

Abstract Consider a two-stage manufacturing system

composed of a batch processor and its upstream feeder
processor. Jobs exit the feeder processor and join a queue in
front of the batch processor, where they wait to be processed.
The batch processor has a finite capacity Q, and the
processing time is independent of the number of jobs loaded
into the batch processor. In certain manufacturing systems
(including semiconductor wafer fabrication), a processing
time window exists from the time the job exits the feeder
processor till the time it enters the batch processor. If the
batch processor has not started processing a job within the
job’s processing time window, the job cannot proceed without
undergoing rework or validation by process engineers. We
generalize this scenario by assigning a reward R for each
successfully processed job by the feeder processor, and a cost
C for each job that exceeds its processing time window
without being processed by the batch processor. We examine
a problem where the feeder processor has a deterministic
processing time and the batch processor has stochastic
processing time, and determine that the optimal control policy
at the feeder processor is insensitive to whether the batch
processor is under no-idling or full-batch policy.

Index Terms Wafer Fabrication, Optimal Control, Batch
Processor, Processing Window

I. INTRODUCTION
n ignored facet of controlling diffusion furnaces in
wafer fabs is the presence of processing time windows
for jobs that are queuing in front of the batch

processor. Upon exiting the processor immediately
upstream of the batch processor (which we call the feeder
processor), a job is deemed to be contaminated if it has
waited in front of the batch processor for at least T time

Manuscript received November 20, 2006. This work was supported by

the Singapore-MIT Alliance (SMA), Singapore.
J. C. Tajan is a PhD student with the Singapore-MIT Alliance under

the Innovations in Manufacturing Systems and Technology program
(phone: (65)-9190-8354; e-mail: taja0001@ ntu.edu.sg)

A. I. Sivakumar is an Associate Professor with the Mechanical and
Aerospace Engineering Department, Nanyang Technological University,
Singapore. (e-mail: msiva@ntu.edu.sg)

S. B. Gershwin is a Senior Research Scientist with the Mechanical
Engineering Department, Massachusetts Institute of Technology, MA,
USA. (e-mail: sbgershwin@mit.edu).

units; this job may need to be reprocessed, or revalidated
by process experts before the job can continue to be
processed. We refer to this scenario as the job exceeding
its processing time window at the batch processor. This is
unwanted for several reasons. Firstly, a furnace’s feeder
processor frequently also serves as the feeder processor for
a different processor M. Each job that exceeds its
processing time window is equivalent to lost throughput
for processor M, without increasing the furnace’s
throughput. Secondly, a job that exceeds its processing
time window incurs the costs of rework, or validation by
process engineers. Increased rework or validation also
increases the cycle time for at least the expired jobs, which
is undesirable, due to the larger yield losses correlated with
higher cycle times. Figure 1 shows a subsection of a wafer
fab process flow involving the furnace and its feeder
processors. The furnace can have more than one feeder
processor, and the feeder processors typically feed more
than one processor.

Figure 1: A subsection of a process flow inside the wafer fab. The
diffusion furnace is fed work-in-progress by either Clean or Etch.
However, both Clean and Etch can also process jobs to feed other
processors. The Clean station can also process jobs for Thin Film, while
Etch can also process jobs for Strip.

The control of the feeder processor, in accordance with the
existence of processing time windows at the batch
processor is a problem that has been largely ignored by
researchers. We address the problem of controlling job
flow into the batch processor queue, considering the
processing time window present in jobs.

Control of Job Arrivals with Processing Time
Windows into Batch Processor Buffer

John Benedict C. TAJAN1, Appa Iyer SIVAKUMAR1, and Stanley B. GERSHWIN2
1 Nanyang Technological University

2 Massachusetts Institute of Technology

A

Clean

Buffer

Diffusion
Furnace

Buffer

Thin
Film

Etch

Strip

Buffer

There are other systems in which processing time windows
are present. Processing time windows also exist in
manufacturing and transport systems where the product is
perishable, for example. When there is a considerable
amount of products waiting to be transported, it may be
optimal for the manufacturing facility to stop processing
products with finite shelf life.

II. LITERATURE REVIEW
Batch processors, as covered in existing literature, can

be broadly classified into two types: batch processors with
compatible jobs, and batch processors with incompatible
jobs. For batch processors with compatible jobs, the
composition of a batch is constrained only by the capacity
of the batch processor; however, the processing time of the
batch processor is set to be the maximum of the minimum
processing time requirements for all the jobs inside a
particular job. The burn-in oven used to simulate repeated
usage of semiconductor chips is a good example of batch
processors with compatible jobs. On the other hand,
diffusion and oxidation ovens are batch processors with
incompatible jobs. Each job belongs to a particular job
family, and only jobs from the same family can be batched
together. Processing time of the batch is only dependent on
the job family being processed. For this problem, we make
the simplifying assumption that all jobs belong to the same
job family. For brevity, we will simply refer the interested
reader to a review of batch processor control literature by
[Mathirajan and Sivakumar 2006].

