
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-007
CBCL-266

February 1, 2007

Phonetic Classification Using
Hierarchical, Feed-forward,
Spectro-temporal Patch-based Architectures
Ryan Rifkin, Jake Bouvrie, Ken Schutte, Sharat
Chikkerur, Minjoon Kouh, Tony Ezzat, and Tomaso Poggio

Phonetic Classification Using Hierarchical, Feed-forward,
Spectro-temporal Patch-based Architectures

Ryan Rifkin
Honda Research Institute, Boston

rif@mit.edu

Jake Bouvrie
MIT Center for Biological and Computational Learning

MIT McGovern Center for Neuroscience
bouvrie@mit.edu

Ken Schutte

MIT Spoken Language Systems Group
MIT CSAIL

kschutte@csail.mit.edu

Sharat Chikkerur
MIT Center for Biological and Computational Learning

MIT McGovern Center for Neuroscience
sharat@mit.edu

Minjoon Kouh

MIT Center for Biological and Computational Learning
MIT McGovern Center for Neuroscience

kouh@mit.edu

Tony Ezzat
MIT Center for Biological and Computational Learning

MIT McGovern Center for Neuroscience
tonebone@mit.edu

Tomaso Poggio

MIT Center for Biological and Computational Learning
MIT McGovern Center for Neuroscience

tp@ai.mit.edu

Abstract

A preliminary set of experiments are described in which a biologically-inspired computer vision system
(Serre, Wolf et al. 2005; Serre 2006; Serre, Oliva et al. 2006; Serre, Wolf et al. 2006) designed for visual
object recognition was applied to the task of phonetic classification. During learning, the system
processed 2-D wideband magnitude spectrograms directly as images, producing a set of 2-D spectro-
temporal patch dictionaries at different spectro-temporal positions, orientations, scales, and of varying
complexity. During testing, features were computed by comparing the stored patches with patches from
novel spectrograms. Classification was performed using a regularized least squares classifier (Rifkin, Yeo
et al. 2003; Rifkin, Schutte et al. 2007) trained on the features computed by the system. On a 20-class
TIMIT vowel classification task, the model features achieved a best result of 58.74% error, compared to
48.57% error using state-of-the-art MFCC-based features trained using the same classifier. This suggests
that hierarchical, feed-forward, spectro-temporal patch-based architectures may be useful for phonetic
analysis.

I. Introduction & Motivation

Humans are adept at recognizing speech in a variety of noisy environments and in the presence of

competing speakers (Allen 1994; Lippmann 1997). It has proven a very hard task to make computers do
the same (Morgan, Zhu et al. 2005). The current paradigm of using mel-frequency cepstral coefficients
(MFCCs) (Rabiner and Juang 1993) as speech features has so far failed to produce computer recognition
levels that achieve human performance in a variety of speech-related tasks. Common characteristics of
the MFCC representations are that they: 1) capture only aspects of the spectral envelope, and not the
spectral frame itself; 2) are global, in that the final cepstral parameters represent the entire envelope, and
not just local portions of it; and 3) are frame-based, in that they model spectral features that fall within the
10-30 msec window of time over which the MFCC features are computed.

A large body of recent work has attempted to develop feature representations which address one or
more of these shortcomings. These attempts include: capturing dynamic information by including MFCC
derivatives (Furui 1986); using subband frame MFCC features (Bourlard and Dupont 1997; Morris, Hagen
et al. 1999); using long, thin time-slices of subband spectral activity (Hermansky and Sharma 1999;
Hermansky 2003); smoothing the MFCCs in time (Greenberg and Kingsbury 1997; Kingsbury, N.Morgan
et al. 1998); modeling the temporal envelope (Athineos and Ellis 2003; Athineos, Hermansky et al. 2004);
extracting spectro-temporal edge features (Amit, Koloydenko et al. 2005); extracting temporal boundary
features (Glass, Chang et al. 1996; Glass 2003); extracting localized spectro-temporal patterns
(Kleinschmidt and Gelbart 2002; Kleinschmidt 2003)

In this work, we also seek to explore alternative approaches to speech recognition, by making
recourse to recent progress made in computational visual neuroscience. Although the link between vision
and audition has been made in the past (Mendelson and Cynader 1985; deCharms, Blake et al. 1998),
engineering contributions from the visual domain have yet to be demonstrated for speech recognition. We
argue that the recent advances in visual neuroscience and computer vision may in fact be useful for
computational audition.

The first basic parallel between human vision and audition is in the input: sound is converted from a
one-dimensional pressure wave to a two-dimensional pattern of neural activity, distributed over time along
a tonotopic (frequency) axis (Chi, Ru et al. 2005). The two-dimensional pattern (frequency vs. time)
constitutes a 2-D auditory image (Patterson, Robinson et al. 1992) which is presented by the auditory
nerve to the auditory cortex for further processing. While the nature of the two input “images” is different,
at a small scale local patterns within both the retinotopic grids and the auditory grids may be similar, and
this suggests common cortical computational elements may be able to detect features in both visual and
auditory images.

