n=0)∨(∃i, m, q · self::node〈i, q〉
∗q::ll〈m〉∧n=m+1) inv n≥0

Note that the parameter n captures a derived value. The
above definition asserts that an ll list can be empty (the base



case self=null) or consists of a head data node (specified
by self::node〈i, q〉) and a separate tail data structure which
is also an ll list (q::ll〈m〉). The ∗ connector ensures that the
head node and the tail reside in disjoint heaps. We also specify
a default invariant n≥0 that holds for all ll lists. Our predicate
uses existential quantifiers for local values and pointers, such
as i, m, q.

A more complex shape, doubly linked-list with length n, is
described by :

dll〈p, n〉≡(self=null∧n=0)∨(self::node2〈 , p, q〉∗
q::dll〈self, n−1〉) inv n≥0

The dll shape predicate has a parameter p that represents the
prev field of the first node of the doubly linked-list. It captures
a chain of nodes that are to be traversed via the next field
starting from the current node self. The nodes accessible
via the prev field of the self node are not part of the dll
list. This example also highlights some shortcuts we may use
to make shape specification shorter. We use underscore to
denote an anonymous variable. Non-parameter variables in
the RHS of the shape definition, such as q, are considered
existentially quantified. Furthermore, terms may be directly
written as arguments of shape predicate or data node.

User-definable shape predicates provide us with more flex-
ibility than some recent automated reasoning systems [1], [3]
that are designed to work with only a small set of fixed predi-
cates. Furthermore, our shape predicates can describe not only
the shape of data structures, but also their size properties. This
capability enables many applications, especially to support
data structures with sophisticated invariants. For example, we
may define a non-empty sorted list as below. The predicate
also tracks the length, the minimum and maximum elements
of the list.

sortl〈n, min, max〉 ≡ (self::node〈min, null〉∧
min=max ∧ n=1)

∨ (self::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉∧
min≤k) inv min≤max ∧ n≥1

The constraint min≤k guarantees that sortedness property is
adhered between any two adjacent nodes in the list. We may
now specify (and then verify) the following insertion sort
algorithm :

node insert(node x, node vn) where
x::sortl〈n, sm, lg〉 ∗ vn::node〈v, 〉 ∗→
res::sortl〈n+1, min(v, sm), max(v, lg)〉

{ if (vn.val≤x.val) then {
vn.next:=x; vn }

else if (x.next=null) then {
x.next:=vn; vn.next:=null; x }

else {
x.next:=insert(x.next, vn); x }}

node insertion sort(node y) where
y::ll〈n〉 ∧ n>0 ∗→ res::sortl〈n, , 〉

{ if (y.next=null) then { y }
else {
y.next:=insertion sort(y.next);
insert(y.next, y) }}

We use the notation Φpr ∗→Φpo to capture a precondition
Φpr and a postcondition Φpo of a method. We also use an
expression-oriented language where the last subexpression
(e.g. e2 from e1;e2) denotes the result of an expression. A spe-
cial identifier res is also used in the postcondition to denote
the result of a method. The postcondition of insertion sort
shows that the output list is sorted and has the same number
of nodes as the input list.

III. AUTOMATED VERIFICATION

We use an object-based imperative language. Let P be the
program being checked. With pre/post conditions declared for
each method in P , we can now apply modular verification to
its body using Hoare-style triples ` {∆1} e {∆2}. These are
forward verification rules as we expect ∆1 to be given before
computing ∆2.

We present the detailed verification of the first branch of
the insert function from Sec II. Note that program variables
appear primed in formulae whereas logical variables unprimed.
The proof is straightforward, except for the last step where a
disjunctive heap state is folded to form a shape predicate. This
step is performed by our entailment checking procedure.

{x′::sortl〈n, mi, ma〉 ∗ vn′::node〈v, 〉} // precondition
if (vn.val ≤ x.val) then {

{(x′::node〈mi, null〉 ∗ vn′::node〈v, 〉∧
mi=ma ∧ n=1 ∧ v≤mi)

∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉∗
vn′::node〈v, 〉 ∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}
// unfold and conditional

vn.next := x;
{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉∧

mi=ma ∧ n=1 ∧ v≤mi)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉∗

vn′::node〈v, x′〉 ∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}
// field update

vn
{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉∧

mi=ma ∧ n=1 ∧ v≤mi ∧ res=vn′)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉∗

vn′::node〈v, x′〉 ∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi∧
res=vn′)} // returned value
}

{res::sortl〈n+1, min(v, mi), max(v, ma)〉}
// fold to postcondition

IV. ENTAILMENT

We present in this section the entailment checking for the
class of constraints used by our verification system.

Entailment between separation formulae is reduced to en-
tailment between pure formulae by successively removing
heap nodes from the consequent until only a pure formula
remains. When the consequent is pure, the heap formula in
the antecedent is soundly approximated by a pure formula.

