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Design for Safety


Unfortunately, everyone had forgotten why the branch


came off the top of the main and nobody realized that


this was important.


Trevor Kletz 
What Went Wrong? 

Before a wise man ventures into a pit, he lowers a

ladder so he can climb out. 

Rabbi Samuel Ha−Levi Ben Joseph Ibm Nagrela 

. 
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Design for Safety


Software design must enforce safety constraints


Should be able to trace from requirements to code (vice versa)


Design should incorporate basic safety design principles
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Safe Design Precedence 

HAZARD ELIMINATION 

Reduction of hazardous materials or conditions 
Elimination of human errors 

Substitution 
Simplification 
Decoupling 

HAZARD REDUCTION 
Design for controllability 
Barriers 

Lockins, Lockouts, Interlocks 
Failure Minimization 

Safety Factors and Margins 
Redundancy 

HAZARD CONTROL 
Reducing exposure 
Isolation and containment 
Protection systems and fail−safe design 

DAMAGE REDUCTION 

Decreasing cost 

Increasing effectiveness 
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Hazard Elimination


SUBSTITUTION 

Use safe or safer materials. 

Simple hardware devices may be safer than using a 
computer. 

No technological imperative that says we MUST use 
computers to control dangerous devices. 

Introducing new technology introduces unknowns 
and even unk−unks. 

c ��������������������� ������� ��� 

SIMPLIFICATION 

Criteria for a simple software design: 

1. Testable: Number of states limited 
determinism vs. nondeterminism 
single tasking vs. multitasking 
polling over interrupts 

2. Easily understood and readable 

3. 	Interactions between components are limited and 
straightforward. 

4. 	Code includes only minimum features and capability 
required by system. 

Should not contain unnecessary or undocumented 
features or unused executable code. 

5. Worst case timing is determinable by looking at code. 
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SIMPLIFICATION (con’t)


Reducing and simplifying interfaces will eliminate errors 
and make designs more testable. 

Easy to add functions to software, hard to practice restraint. 

Constructing a simple design requires discipline, creativity, 
restraint, and time. 

Design so that structural decomposition matches functional 
decomposition. 

. 
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DECOUPLING 

Tightly coupled system is one that is highly interdependent: 

Each part linked to many other parts.


Failure or unplanned behavior in one can rapidly 
affect status of others. 

Processes are time−dependent and cannot wait.

Little slack in system 

Sequences are invariant. 

Only one way to reach a goal. 

System accidents caused by unplanned interactions. 

Coupling creates increased number of interfaces and 
potential interactions. 
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DECOUPLING (con’t) 

Computers tend to increase system coupling unless very careful. 

Applying principles of decoupling to software design: 

Modularization: How split up is crucial to determining effects.


Firewalls


Read−only or restricted write memories


Eliminate hazardous effects of common hardware failures
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ELIMINATION OF HUMAN ERRORS 

Design so few opportunities for errors. 

Make impossible or possible to detect immediately. 

Lots of ways to increase safety of human−machine interaction.


Making status of component clear. 
Designing software to be error tolerant 
etc. (will cover separately) 

Programming language design:


Not only simple itself (masterable), but should encourage the 
production of simple and understandable programs. 

Some language features have been found to be particularly 
error prone. 
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REDUCTION OF HAZARDOUS MATERIALS OR CONDITIONS 

Software should contain only code that is absolutely 
necessary to achieve required functionality. 

Implications for COTS 

Extra code may lead to hazards and may make 
software analysis more difficult. 

Memory not used should be initialized to a pattern that will 
revert to a safe state. 
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Turbine−Generator Example 

Safety requirements: 

1. 	Must always be able to close steam valves within a few 
hundred milliseconds. 

2. 	Under no circumstances can steam valves open spuriously, 
whatever the nature of internal or external fault. 

Divided into two parts (decoupled) on separate processors: 

1. 	Non−critical functions: loss cannot endanger turbine 
nor cause it to shutdown. 

less important governing functions 
supervisory, coordination, and management functions 

2. Small number of critical functions. 
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Turbine−Generator Example (2) 

Uses polling : No interrupts except for fatal store fault (nonmaskable) 

Timing and sequencing thus defined 

More rigorous and exhaustive testing possible. 

