
���������������������c

������� ���

Design for Safety

Unfortunately, everyone had forgotten why the branch

came off the top of the main and nobody realized that

this was important.

Trevor Kletz
What Went Wrong?

Before a wise man ventures into a pit, he lowers a

ladder so he can climb out.

Rabbi Samuel Ha−Levi Ben Joseph Ibm Nagrela

.

c ��������������������� ������� ���

Design for Safety

Software design must enforce safety constraints

Should be able to trace from requirements to code (vice versa)

Design should incorporate basic safety design principles

c ��������������������� ������� ���

Safe Design Precedence

HAZARD ELIMINATION

Reduction of hazardous materials or conditions
Elimination of human errors

Substitution
Simplification
Decoupling

HAZARD REDUCTION
Design for controllability
Barriers

Lockins, Lockouts, Interlocks
Failure Minimization

Safety Factors and Margins
Redundancy

HAZARD CONTROL
Reducing exposure
Isolation and containment
Protection systems and fail−safe design

DAMAGE REDUCTION

Decreasing cost

Increasing effectiveness

c ��������������������� ������� ���

Hazard Elimination

SUBSTITUTION

Use safe or safer materials.

Simple hardware devices may be safer than using a
computer.

No technological imperative that says we MUST use
computers to control dangerous devices.

Introducing new technology introduces unknowns
and even unk−unks.

c ��������������������� ������� ���

SIMPLIFICATION

Criteria for a simple software design:

1. Testable: Number of states limited
determinism vs. nondeterminism
single tasking vs. multitasking
polling over interrupts

2. Easily understood and readable

3. 	Interactions between components are limited and
straightforward.

4. 	Code includes only minimum features and capability
required by system.

Should not contain unnecessary or undocumented
features or unused executable code.

5. Worst case timing is determinable by looking at code.

c ��������������������� ������� ���

SIMPLIFICATION (con’t)

Reducing and simplifying interfaces will eliminate errors
and make designs more testable.

Easy to add functions to software, hard to practice restraint.

Constructing a simple design requires discipline, creativity,
restraint, and time.

Design so that structural decomposition matches functional
decomposition.

.

���������������������c ������� ���

DECOUPLING

Tightly coupled system is one that is highly interdependent:

Each part linked to many other parts.

Failure or unplanned behavior in one can rapidly
affect status of others.

Processes are time−dependent and cannot wait.

Little slack in system

Sequences are invariant.

Only one way to reach a goal.

System accidents caused by unplanned interactions.

Coupling creates increased number of interfaces and
potential interactions.

c ��������������������� ������� ���

DECOUPLING (con’t)

Computers tend to increase system coupling unless very careful.

Applying principles of decoupling to software design:

Modularization: How split up is crucial to determining effects.

Firewalls

Read−only or restricted write memories

Eliminate hazardous effects of common hardware failures

c ��������������������� ������� ���

ELIMINATION OF HUMAN ERRORS

Design so few opportunities for errors.

Make impossible or possible to detect immediately.

Lots of ways to increase safety of human−machine interaction.

Making status of component clear.
Designing software to be error tolerant
etc. (will cover separately)

Programming language design:

Not only simple itself (masterable), but should encourage the
production of simple and understandable programs.

Some language features have been found to be particularly
error prone.

c ��������������������� ������� ���

REDUCTION OF HAZARDOUS MATERIALS OR CONDITIONS

Software should contain only code that is absolutely
necessary to achieve required functionality.

Implications for COTS

Extra code may lead to hazards and may make
software analysis more difficult.

Memory not used should be initialized to a pattern that will
revert to a safe state.

c ��������������������� ������� ���

Turbine−Generator Example

Safety requirements:

1. 	Must always be able to close steam valves within a few
hundred milliseconds.

2. 	Under no circumstances can steam valves open spuriously,
whatever the nature of internal or external fault.

Divided into two parts (decoupled) on separate processors:

1. 	Non−critical functions: loss cannot endanger turbine
nor cause it to shutdown.

less important governing functions
supervisory, coordination, and management functions

2. Small number of critical functions.

c ��������������������� ������� ���
Turbine−Generator Example (2)

Uses polling : No interrupts except for fatal store fault (nonmaskable)

Timing and sequencing thus defined

More rigorous and exhaustive testing possible.

