
2.003 Spring 2002 Problem Set 2

Problem 1 - Palm 1.11
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Using the analysis of pp. 17-19, we can calculate a dynamically equivalent
mass for the wheel with its inertia:

mequiv = mwheel +
Iwheel

R2

Then, we derive the equation of motion (using the FBD given in figures
1.4-3 and P1.11, balancing all forces on the body to determine the
acceleration of the (equivalent) mass:

F = mequiva = mequivv̇

ΣFx = f −mwheelg sinφ = mequivv̇

Assuming a ”no slip” condition for the wheel, the translational and
rotational velocities of the wheel will be related as:

v = ωR∫
v̇dt =

1
mequiv

∫
(f −mwheelg sinφ) dt

v =
1

mequiv
(f −mwheelg sinφ) · t + c

Since, v(0) = 0, the integration constant is zero: c = 0.

v =
1

mequiv
(f −mwheelg sinφ) · t

ω =
v

R
=

1
Rmequiv

(f −mwheelg sinφ) · t

Now, plug in the values given in the problem statement:
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f = 400 N, mwheel = 80 kg, R = 0.3 m, I = 3 kg-m2, φ = 25◦

mequiv = 80 + 3/(0.32) = 113.3kg

After 60 s, we find the following values for the axle speed and rotational
velocity:

v(60) =
1

113.3
(400− 80 · 9.8 · sin 25◦) · 60 = 36.4m/s

ω(60) =
1

113.3 · 0.3
(400− 80 · 9.8 · sin 25◦) · 60 = 121rad/s

Problem 2 - Palm 4.9

For each system, we can derive equations of motion by creating a force
balance (F = ma) for each ”degree of freedom” (DOF) in the system. As
we study a system, if a mass (or massless node) is free to move
independently of all other previously identified DOF, then it is associated
with a newly identified DOF. (These systems can be easily analyzed by
inspection, but for more complicated cases, it may be necessary to balance
foreces at each DOF.)
a) There are 2 DOF, x and y. At x, fx(t) + k(y − x) = 0. (We don’t really
care about fx(t) in this problem, but we know this force is being applied, if
there is an input, x.) At y, −cẏ − ky + kx = mÿ (Note you can chech if the
signs are OK by testing each component on the left-hand side of the
equation to see if it has the correct effect on the acceleration in y.) It turns
out the equation at y is all we need here (since x is the input and y is the
output, and we already have an equation that relates the tow directly), so
we can reaffange the equation:

mÿ = cẏ + ky = kx

b) Here, there are 2 DOF, x and y:
At x, fx(t) + k(y − x) + c(ẏ − ẋ) = 0 (Again, we don’t care about whatever
fx(t) exists, since x is the input ... but we know some force does exist.)
At y, kx− ky + c(ẋ− ẏ) = mÿ
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As with part (a), this second equation is all we actually need:

mÿ + cẏ + ky = cẋ + kx

c) This rotational system is completely analogous to the tanslational
system from (a):
At θout, −kθout + kθin − cθ̇out = Iθ̈out

So rearranging, we get:

Iθ̈out + cθ̇out + kθout = kθin

d) The system has 3 DOF, x,y, and z:
At the x node: fx(t) + k1(y − x) = 0
Just as in part a), we do not really need this eqn.
At node y: m1ÿ = k1(x− y) + k2(z − y)− c1ẏ
At node z: mxz̈ = k2(y − z)− c2z
Putting these in the standard form:

m1ÿ + c1ẏ + (k1 + k2)y = k2z + k1x

m2z̈ + c2ż + k2z = k2y

e) The system has 3 DOF, θi, θ1, and θ2:
At the θi node: Tθi + k1(θ1 − θi) = 0
At the θ1 node: I1θ̈1 = k1(θi − θ1) + c(θ̇2 − θ̇1)
At the θ2 node: I1θ̈3 = −k2θ2 + c(θ̇1 − θ̇2)
Rearranging into the standard form:

I1θ̈1 + cθ̇1 + k1θ1 = k1θi + cθ2

I2θ̈1 + cθ̇2 + k2θ2 = cθ̇1

f) The system has 2 DOF, θi, and θ. To solve this problem it is helpful to
define an additional variable θ1, which tracks the motion of the second
gear (see figure). Using the relationship from Table 4.3-1 can express θ1 as
a function of θ:

