
 
 

 
 

  
Abstract Consider a two-stage manufacturing system 

composed of a batch processor and its upstream feeder 
processor. Jobs exit the feeder processor and join a queue in 
front of the batch processor, where they wait to be processed. 
The batch processor has a finite capacity Q, and the 
processing time is independent of the number of jobs loaded 
into the batch processor. In certain manufacturing systems 
(including semiconductor wafer fabrication), a processing 
time window exists from the time the job exits the feeder 
processor till the time it enters the batch processor. If the 
batch processor has not started processing a job within the 
job’s processing time window, the job cannot proceed without 
undergoing rework or validation by process engineers. We 
generalize this scenario by assigning a reward R for each 
successfully processed job by the feeder processor, and a cost 
C for each job that exceeds its processing time window 
without being processed by the batch processor. We examine 
a problem where the feeder processor has a deterministic 
processing time and the batch processor has stochastic 
processing time, and determine that the optimal control policy 
at the feeder processor is insensitive to whether the batch 
processor is under no-idling or full-batch policy.  
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I. INTRODUCTION 
n ignored facet of controlling diffusion furnaces in 
wafer fabs is the presence of processing time windows 
for jobs that are queuing in front of the batch 

processor. Upon exiting the processor immediately 
upstream of the batch processor (which we call the feeder 
processor), a job is deemed to be contaminated if it has 
waited in front of the batch processor for at least T time 
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units; this job may need to be reprocessed, or revalidated 
by process experts before the job can continue to be 
processed. We refer to this scenario as the job exceeding 
its processing time window at the batch processor. This is 
unwanted for several reasons. Firstly, a furnace’s feeder 
processor frequently also serves as the feeder processor for 
a different processor M. Each job that exceeds its 
processing time window is equivalent to lost throughput 
for processor M, without increasing the furnace’s 
throughput. Secondly, a job that exceeds its processing 
time window incurs the costs of rework, or validation by 
process engineers. Increased rework or validation also 
increases the cycle time for at least the expired jobs, which 
is undesirable, due to the larger yield losses correlated with 
higher cycle times. Figure 1 shows a subsection of a wafer 
fab process flow involving the furnace and its feeder 
processors. The furnace can have more than one feeder 
processor, and the feeder processors typically feed more 
than one processor.     

 
Figure 1: A subsection of a process flow inside the wafer fab. The 
diffusion furnace is fed work-in-progress by either Clean or Etch. 
However, both Clean and Etch can also process jobs to feed other 
processors. The Clean station can also process jobs for Thin Film, while 
Etch can also process jobs for Strip.  
 

The control of the feeder processor, in accordance with the 
existence of processing time windows at the batch 
processor is a problem that has been largely ignored by 
researchers. We address the problem of controlling job 
flow into the batch processor queue, considering the 
processing time window present in jobs.  
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There are other systems in which processing time windows 
are present. Processing time windows also exist in 
manufacturing and transport systems where the product is 
perishable, for example. When there is a considerable 
amount of products waiting to be transported, it may be 
optimal for the manufacturing facility to stop processing 
products with finite shelf life.  

II. LITERATURE REVIEW 
Batch processors, as covered in existing literature, can 

be broadly classified into two types: batch processors with 
compatible jobs, and batch processors with incompatible 
jobs. For batch processors with compatible jobs, the 
composition of a batch is constrained only by the capacity 
of the batch processor; however, the processing time of the 
batch processor is set to be the maximum of the minimum 
processing time requirements for all the jobs inside a 
particular job. The burn-in oven used to simulate repeated 
usage of semiconductor chips is a good example of batch 
processors with compatible jobs. On the other hand, 
diffusion and oxidation ovens are batch processors with 
incompatible jobs. Each job belongs to a particular job 
family, and only jobs from the same family can be batched 
together. Processing time of the batch is only dependent on 
the job family being processed. For this problem, we make 
the simplifying assumption that all jobs belong to the same 
job family. For brevity, we will simply refer the interested 
reader to a review of batch processor control literature by 
[Mathirajan and Sivakumar 2006].  

If we know the arrival times of each job into the batch 
processor queue, then it is possible to incorporate 
processing time windows into the analysis by assuming a 
processing sequence at the feeder processor, and if feeder 
processor processing times are deterministic, the arrival 
times for each job to the queue in front of the batch 
processor can be generated. The due times for each job can 
then be generated, and we can then minimize the number 
of tardy jobs.  

