
�
���
������� "!$#%!c
������������	
��
��������� ��������� ����� �

Subsystem Hazard Analysis (SSHA)

Examine subsystems to determine how their

Normal performance

Operational degradation

Functional failure

Unintended function

Inadvertent function (proper function but at wrong time or in wrong order)

could contribute to system hazards.

Determine how to satisfy design constraints in subsystem design.

Validate the subsystem design satisfies safety design constraints
and does not introduce previously unidentified hazardous system
behavior.

�c
���
������� "!$#�&

	����� �����
���������� ��������� ����� �

Software Hazard Analysis

A form of subsystem hazard analysis.

Validate that specified software blackbox behavior satisfies
system safety design constraints.

Check specified software behavior satisfies general software
system safety design criteria.

Must perform on ALL software, including COTS.

�c
���
������� "!$#�'

	����� �����
���������� ��������� ����� �

State Machine Hazard Analysis

Like system hazard analysis, software (subsystem) hazard
analysis requires a model of the component’s behavior.

Using code is too hard and too late.

Software is too complex to do analysis entirely in one’s head.

Formal models are useful, but they need to be easily readable
and usable without graduate−level training in discrete math.

Only a small subset of errors are detectable by automated
tools: the most important ones require human knowledge
and expertise.

Mathematical proofs must be understandable (checkable) by
application experts.

Hazard analysis process requires that results can be openly
reviewed and discussed.

���
������� "!$#�(

	����� �����
���������� ��������� ����� �

State Machine Hazard Analysis (2)

State machines make a good model for describing and analyzing
digital systems and software.

Match intuitive notions of how machines work (e.g., sets do not)

Have a mathematical basis so can be analyzed and graphical
notations that are easily understandable.

Previous problems with state explosion have been solved by
"meta−modeling" languages so complex systems can be handled.

Some analyses can be automated and tools can assist human
analyst to traverse (search) model.

Our experience is that assisted search and understanding
tools are the most helpful in hazard analysis.

�c

Completely automated tools have an important but more
limited role to play.

���
������� "!$#�)

	����� �����
���������� ��������� ����� �Example of a State Machine Model
�c

/Reading at set point
Close drain pipe

/

Water
level
high

level at
setpoint

Water

/Low reading
Activate pump

/Reading at setpoint
Turn off pump

Water
level
low

Open drain pipe
High reading

�c
���
������� "!$#�#

	����� �����
���������� ��������� ����� �

Requirements Validation

Requirements are source of most operational errors and almost
all the software contributions to accidents.

Much of software hazard analysis effort therefore should focus on
requirements.

Problem is dealing with complexity

1) Use blackbox models to separate external behavior from
complexity of internal design to accomplish the behavior.

2) Use abstraction and metamodels to handle large number
of discrete states required to describe software behavior.

Do not have continuous math to assist us

But new types of state machine modeling languages
drastically reduce number of states and transitions
modeler needs to describe.

cruise control

and in
Control On

Cruise

or accelerator
depressed /

cruise control

to increase at X rate
send command to throttle

initialize cc
turned on /

discontinue

brake depressed

set point reached / reduce
throttle

increase speed commanded /Standby
Mode

Cruise
Control

Off

Maintaining

Increasing
Speed

Speed

read wheel turning rate /
adjust throttle

�c
���
������� *!$#�+

	����� �����
���������� ��������� ����� �

Blackbox specifications

Provide a blackbox statement of software behavior:

Permits statements only in terms of outputs and externally
observable conditions or events that stimulate or trigger
those outputs.

trigger output (double implication)

Complete trigger specification must include full set
of conditions that may be inferred from existence of
specified output.

Such conditions represent the assumptions about the
environment in which program or system is to operate.

Thus the specification is the input to output function computed
by the component, i.e., the transfer function.

Internal design decisions are not included.

���
������� *!$#�,

	����� �����
���������� ��������� ����� �

Process Models

Define required blackbox behavior of software in terms of a
state machine model of the process (plant).

