
0-7803-7367-7/02/$17.00 © 2002 IEEE

4.B.2-1

SOFTWARE SAFETY FOR AIR TRAFFIC MANAGEMENT SYSTEMS

Jeffrey J. Joyce, Department of Electrical and Computer Engineering, University of British Columbia,
Vancouver, Canada V6T 1Z4 (http://www.ece.ubc.ca/~jeffj)

Introduction
The introduction of advanced Air Traffic

Management (ATM) functionality is often heralded
as a safety improvement. On the whole, the
introduction of advanced ATM functionality will
probably reduce the likelihood of an accident.
However, its introduction may also entail new
sources of safety risk that need to be carefully
weighed against the safety benefits of advanced
ATM functionality.

Many new sources of safety risk associated
with the introduction of advanced automation are
due to specific problems in the following
categories:

• too much effort spent entering data
• too much information displayed
• increased semantic complexity
• not enough visibility into automated

processes
• coarse-grained reuse of software
• conflicts between availability objectives

and safety objectives.

It would be unreasonable to suggest that
advanced ATM functionality is inherently
dangerous or that its introduction should be resisted.
Such technology is necessary for the increasing
demands placed on air navigation systems.

Rather, the purpose of this paper is to argue
that stakeholders must look beyond the “safety-net”
functions to thoroughly understand the impact of
advanced ATM functionality on the safety of an air
navigation system. In particular, the provision of
safety-net functions should never be viewed as a
reason to be less concerned about behaviors of the
system that could potentially mislead a controller
into deciding that separation exists when it does
not. In other words, displaying basic flight data
used to make separation decisions in a timely and

accurate manner must always take priority over
safety-net functions.

This paper also urges stakeholders to
distinguish safety from other qualities such as
reliability and availability. An effective approach
to the safety engineering of an advanced ATM
system is not merely a matter of minimizing the
likelihood of latent defects or meeting availability
objectives.

A third purpose of this paper is to suggest
some categories of problems that could be used as
input to a “brainstorming session” during the
preliminary hazard identification step of the safety
program for an advanced ATM system.

Finally, the paper offers some remarks on the
usefulness of safety-related standards and
guidelines that are called upon in the development
of advanced ATM systems.

Advanced ATM
 For the purposes of this paper, we use the term

“advanced ATM functionality” to refer broadly to a
relatively new class of ATM systems that uses
flight and environmental data to generate four-
dimensional trajectories for flights.

The generation of flight trajectories underlies
many advanced ATM functions including the
coordination of flights between sectors and centers,
the distribution of flight data and certain safety-net
functions. The trajectories may also be used to
generate extrapolated representations of aircraft
position on the controller’s situation display in
combination with aircraft position information
derived from radar or other sensors.

Advanced ATM functionality typically
includes such safety-net functions as conflict
prediction and conformance monitoring. Certain
kinds of validation checks applied to clearance
information entered by a controller might also be
regarded as a form of safety-net functionality.

http://www.ece.ubc.ca/~jeffj

4.B.2-2

Advanced ATM functionality may also include
emerging technologies under development such as
Controller Pilot Data Link Communications
(CPDLC). However, this paper does not
specifically consider these emerging technologies.

Definition of “Safety”
Safety may be defined as “freedom from

accidents and losses”. For the purposes of
assessing the safety of an advanced ATM system,
we focus specifically on the possibility that
separation between an aircraft and another aircraft,
terrain or a particular airspace may be “lost”.

The primary responsibility of an air traffic
controller is to ensure that flights under his
jurisdiction remain separated from other aircraft,
terrain and certain airspaces. There are specific
rules called “separation rules” or “separation
minima” that must be satisfied for a jurisdictional
flight to be considered separated. For example, an
aircraft may be considered separated from another
aircraft under certain conditions if it is either 1,000
feet above or 1,000 feet below the altitude of the
other aircraft. Alternate forms of separation include
both lateral and longitudinal separation. Separation
is said to “exist” when at least one applicable
separation rule is satisfied. When none of the
applicable separation rules are satisfied, separation
is said to be “lost”. It is reasonable to assume that
the “loss of separation” is a necessary precondition
for an accident to occur if we narrow the scope of
the safety analysis to the enroute phase of flight.