Work by a number of auditory neurophysiologists (Theunissen, Sen et al. 2000; Sen, Theunissen et
al. 2001; Linden, R.C.Liu et al. 2003; Chi, Ru et al. 2005) indicates that there is a secondary level of
analysis in the auditory cortex (AI), in which cells in AI analyze and process elements of the underlying
input auditory image. Measurements of the so-called spectro-temporal receptive fields (STRFs) of cells in
AI indicate that they can be tuned to different optimal frequencies, have different spectral scales, and also
respond to different temporal rates. An analogy suggests itself between cells in this layer and the
oriented Gabor-like filters of the first layer in the visual cortex (Hubel and Wiesel 1962; Hubel and Wiesel
1968). The cells at this stage seem to be responding to harmonics and/or spectral envelopes at different
spectro-temporal frequencies, orientations, and time scales. This is the second basic parallel between
human vision and audition at the biological level.

The parallel between vision and audition extends to a perceptual viewpoint (Bregman 1990; Amit,
Koloydenko et al. 2005): We observe that humans are capable of recognizing specific visual objects
despite variations in position, scale, rotation, and presence of clutter. As such, the visual brain forms a
representation of visual objects that is invariant to a number of transformations that can be applied to that
object. On the other hand, the representation of that object has to be specific enough to be able to
differentiate one particular object from another. The visual brain learns to trade-off, in some sense,
selectivity to certain input patterns and invariance to certain transformations.

Similarly, human speech perception can also be construed to be a form of auditory object recognition.
Humans are capable of recognizing specific auditory objects such as phonemes despite variations in
pitch, duration, location in time, and the presence of noise. As such, the brain also forms a
representation of auditory objects that is invariant to a number of transformations that can be applied to

that object. On the other hand, the representation of that object has to be specific enough to be able to
differentiate one particular auditory object from another, as for example we do when we differentiate /but/
from /boot/.

In this work, we seek to leverage our success over the past few years in building a biologically-
inspired computer vision system that performs visual object recognition (Serre, Wolf et al. 2005; Serre
2006; Serre, Wolf et al. 2006). The system, which was designed to closely match the currently known
architecture and physiology of the visual cortex, processes images in a feed-forward, hierarchical way
producing a set of features at different positions, scales, orientations, and of varying complexity. The
features computed by this system are then used as inputs to a classifier which is trained to determine the
category of a particular object within that image. The system is capable of identifying the object in the
image irrespective of variations in position, scale, orientation, and even in the presence of clutter.
Recently this system has been shown to achieve human-level performance on rapid animal/non-animal
categorization tasks.

Motivated by the success of our computer vision system in recognizing visual objects, we decided to
explore whether the same 2-D, hierarchical, feed-forward architecture, coupled with a regularized least
squares classifier, can be useful in a 20-class TIMIT vowel classification task. To judge the performance
of our feature set more accurately, we compared classification performance of our model with a set of
conventional state-of-the-art MFCC-based features (Halberstadt and Glass 1998) trained using the same
classifier.

It is worth mentioning that recent work by (Domont, Heckmann et al. 2007) presents a system that is
very similar to ours, in which a hierarchical system inspired from visual neuroscience is applied to the task
of syllable recognition (specifically, their task is a 25 monosyllabic word recognition task, in which the
words are embedded in various SNRs of babble noise). They report results in which their system
outperforms Sphinx (Walker, Lamere et al. 2004) by 10-20% on word error rate for moderate to low SNR
ratios.

In the following sections, we describe our task and data, our model architecture, and our experimental
results in greater detail.

II. Task & Data

For our task, we chose a subset of the TIMIT phonetic classification corpus (Garofolo, Lamel et

al. 1993). The classes were 20 vowel sounds /ay/, /ae/, /ow/, /ey/, /ao/, /uw/, /aa/, /ah/, /aw/, /ax/, /ax-h/,
/axr/, /eh/, /er/, /ih/, /ix/, /iy/, /oy/, /uh/, and /ux/. Shown in Appendix 1 are the respective numbers of
training, testing, and development examples for each phoneme (We describe the purpose of the
development set in section III-D below).

For all sounds, a wideband, high frame-rate, short-time Fourier transform (STFT) is computed
with 4ms hamming windows every 2ms, resulting in 500 frames per second. Each frame is zero-padded
to 256 points, resulting in 129 point spectra. The STFT magnitude is smoothed with a single pole low-
pass filter with time constant 8ms to remove effects of the pitch periods. The final spectrograms used are
the log of this image, normalized to zero-mean, unit-variance. The images form the direct input to the
model as will be described in the next section.
 All sounds were time-normalized to 85 columns (170 msec), which is the median duration of the
vowel classes under consideration. The matlab function imresize() was used to perform this time-
normalization. At the completion of our pre-processing, all inputs sounds were thus 129 bins high and 85
bins wide.

