2.003 Fall 2001 Lab 5

Using the supplied components, construct each of the circuits shown in the figure above on a breadboard. Use the values given in the prelab ($R_1=100~\mathrm{k}\Omega,~R_2=47~\mathrm{k}\Omega,~R_3=R_4=10~\mathrm{k}\Omega,~C_1=0.1~\mu\mathrm{F},~\mathrm{and}~C_2=C_3=0.047~\mu\mathrm{F}$). At each station, you will find a diagram showing the locations of the conductors within a breadboard and a guide to resistor color codes.

- 1. For each circuit, use the function generator to apply a step in the input voltage e_i and set the oscilloscope to record both the input e_i and output e_o of the circuit. Record the step response and determine the time constant τ . Compare the measured responses with those that you computed in the prelab.
- 2. The properties of electronics components vary somewhat from their designated values. Using a multimeter, directly measure the resistance R_4 of the resistor that you used in circuit (c). Based on the measured values, compute the value of C_3 .
- 3. Now use the signal generator to apply a sinusoidal signal of frequency f to circuit (c).
 - (a) Measure the magnitude and phase of e_o relative to e_i when f is approximately 1, 115, 1000, and 10000 Hz.
 - (b) Find the frequency f_c at which the phase difference between e_o and e_i is 45 degrees. What is the magnitude of the response at f_c ? How is f_c related to the time constant τ ?
 - (c) Plot the measured values of magnitude and phase on the frequency response plot that you generated in the prelab. Are your results consistent with the model?
- 4. If time permits, repeat Problem 3 for circuits (b) and (c).