All messages unidirectional 

No recovery or contention protocols required 

Higher level of predictability 

Self−checks of 

Sensibility of incoming signals 

Whether processor functioning correctly 

Failure of self−check leads to reversion to safe state through 
fail−safe hardware. 

State table defines: 

Scheduling of tasks 

Self−check criteria appropriate under particular conditions 
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Hazard Reduction 
Passive safeguards: 

Maintain safety by their presence 

Fail into safe states 

Active safeguards: 
Require hazard or condition to be detected and corrected 

Tradeoffs: 
Passive rely on physical principles 

Active depend on less reliable detection and recovery 
mechanisms. 

c 

BUT

Passive tend to be more restrictive in terms of design 
freedom and not always feasible to implement. 
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Design for Controllability 

Make system easier to control, both for humans and computers. 

Use incremental control: 

Perform critical steps incrementally rather than in one step. 

Provide feedback 

To test validity of assumptions and models upon which decisions made 

To allow taking corrective action before significant damage done. 

Provide various types of fallback or intermediate states 

Lower time pressures 

Provide decision aids 

Use monitoring 
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Monitoring 

Difficult to make monitors independent: 

Checks require access to information being monitored but 
usually involves possibility of corrupting that information. 

Depends on assumptions about structure of system and 
about errors that may or may not occur 

May be incorrect under certain conditions 

Common incorrect assumptions may be reflected both 
in design of monitor and devices being monitored. 
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not detected 

not detected 

not detected 

Used to detect hardware failures and individual instruction errors. 

Observe system externally to provide independent view 

not detected 

Fail 

Checksums 
e.g., memory protection violation, divide by zero 

e.g. range checks, state checks, reasonableness checks 
about expected value of parameters passed to module. 

Use assertions: statements (boolean expressions on system state) 
about expected state of module at different points in execution or 

Can detect coding errors and implementation errors. 

expected timing of modules or processes 
consistency of global data structures 
data being passed between modules 

May check: 
Independent monitoring by process separate from that being checked. 

Often observe both controlled system and controller. 
Use additional hardware or completely separate hardware. 

Often built into hardware or checks included in operating system. 
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Software Monitoring (Checking) 

In general, farther down the hierarchy check can be made, the better: 

Detect the error closer to the time it occurred and before 
erroneous data used. 

Easier to isolate and diagnose the problem 

More likely to be able to fix erroneous state rather than recover to safe state. 

Writing effective self−checks very hard and number usually limited by 
time and memory. 

Limit to safety−critical states


Use hazard analysis to determine check contents and location


Added monitoring and checks can cause failures themselves.
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Barriers 

LOCKOUTS 

Make access to dangerous state difficult or impossible. 

Implications for software: 

Avoiding EMI 

Authority limiting 

Controlling access to and modification of critical variables 

Can adapt some security techniques 
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LOCKIN 

Make it difficult or impossible to leave a safe state. 

Need to protect software against environmental conditions. 

operator errorse.g., 


data arriving in wrong order or at unexpected speed 

Completeness criteria ensure specified behavior robust 
against mistaken environmental conditions. 
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INTERLOCK


Used to enforce a sequence of actions or events.


1. Event A does not occur inadvertently 
2. Event A does not occur while condition C exists 
3. Event A occurs before event D. 

Examples: 

Batons

Critical sections

Synchronization mechanisms


Remember, the more complex the design, the more likely errors 
will be introduced by the protection facilities themselves. 
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Example: Nuclear Detonation 

Safety depends on NOT working


Three basic techniques (called ‘‘positive measures’’)


1. 	Isolation 

Separate critical elements (barriers) 

2. Inoperability 
Keep in inoperable state, e.g., remove ignition device or 

arming pin 

3. Incompatibility 

Detonation requires an unambiguous indication of human 
intent be communicated to weapon. 