It is important for the safety analyst and other
stakeholders to have objective criteria for deciding
when a particular behavior of an ATM system is
unsafe. Elsewhere [1], we have identified several
generic criteria that may be used as a “litmus test”
for behaviors exhibited by an ATM system that
could be unsafe. These criteria emphasize the
importance of avoiding behaviors that could
mislead a controller into deciding that separation
exists in a particular situation when it does not.

The concept of ATM system safety
engendered by these criteria has strongly influenced
the general concerns highlighted in this paper.

Too Much Effort Spent Entering Data
One of the primary goals of introducing

advanced ATM functionality is to reduce controller
workload. It is true that advanced ATM
functionality will relieve controllers of certain
routine tasks, thus increasing their capacity to
handle flights under their jurisdiction and to focus
on non-routine tasks such as resolving conflicts.
However, advanced ATM functionality requires
controllers to enter clearances and other flight data
for purposes such as the generation of flight
trajectories. The entry of this information yields
new tasks for controllers that partially reverse
whatever reductions in controller workload may
have been gained by the automation of routine
tasks.

The entry of such clearances and other related
information into a computer system is a new task
for controllers, since such information is not
typically required by legacy systems. For example,
the task of changing the cleared altitude of a flight
would only require the controller to annotate the
flight strip and communicate by radio with the pilot
in a typical operational environment prior to the
introduction of advanced ATM functionality. But
with the introduction of advanced ATM
functionality, the controller must additionally
interact with his workstation to update the clearance
for the flight.

Hence, the reduction in controller workload
resulting from the automation of routine tasks is
partially offset by the introduction of new tasks,
especially the need to update the computer with
data derived from clearances and position reports.

The consequences of failing to “keep up” with
the computer system’s need for current and accurate
flight data could be significant. For example,
failing to enter the new cleared altitude for a flight
could result in “false alarms” when the controller
has cleared a flight to a different altitude to avoid a
conflict. In this case, the false alarm would be a
consequence of the system continuing to use the
previous cleared altitude as a basis for predicting
conflicts. Even worse, the computer system may

4.B.2-3

fail to predict a bona fide conflict at the new cleared
altitude if the controller has not entered the new
cleared altitude.

More generally, the failure to provide the
ATM system with current and accurate flight data
may have a variety of unforeseen consequences that
could ultimately result in hazardous situations. For
example, a change to the cleared route of a flight
may affect the distribution of flight data to
downstream sectors and centers. If such changes
are not entered into the computer system, critical
flight data may be not distributed as required.
Depending on the procedures used for coordination
between sectors and centers, there may be scenarios
in which flight data distribution problems could
result in hazardous situations. Similarly, stale
clearance information may affect the accuracy of
time estimates represented in the trajectory of a
flight that, in turn, could yield hazardous situations
including conflict prediction failures.

The design of the human computer interface
for the entry of critical flight data involves some
difficult choices. For example, the dialogue for
changing the cleared altitude of a flight could
require confirmation, i.e., the controller must click
on “OK” after changing the cleared altitude. This
confirmation step might be deemed necessary to
reduce the likelihood of data entry errors. On the
other hand, this extra step increases the number of
interactions that must be performed by the
controller.

The design of operational procedures is also an
important consideration in tradeoffs between
mitigating the risk of erroneous controller inputs
and increasing controller workload. For example,
operational procedures could be modified so that
the controller first updates the computer with the
cleared altitude and then reads back the cleared
altitude from the updated display when
communicating the new cleared altitude to the pilot.
This constraint may reduce the risk that the cleared
altitude stored in the computer for the flight differs
from the cleared altitude communicated to the pilot.
However, a controller is almost certainly going to
give priority to voice communication with the pilot
over updating the computer system in busy or
urgent situations. Ironically, busy or urgent
situations are when the failure to update the

computer system with accurate and current
information could be particularly hazardous.