We express the main procedure for heap entailment by the
relation

∆A`κ
V ∆C ∗∆R

which denotes κ ∗∆A`∃V ·(κ ∗∆C) ∗∆R.



The purpose of heap entailment is to check that heap nodes
in the antecedent ∆A are sufficiently precise to cover all nodes
from the consequent ∆C , and to compute a residual heap state
∆R. κ is the history of nodes from the antecedent that have
been used to match nodes from the consequent, V is the list
of existentially quantified variables from the consequent. Note
that k and V are derived. The entailment checking procedure
is invoked with κ = emp and V = ∅.

The procedure works by successively matching up heap
nodes that can be proven aliased. As the matching process
is incremental, we keep the successfully matched nodes from
antecedent in κ for better precision. For example, consider the
following (valid) proof:

(((p=null ∧ n=0) ∨ (p6=null ∧ n>0)) ∧ n>0 ∧ m=n)
=⇒ p 6=null

∆R = (n>0 ∧ m=n)
n>0 ∧ m=n `p::ll〈n〉 p 6=null ∗ ∆R

p::ll〈n〉 ∧ n>0 ` p::ll〈m〉 ∧ p 6=null ∗ ∆R
Had the predicate p::ll〈n〉 not been kept and used, the proof

would not have succeeded. Such an entailment would be useful
when, for example, a list with positive length n is used as input
for a function that requires a non-empty list.

V. IMPLEMENTATION
We have built a prototype system using Objective Caml. The

proof obligations generated by our verification are discharged
by our entailment checking procedure with the help of Omega
Calculator [15].

Fig 1 summarizes a suite of programs tested. These ex-
amples use complicated recursion and data structures with
sophisticated shape and size properties. They help show that
our approach is general enough to handle interesting data
structures such as sorted lists, sorted trees, priority queues,
various balanced trees, etc. in a uniform way. Verification
time of a function includes time to verify all functions that
it calls. The time required for shape and size verification is
mostly within a couple of seconds. The average annotation
cost (number of annotations/LOC ratio) for our examples is
around 7%.

VI. RELATED WORK

Separation Logic. The general framework of separation logic
[16], [10] is highly expressive but undecidable. Likewise, [13]
formalised the proof rules for handling abstract predicates
(with scopes on visibility of predicates) but provided no auto-
mated procedure for checking the user supplied specifications.
In the search for a decidable fragment of separation logic
for automated verification, Berdine et al. [1] supports only a
limited set of predicates without size properties, disjunctions
and existential quantifiers. Similarly, Jia and Walker [11] post-
poned the handling of recursive predicates in their recent work
on automated reasoning of pointer programs. Our approach
is more pragmatic as we aim for a sound and terminating
formulation of automated verification via separation logic
but do not aim for completeness in the expressive fragment
that we handle. On the inference front, Lee et al. [12]
has conducted an intraprocedural analysis for loop invariants
using grammar approximation under separation logic. Their

analysis can handle a wide range of shape predicates with local
sharing but is restricted to predicates with two parameters and
without size properties. A recent work [8] has also formulated
interprocedural shape inference but is restricted to just the list
segment shape predicate. Sims [19] extends separation logic
with fixpoint connectives and postponed substitution to express
recursively defined formulae to model the analysis of while-
loops. However, it is unclear how to check for entailment
in their extended separation logic. While our work does not
address the inference/analysis challenge, we have succeeded
in providing direct support for automated verification via an
expressive shape and size specification mechanism.
Shape Checking/Analysis. Many formalisms for shape anal-
ysis have been proposed for checking user programs’ in-
tricate manipulations of shapely data structures. One well-
known work is Pointer Assertion Logic [14] by Moeller and
Schwartzbach where shape specifications in monadic second-
order logic are given by programmers for loop invariants and
method pre/post conditions, and checked by their MONA tool.
For shape inference, Sagiv et al. [18] presented a parameterised
framework, called TVLA, using 3-valued logic formulae and
abstract interpretation. Based on the properties expected of
data structures, programmers must supply a set of predicates
to the framework which are then used to analyse that certain
shape invariants are maintained. However, most of these
techniques were focused on analysing shape invariants, and
did not attempt to track the size properties of complex data
structures. An exception is the quantitative shape analysis
of Rugina [17] where a data flow analysis was proposed to
compute quantitative information for programs with destruc-
tive updates. By tracking unique points-to reference and its
height property, their algorithm is able to handle AVL-like
tree structures. Even then, the author acknowledged the lack
of a general specification mechanism for handling arbitrary
shape/size properties.
Size Properties. In another direction of research, size prop-
erties have been most explored for declarative languages
[9], [21], [6] as the immutability property makes their data
structures easier to analyse statically. Size analysis was later
extended to object-based programs [7] but was restricted to
tracking either size-immutable objects that can be aliased and
size-mutable objects that are unaliased, with no support for
complex shapes. The Applied Type System (ATS) [5] was
proposed for combining programs with proofs. In ATS, de-
pendent types for capturing program invariants are extremely
expressive and can capture many program properties with the
help of accompanying proofs. Using linear logic, ATS may
also handle mutable data structures with sharing. However,
users must supply all expected properties, and precisely state
where they are to be applied, with ATS playing the role of a
proof-checker. Comparatively, we use a more limited class of
constraint for shape and size analysis but supports automated
modular verification.
Unfold/Fold Mechanism. Unfold/fold techniques were origi-
nally used for program transformation [4] on purely functional
programs. A similar technique called unroll/roll was later used
in alias types [20] to manually witness the isomorphism be-
tween a recursive type and its unfolding. Here, each unroll/roll



