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Subsystem Hazard Analysis (SSHA) 

Examine subsystems to determine how their 

Normal performance 

Operational degradation 

Functional failure 

Unintended function 

Inadvertent function (proper function but at wrong time or in wrong order) 

could contribute to system hazards. 

Determine how to satisfy design constraints in subsystem design. 

Validate the subsystem design satisfies safety design constraints 
and does not introduce previously unidentified hazardous system 
behavior. 
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Software Hazard Analysis 

A form of subsystem hazard analysis. 

Validate that specified software blackbox behavior satisfies 
system safety design constraints. 

Check specified software behavior satisfies general software  
system safety design criteria. 

Must perform on ALL software, including COTS. 



�c 
���
������� "!$#�' 

	����� ����� 
���������� ��������� ����� � 

State Machine Hazard Analysis 

Like system hazard analysis, software (subsystem) hazard 
analysis requires a model of the component’s behavior. 

Using code is too hard and too late. 

Software is too complex to do analysis entirely in one’s head. 

Formal models are useful, but they need to be easily readable 
and usable without graduate−level training in discrete math. 

Only a small subset of errors are detectable by automated 
tools: the most important ones require human knowledge 
and expertise. 

Mathematical proofs must be understandable (checkable) by 
application experts. 

Hazard analysis process requires that results can be openly 
reviewed and discussed. 
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State Machine Hazard Analysis (2) 

State machines make a good model for describing and analyzing 
digital systems and software. 

Match intuitive notions of how machines work (e.g., sets do not) 

Have a mathematical basis so can be analyzed and graphical 
notations that are easily understandable. 

Previous problems with state explosion have been solved by 
"meta−modeling" languages so complex systems can be handled. 

Some analyses can be automated and tools can assist human 
analyst to traverse (search) model. 

Our experience is that assisted search and understanding 
tools are the most helpful in hazard analysis. 
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Completely automated tools have an important but more 
limited role to play. 
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/Reading at set point 
Close drain pipe 

/ 

Water 
level 
high 

level at 
setpoint 

Water 

/Low reading 
Activate pump 

/Reading at setpoint 
Turn off pump 

Water 
level 
low 

Open drain pipe 
High reading 
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Requirements Validation 

Requirements are source of most operational errors and almost 
all the software contributions to accidents. 

Much of software hazard analysis effort therefore should focus on  
requirements. 

Problem is dealing with complexity 

1) Use blackbox models to separate external behavior from 
complexity of internal design to accomplish the behavior. 

2)  Use abstraction and metamodels to handle large number 
of discrete states required to describe software behavior. 

Do not have continuous math to assist us 

But new types of state machine modeling languages 
drastically reduce number of states and transitions 
modeler needs to describe. 



cruise control 

and in 
Control On 
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or accelerator 
depressed / 

cruise control 

to increase at X rate 
send command to throttle 

initialize cc 
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read wheel turning rate / 
adjust throttle 
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Blackbox specifications 

Provide a blackbox statement of software behavior: 

Permits statements only in terms of outputs and externally 
observable conditions or events that stimulate or trigger 
those outputs. 

trigger output (double implication) 

Complete trigger specification must include full set 
of conditions that may be inferred from existence of 
specified output. 

Such conditions represent the assumptions about the 
environment in which program or system is to operate. 

Thus the specification is the input to output function computed 
by the component, i.e., the transfer function. 

Internal design decisions are not included. 
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Process Models 

Define required blackbox behavior of software in terms of a 
state machine model of the process (plant). 

�c 

variablesSensors 

Controls 

Displays 
Model of 
Process 

Actuators 
Controlled 

Measured 

Disturbances 

Process 
Model of 

Automated 

Process 
inputs 

outputs 
Process 

Human 

Automation 
Model of 

Controller 
Process 

Controlled 
Supervisor 

variables 




���
������� "!$#�- 

	����� ����� 
���������� ��������� ����� � 
�c 

Level 3 Specification (modeling) language goals 

Readable and reviewable 

Minimize semantic distance 

Minimal (blackbox) 

Easy to learn 

Unambiguous and simple semantics 

Complete 
Can specify everything need to specify 

Analyzable 
Executable 

Formal (mathematical) foundation 

Includes human actions 

Assists in finding incompleteness 

c � 
���
������� "!$+�. 