If we know the arrival times of each job into the batch
processor queue, then it is possible to incorporate
processing time windows into the analysis by assuming a
processing sequence at the feeder processor, and if feeder
processor processing times are deterministic, the arrival
times for each job to the queue in front of the batch
processor can be generated. The due times for each job can
then be generated, and we can then minimize the number
of tardy jobs.

To the best of our knowledge, only [Makis 1985] has
explicitly considered the processing time window of jobs
that are being processed by a batch processor. He looked
into the problem of controlling a batch processor with
infinite capacity. The system has an affine service cost
function, and the holding cost function is nonnegative. Jobs
have to be processed within a processing time window. He
determined that the optimal policy is a threshold policy,
and proceeds to examine the steady-state characteristics of
the system under the optimal policy.

Our work differs from what has been done primarily in
the location of the control. Previous research treats the
arrival times of jobs to be a constraint, and attempt to
optimize the batch processor control policy given this set
of constraints. We looked into controlling the feeder
processor directly upstream of the batch processor. This is
because even an optimal policy at the batch processor can

perform badly if there is an extremely large amount of jobs
queued up in front of it, due to a sub-optimal feeder control
policy.

III. PROBLEM STATEMENT
A two-stage manufacturing system is comprised of an
upstream feeder processor feeding a downstream batch
processor via a buffer of infinite capacity. The buffer level
does not include the jobs that are being processed by the
batch processor. In wafer fabrication, the downstream
batch processor corresponds to a diffusion oven, while the
feeder processor can be either a serial processor (etch
station) or a batch processor with capacity two (clean
station). We initially assume that the feeder processor is a
serial processor. The batch processor can process up to Q
jobs at a time, and its processing time is independent of the
number of jobs loaded into the batch processor. Upstream
of the serial processor is an infinite source of jobs, and
downstream of the batch processor is an infinite sink for
jobs. Both processors cannot be preempted. See Figure for
an illustration of the manufacturing system model. The
manufacturing system is assumed to operate on a discrete
time scale.

Figure 2: Simple 2-stage manufacturing model. Without a cost associated
with jobs exceeding their processing time windows, the optimal policy at
the feeder processor (in this case, the feeder processor is initially assumed
to be a serial processor) would be to process a job at each instance the
feeder processor is available.

There is a processing time window between the batch
processor and its feeder processor. If a job has not started
processing at the batch processor T time units after it has
exited the feeder processor, a cost C is incurred. This cost
C quantifies lost throughput at the feeder processor, yield
loss due to longer cycle time and other ancillary effects of
rejecting a job. For each job that the feeder processor
processes (including jobs that end up exceeding the
processing time window), a reward R is generated. This
reward is the incremental benefit of processing a job for
the batch processor, as compared to feeding a different

Serial
processor

Buffer
1

Batch processor
(capacity Q)

Infinite source of jobs

Infinite sink for jobs

processor. We wish to determine when it is appropriate to
process at the feeder processor, given the number of jobs in
front of the batch processor, and the status of the batch
processor. It is assumed that C>R, otherwise, it would be
always profitable to process a job, regardless of the
probability of the job exceeding its processing time
window.

IV. PROBLEM METHODOLOGY
We look at the probability that the prospective job at the
serial processor will have to queue for at least T time units
in front of the batch processor before it can start processing
at the batch processor. We obtain expressions for the
expected reward of processing a job, and stop processing at
the feeder processor when it is no longer profitable to
process a job, given the reward R and the possibility of
incurring a cost C.

A. Assumed Batch Processor Control Policies
We assume that the batch processor is operated according
to two policies:

a.) no-idling policy – whenever the batch processor is idle
and there are jobs waiting in front of the batch processor,
the batch processor will immediately start a batch,
regardless of the number of jobs that can be processed.
This is equivalent to a minimum batch size (MBS) policy
with X=1.

b.) full-batch policy –a batch is started only if the batch
processor is idle and a full batch can be processed. This is
equivalent to an MBS policy with X=Q.

Analysis of the problem when the batch processor is
under full-batch policy entails estimating when additional
jobs after the prospective job is processed will arrive. We
make the assumption that the feeder processor will
continue to process jobs until it is told to stop.

V. MODEL ONE ASSUMPTIONS AND DEVELOPMENT
The following assumptions are made in model one:

• Both machines perfectly reliable
• Serial processor processing time is deterministic. It

takes one time unit to process one job at the serial
processor.

• Batch processor processing time is geometrically
distributed. Probability (batch being finished in current
time instance) = P.