All messages unidirectional

No recovery or contention protocols required

Higher level of predictability

Self−checks of

Sensibility of incoming signals

Whether processor functioning correctly

Failure of self−check leads to reversion to safe state through
fail−safe hardware.

State table defines:

Scheduling of tasks

Self−check criteria appropriate under particular conditions

��������������������� ������� ���

Hazard Reduction
Passive safeguards:

Maintain safety by their presence

Fail into safe states

Active safeguards:
Require hazard or condition to be detected and corrected

Tradeoffs:
Passive rely on physical principles

Active depend on less reliable detection and recovery
mechanisms.

c

BUT

Passive tend to be more restrictive in terms of design
freedom and not always feasible to implement.

c ��������������������� ������� ���

Design for Controllability

Make system easier to control, both for humans and computers.

Use incremental control:

Perform critical steps incrementally rather than in one step.

Provide feedback

To test validity of assumptions and models upon which decisions made

To allow taking corrective action before significant damage done.

Provide various types of fallback or intermediate states

Lower time pressures

Provide decision aids

Use monitoring

c ��������������������� ������� ���

Monitoring

Difficult to make monitors independent:

Checks require access to information being monitored but
usually involves possibility of corrupting that information.

Depends on assumptions about structure of system and
about errors that may or may not occur

May be incorrect under certain conditions

Common incorrect assumptions may be reflected both
in design of monitor and devices being monitored.

A Hierarchy of Software Checking ��������������������� c ������� ���

not detected

not detected

not detected

Used to detect hardware failures and individual instruction errors.

Observe system externally to provide independent view

not detected

Fail

Checksums
e.g., memory protection violation, divide by zero

e.g. range checks, state checks, reasonableness checks
about expected value of parameters passed to module.

Use assertions: statements (boolean expressions on system state)
about expected state of module at different points in execution or

Can detect coding errors and implementation errors.

expected timing of modules or processes
consistency of global data structures
data being passed between modules

May check:
Independent monitoring by process separate from that being checked.

Often observe both controlled system and controller.
Use additional hardware or completely separate hardware.

Often built into hardware or checks included in operating system.

c ��������������������� ������� ���

Software Monitoring (Checking)

In general, farther down the hierarchy check can be made, the better:

Detect the error closer to the time it occurred and before
erroneous data used.

Easier to isolate and diagnose the problem

More likely to be able to fix erroneous state rather than recover to safe state.

Writing effective self−checks very hard and number usually limited by
time and memory.

Limit to safety−critical states

Use hazard analysis to determine check contents and location

Added monitoring and checks can cause failures themselves.

c ��������������������� ������� ���

Barriers

LOCKOUTS

Make access to dangerous state difficult or impossible.

Implications for software:

Avoiding EMI

Authority limiting

Controlling access to and modification of critical variables

Can adapt some security techniques

c ��������������������� ������� ���

LOCKIN

Make it difficult or impossible to leave a safe state.

Need to protect software against environmental conditions.

operator errorse.g.,

data arriving in wrong order or at unexpected speed

Completeness criteria ensure specified behavior robust
against mistaken environmental conditions.

c ��������������������� ������� ���

INTERLOCK

Used to enforce a sequence of actions or events.

1. Event A does not occur inadvertently
2. Event A does not occur while condition C exists
3. Event A occurs before event D.

Examples:

Batons

Critical sections

Synchronization mechanisms

Remember, the more complex the design, the more likely errors
will be introduced by the protection facilities themselves.

c ��������������������� ������� ���
Example: Nuclear Detonation

Safety depends on NOT working

Three basic techniques (called ‘‘positive measures’’)

1. 	Isolation

Separate critical elements (barriers)

2. Inoperability
Keep in inoperable state, e.g., remove ignition device or

arming pin

3. Incompatibility

Detonation requires an unambiguous indication of human
intent be communicated to weapon.

Protecting entire communication system against all credible
abnormal environments (including sabotage) not practical.

