2.003 Spring 2002 Problem Set 3: Solutions

Problem 1 - Palm 2.24

All of these problems are second order, thus the roots of the characteristic
equations can be found using the quadratic formula;
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Figure 1: Pole plot for 2.24

a) si2 = —0.3333 £ 3.1447i, Stable
b) s12 = £3.1447¢, marginally stable
c) s12 = 2 =+ 5i, unstable

d) s12 = —2.4396, 1.6396, unstable
e) s1,2 = £5.3853, unstable

Problem 2 - Palm 2.22

a) s12 = —5, —2, no oscillation, response dominated by —2 pole thus

Td = 05, tsettle =47 =2 s.

b) s12 = —2, —2, repeated root, no oscillation, 74 = 0.5, tsesr1e = 47 = 2 s.
c) s12 = —2 =+ 54, oscillates, 7 = 0.5, tgepspe =47 =25, w = 5%1.

Problem 3 - Palm 2.15

While it is possible to solve this question using just the formulas in Table
2.3-1, I think it is valuable to see where those solutions were derived. In
general the solution to any unforced 2nd order system mi + cz + kax = 0 is:

z(t) = Ae®! + Be®!
where
s1,2 = the roots of the characteristic equation
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A and B can be expressed in terms of the initial conditions of the system
as follows:

z(0) = xzo=A+1B
CL’(O) = 9= Asy + Bsy
A = io — 8220
S1 — S92
B — To — S$1%0
S9 — 81

Without doing any additional work, the solution so far matches that for
Case 1 (real distinct roots) in Table 2.3-1. The solution for Case 2 (real
repeated roots) can be found in any differential equation textbook. The
solution to Case 3 (complex conjugate pairs) is presented here since it is
the most difficult and interesting. In the case of complex conjugate pairs,
the solution to the characteristic equation is:

s1=a+bj and s =a —bj

Substituting these values into the general homogenous solution yields:

az(t) — Ae(a+bj)t +Be(a+bj)t
_ eat(Aebjt + Be—bjt)
Note: e(a—l—bj)t _ 6atebjt

Substituting into our general expressions for A and B, we get:

4 - To—(a—bj)zo _ do—zo(a—1bj)
a+bj—a+bj 2bj

g - To—(a+bj)ro _ o —zo(atbj)
a—bj—a—bj 2bj

Using Euler’s Identity for complex exponentials, we get

et = cosbt + jsinbt
e %t = cos—bt + jsin —bt = cosbt — jsinbt
Note: cos—bt = cosbt
sin—bt = —sinbt
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Combining the equations above yields:
j?() — xo(a + b])
2bj 2bj
ot (550 — zo(a — bj) — o — zo(a+bj) o L B0 o(a —bj) +do — o(a+bj) . bt)
2bj 2b
To — Toa

. b
z(t) = e (xo zola ‘])(cosbt—i—jsinbt)—

(cos bt — jsin bt))

= e"(xqcosbt + sin bt)

Using the trigonometric identity:

Acosbt + Bsinbt = A%+ B2sin (bt + ¢)

where ¢ = tan~! %
We can show that
z(t) = e“t\/x% + (m’—b:250a)2 sin (bt + ¢)
é = tan ! y'co:E—Olc)w:o

This expression is equivalent to that given in Table 2.3-1. The slightly
different expression due to fact that I do not assume that a is a negative
number.

For all sections g = 0 and 29 = 1

a) sj2 = —2 =+ 2i, complex conjugate pair

z(t) = e Hsin2t
b) s12 = —6,—2, Real distinct roots

z(t) = 0.25e72 —0.25e7%

c) s12 = —2,—2, Repeated roots

z(t) = te
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Problem 4 - Palm 4.29

This is a bit of a trick question since you need more information to
determine k and c. Specifically, you need to know the period of the
oscillation. Nonetheless, we can determine ¢ using the Logarithmic
decrement:

6 = lln Bi
n  Bin
)
¢ = (92 L 52
(2m)2 +6
1 1
6 = —In—=0.
30 n0'5 0.0536
¢ = 0.0536 — 0.0085
v/ (27)2 + 0.05362

If we had the period P, we could calculate k and ¢ using the following
relationships:

mw3  m(2r/P)

_ 2 _
k = mwn—l_CQ— e
¢ = c
2vVmk

Problem 5 - Palm example4.3-3

The characteristic equation for this problem is:

LO+cH+ kb = 0

where
I = ILn+I+ mI’QRQ +m, R
ke = kR?
This means that:
W = ke _ kR?

myp R2

N Ie Im+IS+ 2 +er2
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Figure 2: Natural frequency vs R

It is a little difficult to see since both the numerator and denominator
contain R, but we can see that as R drops the denominator converges to a
positive real value, while the numerator converges to zero. This that the
system natural frequency drops as R drops. Figure illustrates how the
natural frequency drops as R gets smaller for this system with some set of

values for I, R, m, and k.

Problem 6 - Palm 1.21

a) >(-3+51)*(-6+71)
ans=-17-51i

b) >(-3+51)/(-6471)
ans=0.625-0.1059i
c)>3%i/2
ans=0-+1.5i

d) >3/(2i)
ans=0-1.51

Problem 7 - Palm 1.22

a)>x=-5-Ti;y=6+2i
>x+y

ans=1-5i

b) >x*y
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ans—-16-52i
c) >x/y
ans=—-1.1-0.81