Programs Verification
Time (sec)

Linked List (size/length)
delete 0.09
reverse 0.07

Circular List (size, cyclic structure)
delete 0.09
count 0.16

Doubly Linked List (size, double links)
append 0.16
flatten (from tree) 0.30

Sorted List (size, min, max, sortedness)
delete 0.13
insertion sort 0.27
selection sort 0.41
bubble sort 0.64
merge sort 0.61
quick sort 0.59

Programs Verification
Time (sec)

Binary Search Tree (min, max, sortedness)
insert 0.20
delete 0.38

Priority Queue (size, height, max-heap)
insert 0.45
delete max 7.17

AVL Tree (size, height-balanced)
insert 5.06

Red-Black Tree (size, black-height-balanced)
insert 1.53

2-3 Tree (height-balanced)
insert 24.41

Perfect Tree (perfectness)
insert 0.26

Complete Tree (completeness)
insert 1.50

Fig. 1. Verifying Data Structures with Arithmetic Properties

step must be manually specified by programmer, in contrast to
our approach which applies these steps automatically during
entailment checking. In [1], an automated procedure that uses
unroll/roll was given but it was hardwired to work for only
lseg and tree predicates. Furthermore, it performs rolling
by unfolding a predicate in the consequent which would miss
bindings on free variables. Our unfold/fold mechanism is gen-
eral, automatic and terminates for heap entailment checking.

VII. CONCLUSION

We have presented a new approach to verifying pointer-
based programs that can precisely track shape and size prop-
erties. Our approach is built on well-founded shape relations
and well-formed separation constraints from which we have
designed a sound procedure for heap entailment. We have
implemented a verification system that is both precise and
expressive.

Acknowledgement

This work is supported by the Singapore-MIT Alliance and
NUS research grant R-252-000-213-112.

REFERENCES

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with
Separation Logic. In APLAS. Springer-Verlag, November 2005.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, Springer
LNCS 4111, 2006.

[3] J. Bingham and Z. Rakamaric. A Logic and Decision Procedure for
Predicate Abstraction of Heap-Manipulating Programs. In VMCAI,
Springer LNCS 3855, pages 207–221, Charleston, U.S.A, January 2006.

[4] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of ACM, 24(1):44–67, January 1977.

[5] C. Chen and H. Xi. Combining Programming with Theorem Proving.
In ACM SIGPLAN ICFP, Tallinn, Estonia, September 2005.

[6] W.N. Chin and S.C. Khoo. Calculating sized types. In ACM SIGPLAN
PEPM, pages 62–72, Boston, United States, January 2000.

[7] W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying
Safety Policies with Size Properties and Alias Controls. In ACM
SIGSOFT ICSE, St. Louis, Missouri, May 2005.

[8] A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Analysis
with Separated Heap Abstractions. In SAS, Springer LNCS, Seoul,
Korea, August 2006.

[9] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In ACM POPL, pages 410–423. ACM Press,
January 1996.

[10] S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable
data structures. In ACM POPL, London, January 2001.

[11] L. Jia and D. Walker. ILC: A foundation for automated reasoning about
pointer programs. In 15th ESOP, March 2006.

[12] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs
using grammar-based shape analysis. In ESOP. Springer Verlag, April
2005.

[13] M.J.Parkinson and G.M.Bierman. Separation logic and abstraction. In
ACM POPL, pages 247–258, 2005.

[14] A. Moeller and M. I. Schwartzbach. The Pointer Assertion Logic Engine.
In ACM PLDI, June 2001.

[15] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis. Communications of the ACM, 8:102–
114, 1992.

[16] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In IEEE LICS, Copenhagen, Denmark, July 2002.

[17] R. Rugina. Quantitative Shape Analysis. In SAS, Springer LNCS,
Verona, Italy, August 2004.

[18] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. ACM TOPLAS, 24(3), May 2002.

[19] É-J. Sims. Extending separation logic with fixpoints and postponed
substitution. Theoretical Computer Science, 351(2):258–275, 2006.

[20] D. Walker and G. Morrisett. Alias Types for Recursive Data Structures.
In TIC, Springer LNCS 2071, pages 177–206, 2000.

[21] H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, 1998.