Shown in Appendix 2 are example images of the spectrograms for each vowel class, before
amplitude and time normalization.

III. Hierarchical, Feed-forward, Spectro-temporal Patch Based Model Architecture

A. Overview

The model consists of eight hierarchical layers of computational units composed of alternating

simple S units and complex C units. In the next sections, we review the functionality of the S and C units,

and then briefly describe each layer. Since our model architecture is exactly as the one described in
(Serre, Kouh et al. 2005; Serre, Oliva et al. 2006) (with some minor modifications which are listed in
Appendix 3) we only summarize the basic ideas, and refer the reader to (Serre, Oliva et al. 2006) for the
details.

B. Simple and Complex Computational Units

There are two types of functional layers in the model: the S layers which are composed of simple units
are interleaved with C layers which are composed of complex units.

Simple units in each Sk layer pool over afferent units from a topologically related local neighborhood in
the previous Ck−1 layer with different selectivities. As a result, the complexity of the preferred stimulus of
units increases from layer Ck−1 to Sk. The pooling operation at the S level is a Gaussian-like tuning
function. That is, the response y of a simple unit receiving the pattern of x, is











−−= ∑

=

N

j

jj xwy
1

2

2
)(

2

1
exp

σ
 Equation 1

where σ defines the sharpness of the tuning around the preferred stimulus of the unit corresponding to

the weight vector w. The response of the unit is thus maximal (y = 1) when the current pattern of input x
matches exactly the synaptic weight vector w and decreases with a bell-shaped tuning profile as the
pattern of input becomes more dissimilar (Note: Equation 1 is actually implemented by a more
biologically-plausible tuning operation of the form of a normalized dot-product followed by a sigmoid
function. See (Serre, Kouh et al. 2005) for more details).

Complex units in the Ck layer pool over afferent units from the previous Sk layer with the same selectivity
but at slightly different positions and scales to increase the tolerance to 2D translation and scale
transformations from layer Sk to Ck. The pooling operation at the complex C level is a MAX operation.
The response y of a complex C unit thus corresponds to the response of the strongest of its afferents x
from the previous Sk layer. An idealized mathematical description of the complex unit operation is given
by

)(1 NxxMAXy K= Equation 2

(Note: In practice Equation 2 is implemented using a soft-max operation. See (Serre, Kouh et al. 2005)
for more details).

C. Layered Architecture

S1 units: The 2-D spectrograms are first analyzed by an array of simple hand-coded S1 units which
correspond to the classical simple cells of Hubel & Wiesel (Hubel and Wiesel 1962; Hubel and Wiesel
1968) found in primary visual cortex (V1). S1 units take the form of Gabor functions (Daugman 1988; Lee
1996), which have been shown to provide a good model of cortical simple cell receptive fields. Intuitively,
the S1 units perform a localized, oriented-edge detection on the image, where each S1 unit corresponds
to a 2-D Gabor filter with a particular orientation, scale, and position. The population of units consists of
68 types of units: 4 orientations x 17 sizes. Shown in Figure 1 are the set of Gabor filters used at this
layer. Our Gabors are even-symmetric and have amplitude normalized between 1 and -1.

Figure 1: Gabor filters used at Layer S1

C1 units: The next C1 level corresponds to striate complex cells (Hubel and Wiesel 1959). Each of the
complex C1 units receives the outputs of a group of simple S1 units with the same preferred orientation
but at slightly different positions and sizes (or peak frequencies). Each complex unit pools over its inputs
using a MAX operation; i.e., the response of a complex unit corresponds to the response of the strongest
of its afferents from the previous S1 layer. The result of the pooling over positions is that C1 units become
insensitive to the location of the stimulus within their receptive fields, which is a hallmark of complex cells
(Hubel and Wiesel 1959).

S2 units: At the S2 level, units pool the activities of 10 complex C1 units at different preferred orientations
in a local neighborhood via a tuning operation as in Equation 1. As a result, the complexity of the
preferred stimuli is increased: At the C1 level units are selective for single bars at a particular orientation,
whereas at the S2 level, units become selective to more complex patterns, such as the combination of
oriented bars to form contours or boundary-conformations.

We define each S2 unit as a patch, and the entire collection of S2 units as a patch dictionary. The
learning stage consists of setting the w weights for each of K patches within that layer. We describe
below in Section D how patch “learning” (or development) occurs, ie, how the weights w are set for each
patch, and also how the number K of patches is determined. Subsequently in Section E, we describe how
the patch dictionaries are used during training and testing phases.

