8.07 Practice problems

Problem 1. Griffiths 6.25, part (a) (p.283)

Problem 2. Griffiths 7.28 (p.320)

Problem 3. Griffiths 8.3 (p.355) Answer in p.248.

Problem 4. Griffiths 10.9 (p.426)

The following exercises are on relativity. All except (5) are solved using the transformation laws:

$$\begin{split} \mathbf{E}'_{||} &= \mathbf{E}_{||}, \qquad \mathbf{E}'_{\perp} &= \gamma \left(\mathbf{E}_{\perp} + \mathbf{v} \times \mathbf{B}_{\perp} \right) \\ \mathbf{B}'_{||} &= \mathbf{B}_{||}, \qquad \mathbf{B}'_{\perp} &= \gamma \left(\mathbf{B}_{\perp} - \frac{1}{c} \mathbf{v} \times \mathbf{E}_{\perp} \right) \end{split}$$

Problem 5. Griffiths 12.48 (p.537).

Problem 6. Suppose that in an inertial frame S there is a uniform electric field $\mathbf{E} = E_0 \hat{\mathbf{z}}$. What are the fields in a frame S' boosted along the x-axis of S with a velocity v. Answers: nonvanishing fields are $E'_z = \gamma E_0, B'_y = \frac{\gamma v}{c^2} E_0$.)

Problem 7. Suppose that $\mathbf{B} = 0$ in an inertial frame S, then prove that

$$\mathbf{B}' = -\frac{1}{c^2}\mathbf{v} \times \mathbf{E}'$$

in a frame S' boosted with velocity **v** with respect to S. Note that in the above equation both vectors are in the frame S', and there are no \perp nor \parallel labels.

Problem 8. Griffiths 12.46 (p.534). You can use equations (12.108), or if you prefer, the above more general vector transformation laws.