At any time instance t, let Zt be the current buffer level
in front of the batch processor, and St be the current state of
the batch processor, with one meaning the batch processor
is busy and zero meaning the batch processor is idle. Then,
the state of the system Xt can be described as Xt = (Zt, St).
The serial processor takes one time unit to process a job.
We can omit tracking the state of the serial processor, as it
is guaranteed to be available at the start of each time
instance.

A. When the batch processor is under no-idling policy
We divide the model development into three different
cases, based on the state of the system.

Case 1: Xt = (0, 0)

The prospective job at the serial processor will have zero
queue time. Once it enters the batch processor queue, it is
immediately processed by the batch processor. In this case,
it is profitable to process the job.

Case 2: Xt = (0 to Q-1, 1)

We process the prospective job only if R>C*Probability
(current batch will take at least T+1 units to process).

We process the prospective job only if: TpC
R)1(−>

 (1)

Case 3: Xt = (>Q, 1)

Let ⎣ ⎦x be the largest integer less than or equal to x.

(Conversely, let ⎡ ⎤x be the smallest integer greater than or
equal to x.) The number of batches the batch processor
needs to process before the prospective job can be loaded

is 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt . The prospective job should be processed

only if: 1(Pr* +⎥
⎦

⎥
⎢
⎣

⎢
>

Q
ZobabilityCR t batches will

take at least T+1 units to process). The probability that

1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt batches will be processed in exactly x time units

has a Pascal distribution. We sum up the probabilities of

1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt batches being processed in exactly x time units,

for 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt <x<T to obtain the probability of not

incurring a cost, and this is subtracted from unity to obtain
the probability of incurring a cost.

Let)!)(!(
!

yxy
xC y

x

−= , then

11

1

1)1()()(1
−⎥

⎦

⎥
⎢
⎣

⎢
−+⎥

⎦

⎥
⎢
⎣

⎢

+⎥
⎦

⎥
⎢
⎣

⎢
=

⎥
⎦

⎥
⎢
⎣

⎢
− −−> ∑ Q

Z
i

Q
ZT

Q
Z

i Q
Z

i
tt

t
t

PPCC
R .

 (2)

T> ⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt is a necessary condition for the prospective job

to have a positive probability of avoiding a cost. Since the

system runs in discrete time, it will take at least 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt

time units to process all the batches in front of the
incoming job (including the batch currently being
processed by the batch processor). The serial processor
takes one time unit to process the batch. The prospective

job will be joining batch 2+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt .

B. When the Batch Processor is under Full-Batch Policy
When the batch processor is under full-batch policy, it is
only profitable to process a full batch if the time it takes to
form a full batch will not cause a job to exceed its
processing time window T. Thus, a necessary condition for
the full-batch policy to be profitable is T>Q-1. If T<Q-1,
then it is not profitable to form a full batch, regardless of
how many jobs are queued up in front of the batch
processor. T>Q-1 will be assumed throughout the three
cases.

We consider three different cases:

Case 1: Xt = (0 to Q-1, 0)

The prospective job will have queue time equal to the time
it takes to form a full batch. Given our additional
assumption that T>Q-1, then we will always choose to
process under case 1.

Case 2: Xt = (0 to Q-1, 1)

The prospective job can incur processing time in two ways.
Firstly, the current batch may not be finished before the job
arrives at the buffer. Secondly, the job may be forced to
wait for additional jobs to arrive in order to form a full
batch.

Prospective job’s waiting time = MAX (processing time of
the current batch-prospective job’s processing time at the
serial processor, time prospective job has to wait to form a
full batch)

Prospective job should be processed only if:

T>Q-Zt-1 (this is covered by previous assumption on the
profitability of the full-batch policy) AND
R>C*Probability (current batch will take at least T+1 time
units to process).

Prospective job should be processed only if:
TpC

R)1(−> (3)

Case 3: Xt = (>Q, 1)

Waiting time for prospective job = MAX (processing time
of all full batches ahead of prospective job-prospective
job’s processing time at the serial processor, time
prospective job has to wait to form a full batch). Let Bt be
the number of additional jobs the prospective job will have
to wait for to form a full batch. Let

Q
Q
ZZQZ t

tt *)\(⎥
⎦

⎥
⎢
⎣

⎢
−= . If (Zt\Q)=0, then the

prospective job starts a new batch, and Bt=Q-1. Otherwise,
Bt=Q-(Zt\Q)-1. Prospective job should be processed only
if:

T>Bt AND 1(* +⎥
⎦

⎥
⎢
⎣

⎢
>

Q
Z

yprobabilitCR t batches will

take at least T+1 units to process)

11

1

1)1()()(1
−⎥

⎦

⎥
⎢
⎣

⎢
−+⎥

⎦

⎥
⎢
⎣

⎢

+⎥
⎦

⎥
⎢
⎣

⎢
=

⎥
⎦

⎥
⎢
⎣

⎢
− −−> ∑ Q

Z
i

Q
ZT

Q
Z

i Q
Z

i
tt

t
t

PPCC
R

 (4)

VI. MODEL ONE ANALYSIS
For model one, the optimal policy will be identical
regardless of whether the batch processor policy is no-
idling or full-batch, assuming that T>Q-1. The optimal
policy is:

If the batch processor is idle, always process the
prospective job

Else

If there is less than a full batch in front of the
batch processor and the batch processor is busy, process

the prospective job if TpC
R)1(−> . If this condition is

not met, then no job should wait in front of the batch
processor when the batch processor is not idle.