	����� ����� 
���������� ��������� ����� � 

SpecTRM−RL 

Combined requirements specification and modeling language 

A state machine with a more readable notation on top of it 

Includes a task modeling language 

Could add other notations and visualizations of state machine 

Enforces or includes most of completeness criteria 

Supports specifying systems in terms of modes 

Control modes 

Operational modes 

Supervisory modes 

Display modes 



c � 
���
������� "!$+%! 

	����� ����� 
���������� ��������� ����� � 

Model of Process 

Process is modeled using state variables 

Average 

Low 

Unknown 

High 

Schedule Slot [1...90] Traffic Density 

Unknown 

Blocked 

Aircraft Scheduled 

Available 

Values of state variables given by AND/OR tables 
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Component 
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Measured Variable 

Command 
Control 

Display Output 

Control Input Controlled 
Device 

Measured Variable 1 

Measured Variable 2 

Supervisor 

(Feedback) 
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Watchdog Timer 

{Fail,NCD,Test,Norm} 
DA2-Status-Signal 

INT 
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Output Command 

DOI-Power-On 

Destination: DOI 

Acceptable Values: 

Initiation Delay: 

{high} 

0 milliseconds 

Completion Deadline: 50 milliseconds 

Exception-Handling: 

Feedback Information: 

Variables: 

(What to do if cannot issue command within deadline time) 

DOI-status-signal 

Values: high (on) 

Relationship: Should be on if ASW sent signal to turn on 

Min. time (latency): 2 seconds 

Max. time: 4 seconds 

Exception Handling: 

Reversed By: 

DOI-Status changed to Fault-Detected 

Turned off by some other component or components. Do not know which ones. 

Comments: I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that 
the reason for the restriction is simply hysteresis and not possible damage to the device. 

This product in the family will turn on the DOE only when the aircraft descends below the 
threshold altitude. Only this page needs to change for a product in the family that is 
triggered by rising above the threshold. 

References: 

CONTENTS 

= discrete signal on line PWR set to high 

TRIGGERING CONDITION 

T 

TPrev(Altitude) = At-or-above-threshold 

Altitude = Below-threshhold 

State Values DOI-Status = On F 

TOperational 

Not Inhibited T 

Control Mode 



Output Command 

Watchdog-Strobe 

Destination: Watchdog Timer 

Acceptable Values: high signal (on) 

Min-Time-Between-Outputs: 

Max-Time-Between-Outputs: 

0 

200 msec
PERIOD 

Exception-Handling: 

Feedback Information: None 

Reversed By: Not necessary 

Comments: 

References: 

CONTENTS 

= High signal on line WDT 

TRIGGERING CONDITION 

State Values T 

F 

Time >= (Time entered Altitude.Cannot-be-determined) + 2 

Time <= 

F 

DOI-Status = Fault-detected 

DL 

T 

secs. 

Operating Mode TOperational 

T 

T 

Startup 

Inhibited 

200 msec (Time sent Watchdog Strobe) + 

. 
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Requirements Analysis 

Model Execution, Animation, and Visualization 

Completeness 

State Machine Hazard Analysis (backwards reachability) 

Software Deviation Analysis 

Human Error Analysis 

Test Coverage Analysis and Test Case Generation 

Automatic code generation? 
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Model Execution and Animation 

SpecTRM−RL models are executable. 

Model execution is animated 

Results of execution could be input into a graphical 
visualization 

Inputs can come from another model or simulator and 
output can go into another model or simulator. 
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Requirements Completeness 

Most software−related accidents involve software requirements 
deficiencies. 

Accidents often result from unhandled and unspecified cases. 

We have defined a set of criteria to determine whether a 
requirements specification is complete. 

Derived from accidents and basic engineering principles. 

Validated (at JPL) and used on industrial projects. 

Completeness: Requirements are sufficient to distinguish 
the desired behavior of the software from 
that of any other undesired program that 
might be designed. 
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Requirements Completeness Criteria (2) 

How were criteria derived? 

Mapped the parts of a control loop to a state machine 

I/O 

I/O 

Defined completeness for each part of state machine 

States, inputs, outputs, transitions 
Mathematical completeness 

Added basic engineering principles (e.g., feedback) 

Added what have learned from accidents 
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Requirements Completeness Criteria (3) 

About 60 criteria in all including human−computer interaction. 