Protecting entire communication system against all credible 
abnormal environments (including sabotage) not practical. 

Instead, use unique signal of sufficient information complexity 
that unlikely to be generated by an abnormal environment. 
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Example: Nuclear Detonation (2)


Unique signal discriminators must: 

1. Accept proper unique signal while rejecting spurious inputs 

2. Have rejection logic that is highly immune to abnormal environments 

3. Provide predictably safe response to abnormal environments 

4. Be analyzable and testable 

Protect unique signal sources by barriers. 

Removable barrier between these sources and communication 
channels. 
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Example: Nuclear Detonation (3) 

Barrier Removable 

Communications channel 

UQS 
Stored 

barrier 

Human 
intent 

Inclusion 
Region 

Isolated 
Arming 

and firing 
voltages 

Isolated element 

incompatible − Unique Signal 

Inoperable in abnormal 
environments 

UQS 
Reader 

Discriminator/ 
Driver 

Exclusion Region 

component 

Unique Signal 
Source 
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Example: Nuclear Detonation (4) 

May require multiple unique signals from different individuals along various 
communication channels, using different types of signals (energy and information) 
to ensure proper intent. 

Communication Safing and firingStimuli 
source 

Intended 
human 

Intended 

Intended 

system 

no. 2 
AABABBB 

fusing system 
Arming and 

Human−machine 

Unique 
signal
no. 1 

signal 

signals
Arming 

Unique 

system 

action 

human 
action 

human 
action 

interface 
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Failure Minimization 

SAFETY FACTORS AND SAFETY MARGINS 

Used to cope with uncertainties in engineering: 

Inaccurate calculations or models 

Limitations in knowledge 

Variation in strength of a specific material due to 
differences in composition, manufacturing, assembly, 
handling, environment, or usage. 

Some ways to minimize problem, but cannot eliminate it.


Appropriate for continuous and non−action systems.
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(a) Probability density function of failure for two parts 
with same expected failure strength. 
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(b) A relatively safe case. 
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(c) A dangerous overlap but the safety factor is the same as in (b) 
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REDUNDANCY 

Goal is to increase reliability and reduce failures. 

Common−cause and common−mode failures 

May add so much complexity that causes failures. 

More likely to operate spuriously. 

May lead to false confidence (Challenger) 

Useful to reduce hardware failures. But what about software? 

Design redundancy vs. design diversity 

Bottom Line: claims that multiple version software will 
achieve ultra−high reliability levels are not supported 
by empirical data or theoretical models. 
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REDUNDANCY
 (con’t.) 

Standby spares vs. concurrent use of multiple devices (with voting) 

Identical designs or intentionally different ones (diversity). 

Diversity must be carefully planned to reduce dependencies. 

Can also introduce dependencies in maintenance, testing, repair 

Redundancy most effective against random failures not design errors. 
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REDUNDANCY (con’t.) 

Software errors are design errors. 

Data redundancy: extra data for detecting errors 

e.g. parity bit and other codes 

checksums 

message sequence numbers 

duplicate pointers and other structural information 

Algorithmic redundancy: 

1. Acceptance tests (hard to write) 

2. Multiple versions with voting on results 
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Multi (or N) Version Programming 

Assumptions: 

Probability of correlated failures is very low for independently 
developed software. 

Software errors occur at random and are unrelated. 

Even small probabilities of correlated failures cause a substantial 
reduction in expected reliability gains. 

Conducted a series of experiments with John Knight 

Failure independence in N−version programming 

Embedded assertions vs. N−version programming 

Fault Tolerance vs. Fault Elimination 
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Experimental Design: 

27 programs, one requirements specification 
Graduate students and seniors from two universities 
Simulation of a production environment: 1,000,000 input cases 
Individual programs were high quality 

Results: 

Rejected independence hypothesis: Analysis of reliability gains 
must include effect of dependent errors. 

