
2.003 Spring 2002 Prelab 3

In this lab, we will examine the dynamics of a second-order system composed
of a spring, mass, and damper as shown below.

LVDT

Voice Coil

x(t)

Adjustable Spring

We model the bearing shaft (along with attached collars, LVDT core, voice
coil, etc.) as a lumped mass of 0.85 kg, the slender rod as an “adjustable
(linear) spring,” and the voice coil as a viscous damper. Thus our system is
modeled as shown below
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The spring in this case is a beam with clamped-clamped end conditions.
The stiffness of this beam at the point of attachment to the shaft can be
computed from

k =
12EI

l3
(1)
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where

E = modulus of elasticity

I = πr4/4

r = bearing shaft radius

l = beam length

Our model has the form
mẍ + cẋ + kx = 0 (2)

Solutions to this equation can be found in Table 2.3-1 of our text. As shown
on pages 285-288 of our text, the system dynamics can be described graphi-
cally by plotting the system poles (or roots) in the complex plane as shown
in the figure below.

Imaginary

Real−ζωn

1/τ

s=−ζωn + iωn

√
1− ζ2

ωn

ζ = cosβ β

ωd

Problems

1. Given that our clamped-clamped beam has a diameter of 1.016 mm, a
modulus of elasticity of 210 GPa, and a length that can be varied from
about 50 to 160 mm, make a plot of stiffness as a function of length.
Make sure that the plot is large and accurate so that you can read off
values during lab.

2. Suppose that we’ve measured the system response shown in Figure 1.

(a) Estimate ωd and ζωn.
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(b) Plot the system poles in the complex plane and use your diagram
to determine the value of ωn.

(c) Given that the mass is 0.85 kg, compute the stiffness and damping
parameters for this second-order model.
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Figure 1: Second order system response

3. Make an accurate s-plane plot showing how the poles will move as the
length of the spring rod is varied gradually from 50 to 160 mm if

(a) the voice-coil circuit is closed and we measure c = 14 N·s/m

(b) the voice-coil circuit is open and we measure c = 6 N·s/m

4. Suppose that the system is overdamped with poles at s = −3 and
s = −13 rad/sec. Derive expressions for the response to

(a) an initial displacement x0 with zero initial velocity

(b) an initial velocity ẋ0 with zero initial displacement

For both cases make an accurate sketch of the contribution due to each
pole as well as the total response.

5. We often wish to design a system to move from an initial to a final
position in minimum time. During lab, you will be able to run the
system with the voice-coil circuit open or closed and with the length of
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the spring rod anywhere from 50 to 160 mm. If the system is released
with zero velocity from a displacement of 10 mm, determine the con-
figuration of the system that minimizes the time that it takes for the
system to

(a) settle within 0.5 mm of equilibrium with no overshoot

(b) settle within ±1.0 mm of equilibrium if overshoot is acceptable

Use the values of c given in the previous problem and indicate where
the optimum designs lie on your s-plane plot. Be sure to explain how
you found the optimum designs.

Matlab Hints

In questions 3 and 4, you are asked to generate a number of plots. While
you are not required to generate these using Matlab, all of these plots may
be created quickly and easily using .m files. The following functions may be
of use:
hold on holds the current plot and all axis properties so that subsequent
graphing commands add to the existing graph.
hold off returns to the default mode whereby PLOT commands erase the
previous plots and reset all axis properties before drawing new plots.
roots(c) computes the roots of the polynomial whose coefficients are the
elements of the vector c. Example:

C=[1 2 2]
A=roots(C)

Returns
A= -1+1i

-1-1i

imag(c) returns the imaginary component of a complex number c.
real(c) returns the real component of a complex number c.
length(c) returns the length of a vector c.
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You may also find it useful to begin using for loops. Here is an .m file
that uses a for loop as well as the other commands.

%sample.m

a=1;

b=2;

c=[0:1:10];

% Creates a vector from 1-10

hold on;

for i=1:length(c)

%Begins a for loop whose index starts at 1 and counts up to the size

%of c. length(c)=11 for this example

d=[a b c(i)];%Forms d using the ith element of c

f=roots(d); %in this case 1rst element of c is 0

x=real(f); %and the 11th element is 10

y=imag(f); %d=as2+bs+c

plot(x,y,’x’)

end

hold off

5



2.003 Spring 2002 Prelab 3

Appendix: How an LVDT works

In this lab, we’ll use a linear variable differential transformer to measure the
shaft’s displacement. It is an electromechanical transducer that produces a
voltage proportional to the core’s displacement. It consists of (1) a movable
magnetic core, (2) primary coils, and (3) secondary coils, as shown in the
figure below.

Secondary Coils

Magnetic Core

Primary Coil

Application of an AC voltage to the primary coil induces voltages in the
two secondary coils. The voltages are opposite in polarity and proportional
to the area of overlap between the magnetized core and the secondary-coils.
When the core is centered, the voltages in the secondary coils are equal in
magnitude so they cancel out.

Figure 2 depicts a displaced magnetized core. The voltage in the top coil
increases (and the voltage in the bottom coil decreases) in proportion to the
displacement x(t), so that Vout is proportional to x(t).

AC x(t)

Primary Coil

Vout

Secondary Coils

Magnetized Core

Figure 2: LVDT circuit
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