To the best of our knowledge, only [Makis 1985] has 
explicitly considered the processing time window of jobs 
that are being processed by a batch processor. He looked 
into the problem of controlling a batch processor with 
infinite capacity. The system has an affine service cost 
function, and the holding cost function is nonnegative. Jobs 
have to be processed within a processing time window. He 
determined that the optimal policy is a threshold policy, 
and proceeds to examine the steady-state characteristics of 
the system under the optimal policy.   

Our work differs from what has been done primarily in 
the location of the control. Previous research treats the 
arrival times of jobs to be a constraint, and attempt to 
optimize the batch processor control policy given this set 
of constraints. We looked into controlling the feeder 
processor directly upstream of the batch processor. This is 
because even an optimal policy at the batch processor can 

perform badly if there is an extremely large amount of jobs 
queued up in front of it, due to a sub-optimal feeder control 
policy.  

III. PROBLEM STATEMENT 
A two-stage manufacturing system is comprised of an 
upstream feeder processor feeding a downstream batch 
processor via a buffer of infinite capacity. The buffer level 
does not include the jobs that are being processed by the 
batch processor. In wafer fabrication, the downstream 
batch processor corresponds to a diffusion oven, while the 
feeder processor can be either a serial processor (etch 
station) or a batch processor with capacity two (clean 
station). We initially assume that the feeder processor is a 
serial processor. The batch processor can process up to Q 
jobs at a time, and its processing time is independent of the 
number of jobs loaded into the batch processor. Upstream 
of the serial processor is an infinite source of jobs, and 
downstream of the batch processor is an infinite sink for 
jobs. Both processors cannot be preempted. See Figure  for 
an illustration of the manufacturing system model. The 
manufacturing system is assumed to operate on a discrete 
time scale.  

 
Figure 2: Simple 2-stage manufacturing model. Without a cost associated 
with jobs exceeding their processing time windows, the optimal policy at 
the feeder processor (in this case, the feeder processor is initially assumed 
to be a serial processor) would be to process a job at each instance the 
feeder processor is available.   
 

There is a processing time window between the batch 
processor and its feeder processor. If a job has not started 
processing at the batch processor T time units after it has 
exited the feeder processor, a cost C is incurred. This cost 
C quantifies lost throughput at the feeder processor, yield 
loss due to longer cycle time and other ancillary effects of 
rejecting a job. For each job that the feeder processor 
processes (including jobs that end up exceeding the 
processing time window), a reward R is generated. This 
reward is the incremental benefit of processing a job for 
the batch processor, as compared to feeding a different 
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processor. We wish to determine when it is appropriate to 
process at the feeder processor, given the number of jobs in 
front of the batch processor, and the status of the batch 
processor. It is assumed that C>R, otherwise, it would be 
always profitable to process a job, regardless of the 
probability of the job exceeding its processing time 
window. 

IV. PROBLEM METHODOLOGY 
We look at the probability that the prospective job at the 
serial processor will have to queue for at least T time units 
in front of the batch processor before it can start processing 
at the batch processor. We obtain expressions for the 
expected reward of processing a job, and stop processing at 
the feeder processor when it is no longer profitable to 
process a job, given the reward R and the possibility of 
incurring a cost C.  

A. Assumed Batch Processor Control Policies 
We assume that the batch processor is operated according 
to two policies:  

a.) no-idling policy – whenever the batch processor is idle 
and there are jobs waiting in front of the batch processor, 
the batch processor will immediately start a batch, 
regardless of the number of jobs that can be processed. 
This is equivalent to a minimum batch size (MBS) policy 
with X=1.  

b.) full-batch policy –a batch is started only if the batch 
processor is idle and a full batch can be processed. This is 
equivalent to an MBS policy with X=Q.  

Analysis of the problem when the batch processor is 
under full-batch policy entails estimating when additional 
jobs after the prospective job is processed will arrive. We 
make the assumption that the feeder processor will 
continue to process jobs until it is told to stop.  

V. MODEL ONE ASSUMPTIONS AND DEVELOPMENT 
The following assumptions are made in model one: 

• Both machines perfectly reliable 
• Serial processor processing time is deterministic. It 

takes one time unit to process one job at the serial 
processor.  