C2 units: In the next C2 stage, units pool over S2 units that are tuned to the same preferred stimulus (they
correspond to the same combination of C1 units and therefore share the same weight vector w) but at
slightly different positions and scales. C2 units are therefore selective for the same stimulus as their
afferents S2 units. Yet they are less sensitive to the position and scale of the stimulus within their
receptive field.

S3 and C3 stages: Beyond the S2 and C2 stages, the same process is iterated once more to increase the
complexity of the preferred stimulus at the S3 level, where the response of 100 C2 units with different
selectivities are combined with a tuning operation to yield even more complex selectivities. In the next
stage, the complex C3 units, obtained by pooling S3 units with the same selectivity at neighboring
positions and scales, are also selective to moderately complex features as the S3 units, but with a larger
range of invariance. The S3 and C3 layers provide a representation based on broadly tuned shape
components. As in the S2 layer, each S3 unit is termed a patch, and the entire set of units a S3 patch
dictionary.

S2b and C2b stages: S2b units (where “b” stands for “bypass”) combine the response of several complex
C1 units at different orientations just like S2 units. Yet their receptive field is larger (2 to 3 times larger)
than the receptive fields of the S2 units. Importantly, the number of afferents to the S2b units is also larger
(100 vs. 10), which results in units which are more “elaborate” than the S2 units, yet, less tolerant to
deformations. The C2b is a final stage in that their outputs are not passed on to a higher stage.

D. Learning Stage

The learning stage determines the set of weight vectors w (see Eq. 1) for each patch within the patch
dictionary in layers S2, S2b and S3. Additionally, the learning stage determines the number of patches K
for each S layer.

Learning in the model is sequential up the hierarchy: first the patch dictionaries at layers S2/S2b
are constructed, followed by the construction of the patch dictionary at layer S3. To construct each
dictionary, the spectrograms in the development set are presented in random order, and features are
propagated up the hierarchy up to the Sk layer of interest. At this point, the Sk dictionary is constructed. In
the next iteration, the same development spectrograms are presented again in random order, but now the
features are propagated to the next Sk+1 layer. The dictionaries thus need to be created in sequential
fashion, but this process only needs to be performed once for each layer.

During the patch dictionary construction process for layer Sk, the weights w of each of K patches
are learned using an imprinting process: each unit stores in its synaptic weights w the current pattern of
activity from its afferent inputs (from the previous layer) in response to the part of the spectrogram that
falls within its receptive field. This is done by setting w to be equal to the current pattern of pre-synaptic
activity x. As a result, the patch x that falls within the receptive field of the unit w becomes its preferred
stimulus. Note that units in higher layers are thus tuned to larger patches.

We explored two different patch imprinting strategies: In one strategy (minimal average
response), a patch is only imprinted if the average value of its afferents is larger than some minimal
value. In another strategy (minimal max response), a patch is only imprinted if the maximum value of its
afferents is larger than some minimal value. If a patch’s afferents do not satisfy either the minimal
average response or the minimal max response constraints, then that patch is not imprinted.

The number of K patches imprinted per S layer is determined as a heuristic tradeoff between the
number of patches with minimal average/max afferent responses, and the number of features that the
regularized least squares classification architecture can handle. Typically the number of patches with
minimal average response is too large for a classifier to handle, so a heuristic pruning is performed in
order to reduce their size to a more manageable number. Typically, the final number of patches retained
in each dictionary ranges from 2000 to 4000. See Appendix 3 for more details for the size K at each S
layer.

E. Training and Testing Stages

 The training stage follows the development stage, and consists of presenting spectrograms from
a training set to the model. In this stage the features are computed all the way up the hierarchy, since the
S2, S2b, and S3 dictionaries have already been created in the previous development stage.

It is important to note that the responses computed at the C layers form the input features to the
classifier, not the responses at the S layers. Each C layers pools over its afferents in the previous layer
using a MAX operation, thus producing either a reduction or an expansion of the previous S layer’s
dimensionality. A reduction or expansion can happen depending on the type of pooling operations defined
for that C layer. For example, layers C1 and C2b are architected to reduce the dimensionality of the
previous S1 and S2b layers, but layer C2 expands the dimensionality of the previous S2 layer. In all cases,
however, the dimensionality of the feature inputs to the classifier are determined by the C layers.

The outputs of the C stages are used as the inputs to the regularized least squares classifier. The
training stage also optimizes the parameters of the RLSC classifier (described in Secion IV below).

During testing, a separate set of spectrograms from a testing set are presented to the developed
model and the trained classifier, and used to compute our final scores, described in Section V below.

IV. Linear Regularized Least Square Classifier

Linear regularized least squares is an instance of Tikhonov regularization (Poggio and Girosi

1990; Wahba 1990), a very general framework for learning that includes many common discriminative
learning algorithms, including support vector machines (Vapnik 1995). The regularized least squares
classification framework adopted in this work is presented in greater detail in (Rifkin, Yeo et al. 2003;
Rifkin, Schutte et al. 2007), so we only summarize the relevant details here.