(won’t go through them all they are in the book) 

Startup, shutdown  
Mode transitions 
Inputs and outputs 
Value and timing 
Load and capacity 
Environment capacity 
Failure states and transitions 
Human−computer interface 

Robustness 
Data age 
Latency 
Feedback 
Reversibility 
Preemption 
Path Robustness 

Most integrated into SpecTRM−RL language design or simple 
tools can check them. 

� 
���
������� "!$+�,c 
	����� ����� 
���������� ��������� ����� � 

Startup and State Completeness 

Many accidents involve off−nominal processing modes, including 
startup and shutdown and handling unexpected inputs. 

Examples of completeness criteria in this category: 

The internal software model of the process must be updated 
to reflect the actual process state at initial startup and after 
temporary shutdown. 

The maximum time the computer waits before the first input 
must be specified. 

There must be a response specified for the arrival of an  
input in any state, including indeterminate states. 
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Failure States and Transition Criteria 

Need to completely specify: 

Off−nominal states and transitions  

Performance degradation 

Communication with operator about fail−safe behavior 

Partial shutdown and restart 

Hysteresis in transitions between off−nominal and nominal 

Most accidents occur while in off−nominal processing modes. 
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Input and Output Variable Completeness 

At blackbox interface, only time and value observable to software. 

So triggers and outputs must be defined only as constants or as 
the value of observable events or conditions. 

Criteria: 

All information from the sensors should be used somewhere in the 
specification. 

Legal output values that are never produced should be checked for 
potential specification incompleteness. 
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Trigger Event Completeness 

Behavior of computer defined with respect to assumptions about 
the behavior of the other parts of the system. 

A robust system will detect and respond appropriately to violations 
of these assumptions (such as unexpected inputs). 

Therefore, robustness of software built from specification will 
depend on completeness of specification of environmental 
assumptions. 

There should be no observable events that leave the program’s 
behavior indeterminate. 

Why need to document and check all assumptions? 
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Formal Robustness Criteria 

To be robust, the events that trigger state changes must 
satisfy the following: 

1.  Every state must have a behavior (transition) defined for 
possible input. 

2.  The logical OR of the conditions on every transition out of 
every state must form a tautology. 

x < 5 
x > 5 

3.  Every state must have a software behavior (transition) defined 
in case there is no input for a given period of time (a timeout). 

Together these criteria guarantee handing input that are within 
range, out of range, and missing. 
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Nondeterminism Criterion 

The behavior of the requirements should be deterministic 
(only one possible transition out of a state is applicable at 
any time). 

X > 0 

X < 2 

We (and others) have tools to check specifications based on 
state machines for robustness, consistency, and nondeterminism. 

NOTE: This type of mathematical completeness is NOT enough. 

e.g.,  ‘‘true’’ is a mathematically complete, consistent, 
and deterministic specification. 
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Value and Timing Assumptions 

Examples: 

All inputs should be checked and a response specified in the 
event of an out−of−range or unexpected value. 

All inputs must be fully bounded in time and the proper behavior 
specified in case the limits are violated. 

Minimum and maximum load assumptions ... 

A minimum−arrival−rate check should be required for each 
physically distinct communication path. 

Software should have the capability to query its environment 
with respect to inactivity over a given communication path. 

Response to excessive inputs (violations of load assumptions) 
must be specified. 
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Human−Computer Interface Criteria 

For every data item displayable to a human, must specify: 

1. What events cause this item to be displayed? 

2.  What events cause item to be updated? 
If so, what events should cause the update? 

3. What events should cause the display to disappear? 

For queues need to specify: 

1. Events to be queued 

2. Type and number of queues to be provided (alert and routine) 

3. Ordering scheme within queue (priority vs. time of arrival) 

4. Operator notification mechanism for items inserted in the queue. 

5. Operator review and disposal commands for queue entries. 

6. Queue entry deletion. 
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Environment Capacity Constraints 

Examples: 

For the largest interval in which both input and output loads are 
assumed and specified, the absorption rate of the output environment 
must equal or exceed the input arrival rate. 

Contingency action must be specified when the output absorption 
rate limit will be exceeded. 



2.  
such revocation. 

taken without operator confirmation. 