�c

variablesSensors

Controls

Displays
Model of
Process

Actuators
Controlled

Measured

Disturbances

Process
Model of

Automated

Process
inputs

outputs
Process

Human

Automation
Model of

Controller
Process

Controlled
Supervisor

variables

���
������� "!$#�-

	����� �����
���������� ��������� ����� �
�c

Level 3 Specification (modeling) language goals

Readable and reviewable

Minimize semantic distance

Minimal (blackbox)

Easy to learn

Unambiguous and simple semantics

Complete
Can specify everything need to specify

Analyzable
Executable

Formal (mathematical) foundation

Includes human actions

Assists in finding incompleteness

c �
���
������� "!$+�.

	����� �����
���������� ��������� ����� �

SpecTRM−RL

Combined requirements specification and modeling language

A state machine with a more readable notation on top of it

Includes a task modeling language

Could add other notations and visualizations of state machine

Enforces or includes most of completeness criteria

Supports specifying systems in terms of modes

Control modes

Operational modes

Supervisory modes

Display modes

c �
���
������� "!$+%!

	����� �����
���������� ��������� ����� �

Model of Process

Process is modeled using state variables

Average

Low

Unknown

High

Schedule Slot [1...90] Traffic Density

Unknown

Blocked

Aircraft Scheduled

Available

Values of state variables given by AND/OR tables

c �
���
������� "!$+�&

	����� �����
���������� ��������� ����� �

Component

MODE
SUPERVISORY

CONTROL

INFERRED SYSTEM OPERATING MODES

MODES

Measured Variable

Command
Control

Display Output

Control Input Controlled
Device

Measured Variable 1

Measured Variable 2

Supervisor

(Feedback)

Sensor
Environment

INFERRED SYSTEM STATE

Altimeter
Digital

Altimeter
Analog

Digital
Altimeter

Pilot

Interface

Device of Interest

(DOI)Switch
Altitude

Watchdog Timer

Power-on Signal

Strobe

DOI Status Signal

altitude

status

altitude

status

altitude

status

Inhibit Signal

Reset Signal

Watchdog Timer

{Fail,NCD,Test,Norm}
DA2-Status-Signal

INT

DA2-Alt-Signal
{-50..2500}

{Fail,NCD,Test,Norm}
DA1-Status-Signal

INT{-50..2500}
DA1-Alt-Signal

{Invalid,Valid}
Analog-Alt-Status

{Below,Above}
Analog-Alt-Signal

Digital
Altimeter 1Altimeter

Analog

Altitude Switch

Cockpit

Fault
Indicator
Lamp

On

Off

INFERRED SYSTEM STATE

DOI-Status

Unknown Fault-detectedOffOn

Unknown

Cannot-be-determined

Below-threshold

At-or-above-threshold

Aircraft Altitude

Valid

Invalid

Unknown

Valid

Unknown

Invalid

Analog-Alt

Valid

Invalid

Unknown

Altimeter 2
Digital

(DOI)
Interest

of
Device

{High}
DOI-Power-On

DOI-status-signal
{On, Off}

Watchdog-Strobe {High}

Inhibit {On,Off}

Reset {T,F}

Dig1-Alt

Dig2-Alt

Operational

Fault Detected

Startup

Inhibited

Not Inhibited

MODES
CONTROL

Cockpit Controls

MODE
SUPERVISORY

Output Command

DOI-Power-On

Destination: DOI

Acceptable Values:

Initiation Delay:

{high}

0 milliseconds

Completion Deadline: 50 milliseconds

Exception-Handling:

Feedback Information:

Variables:

(What to do if cannot issue command within deadline time)

DOI-status-signal

Values: high (on)

Relationship: Should be on if ASW sent signal to turn on

Min. time (latency): 2 seconds

Max. time: 4 seconds

Exception Handling:

Reversed By:

DOI-Status changed to Fault-Detected

Turned off by some other component or components. Do not know which ones.

Comments: I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that
the reason for the restriction is simply hysteresis and not possible damage to the device.

This product in the family will turn on the DOE only when the aircraft descends below the
threshold altitude. Only this page needs to change for a product in the family that is
triggered by rising above the threshold.