θ1

θi
=

n1

n2
⇒ θ̇1

θ̇i

=
n1

n2

θ̇1 = θ̇i
n1

n2
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i

1

n1

n2

c k

I

Now at the θ node: Iθ̈ = c(θ̇1 − θ̇)− kθ
Substituting for θ1 and placing in standard form:

Iθ̈ + cθ̇ + kθ = cθ̇i
n1

n2

Problem 3 - Palm 4.15

c
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This problem ask us to collapse the gear train into the ω1 frame. There are
a number of methods to do this including doing force balances at each gear
and using the the know relationships between the gear ratios to substitute
for ω2 and ω3. A simpiler method would be to determine the equivelent
interia and damping using the relationships in table 4.3-1 and collapse the
system starting the in ω3 frame. In the ω3 frame:

Iω3 = I5 + I3

cω3 = c

Next we need to find what the equivalents are in the ω2 frame:

Ieω3 = Iω3

(
ω3

ω2

)2

= Iω3

(
1
5

)2
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ceω3 = c

(
ω3

ω2

)2

= c

(
1
5

)2

Now in the ω2 frame:

Iω2 = I2 + Ieω3 = I2 + Iω3

(
1
5

)2

cω2 = ceω3 = c

(
1
5

)2

Getting the ω1 equivalents:

Ieω1 = Iω2

(
ω2

ω1

)2

=

(
I2 + Iω3

(
1
5

)2
) (

1
2

)2

ceω1 = cω2

(
ω2

ω1

)2

= c

(
1
5

)2 (
1
2

)2

Finally we can add all of the inertias in the ω1 frame:

IT = I4 + I1 +
1
4
I2 +

1
100

(I3 + I5)

cT =
1

100
c

The equation of motion for this system is:

T1 = IT ω̇1 + cT ω1

T1 =
(

I4 + I1 +
1
4
I2 +

1
100

(I3 + I5)
)

ω̇1 +
1

100
cω1

T1 = 0.461ω̇1 + 0.04ω1

Problem 4 - Palm 4.21

This solution assumes that there is no slip on either of the pulleys. To
start with we note that x1 = 2x2. This system can be broken into 3 nodes
centered at m1, pulley 1, and pulley 2.

5



2.003 Spring 2002 Problem Set 2

x2

x1
m

k

1

2

FBD
pulley1

J1

fc1

fc2

pulley2

fc3

fc2
kx2

mass1

m

fc1

f

f

a) For part a, we are told that the mass and inertias of the pulleys are
negligible thus summing the forces at each node results in the following:

At pulley 1: I1ω̇1 = 0 = ΣT1 = R(fc1 − fc2) ⇒ fc1 = fc2

At pulley 2: I2ω̇2 = 0 = ΣT2 = r(fc2 − fc3) ⇒ fc2 = fc3

m2ẍ2 = 0 = ΣF = fc2 + fc3 − kx2 ⇒ fc1 = fc2 = fc3 =
kx2

2

At mass 1: m1ẍ2 = ΣF = f − fc1 = f − kx2

2

Where fc1 is the tension in the cable between pulley 1 and mass 1, fc2 is
the tension in the cable between pulley 1 and pulley 2, and fc3 is the
tension in the cable between pulley 1 and ground. Restating everything in
terms of x1 yields the following:

m1ẍ1 +
kx1

4
= f

b) In this part the inertia and mass of pulley 2 remain negligible but now
pulley 1 has mass (since pulley 1 does not translate this does not enter our
equations) and inertia. Summing the forces at the nodes now results in the
following:

At pulley 1: I1ω̇1 = ΣT1 = R(fc1 − fc2)
At pulley 2: I2ω̇2 = 0 = ΣT2 = r(fc2 − fc3) ⇒ fc2 = fc3

m2ẍ2 = 0 = ΣF = fc2 + fc3 − kx2 ⇒ fc2 = fc3 =
kx2

2
At mass 1: m1ẍ2 = ΣF = f − fc1
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Note: Rω1 = ẋ1 ⇒ ω̇1 =
ẍ1

R

Solving for x1, I1
ẍ1

R
= R

(
f −m1ẍ1 − kx1

4

)

(
I1

R2
+ m1

)
ẍ1 +

kx1

4
= f

7


