
2.003 Spring 2002 Problem Set 1

Problem 1 - Palm 1.6
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a) Always begin a force balance with a FBD (free body diagram). If we
assume v >0, the dry friction will act in opposition to f1 (as shown).

ΣFý = 0 = fn −mg cosφ

ΣFx́ = mẍ = f1 −mg sinφ− ffriction
mẍ = f1 −mg sinφ− µmg cosφ

ẍ = f1/m− g(sinφ + µ cosφ)

b) m=2 kg; φ = 30◦; v(0)=3 m/s;µ=0.5.
i)

f1 = 50N
ẍ = v̇ = 50/2− 9.8(sin 30◦ + 0.5 cos 30◦)
v̇ = 25− 9.8(0.5 + 0.433) = 15.86(m/s2)

To find the velocity we need to integrate v̇ with respect to time

v(t) =
∫ t

0
v̇dt =

∫ t

0
15.86dt = 15.86t + v(0)

v(t) = 3 + 15.9t(m/s)

ii)

f1 = 5N
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ẍ = v̇ = 5/2− 9.8(sin 30◦ + 0.5 cos 30◦)
v̇ = 2.5− 9.8(0.5 + 0.433) = −6.64(m/s2)

Now, the acceleration is now negative, meaning the mass slows down. To
find out whether the mass comes to rest or if it actually reversed direction
and begins going downhill at some point, we can consider a new FBD
where the friction force, ffriction, acts in the up hill direction:

ΣFx́ = mẍ = f1 −mg sinφ + ffriction
ẍ = f1/m− g(sinφ− µ cosφ) = 2.5− 9.8(0.5− 0.433) = 1.8(m/s2)

Thus, if the mass had a velocity in the downhill(negative x) direction, the
acceleration would act to slow it down (since the acceleration is positive).
The mass will not reverse direction, therefore; it will come to a rest.

Problem 2 - Palm 2.5

To simplify the problem let

f = (T −mg)

Thus the equation of motion for this system becomes;

mv̇ = T −mg − cv ⇒ v̇ +
c

m
v =

f

m

The equation of motion is a first order ordinary differential equation
(ODE). The general solution to a 1rst order ODE of the form
u̇ + p(t)u = f(t) and u(t0) = b is the following;

u(t) = Ke−P (t) + e−P (t)
∫ t

t0
f(t)eP (t)dt

where

K = beP (t)

P (t) =
∫ t

t0
p(t)dt
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Matching our system to the general solution, when h(0) = v(0) = 0, yields
the following;

P (t) =
∫ t

0

c

m
dt =

c

m
t

b = 0 ⇒ K = 0

v(t) = e−
c
m

t
∫ t

0

f

m
e

c
m

tdt = e−
c
m

t
(

f

m

)
m

c
e

c
m

t
∣∣∣
t

0

= e−
c
m

t f

c

(
e

c
m

t − 1
)

=
f

c

(
1− e−

c
m

t
)

The height of the rocket, h(t), is just the time integral of the velocity.

h(t) =
∫

v(t)dt =
∫ t

0

f

c
(1− e−

c
m

t)dt

=
f

c

(
t +

m

c
e−

c
m

t
)∣∣∣∣

t

0
=

f

c

(
t +

m

c

(
e−

c
m

t − 1
))

Alternately we can solve this problem using Laplace Transforms. For the
laplace transform method, we need to restate the equation of motion to
account for the unit step input (u(t)):

mv̇ = T −mg − cv ⇒ mv̇ + cv = fu(t) for t > 0

Taking the Laplace transform of this system:

L(mv̇ + cv) = v(s)(ms + c)

L(fu(t)) = f
1
s

v(s)(ms + c) = f
1
s

v(s) = f

(
1

s(ms + c)

)

By partial fraction expansion:

v(s) = f

(
a

s
− b

ms + c

)
= f

(
1
cs
− m

c

1
ms + c

)
=

f

c

(
1
s
− 1

s + c
m

)
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Taking the inverse Laplace transform to find v(t):

L−1(v(s)) = v(t) =
f

c
(u(t)− e−

c
m

t)

Thus for t > 0 v(t) =
f

c
(1− e−

c
m

t)

Problem 3 - Palm 2.6

2v̇ = 900− 8v ⇒ v̇ + 4v = 450
v(0) = 0

Once again the is a 1rst order ODE. Using the general solution to a 1rst
order ODE yields the following

P (t) =
∫ t

0
4dt = 4t

b = 0 ⇒ K = 0

v(t) = e−4t
∫ t

0
450e4tdt = e−4t

(
450
4

e4t
)∣∣∣∣

t

0

=
450
4

e−4t
(
e4t − 1

)
=

450
4

(
1− e−4t

)

Alternately, we can solve the problem using Laplace transforms.