References:

CONTENTS

= discrete signal on line PWR set to high

TRIGGERING CONDITION

T

TPrev(Altitude) = At-or-above-threshold

Altitude = Below-threshhold

State Values DOI-Status = On F

TOperational

Not Inhibited T

Control Mode

Output Command

Watchdog-Strobe

Destination: Watchdog Timer

Acceptable Values: high signal (on)

Min-Time-Between-Outputs:

Max-Time-Between-Outputs:

0

200 msec
PERIOD

Exception-Handling:

Feedback Information: None

Reversed By: Not necessary

Comments:

References:

CONTENTS

= High signal on line WDT

TRIGGERING CONDITION

State Values T

F

Time >= (Time entered Altitude.Cannot-be-determined) + 2

Time <=

F

DOI-Status = Fault-detected

DL

T

secs.

Operating Mode TOperational

T

T

Startup

Inhibited

200 msec (Time sent Watchdog Strobe) +

.

���
������� "!$+�'
	����� �����
���������� ��������� ����� �

�c

Requirements Analysis

Model Execution, Animation, and Visualization

Completeness

State Machine Hazard Analysis (backwards reachability)

Software Deviation Analysis

Human Error Analysis

Test Coverage Analysis and Test Case Generation

Automatic code generation?

�
���
������� "!$+�(c
	����� �����
���������� ��������� ����� �

Model Execution and Animation

SpecTRM−RL models are executable.

Model execution is animated

Results of execution could be input into a graphical
visualization

Inputs can come from another model or simulator and
output can go into another model or simulator.

�c
���
������� "!$+�)

	����� �����
���������� ��������� ����� �

Requirements Completeness

Most software−related accidents involve software requirements
deficiencies.

Accidents often result from unhandled and unspecified cases.

We have defined a set of criteria to determine whether a
requirements specification is complete.

Derived from accidents and basic engineering principles.

Validated (at JPL) and used on industrial projects.

Completeness: Requirements are sufficient to distinguish
the desired behavior of the software from
that of any other undesired program that
might be designed.

���
������� "!$+�#

	����� �����
���������� ��������� ����� �
�c

Requirements Completeness Criteria (2)

How were criteria derived?

Mapped the parts of a control loop to a state machine

I/O

I/O

Defined completeness for each part of state machine

States, inputs, outputs, transitions
Mathematical completeness

Added basic engineering principles (e.g., feedback)

Added what have learned from accidents

���
������� "!$+�+

	����� �����
���������� ��������� ����� �
�c

Requirements Completeness Criteria (3)

About 60 criteria in all including human−computer interaction.

(won’t go through them all they are in the book)

Startup, shutdown
Mode transitions
Inputs and outputs
Value and timing
Load and capacity
Environment capacity
Failure states and transitions
Human−computer interface

Robustness
Data age
Latency
Feedback
Reversibility
Preemption
Path Robustness

Most integrated into SpecTRM−RL language design or simple
tools can check them.

�
���
������� "!$+�,c
	����� �����
���������� ��������� ����� �

Startup and State Completeness

Many accidents involve off−nominal processing modes, including
startup and shutdown and handling unexpected inputs.

Examples of completeness criteria in this category:

The internal software model of the process must be updated
to reflect the actual process state at initial startup and after
temporary shutdown.

The maximum time the computer waits before the first input
must be specified.

There must be a response specified for the arrival of an
input in any state, including indeterminate states.

���
������� "!$+�-

	����� �����
���������� ��������� ����� �
�c

Failure States and Transition Criteria

Need to completely specify:

Off−nominal states and transitions

Performance degradation

Communication with operator about fail−safe behavior

Partial shutdown and restart

Hysteresis in transitions between off−nominal and nominal

Most accidents occur while in off−nominal processing modes.

�c
���
������� "!$,�.

	����� �����
���������� ��������� ����� �

Input and Output Variable Completeness

At blackbox interface, only time and value observable to software.

So triggers and outputs must be defined only as constants or as
the value of observable events or conditions.

Criteria:

All information from the sensors should be used somewhere in the
specification.