Statistically correlated failures result from: 

Nature of application 
"Hard" cases in input space 

Programs with correlated failures were structurally and algorithmically 
very different. 

Conclusion: Correlations due to fact that working on same problem, 
not due to tools used or languages used or even algorithms used. 
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Consistent Comparison Problem 

Arises from use of finite−precision real numbers (rounding errors) 

Correct versions may arrive a completely different correct outputs 
and thus be unable to reach a consensus even when none of 
components "fail.". 

May cause failures that would not have occurred with single versions. 

No general practical solution to the problem . 
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Self−Checking Software 

Experimental Design: 

Launch Interceptor Programs (LIP) from previous study. 

24 graduate students from UCI and UVA employed to instrument 
8 programs (chosen randomly from subset of 27 in which we had 
found errors). 

Provided with identical training materials. 

Checks written using specifications only at first and then participants 
were given a program to instrument. 

Allowed to make any number or type of check. 

Students treated this as a competition among themselves. 
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Fault Tolerance vs. Fault Elimination 

Techniques compared: 

Run−time assertions (self−checks)

Multi−version voting

Functional testing augmented with structural testing

Code reading by stepwise abstraction

Static data−flow analysis


Experimental Design: 

Combat Simulation Problem (from TRW) 
Programmers separate from fault detectors 
Eight version produced with 2 person teams 

Number of modules from 28 to 75 

Executable lines of code from 1200 to 2400 

Attempted to hold resources constant for each technique. 
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Self−Checking Software (2) 
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Fault Tolerance vs. Fault Elimination (2)


Results: 

Multi−version programming is not a substitute for testing. 

Did not tolerate most of faults detected by fault−elimination 
techniques. 

Unreliable in tolerating the faults it was capable of tolerating. 

Testing failed to detect errors causing coincident failures. 

Cast doubt on effectiveness of voting as a test oracle. 

Instrumenting the code to examine internal states was 
much more effective. 

Intersection of sets of faults found by each method was 
relatively small. 
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N−Version Programming (Summary) 

Doesn’t mean shouldn’t use, but should have realistic expectations 
of benefits to be gained and costs involved: 

Costs very high (more than N times) 

In practice, end up with lots of similarity in designs (more than 
in our experiments) 

Overspecification 
Cross Checks 

So safety of system dependent on quality that has been 
systematically eliminated. 

And no way to tell how different 2 software designs are in 
their failure behavior. 

c 

Requirements flaws not handled, which is where most safety 
problems arise anyway. 
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Recovery


Backward 

Assume can detect error before does any damage. 

Assume alternative will be more effective. 

Forward 

Robust data structures. 

Dynamically altering flow of control. 

Ignoring single cycle errors. 

But real problem is detecting erroneous states. 
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Hazard Control


LIMITING EXPOSURE


Start out in safe state and require deliberate change to unsafe state.


Set critical flags and conditions as close to code they protect as possible.


Critical conditions should not be complementary, e.g., absence of an

arm condition should not be used to indicate system is unarmed. 

ISOLATION AND CONTAINMENT


PROTECTION SYSTEMS AND FAIL−SAFE DESIGN
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Protection Systems and Fail−Safe Design 

Depends upon existence of a safe state and availability of 
adequate warning time. 

May have multiple safe states, depending upon process conditions. 

General rule is hazardous states should be hard to get into and 
safe states should be easy. 

Panic button 

Watchdog timer: 	Software it is protecting should not be responsible
setting it. 

Sanity checks (I’m alive signals) 

Protection system should provide information about its control 
actions and status to operators or bystanders. 

The easier and faster is return of system to operational state, the less 
likely protection system is to be purposely bypassed or turned off. 
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Damage Reduction 

May need to determine a ‘‘point of no return’’ where recovery no 
longer possible or likely and should just try to minimize damage. 

Design Modification and Maintenance 

Need to reanalyze


Need to record design rationale.