We are given a data set {(x1, y1), ..., (xn, yn)} where the xi represent points to be classified, while
the yi are the desired labels. In our case, each xi will consist of a row of features from any one of the C

layers (C1, C2, C2b, or C3). The label yi will consist of a label for the vowel class of that training data point.
The data points are collected in a matrix X and the labels are collected in vector Y.

The linear regularized least squares problem is to find a vector w minimizing:

2

2

2

2 22

1
wXwY

λ
+− Equation 3

where λ is a positive regularization parameter controlling the tradeoff between fitting the observations

and finding a w with small norm, and L2 norm is defined as vvv T=
2

. This is a differentiable, convex

optimization problem, and straightforward calculus and linear algebra shows that the optimal w is given
by:

YXIXXw TT 1)(−+= λ Equation 4

λ is chosen as detailed in (Rifkin, Schutte et al. 2007) using an SVD procedure.

Given a multi-class data set, we train a binary RLS classifier for each pair of classes (for c
classes, we train c(c − 1)/2 binary classifiers). For each pair of classes i and j (i < j), we train a binary
classifier using the points in class i with y = 1 and the points in class j with y = −1. Given a new test point,
we threshold the outputs of all the classifiers at 0, forcing each classifier to make a hard vote for one of
the two classes it was trained on. We then classify the example into the class that received the most
votes. In the case of ties, we restrict our attention to the k classes that received the most votes and
recount votes from only the k(k − 1)/2 classifiers on these classes (in the simple case of a two-way tie
between classes i and j, we choose in accord with the i-vs-j classifier). If a tie remains after this restriction,
we pick the class with the highest prior (most training examples) from among the classes receiving the
most votes.

V. Experiments & Results

We performed 12 classification experiments in total, 10 using the dictionaries learned by our

model from labeled examples, and 2 using comparison feature sets which we term the “MFCC” and the
“Raw Spectral” feature sets. Both comparison feature sets are described in more detail in Appendix 4.

Five of the experiments using our model features consisted of using as input to the classifier
either the C1, C2, C2b, C3, or a concatenation of the full C1+C2+C2b+C3 features, where the dictionaries
are computed using a minimal average response patch imprinting strategy. These results are shown in
Table 1.

Another four of the experiments using our model features consisted of using as input to the
classifier either the C1, C2, C2b, C3, where the dictionaries are computed using a minimal maximum
response patch imprinting strategy. These results are shown in Table 2.

The last of the experiments using our model feature set consisted of using only C1 features
obtained from a slightly re-architected Gabor filter set. This experiment was a follow-up experiment
designed to identify the influence of the type of Gabor filters on performance.This result is shown in Table
3. Details of the re-architected Gabors are described in Appendix 3.

Finally, the results using the comparison feature sets are shown in Table 4.
In all experiments, an RLS classifier was trained using the method described in Section IV.

Training and testing sets were identical in all experiments. The development set was only used in order to
build the patch dictionaries.

Feature Layer Feature Dimensionality Classification Error

C1 model features 8252 59.68%

C2 model features 10,000 67.32%

C2b model features 2000 63.09%

C3 model features 4000 76.51%

C1+C2+C2b+C3 model
features

24252 59.85%

Table 1: The model feature experiments using a minimal average response patch imprinting strategy.

Feature Layer Feature Dimensionality Classification Error

C1 model features 8252 59.68%

C2 model features 10,000 62.32%

C2b model features 4000 65.91%

C3 model features 4000 72.36%

Table 2: The model feature experiments using a minimal maximum response patch imprinting strategy.

Feature Layer Feature Dimensionality Classification Error

C1 model features 7932 58.74%

Table 3: The model feature experiments using a re-architected Gabor filter set.

Feature Layer Feature Dimensionality Classification Error

“MFCC” features 61 48.57%

“Raw Spectral” features 646 51.26%

Table 4: The comparison “MFCC” and “Raw Spectral” feature experiments.

VI. Discussion

Our best result using the model features is using only the C1 layer, which yields either 58.74% or

59.68% classification error depending on the Gabor filter set we used. This compares favorably with the
error rates using the comparison “MFCC” and “Raw Spectral” features, which are 48.57% and 51.26%
respectively. However, the feature dimensionality in our C1 layer increases dramatically to 8252, as
compared to 61 and 646 in the “MFCC” and “Raw Spectral” cases respectively.

Our experiments with C2, C2b, and C3 features indicated that nothing was being gained by adding
these additional layers, and performance in fact degraded when those features were added. There are
two possible reasons for this:

Firstly, it might mean that the spectrograms themselves do not contain much information beyond
the S1-C1 scale.

Alternatively (and more likely), it might mean that the construction of the S-layer dictionaries
and/or the pooling of the C layers is being performed in a detrimental manner.

