
2.003 Spring 2002 Quiz 1: Solutions

Problem 1:
This problem considers the rotational mechanical system shown in Figure 1.
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Figure 1: Cross-section and Top view

The setup is similar to the one used in Lab 2. The central shaft rotates at
an arbitrary velocity Ω1(t) in a fluid filled cup, which is fixed. Unlike Lab 2,
there is an intermediate ring, of inertia J. This ring is supported on bearings
which are not shown in the figure. The ring rotates with angular velocity Ω2(t)
as shown.

The fluid-filled annuli create a damper c1 between the shaft and the ring,
and a damper c2 between the ring and the cup. Assume that any other damping
is negligible.

a.) Draw a free-body diagram for the ring showing the torques acting on the
ring.

b.) Use this free-body diagram to derive a differential equation in terms of
Ω1(t) and Ω2(t) which describes this system. Note that Ω1(t) is an arbi-
trary velocity which is externally specified.

c.) Assume that Ω1(t) is a step, i.e., Ω1(t) = us(t), and that Ω2(0) = 0. solve
for the resulting motion Ω2(t) for t ≥ 0.

d.) In steady-state, what torque must be exerted on the input shaft? Why?

Solutions
a.) The free body diagram for the inertia is shown in Figure 2 along with a
schematic of the dynamic elements in this problem. As can be seen, the inertia
has two torques acting on it: T1 generated by the damper c1 between the input
and the inertia and T2 generated by the damper c2 between the inertia and
ground. The schematic drawing is helpful but not required in the solution.
b.) Using the FBD from part a, we can write the following relationship:

ΣT = JΩ̇2 = T1 + T2
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Figure 2: Freebody diagram of Inertia and Schematic of system.

This is where the schematic becomes helpful. By inspection, we can work out
the following relationships

T1 = c1(Ω1 − Ω2)
T2 = −c2Ω2

Substituting for T1 and T2 yields the following

JΩ̇2 = c1(Ω1 − Ω2)− c2Ω2 ⇒ JΩ̇2 + (c1 + c2)Ω2 = c1Ω1

c.) The input to the system has been defined as Ω1(t) = us(t) thus the differ-
ential equation for this system become

JΩ̇2 + (c1 + c2)Ω2 = c1us(t)

This differential equation (DE) matches that for a first order forced response.
We know the solution to this DE is of the form

Ω2(t) = Ωh(t) + Ωp(t) where

Ωp(t) = Ωss =
c1

c1 + c2
(Particular solution)

Ωh(t) = Ae−st (Homogeneous solution)

s = −c1 + c2

J
Using initial conditions

Ω2(0) = 0 = A +
c1

c1 + c2
⇒ A = − c1

c1 + c2

Ω2(t) =
c1

c1 + c2

(
1− e−

c1+c2
J t

)
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d.) We determined earlier that

Ωss =
c1

c1 + c2

Looking carefully at out schematic of the system, we know that the torque from
the shaft acting on the inertia is T1. Since, the torques on either side of the
damper need to be equal, we know the torque acting on the shaft is equal and
opposite to T1. Since the system is in steady state, we know that the velocity of
the shaft is constant which means that the sum of torques acting on the shaft
equal 0.

ΣTshaft = 0 = Tin − T1 ⇒ Tin = T1

We know that

T1 = c1(Ω1 − Ω2)
Ω1 = us(t) = 1

Ω2 = Ωss =
c1

c1 + c2

Thus T1 = c1

(
1− c1

c1 + c2

)
=

c1c2

c1 + c2

More generally T1 =
c1c2

c1 + c2
Ω1
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Problem 2 - Toy Flywheel:
A toy consists of a rotating flywheel supported on a pair of bearings as shown
in Figure 3. The flywheel is connected to a pulley , around which is wrapped a
flexible but inextensible cable connected to a spring. In operation, the flywheel
is initially at rest, the string made taut, and at t = 0, the input xs(t) undergoes
a step change in position of magnitude x0.
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Figure 3:

Assume that the flywheel-shaft-pulley unit has rotational inertia, J. The
bearings can be modelled as a viscous rotational damper of coefficient, ct. the
pulley is of radius, r. The spring is an ideal linear spring with spring constant,
k.

1. Write the system equation as a differential equation in x(t), the length of
cable unwound from the pulley, as well as system parameters, J, r, and k.
[Note that x(0) = 0]

2. For what range of values of ct (expressed in terms of system parameters
J, r, and k) will the cable never go slack?

3. Assuming that ct has some non-zero value such that the cable does go
slack, write an expression (in terms of system parameters J,r, and k) for
the response x(t), i.e. the length of cable unwound from the pulley. Sketch
the response, x(t). Carefully indicate the time over which the expression
and the sketch are valid.

4. Assume that ct is zero. Write an expression (in terms of system parameters
J, r, and k) for t, the time at which the cable first goes slack.

Solutions
1.) Figure 4 shows the free body diagram for this system. Summing the torques

ΣT = Jθ̈ = Tk − Tc

Tk = rFk

Fk = k(xs − x)
Tc = ctθ̇

so Jθ̈ + ctθ̇ = rk(xs − x)
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Figure 4:

Jθ̈ + cf θ̇ + rkx = rkxs

Recall that rθ = x ⇒ θ =
x

r

so J
r ẍ + ct

r ẋ + rkx = rkxs(t)

This may be rewritten as

ẍ +
ct

J
ẋ +

r2k

J
x =

r2k

J
xs(t)

b.) For this part we note the following relationships

2ζωn ≡ ct

J

ω2
n ≡

r2k

J

For the string not to go slack the system must not overshoot x0, this means
that ζ ≥ 1. For ζ ≥ 1 to be true

ct ≥ 2
√

r2kJ

3.) For the string to go slack the system must be allowed to overshoot or ζ < 1.
In the case of ζ < 1

x(t) = 1− 1√
1− ζ2

eζωnt cos (ωdt− ψ)

ωd = ωn

√
1− ζ2

ψ = tan−1

(
ζ√

1− ζ2

)

This equation can be expressed in terms of the system variables by substituting
for ωn and ζ from 3. Figure 5 shows the time response for this system where t∗

indicates the time after which the response is not valid. 4.) When ct = 0, the
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Figure 5:

expression for x(t) becomes

x(t) = x0(1− cosωnt)

As we saw in part 3, t∗ is the time at which the response passes x0. In this case,
it takes a quarter cycle to get to x0, thus

t∗ =
1
4

2π

ωn

Figure 6 shows the response for this system.


t*=0.25*2* n

Figure 6:
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