Legal output values that are never produced should be checked for
potential specification incompleteness.

���
������� "!$,%!

	����� �����
���������� ��������� ����� �
�c

Trigger Event Completeness

Behavior of computer defined with respect to assumptions about
the behavior of the other parts of the system.

A robust system will detect and respond appropriately to violations
of these assumptions (such as unexpected inputs).

Therefore, robustness of software built from specification will
depend on completeness of specification of environmental
assumptions.

There should be no observable events that leave the program’s
behavior indeterminate.

Why need to document and check all assumptions?

�c
���
������� "!$,�&

	����� �����
���������� ��������� ����� �

Formal Robustness Criteria

To be robust, the events that trigger state changes must
satisfy the following:

1. Every state must have a behavior (transition) defined for
possible input.

2. The logical OR of the conditions on every transition out of
every state must form a tautology.

x < 5
x > 5

3. Every state must have a software behavior (transition) defined
in case there is no input for a given period of time (a timeout).

Together these criteria guarantee handing input that are within
range, out of range, and missing.

���
������� "!$,�'

	����� �����
���������� ��������� ����� �
�c

Nondeterminism Criterion

The behavior of the requirements should be deterministic
(only one possible transition out of a state is applicable at
any time).

X > 0

X < 2

We (and others) have tools to check specifications based on
state machines for robustness, consistency, and nondeterminism.

NOTE: This type of mathematical completeness is NOT enough.

e.g., ‘‘true’’ is a mathematically complete, consistent,
and deterministic specification.

�c
���
������� "!$,�(

	����� �����
���������� ��������� ����� �

Value and Timing Assumptions

Examples:

All inputs should be checked and a response specified in the
event of an out−of−range or unexpected value.

All inputs must be fully bounded in time and the proper behavior
specified in case the limits are violated.

Minimum and maximum load assumptions ...

A minimum−arrival−rate check should be required for each
physically distinct communication path.

Software should have the capability to query its environment
with respect to inactivity over a given communication path.

Response to excessive inputs (violations of load assumptions)
must be specified.

���
������� "!$,�)

	����� �����
���������� ��������� ����� �
�c

Human−Computer Interface Criteria

For every data item displayable to a human, must specify:

1. What events cause this item to be displayed?

2. What events cause item to be updated?
If so, what events should cause the update?

3. What events should cause the display to disappear?

For queues need to specify:

1. Events to be queued

2. Type and number of queues to be provided (alert and routine)

3. Ordering scheme within queue (priority vs. time of arrival)

4. Operator notification mechanism for items inserted in the queue.

5. Operator review and disposal commands for queue entries.

6. Queue entry deletion.

�c
���
������� "!$,�#

	����� �����
���������� ��������� ����� �

Environment Capacity Constraints

Examples:

For the largest interval in which both input and output loads are
assumed and specified, the absorption rate of the output environment
must equal or exceed the input arrival rate.

Contingency action must be specified when the output absorption
rate limit will be exceeded.

2.
such revocation.

taken without operator confirmation.

1.
varying automatic cancellation or postponement actions are

Revocation of partially completed transactions may require:

cancel the sequence automatically and inform the operator.

Incomplete hazardous action sequences (transactions) should have

Output commands that may not be able to be executed immediately
must be limited in the time they are valid.

All inputs used in specifying output events must be properly limited
in the time they can be used.

a finite time specified after which the software should be required to

Specification of operator warnings to be issued in case of

Specification of multiple times and conditions under which

���
������� "!$,�+

	����� �����
���������� ��������� ����� �
�c

Data Age Criteria
All inputs used in specifying output events must be properly limited
in the time they can be used.

Output commands that may not be able to be executed immediately
must be limited in the time they are valid.

Incomplete hazardous action sequences (transactions) should have
a finite time specified after which the software should be required to
cancel the sequence automatically and inform the operator.

Revocation of partially completed transactions may require:

1. Specification of multiple times and conditions under which
varying automatic cancellation or postponement actions are
taken without operator confirmation.