1.  
varying automatic cancellation or postponement actions are 

Revocation of partially completed transactions may require: 

cancel the sequence automatically and inform the operator. 

Incomplete hazardous action sequences (transactions) should have 

Output commands that may not be able to be executed immediately 
must be limited in the time they are valid. 

All inputs used in specifying output events must be properly limited 
in the time they can be used. 

a finite time specified after which the software should be required to 

Specification of operator warnings to be issued in case of 

Specification of multiple times and conditions under which 
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Data Age Criteria 
All inputs used in specifying output events must be properly limited 
in the time they can be used. 

Output commands that may not be able to be executed immediately 
must be limited in the time they are valid. 

Incomplete hazardous action sequences (transactions) should have 
a finite time specified after which the software should be required to 
cancel the sequence automatically and inform the operator. 

Revocation of partially completed transactions may require: 

1. Specification of multiple times and conditions under which 
varying automatic cancellation or postponement actions are 
taken without operator confirmation. 

2.  Specification of operator warnings to be issued in case of 
such revocation. 
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Latency Criteria 

Latency is the time interval during which receipt of new information 
cannot change an output even though it arrives prior to output. 

Influenced by hardware and software design (e.g., interrupt vs. polling) 

Cannot be eliminated completely. 

Acceptable length determined by controlled process. 

Subtle problems when considering latency of HCI data. 
(see book for criteria) 
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Feedback Criteria 

Basic feedback loops, as defined by the process control function, 
must be included in the requirements along with appropriate checks 
to detect internal or external failures or errors. 

Examples: 

There should be an input that the software can use to detect the 
effect of any output on the process. 

Every output to which a detectable input is expected must have 
associated with it: 

1. A requirement to handle the normal response 

2.  Requirements to handle a response that is missing, too 
late, too early, or has an unexpected value. 
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Path Criteria 

Paths between states are uniquely defined by the sequence of 
trigger events along the path. 

Transitions between modes are especially hazardous and 
susceptible to incomplete specification. 

REACHABILITY 

Required states must be reachable from initial state. 

Hazardous states must not be reachable. 

Complete reachability analysis often impractical, but may be 
able to reduce search by focusing on a few properties or using 
backward search. 

Sometimes what is not practical in general case is practical 
in specific cases. 
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Path Criteria (2) 

RECURRENT BEHAVIOR 

Most process control software is cyclic. May have some non−cyclic 
states (mode change, shutdown) 

Required sequences of events must be specified in and limited 
by transitions in a cycle. 

Inhibiting state: State from which output cannot be generated. 

There should be no states that inhibit later required outputs. 

REVERSIBILITY 

PREEMPTION 
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Path Criteria (3) 

PATH ROBUSTNESS 

Soft failure mode: The loss of ability to receive input X could inhibit 
the production of output Y 

Hard failure mode: The loss of ability to receive input X will inhibit 
the production of output Y 

Soft and hard failure modes should be eliminated for all hazard 
reducing outputs. 

Hazard increasing outputs should have both soft and hard failure 
modes. 

Multiple paths should be provided for state changes that maintain 
safety. 

Multiple inputs or triggers should be required for paths from safe 
to hazardous states. 
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CONSTRAINT ANALYSIS 
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State Machine Hazard Analysis 

Start from a hazardous configuration in the model 
(violates safety design constraint) 

Trace backward until get enough information to 
eliminate it from design. 

Natasha Neogi has extended to hybrid models. 
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Human Error Analysis 

General requirements and design criteria 

Hazard analysis for specific hazards 

Mode Confusion and other Analysis 

Want to look at interaction between human controllers and 
the computer 

Have designed an operator task modeling language using 
same underlying formal model. 

Can be executed and analyzed along with other parts of model. 
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Operator Task Models 

To ensure safe and efficient operations, must look at 
the interaction between the human controllers and 
the computer. 

Use same underlying formal modeling language. 

Designed a visual representation more appropriate 
for the task modeling. 

Can be executed and analyzed along with other parts 
of the model. 
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Executable Specifications as Prototypes 

Easily changed 

At end, have specification to use 

Can be reused (product families) 

Can be more easily reviewed 

If formal, can be analyzed 

Can be used in hardware−in−the−loop or 
operator−in−the−loop simulations 

. . 