Instead, use unique signal of sufficient information complexity
that unlikely to be generated by an abnormal environment.

c ��������������������� ������� ���

Example: Nuclear Detonation (2)

Unique signal discriminators must:

1. Accept proper unique signal while rejecting spurious inputs

2. Have rejection logic that is highly immune to abnormal environments

3. Provide predictably safe response to abnormal environments

4. Be analyzable and testable

Protect unique signal sources by barriers.

Removable barrier between these sources and communication
channels.

c ��������������������� ������� ���
Example: Nuclear Detonation (3)

Barrier Removable

Communications channel

UQS
Stored

barrier

Human
intent

Inclusion
Region

Isolated
Arming

and firing
voltages

Isolated element

incompatible − Unique Signal

Inoperable in abnormal
environments

UQS
Reader

Discriminator/
Driver

Exclusion Region

component

Unique Signal
Source

c ����������

���������������������
Example: Nuclear Detonation (4)

May require multiple unique signals from different individuals along various
communication channels, using different types of signals (energy and information)
to ensure proper intent.

Communication Safing and firingStimuli
source

Intended
human

Intended

Intended

system

no. 2
AABABBB

fusing system
Arming and

Human−machine

Unique
signal
no. 1

signal

signals
Arming

Unique

system

action

human
action

human
action

interface

c ��������������������� ������� ���

Failure Minimization

SAFETY FACTORS AND SAFETY MARGINS

Used to cope with uncertainties in engineering:

Inaccurate calculations or models

Limitations in knowledge

Variation in strength of a specific material due to
differences in composition, manufacturing, assembly,
handling, environment, or usage.

Some ways to minimize problem, but cannot eliminate it.

Appropriate for continuous and non−action systems.

c �����������������������������Safety Margins and Safety Factors ������� ���

Probability
of

occurrence

Stress
�����

���������

����� � � ��� ��������������

(a) Probability density function of failure for two parts
with same expected failure strength.

�����������������������

� �����

�����

���������

� ������� � � �������������

�����

���������

Stress

Probability
of

occurrence

��� ����������
(b) A relatively safe case.

�����������������������

�����

��������� �����

���������

Probability
of

occurrence

Stress ����� �������������� �

(c) A dangerous overlap but the safety factor is the same as in (b)

c ��������������������� ������� ���

REDUNDANCY

Goal is to increase reliability and reduce failures.

Common−cause and common−mode failures

May add so much complexity that causes failures.

More likely to operate spuriously.

May lead to false confidence (Challenger)

Useful to reduce hardware failures. But what about software?

Design redundancy vs. design diversity

Bottom Line: claims that multiple version software will
achieve ultra−high reliability levels are not supported
by empirical data or theoretical models.

c ��������������������� ������� ���

REDUNDANCY
 (con’t.)

Standby spares vs. concurrent use of multiple devices (with voting)

Identical designs or intentionally different ones (diversity).

Diversity must be carefully planned to reduce dependencies.

Can also introduce dependencies in maintenance, testing, repair

Redundancy most effective against random failures not design errors.

c ��������������������� ������� ���

REDUNDANCY (con’t.)

Software errors are design errors.

Data redundancy: extra data for detecting errors

e.g. parity bit and other codes

checksums

message sequence numbers

duplicate pointers and other structural information

Algorithmic redundancy:

1. Acceptance tests (hard to write)

2. Multiple versions with voting on results

c ��������������������� ������� ���

Multi (or N) Version Programming

Assumptions:

Probability of correlated failures is very low for independently
developed software.

Software errors occur at random and are unrelated.

Even small probabilities of correlated failures cause a substantial
reduction in expected reliability gains.

Conducted a series of experiments with John Knight

Failure independence in N−version programming

Embedded assertions vs. N−version programming

Fault Tolerance vs. Fault Elimination

c ��������������������� ������� ���Failure Independence
Experimental Design:

27 programs, one requirements specification
Graduate students and seniors from two universities
Simulation of a production environment: 1,000,000 input cases
Individual programs were high quality

Results:

Rejected independence hypothesis: Analysis of reliability gains
must include effect of dependent errors.

Statistically correlated failures result from:

Nature of application
"Hard" cases in input space

Programs with correlated failures were structurally and algorithmically
very different.