• Batch processor processing time is geometrically 
distributed. Probability (batch being finished in current 
time instance) = P. 

At any time instance t, let Zt be the current buffer level 
in front of the batch processor, and St be the current state of 
the batch processor, with one meaning the batch processor 
is busy and zero meaning the batch processor is idle. Then, 
the state of the system Xt can be described as Xt = (Zt, St).  
The serial processor takes one time unit to process a job. 
We can omit tracking the state of the serial processor, as it 
is guaranteed to be available at the start of each time 
instance. 

A. When the batch processor is under no-idling policy 
We divide the model development into three different 
cases, based on the state of the system. 

Case 1: Xt = (0, 0)  

The prospective job at the serial processor will have zero 
queue time. Once it enters the batch processor queue, it is 
immediately processed by the batch processor. In this case, 
it is profitable to process the job.  

Case 2: Xt = (0 to Q-1, 1)  

We process the prospective job only if R>C*Probability 
(current batch will take at least T+1 units to process).  

We process the prospective job only if: TpC
R )1( −>  

  (1) 

Case 3: Xt = (>Q, 1) 

Let ⎣ ⎦x be the largest integer less than or equal to x. 

(Conversely, let ⎡ ⎤x be the smallest integer greater than or 
equal to x.) The number of batches the batch processor 
needs to process before the prospective job can be loaded 

is 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt .  The prospective job should be processed 

only if: 1(Pr* +⎥
⎦

⎥
⎢
⎣

⎢
>

Q
ZobabilityCR t  batches will 

take at least T+1 units to process). The probability that 

1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt  batches will be processed in exactly x time units 

has a Pascal distribution. We sum up the probabilities of 

1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt  batches being processed in exactly x time units, 

for 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt <x<T to obtain the probability of not 

incurring a cost, and this is subtracted from unity to obtain 
the probability of incurring a cost. 

Let )!)(!(
!

yxy
xC y

x

−= , then

 
11

1

1 )1()()(1
−⎥

⎦

⎥
⎢
⎣

⎢
−+⎥

⎦

⎥
⎢
⎣

⎢

+⎥
⎦

⎥
⎢
⎣

⎢
=

⎥
⎦

⎥
⎢
⎣

⎢
− −−> ∑ Q

Z
i

Q
ZT

Q
Z

i Q
Z

i
tt

t
t

PPCC
R .

 (2 ) 

T> ⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt  is a necessary condition for the prospective job 

to have a positive probability of avoiding a cost. Since the 



 
 

 
 

system runs in discrete time, it will take at least 1+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt  

time units to process all the batches in front of the 
incoming job (including the batch currently being 
processed by the batch processor).  The serial processor 
takes one time unit to process the batch. The prospective 

job will be joining batch 2+⎥
⎦

⎥
⎢
⎣

⎢
Q
Zt .  

B. When the Batch Processor is under Full-Batch Policy 
When the batch processor is under full-batch policy, it is 
only profitable to process a full batch if the time it takes to 
form a full batch will not cause a job to exceed its 
processing time window T. Thus, a necessary condition for 
the full-batch policy to be profitable is T>Q-1. If T<Q-1, 
then it is not profitable to form a full batch, regardless of 
how many jobs are queued up in front of the batch 
processor. T>Q-1 will be assumed throughout the three 
cases. 

We consider three different cases: 

Case 1: Xt = (0 to Q-1, 0) 

The prospective job will have queue time equal to the time 
it takes to form a full batch. Given our additional 
assumption that T>Q-1, then we will always choose to 
process under case 1.   

Case 2: Xt = (0 to Q-1, 1)  

The prospective job can incur processing time in two ways. 
Firstly, the current batch may not be finished before the job 
arrives at the buffer. Secondly, the job may be forced to 
wait for additional jobs to arrive in order to form a full 
batch. 

Prospective job’s waiting time = MAX (processing time of 
the current batch-prospective job’s processing time at the 
serial processor, time prospective job has to wait to form a 
full batch) 

Prospective job should be processed only if:  

T>Q-Zt-1 (this is covered by previous assumption on the 
profitability of the full-batch policy) AND 
R>C*Probability (current batch will take at least T+1 time 
units to process).  