2v̇ + 8v = 900u(t)
L(2v̇ + 8v) = v(s)(2s + 8) = 2v(s)(s + 4)

L(900u(t)) =
900
s

v(s) = 450
(

1
s(s + 4)

)
= 450

(
1
4s
− 1

4(s + 4)

)

L−1(v(s)) = 450L−1
(

1
4s
− 1

4(s + 4)

)
=

450
4

(u(t)− e−4t)

v(t) =
450
4

(1− e−4t) t > 0
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Since velocity is the derivative of position with respect to time

x(t) =
∫ t

0
v(t) dt =

450
4

∫ t

0
(1− e−4t) dt

=
450
4

(t +
1
4
e−4t)

∣∣∣∣
t

0

=
450
4

(
t +

1
4
e−4t − 1

4

)

We want to find the time at which x = 2500 m, thus

2500 =
450
4

(
t +

1
4
e−4t − 1

4

)

t +
1
4
e−4t =

200
9

+ 0.25 ' 22.47

this equantion can be solved either graphically or by newtonian iteration.
More simply one can take advantage of the fact that an exponential decays
to 2% of it’s value after 4τ . For this case τ=0.25 which means that the
exponential term is largely irrelevent past 1 second. Thus t = 22.47.

Problems 4-5 Palm 2.9

I have combined the solutions for problems 4-5. For problem 4 you are
only required to determine the steady-state response (vss) and the time to
98% of vss. Problem 5 requires you to determine the time response of the
system and to plot it using MATLAB. Only one sample script for plotting
is presented.
a) 2v̇ + v = 10f(t); f(t) = u(t); v(0) = 0;
Since v(0) = 0 we know the response of this system consist only of the
forced response. Using Table 2.2-1 in the text we find that for first order
systems in the form mv̇ + cv = f :

v(t) =
f

c
(1− e−

t
τ )

vss =
f

c
v(4τ) = 0.98vss

τ =
m

c
= time constant
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for our system m = 2, c = 1, and f = 10. Thus

τ = 2s

v(t) = 10(1− e−
t
2 )

t98% = 4 ∗ 2 = 8s
vss = 10

One way to plot this response using MATLAB is the following:

clear all; close all;
%clears workspace of old variables and plot.
m=2; c=1; f=10;
%Creates variables m, c, and f with listed values
tau=m/c;
%Creates and calculates variable tau.
t=[0:0.01:10]
%Creates a vector from 1-10 s with 1000 points.
%Simulated a little beyond 98% time of 8 seconds for completeness
v=(f/c)*(1-exp(-t/tau));
%Calculates a vector v.
plot(t,v)
%Creates and X-Y plot with t on x-axis and v on y.
xlabel(’Time (s)’); ylabel(’v’); title(’time vs. v’);
%Creates title and labels for the x and y axis.

b) For this part the equation of motion and the forcing function are
identical. The only difference is that we now have and initial condition
v(0) = 5. We solve this with the concept of superposition. That is we can
add the solution for the forced response with the solution for a free
response (the response for a system with initial conditions but not forcing
function) to get the total response. From table 2.2-1 we find that the free
resoponse is the following;

v(t) = v(0)e−
t
τ

τ = m/c

Combining the free response with the forced response results in;

v(t) = v(0)e−
t
τ +

f

c
(1− e−

t
τ )
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Figure 1: Response for 2.9-a

Since τ for the free and forced response are equal and vss = 0 for the free
system:

t98% = 4 ∗ 2 = 8s

vss = 10

c) This is identical to part a except f(t) = 20u(t). Thus;

t98% = 4 ∗ 2 = 8s

vss = 200
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Figure 2: Response for 2.9-b
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Figure 3: Response for 2.9-c
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Problem 6 - Palm 1.15

a) (−3 + 5i)(−6 + 7i) = 18− 21i− 30i− 35 = −17− 51i
b)

−3 + 5i

−6 + 7i
=

(−3 + 5i)(−6− 7i)
(−6 + 7i)(−6− 7i)

=
18 + 21i− 30i + 35

36 + 49
= 0.6235− 0.106i

Problem 7 - Palm 1.16

a) x = −10− 5i = 11.2e−2.68i = 11.2e(2π−2.68)i = 11.2e3.61i

Note: The ’atan2’ function in MATLAB returns the (correct) 4 quadrant
angle. Drawing the location of the number on the complex plane should
eliminate ambiguity about the angle of the point in polar coordinates. The
angle is NOT equal to 26.6◦ (which is in the first quadrant); it is 180◦ off
from this at −153.4◦.
b) x = 6e8i = 6e(8−2π)i = 6 cos (8) + i sin (8) = −0.87 + 5.9i
r = 6, φ = 8− 2π = 1.72 rad = 98.4◦

Again, drawing the location of the point may be helpful.
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