Conclusion: Correlations due to fact that working on same problem,
not due to tools used or languages used or even algorithms used.

c ��������������������� ������� ���

Consistent Comparison Problem

Arises from use of finite−precision real numbers (rounding errors)

Correct versions may arrive a completely different correct outputs
and thus be unable to reach a consensus even when none of
components "fail.".

May cause failures that would not have occurred with single versions.

No general practical solution to the problem .

c ��������������������� ������� ���

Self−Checking Software

Experimental Design:

Launch Interceptor Programs (LIP) from previous study.

24 graduate students from UCI and UVA employed to instrument
8 programs (chosen randomly from subset of 27 in which we had
found errors).

Provided with identical training materials.

Checks written using specifications only at first and then participants
were given a program to instrument.

Allowed to make any number or type of check.

Students treated this as a competition among themselves.

c ��������������������� ������� ���

Fault Tolerance vs. Fault Elimination

Techniques compared:

Run−time assertions (self−checks)

Multi−version voting

Functional testing augmented with structural testing

Code reading by stepwise abstraction

Static data−flow analysis

Experimental Design:

Combat Simulation Problem (from TRW)
Programmers separate from fault detectors
Eight version produced with 2 person teams

Number of modules from 28 to 75

Executable lines of code from 1200 to 2400

Attempted to hold resources constant for each technique.

c ����������������������������� ������� ���

Self−Checking Software (2)

12b
12c

1 0 5 2238360Total � �

12a

1
1

2
28a

8b
8c 1

1
3

1
2

1

1

1
2
2

3

20a
20b
20c

2 4
14a
14b
14c

1

2

1
25c
25b

2 125a

2
2

423a
23b
23c

2 1
1

1
1

6c

CDCR SP CR CD

1

Added
Detected Errors

3a
3b
3c

3
2 16a

6b

Other Errors

4

Detected

SP

Already Known Errors

��������������������� ����� ���������������

��������� ������������������� ���������

c ��������������������� ������� ���

Fault Tolerance vs. Fault Elimination (2)

Results:

Multi−version programming is not a substitute for testing.

Did not tolerate most of faults detected by fault−elimination
techniques.

Unreliable in tolerating the faults it was capable of tolerating.

Testing failed to detect errors causing coincident failures.

Cast doubt on effectiveness of voting as a test oracle.

Instrumenting the code to examine internal states was
much more effective.

Intersection of sets of faults found by each method was
relatively small.

��������������������� ������� ���

N−Version Programming (Summary)

Doesn’t mean shouldn’t use, but should have realistic expectations
of benefits to be gained and costs involved:

Costs very high (more than N times)

In practice, end up with lots of similarity in designs (more than
in our experiments)

Overspecification
Cross Checks

So safety of system dependent on quality that has been
systematically eliminated.

And no way to tell how different 2 software designs are in
their failure behavior.

c

Requirements flaws not handled, which is where most safety
problems arise anyway.

c ��������������������� ������� ���

Recovery

Backward

Assume can detect error before does any damage.

Assume alternative will be more effective.

Forward

Robust data structures.

Dynamically altering flow of control.

Ignoring single cycle errors.

But real problem is detecting erroneous states.

c ��������������������� ������� ���

Hazard Control

LIMITING EXPOSURE

Start out in safe state and require deliberate change to unsafe state.

Set critical flags and conditions as close to code they protect as possible.

Critical conditions should not be complementary, e.g., absence of an

arm condition should not be used to indicate system is unarmed.

ISOLATION AND CONTAINMENT

PROTECTION SYSTEMS AND FAIL−SAFE DESIGN

c ��������������������� ������� ���
Protection Systems and Fail−Safe Design

Depends upon existence of a safe state and availability of
adequate warning time.

May have multiple safe states, depending upon process conditions.

General rule is hazardous states should be hard to get into and
safe states should be easy.

Panic button

Watchdog timer: 	Software it is protecting should not be responsible
setting it.

Sanity checks (I’m alive signals)

Protection system should provide information about its control
actions and status to operators or bystanders.

The easier and faster is return of system to operational state, the less
likely protection system is to be purposely bypassed or turned off.

c ��������������������� ������� ���

Damage Reduction

May need to determine a ‘‘point of no return’’ where recovery no
longer possible or likely and should just try to minimize damage.

Design Modification and Maintenance

Need to reanalyze

Need to record design rationale.