This leads to the following set of questions which are avenues of future exploration:

1. The model as it was architected in (Serre, Oliva et al. 2006) was designed with position- and scale-
invariance in mind, which are two of the most common types of invariances found in human vision.

What are the analogous invariances in audition, and how may these be appropriately coded for in a
re-architected version of the model?

2. What are the appropriate number of layers to use in the model for audition? Is the S1-C1 layer

sufficient, or do we need higher layers to account for more complex selectivities in the patch
dictionaries?

3. The current inputs to our model are wideband spectrograms which effectively represent the spectral

envelopes in speech. What about speech harmonics? Can a lower level of harmonic detail be useful
at all for recognition? If so, how would the model perform on raw spectrograms instead of envelopes?
Also, how would a “tandem” approach perform, where tandem hierarchical models process the
harmonics layer and envelope layers separately, and then combined?

4. How would the model features perform in classifying phonemes in the presence of noise?

5. How would the model features perform in classifying other types of phonemes besides vowels?

VII. Conclusion

We described a set of preliminary experiments in which a biologically-inspired computer vision
system (Serre, Wolf et al. 2005; Serre 2006; Serre, Oliva et al. 2006; Serre, Wolf et al. 2006) designed for
visual object recognition was applied to the task of phonetic classification. On a 20-class TIMIT vowel
classification task, the model features achieved a best result of 58.74% error, compared to 48.57% error
using state-of-the-art MFCC-based features trained using the same classifier. This suggests that
hierarchical, feed-forward, spectro-temporal patch-based architectures may be useful for phonetic
analysis.

VIII. Acknowledgments

The authors would like to thank Thomas Serre for valuable comments and suggestions.

References

Allen, J. (1994). "How do humans process and recognize speech?" IEEE. Trans. on Speech and Audio
Processing 2(4): 567-577.

Amit, Y., A. Koloydenko, et al. (2005). "Robust Acoustic Object Detection." Journal of the Acoustical
Society of America 118(4): 2634-2648.

Athineos, M. and D. P. W. Ellis (2003). Frequency Domain Linear Prediction for Temporal Features. Proc.
ASRU Worskshop.

Athineos, M., H. Hermansky, et al. (2004). LP-TRAP: Linear Predictive temporal patterns. Proc. ICSLP.

Bourlard, H. and S. Dupont (1997). Subband-Based Speech Recognition. Proc. ICASSP, Munich,
Germany.

Bregman, A. (1990). Auditory Scene Analysis. Cambridge, MA.

Chi, T., P. Ru, et al. (2005). "Multiresolution Spectrotemporal Analysis of Complex Sounds." Journal of
the Acoustical Society of America 118: 887-906.

Daugman, J. G. (1988). "Complete discrete 2-D Gabor transforms by neural networks for image analysis
and compression." IEEE Trans. Acoustics, Speech, and Signal Processing 36: 1169.

deCharms, R. C., D. T. Blake, et al. (1998). "Optimizing Sound Features for Cortical Neurons." Science
1439.

Domont, X., M. Heckmann, et al. (2007). A Hierarchical Model for Syllable Recognition. ESANN, to
appear, Bruges, Belgium.

Furui, S. (1986). Speaker-Independent Isolated Word Recognition Using Dynamic Features of Speech
Spectrum. IEEE Trans. Acoustics, Speech, and Signal Processing 34: 52--59.

Garofolo, J. S., L. F. Lamel, et al. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus.
Philadelphia, Linguistic Data Consortium.

Glass, J. R. (2003). "A probabilistic framework for segment-based speech recognition." Computers,
Speech, and Language 13: 137.

Glass, J. R., J. Chang, et al. (1996). A probabilistic framework for feature-based speech recognition. Proc.
ICSLP.

Greenberg, S. and B. E. D. Kingsbury (1997). The modulation spectrogram: in pursuit of an invariant
representation of speech. Proc. ICASSP, Munich, Germany.

Halberstadt, A. (1998). Heterogeneous Acoustic Measurements and Multiple Classifiers for Speech
Recognition. EECS. Cambridge, MA, MIT. PhD Thesis.

Halberstadt, A. and J. Glass (1998). Heterogeneous Measurements and Multiple Classifiers for Speech
Recognition. Proceedings of ICSLP.

Hermansky, H. (2003). Data-driven Extraction of Temporal Features from Speech. Proc. ASRU Worshop.

Hermansky, H. and S. Sharma (1999). Temporal Patterns (TRAPS) in ASR of Noisy Speech. Proc.
ICASSP.

Hubel, D. and T. Wiesel (1959). "Receptive fields of single neurons in the cat's striate cortex." Journal of
Physiology (London) 148: 574-591.

Hubel, D. and T. Wiesel (1962). Receptive fields, binocular interaction and functional architecture in the
cat's visual cortex. J. Phys. 160: 106--54.

