Massachusetts Institute of Technology *Department of Materials Science and Engineering 77 Massachusetts Avenue, Cambridge MA 021394307*

3.012 Fundamentals of Materials Science and Engineering – Fall 2003

Problem Set Five: Structure Solutions

Problem 1

Figure 1: Point groups 4mm and 3m

Let's compare point groups 3m and 4mm.

• In 4mm, σ_1 and σ_3 are related by the 90 degree rotation of the 4-fold axis. Said another way, by placing in σ_1 we obtain σ_3 by the operation on the 4-fold axis on it. But you also get σ_2 and σ_4 when you combine σ_1 with a perpendicular rotation axes using the combination relations we discussed in class.

> $\sigma_1 \bullet A_{\frac{\pi}{2}} = \sigma_2$ with the angle between the planes being 90/2 or 45 degrees $\sigma_1 \bullet A_\pi^2 = \sigma_3$ we already had this one, another mirror 90 degrees away $\sigma_1 \bullet A_{\frac{3\pi}{2}} = \sigma_4$ with the angle between the planes being 270/2 or 135 degrees

There are then two distinct sets of mirror planes: $\sigma_1 \& \sigma_3$ and $\sigma_2 \& \sigma_4$. Theae two sets are not equivalent since the operation of the rotation axis (4-fold) will never map the two sets to the same location. Thus we call this group 4mm.

• In 3m when we place in the first mirror plane, σ_1 , we get two more planes due to the operation of the rotation axis. (σ_2 and σ_3). But like 4mm we should also see if the combination of the operations of the rotation axis and the mirror plane produce any more mirrors.

> $\sigma_1 \bullet A_{\frac{2\pi}{3}} = \sigma_2$ with the angle between the planes being 120/2 or 60 degrees $\sigma_1 \bullet A_{\frac{4\pi}{3}} = \sigma_3$ with the angle between the planes being 240/2 or 120 degrees

But we already have these planes due to the operation of the 3-fold axis. Therefore, there is only one kind of distinct mirror plane here, and we call this group 3m.

Problem 2

(a)

Figure 2: The pattern of motifs associated with point group 4mm

(b)

 $4mm$ consists of the following operations: $\{A_{\frac{\pi}{2}}, A_{\pi}, A_{\frac{3\pi}{2}}, A_{2\pi}, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$. The group multiplication table would look something like this:

	$A_{\frac{\pi}{2}}$	A_{π}	$A_{\frac{3\pi}{2}}$	$A_{2\pi}$	σ_1	σ_2	σ_3	σ_4
А $\frac{\pi}{2}$	A_π	$A_{\frac{3\pi}{2}}$	$A_{2\pi}$	$A_{\frac{\pi}{2}}$	σ_2	σ_3	σ_4	σ_1
A_{π}	$A_{\frac{3\pi}{2}}$	$A_{2\pi}$	$A_{\frac{\pi}{2}}$	A_{π}	σ_3	σ_4	σ_1	σ_2
$A_{\frac{3\pi}{2}}$	$A_{2\pi}$	$A_{\frac{\pi}{2}}$	A_{π}	$A_{\frac{3\pi}{2}}$	σ_4	σ_1	σ_2	σ_3
$A_{2\pi}$	А $\frac{\pi}{2}$	A_π	А 3π ᢒ	$A_{2\pi}$	σ_1	σ_2	σ_3	σ_4
σ_1	σ_4	σ_3	σ_2	σ_1	$A_{2\pi}$	$A_{\frac{3\pi}{2}}$	A_{π}	$A_{\frac{\pi}{2}}$
σ_2	σ_1	σ_4	σ_3	σ_2	$A_{\frac{\pi}{2}}$	$A_{2\pi}$	$A_{\frac{3\pi}{2}}$	A_π
σ_3	σ_2	σ_1	σ_4	σ_3	A_π	$A_{\frac{\pi}{2}}$	$A_{2\pi}$	$A_{\frac{3\pi}{2}}$
σ_4	σ_3	σ_2	σ_1	σ_4	$A_{\frac{3\pi}{2}}$ ᢒ	A_π	$A_{\frac{\pi}{2}}$	$A_{2\pi}$

In constructing the table the order of operations that I used was first I performed the operation in the left column, then I performed the operation from the top row. This is important to note because not every set of operations can commute. For example (see figure 3 on the next page):

$$
A_{\frac{\pi}{2}} \bullet \sigma_1 \neq \sigma_1 \bullet A_{\frac{\pi}{2}}
$$

Does this meet the three requirements needed to define a group?

- 1. Every combination of elements is also a member of the group. *This checks out. When we complete the multiplication table, we only see members of the group. We do not get any new operations.*
- 2. For every element there is an inverse. *This checks out too. For every operation in the group we can find another element for which when you combine them we get the identity element* $(A_{2\pi})$.
- 3. The identity operation is present. *Okay here as well. Looking at the multiplication table we can see that* $A_{2\pi}$ *is out identity element since any other element combined with* $A_{2\pi}$ *gives us the element back again.* $(A_{2\pi} \bullet X = X)$

Figure 3: The order of operations is important

(c)

There are 8 motifs in the pattern and the rank of the group (the number of operations) is also 8!

Problem 4

(a)

A rotation of 90 degrees $(\frac{\pi}{2})$ about x_2 would look like this:

Figure 4: A rotation of 90 degrees about x_2

So the transformation of the axes would go something like this:

$$
\begin{array}{rcl}\nx'_1 &=& -x_3 \\
x'_2 &=& x_2 \\
x'_3 &=& -x_1\n\end{array}
$$

And the direction cosine would look like this:

$$
c_{ij} = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array}\right)
$$

A reflection in the x_1-x_2 plane would look like this:

Figure 5: A reflection in the x_1-x_2 plane

So the transformation of the axes would go something like this:

$$
\begin{array}{rcl}\nx_1' & = & x_1 \\
x_2' & = & x_2 \\
x_3' & = & -x_3\n\end{array}
$$

And the direction cosine would look like this:

$$
c_{ij} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)
$$

(c)

Looking down at a cube along the [111] direction we would see something like the figure below. (This view makes it easier to see the 3-fold symmetry possessed by a cube).

Figure 6: Rotation by 120 degrees about the [111] direction of a cubic crystal. The triangle idicates the location of a 3-fold axis.

So the transformation of the axes would go something like this:

$$
\begin{array}{rcl}\nx'_1 &=& x_2 \\
x'_2 &=& x_3 \\
x'_3 &=& x_1\n\end{array}
$$

And the direction cosine would look like this:

$$
c_{ij} = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)
$$

(b)

Problem 5

Inversion will take xyz and transform it into $\bar{x}\bar{y}\bar{z}$. So to get our direction cosine for this transformation we can write: $\overline{ }$

$$
\begin{array}{rcl}\nx'_1 &=& -x_1 \\
x'_2 &=& -x_2 \\
x'_3 &=& -x_3\n\end{array}
$$

And the direction cosine would look like this:

$$
c_{ij} = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)
$$

� We can see from this that if $i = j$ then $c_{ij} = -1$ and if $i \neq j$ then $c_{ij} = 0$. This makes the transformation much easier. We can write: $\overline{}$

$$
\sigma'_{ij} = c_{il}c_{jm}\sigma_{ij}
$$

$$
\sigma'_{ij} = c_{ii}c_{jj}\sigma_{ij}
$$

$$
\sigma'_{ij} = (-1)(-1)\sigma_{ij}
$$

$$
\sigma'_{ij} = \sigma_{ij}
$$

Which doesn't place any restriction on the form of the second rank tensor σ_{ij} .