2. Specification of operator warnings to be issued in case of
such revocation.

�c
���
������� "!$,�,

	����� �����
���������� ��������� ����� �

Latency Criteria

Latency is the time interval during which receipt of new information
cannot change an output even though it arrives prior to output.

Influenced by hardware and software design (e.g., interrupt vs. polling)

Cannot be eliminated completely.

Acceptable length determined by controlled process.

Subtle problems when considering latency of HCI data.
(see book for criteria)

���
������� "!$,�-

	����� �����
���������� ��������� ����� �
�c

Feedback Criteria

Basic feedback loops, as defined by the process control function,
must be included in the requirements along with appropriate checks
to detect internal or external failures or errors.

Examples:

There should be an input that the software can use to detect the
effect of any output on the process.

Every output to which a detectable input is expected must have
associated with it:

1. A requirement to handle the normal response

2. Requirements to handle a response that is missing, too
late, too early, or has an unexpected value.

�c
���
������� "!$-�.

	����� �����
���������� ��������� ����� �

Path Criteria

Paths between states are uniquely defined by the sequence of
trigger events along the path.

Transitions between modes are especially hazardous and
susceptible to incomplete specification.

REACHABILITY

Required states must be reachable from initial state.

Hazardous states must not be reachable.

Complete reachability analysis often impractical, but may be
able to reduce search by focusing on a few properties or using
backward search.

Sometimes what is not practical in general case is practical
in specific cases.

/�0�1�0�2�3�4�5*6$7%6

	����� �����
���������� ��������� ����� �
c

Path Criteria (2)

RECURRENT BEHAVIOR

Most process control software is cyclic. May have some non−cyclic
states (mode change, shutdown)

Required sequences of events must be specified in and limited
by transitions in a cycle.

Inhibiting state: State from which output cannot be generated.

There should be no states that inhibit later required outputs.

REVERSIBILITY

PREEMPTION

/�0�1�0�2�3�4�5*6$7�8

	����� �����
���������� ��������� ����� �

Path Criteria (3)

PATH ROBUSTNESS

Soft failure mode: The loss of ability to receive input X could inhibit
the production of output Y

Hard failure mode: The loss of ability to receive input X will inhibit
the production of output Y

Soft and hard failure modes should be eliminated for all hazard
reducing outputs.

Hazard increasing outputs should have both soft and hard failure
modes.

Multiple paths should be provided for state changes that maintain
safety.

Multiple inputs or triggers should be required for paths from safe
to hazardous states.

c

CONSTRAINT ANALYSIS

/�0�1�0�2�3�4�5"6$7�F

;9 3�: <�=�> 0�?�=�@�=�> A�B�4�=�C D�2�E 2
c

State Machine Hazard Analysis

Start from a hazardous configuration in the model
(violates safety design constraint)

Trace backward until get enough information to
eliminate it from design.

Natasha Neogi has extended to hybrid models.

c /�0�1�0�2�3�4�5"6$7�G

;9 3�: <�=�> 0�?�=�@�=�> A�B�4�=�C D�2�E 2

Human Error Analysis

General requirements and design criteria

Hazard analysis for specific hazards

Mode Confusion and other Analysis

Want to look at interaction between human controllers and
the computer

Have designed an operator task modeling language using
same underlying formal model.

Can be executed and analyzed along with other parts of model.

c /�0�1�0�2�3�4�5"6$7�H

;9 3�: <�=�> 0�?�=�@�=�> A�B�4�=�C D�2�E 2

Operator Task Models

To ensure safe and efficient operations, must look at
the interaction between the human controllers and
the computer.

Use same underlying formal modeling language.

Designed a visual representation more appropriate
for the task modeling.

Can be executed and analyzed along with other parts
of the model.

/�0�1�0�2�3�4�5"6$7�I

;9 3�: <�=�> 0�?�=�@�=�> A�B�4�=�C D�2�E 2
c

Executable Specifications as Prototypes

Easily changed

At end, have specification to use

Can be reused (product families)

Can be more easily reviewed

If formal, can be analyzed

Can be used in hardware−in−the−loop or
operator−in−the−loop simulations

. .