Else

there is at least one full batch in front of the batch
processor. Process the prospective job if:

11

1

1)1()()(1
−⎥

⎦

⎥
⎢
⎣

⎢
−+⎥

⎦

⎥
⎢
⎣

⎢

+⎥
⎦

⎥
⎢
⎣

⎢
=

⎥
⎦

⎥
⎢
⎣

⎢
− −−> ∑ Q

Z
i

Q
ZT

Q
Z

i Q
Z

i
tt

t
t

PPCC
R .

The optimal policy at the feeder processor is a threshold
policy. This is because the probability of a prospective job
incurring a queuing time of at least T time units is a non-
decreasing function with respect to the number of jobs in
front of the batch processor. Figure 3 illustrates a typical
graph of the probability of the prospective job incurring a
cost, with respect to the number of jobs in front of the
batch processor. The probability of a job incurring a cost is
a step function, with respect to the number of batches in
front of it. If we know that it is profitable to process a job
when there are n*Q jobs in the buffer (this means that the
prospective job will end up starting a new batch), then we
immediately know that it is also profitable to process a job
when the number of jobs in the buffer are from n*Q+1 to
(n+1)*Q-1. This simplifies the search for the threshold

value as we only need to test for threshold values that are
integer multiples of Q.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
number of jobs in front of prospective job

pr
ob

ab
ilit

y
Probability of job incurring cost

Figure 3: Probability of the prospective job incurring a cost when the
batch processor is under no-idling policy, T=5, Q=5 and P = 1/3,
assuming that the batch processor is already busy. When the batch
processor is idle, the probability of incurring a cost is zero. The arrows
point to the instances when the prospective job will form a new batch.
When the job forms a 6th batch queuing in front of the batch processor, the
probability of incurring a cost becomes 1. Since the batch processor is
busy, the system will have to process 6 batches in T=5 time instances for
the prospective job not to incur a cost, and this is not possible, due to the
problem assumptions.

VII. EXTENSIONS TO OTHER MODELS
Two qualities of the optimal policy for Model 1 are highly
desirable: (1) the optimal threshold is an integer number of
the batch processor capacity, and (2) the optimal policy is
insensitive to the batch processor policy. Unfortunately,
both of these properties no longer hold when the
assumptions are slightly changed. For example, when the
processing time of the serial processor is deterministic but
larger than one, both properties are no longer true. This is
further discussed in other work.

VIII. CONCLUSION
An important subsystem inside the wafer fab is the
oxidation/diffusion oven, a batch processor, and its feeder
processor. An important facet of scheduling systems with
batch processors that exists in wafer fabs is the existence of
processing time windows. Jobs exiting the feeder processor
typically have to be processed by the batch processor
within a certain period of time after it has exited the feeder
processor. Jobs that exceed their processing time windows
may have to undergo rework or validation, due to
contamination concerns. We generalize this scenario by
associating a reward R with each job processed by the
serial processor, and a cost C with each job that exceeds its
processing time window. We use a two-stage model, with a
serial processor feeding a batch processor via an infinite
buffer, and assume this two-stage system has an infinite
source and an infinite sink.
Problem 1 assumed a deterministic serial processor
processing time, with a geometrically distributed batch
processor processing time. We derived methods to obtain
the optimal control policy at the feeder processor, when the

batch processor is under either a full-batch or a no-idling
policy. Furthermore, we have shown that the optimal
control policy is a threshold policy, with the threshold
being an integer multiple of the batch processor capacity.
Given a profitability assumption on the full batch policy,
the optimal policy is identical for the two batch processor
control policies. Unfortunately, these properties rarely
remain true when the model assumptions are changed. For
example, when the serial processor processing time
remains deterministic but becomes larger than one, both
properties no longer hold true. This is looked into in
further detail in future work.

REFERENCES
[1] Mathirajan M. and Sivakumar A.I., "A literature
review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor,"
International Journal of Advanced Manufacturing
Technology 29 (2006) 990-1001
[2] Makis, V., "Optimal control of a batch service
queueing system with bounded waiting time," Kybernetika
21 (1985) 262-271