Hubel, D. H. and T. N. Wiesel (1968). Receptive fields and functional architecture of monkey striate
cortex. J.Phys. 195: 215--243.

Kingsbury, B. E. D., N.Morgan, et al. (1998). " Robust speech recognition using the modulation
spectrogram." Speech Communication 25(1): 117-132.

Kleinschmidt, M. (2003). Localized Spectro-temporal Features for Automatic Speech Recognition. Proc.
Eurospeech.

Kleinschmidt, M. and D. Gelbart (2002). Improving Word Accuracy with Gabor Feature Extraction. Proc.
ICSLP.

Lee, T. S. (1996). Image Representation Using 2-D Gabor Wavelets. IEEE Trans. on Pattern Analysis
and Machine Intelligence 18: 959.

Linden, J. F., R.C.Liu, et al. (2003). "Spectrotemporal Structure of Receptive Fields in Areas AI and AAF
of Mouse Auditory Cortex." Journal of Neurophysiology 2660.

Lippmann, R. P. (1997). "Speech recognition by machines and humans." Speech Communication 22: 1--
15.

Mendelson, J. R. and M. S. Cynader (1985). "Sensitivity of cat primary auditory cortex (AI) to the direction
and rate of frequency modulation." Brain Research 327(1).

Morgan, N., Q. Zhu, et al. (2005). "Pushing the Envelope - Aside." IEEE Signal Processing Magazine
22(5): 1053-1088.

Morris, A., A. Hagen, et al. (1999). The Full Combination Sub-bands Approach to Noise Robust
HMM/ANN-based ASR. Proc. Eurospeech 99.

Patterson, R. D., K. Robinson, et al. (1992). Complex Sounds and Auditory Images. Proc. Ninth Intl Symp
on Hearing.

Poggio, T. and F. Girosi (1990). Networks for Approximation and Learning. Proceedings of the IEEE 78:
1481--1497.

Rabiner, L. and B. H. Juang (1993). Fundamentals of Speech Recognition. Englewood Cliffs, NJ.

Rifkin, R., K. Schutte, et al. (2007). Noise Robust Phonetic Classification with Linear Regularized Least
Squares and Second-Order Features. Proc. ICASSP 2007, under submission.

Rifkin, R., G. Yeo, et al. (2003). Regularized Least Squares Classification. Advances in Learning Theory:
Methods, Models, and Applications. H. B. M. V. L. R. Stuykens.

Sen, K., F. Theunissen, et al. (2001). Feature Analysis of Natural Sounds in the Songbird Auditory
Forebrain. Journal of Neurophysiology 86: 1445.

Serre, T. (2006). Learning a dictionary of shape components in visual cortex:Comparisons with neurons,
humans, and machines. Brain and Cognitive Science. Cambridge, MA, MIT. PhD Thesis.

Serre, T., M. Kouh, et al. (2005). A theory of object recognition: computations and circuits in the
feedforward path of the ventral stream in primate visual cortex. Cambridge, MIT: CBCL Paper
#259/AI Memo #2005-036.

Serre, T., A. Oliva, et al. (2006). A Feedforward Theory of Visual Cortex Accounts for Human
Performance in Rapid Categorization. Submitted.

Serre, T., A. Oliva, et al. (2006). A Feedforward Theory of Visual Cortex Accounts for Human
Performance in Rapid Categorization,. CBCL Paper # MMVI-02. Cambridge, MA, Massachusetts
Institute of Technology.

Serre, T., L. Wolf, et al. (2006). "Object Recognition with Cortex-Like Mechanisms." IEEE Trans. on
Pattern Analysis and Machine Intelligence

Serre, T., L. Wolf, et al. (2005). Object Recognition with features inspired by visual cortex. Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition.

Theunissen, F., K. Sen, et al. (2000). "Spectral-Temporal Receptive Fields of Nonlinear Auditory Neurons
Obtained Using Natural Sounds." Journal of Neuroscience 20(6): 2315.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY.

Wahba, G. (1990). Splines Models for Observational Data. Philadelphia.

Walker, W., P. Lamere, et al. (2004). Sphinx-4: A flexible open source framework for speech recognition.
Technical Report, Sun Microsystems.

Appendix 1: Training, Testing, and Development Set Sizes

Phonetic
Label

TEST
SET

TRAINING
SET

DEV
SET

aa 131 1000 236
ae 105 1000 237
ah 135 1001 248
ao 97 1000 223
aw 30 728 61
ax 172 1000 366
ax-h 14 357 37
axr 141 1000 321
ay 89 1000 214
eh 189 1000 391
er 93 1000 193
ey 114 1000 230
ih 203 1000 444
ix 377 1004 757
iy 243 1000 564
ow 89 1000 168
oy 16 304 30
uh 29 500 54
uw 22 529 48
ux 52 1001 116

Appendix 2: Example Spectrogram Inputs

Examples of spectrograms for the 20 vowel classes, before time and amplitude normalization.