Prospective job should be processed only if: 
TpC

R )1( −>   (3) 

Case 3: Xt = (>Q, 1) 

Waiting time for prospective job = MAX (processing time 
of all full batches ahead of prospective job-prospective 
job’s processing time at the serial processor, time 
prospective job has to wait to form a full batch). Let Bt be 
the number of additional jobs the prospective job will have 
to wait for to form a full batch. Let 
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VI. MODEL ONE ANALYSIS 
For model one, the optimal policy will be identical 
regardless of whether the batch processor policy is no-
idling or full-batch, assuming that T>Q-1. The optimal 
policy is: 

If the batch processor is idle, always process the 
prospective job  

Else  

If there is less than a full batch in front of the 
batch processor and the batch processor is busy, process 

the prospective job if TpC
R )1( −> . If this condition is 

not met, then no job should wait in front of the batch 
processor when the batch processor is not idle.  

Else  

there is at least one full batch in front of the batch 
processor. Process the prospective job if: 
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The optimal policy at the feeder processor is a threshold 
policy. This is because the probability of a prospective job 
incurring a queuing time of at least T time units is a non-
decreasing function with respect to the number of jobs in 
front of the batch processor. Figure 3 illustrates a typical 
graph of the probability of the prospective job incurring a 
cost, with respect to the number of jobs in front of the 
batch processor. The probability of a job incurring a cost is 
a step function, with respect to the number of batches in 
front of it. If we know that it is profitable to process a job 
when there are n*Q jobs in the buffer (this means that the 
prospective job will end up starting a new batch), then we 
immediately know that it is also profitable to process a job 
when the number of jobs in the buffer are from n*Q+1 to 
(n+1)*Q-1. This simplifies the search for the threshold 



 
 

 
 

value as we only need to test for threshold values that are 
integer multiples of Q.  
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Figure 3: Probability of the prospective job incurring a cost when the 
batch processor is under no-idling policy, T=5, Q=5 and P = 1/3, 
assuming that the batch processor is already busy. When the batch 
processor is idle, the probability of incurring a cost is zero. The arrows 
point to the instances when the prospective job will form a new batch. 
When the job forms a 6th batch queuing in front of the batch processor, the 
probability of incurring a cost becomes 1. Since the batch processor is 
busy, the system will have to process 6 batches in T=5 time instances for 
the prospective job not to incur a cost, and this is not possible, due to the 
problem assumptions.  

VII. EXTENSIONS TO OTHER MODELS 
Two qualities of the optimal policy for Model 1 are highly 
desirable: (1) the optimal threshold is an integer number of 
the batch processor capacity, and (2) the optimal policy is 
insensitive to the batch processor policy. Unfortunately, 
both of these properties no longer hold when the 
assumptions are slightly changed. For example, when the 
processing time of the serial processor is deterministic but 
larger than one, both properties are no longer true. This is 
further discussed in other work. 

VIII. CONCLUSION 
An important subsystem inside the wafer fab is the 
oxidation/diffusion oven, a batch processor, and its feeder 
processor. An important facet of scheduling systems with 
batch processors that exists in wafer fabs is the existence of 
processing time windows. Jobs exiting the feeder processor 
typically have to be processed by the batch processor 
within a certain period of time after it has exited the feeder 
processor. Jobs that exceed their processing time windows 
may have to undergo rework or validation, due to 
contamination concerns. We generalize this scenario by 
associating a reward R with each job processed by the 
serial processor, and a cost C with each job that exceeds its 
processing time window. We use a two-stage model, with a 
serial processor feeding a batch processor via an infinite 
buffer, and assume this two-stage system has an infinite 
source and an infinite sink.  
Problem 1 assumed a deterministic serial processor 
processing time, with a geometrically distributed batch 
processor processing time. We derived methods to obtain 
the optimal control policy at the feeder processor, when the 

batch processor is under either a full-batch or a no-idling 
policy. Furthermore, we have shown that the optimal 
control policy is a threshold policy, with the threshold 
being an integer multiple of the batch processor capacity. 
Given a profitability assumption on the full batch policy, 
the optimal policy is identical for the two batch processor 
control policies.  Unfortunately, these properties rarely 
remain true when the model assumptions are changed. For 
example, when the serial processor processing time 
remains deterministic but becomes larger than one, both 
properties no longer hold true. This is looked into in 
further detail in future work.  
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