Appendix 3: Modifications to the Parameters of the Model

The majority of the model parameters used in the experiments presented in this memo were
identical to those chosen by (Serre, Oliva et al. 2006). The particular instances where we modified model
settings from Serre and Oliva’s “defaults” are noted as follows:

a) The sigmoid nonlinearity applied to normalized dot-products at the S layers takes the form
1)))(exp(1()(−−−+= bzazg . At layers S2 and S3 the sigmoid’s “a” parameter was changed

from a default of 20 to 8.
b) Layer S2b was configured to look at only the top (largest) 4 scales from C1, rather than the top 5

scales, while layer S3 was configured to look at only the top 2 scales from C2, rather than the top
3 scales.

c) Layer S3 was configured to examine 2x2 spatial blocks at the above C2 scales, rather than
blocks of size 3x3.

Modification (a) was made to accommodate extremely small normalized dot-product responses, wile

modifications (b) and (c) were made to adjust for smaller input stimuli (spectrograms).

For the experiments described in Table 1, the size of the patch dictionaries learned at layers S2,
S2b, and S3 were 2000, 2000, and 4000 respectively. Because the size of the receptive fields at layers
S2b and S3 are large compared to the size of the input stimuli, “local” pooling is effectively global and the
dimensionality of the model’s output at layers C2b and C3 is equal to the size of the patch dictionary.
Receptive fields are still small at layer C2, however, and the dimensionality of the output is much larger
than the number of patches in the S2/C2 dictionary.

 For the experiments described in Tables 2 and 3, the patch dictionaries were of size 4000 at all
learnable S-layers (S2, S2b, and S3).

 The experiments presented in Table 3 reflect three additional modifications to the S1 and C1
layers. In particular, we first changed the set of Gabor filter orientation angles from {0,45,90,-45} to
{0,10,20,90,-10,-20} (note that we have modified both the number of filters and the choice of angles). We
have found that the majority of vowel phonemes in the TIMIT corpus involve formants which slope up- or
down-wards at an angle between 0 and 20 degrees, assuming spectrograms which span a time-
frequency region of size 8kHz by 170ms. A shift from 45 degrees to 20 degrees is thus equivalent to
shifting our preferences from formants sloping at 47 Hz/ms to those which slope somewhere near 19
Hz/ms. Second, because it is usually the case that information at high-frequencies in vowels does not
provide much discriminative power, we additionally eliminated all frequency bins above 5kHz, giving a
spectrogram “image” of size 80x85 rather than 129x85. This modification simplifies the learning problem
by eliminating non-informative features, and also reduces the computation time needed to train and test
the model. The final change to the model involved a shifting of the spatial pooling sizes at layer C1. The
default configuration used by (Serre, Oliva et al. 2006) called for spatial pooling over blocks with edges of
length {8,10,12,14,16,18,20,22}. Visual inspection of Gabor filtered spectrograms revealed that there may
be important information at a resolution higher than that given by 8x8 pooling. We therefore chose to shift
the entire spatial pooling range down by 4, giving a set of pooling resolutions equal to
{4,6,8,10,12,14,16,18}. Note however that pooling at C1 involves combining information from multiple S1
features, and thus does not refer to blocks in the original image. An 8x8 pool of S1 features therefore
corresponds to a receptive field which looks at an area of the original image much larger than 8x8.

Appendix 4: “MFCC” and “Raw Spectral” Features

The “MFCC” features used are the ``S2'' features from (Halberstadt 1998). Short-time Fourier

analysis is done with a 30ms Hamming window every 5ms. For each frame, we compute 12 Mel
frequency cepstral coefficients (MFCCs). To get a fixed-length feature vector for each phonetic segment,
the MFCCs are averaged over five regions: the 30ms before and after the segment, and three regions
within the segment (in 3-4-3 proportion). The log duration is also included, giving a total of 5*12+1=61
dimensions. These features are then whitened using a principle component analysis (PCA) matrix
derived from the training set.
 MFCC’s are computed in the traditional way: Over each spectral slice, a bank of triangular filters
spaced according to the mel-frequency scale is applied. The log-energy under each filter is retained, and
the resulting vector (typically approximately 40 dimensions) is referred to as a set of MFSCs, Mel-
Frequency Spectral Coefficients. In each frame, a discrete cosine transform (DCT) of the MFSCs is taken,
and only the first 12 coefficients are retained.

 The “Raw Spectral” features are computed on the same spectrograms that were used as input
to the model (before time and amplitude normalization) was applied, and using the same time-averaging
technique as in the “MFCC” features: the 30ms before and after the segment, and three regions within the
segment (in 3-4-3 proportion). The log duration is also included, giving a total of 5*129+1=646
dimensions. No PCA was performed on the “Raw Spectral” features.