When a controller is unable to keep the
computer system fully updated in a busy or urgent
situation, the computer system will become
increasingly unsynchronized with reality. For
example, position reports will be non-conformant
with trajectories based on stale flight data. In
addition to undermining the ability of the computer
system to meet operational needs, the increasing
loss of synchronization may increase the frequency
of “false alarms” and other distractions.

For these reasons, it is overly simplistic to
suggest that the introduction of advanced ATM
functionality is inherently safer because it reduces
controller workload. To properly assess the safety
of introducing advanced ATM functionality into an
operational environment, it is necessary to identify
new tasks required of controllers. The impact of
these new tasks on controller workload must then
be weighed in balance with whatever reductions in
controller workload may result from the automation
of routine tasks.

Too Much Information Displayed
Not only do advanced ATM systems require a

greater variety and volume of information from
controllers as input, they also have the potential to
produce a much greater variety and volume of
information for display on controller workstations.
Displaying too much information, or not providing
a means by which a controller can regulate the
variety and volume of the information generated by
the advanced ATM system can be a source of safety
risk.

In the early stages of developing an advanced
ATM system, there is a temptation is to take full
advantage of the flexibility of the software and
computational power of the hardware. This may
result in the implementation of additional functions
that do not significantly increase the efficiency or
safety of the air navigation system. In fact, they
may even have the potential to interfere with the
controller’s ability to perform critical tasks.

One limiting factor is the fixed amount of “real
estate” on the display of the controller’s
workstation. To allow more information to be
displayed, characters fonts may be smaller than

4.B.2-4

desirable for readability. This could be very
hazardous if, for example, it is difficult for
controllers to distinguish between numerals such as
“6”, “8” and “3” in a number representing an
altitude in a datablock on the situation display.

Another strategy is the use of panels (i.e.,
windows) that can be opened and then closed or
minimized, thus providing the controller with a
degree of control over what information is
displayed at his workstation. However, care must
be taken in the design of the human computer
interface to ensure critical information is not hidden
from the controller’s view in a minimized window.
This is particularly important for critical
information not anticipated by the controller such as
an alert.

The flexibility of software and computational
power of modern hardware offers the potential of
implementing a great variety of functions that yield
various alerts and warnings for display to
controllers. This includes alerts and warnings
generated by safety-net functions, as well as other
functions less directly related to safety objectives.
Safety analysts should be concerned about the
possibility that the system may generate too many
“unhelpful” alerts or warnings. Excessive alerts or
warnings may distract a controller from his
responsibilities, especially if these alerts or
warnings need to be acknowledged by the
controller. Furthermore, the generation of too
many alerts or warnings may desensitize a
controller so that a truly “helpful” alert or warning
fails to attract the notice of a controller.

A key part of the safety analysis of an
advanced ATM system is making a list of all data
elements displayed to controllers that are critical for
decisions about separation. This list would include,
for example, Mode C altitude (if available).

The list should also document the potential
consequences of the data element being absence
from the display as well as the potential
consequences of the critical data element being
corrupted (in a way that it may appear to be valid,
but in fact is not valid). For instance, this step of
the analysis is likely to conclude that the potential
safety consequences of the Mode C altitude of a
particular flight not being displayed are less serious
than the potential consequences of displaying a
corrupted Mode C altitude. If the controller cannot

see the Mode C altitude, then he may have to do
some extra work (e.g., ask the pilot to report his
altitude or increase vertical separation). But a
controller cannot be misled by a missing Mode C
altitude in the same way that he might be misled by
a corrupted Mode C altitude.

Next, the design of the human computer
interface should be systematically reviewed using
this list of critical data elements as a guide. For
each element on the list, a series of generic
questions should be asked such as “What conditions
could cause this data element to be stale, i.e., no
longer valid?”. Answering such questions
thoroughly will involve several iterations of
investigation and analysis. The first iteration would
likely focus on the functional requirements. This
would be followed in the next iteration by an
investigation of the design and perhaps an
inspection of the implementation. Such questions
may even be addressed by a dedicated safety testing
activity in which the test engineer exploits his
knowledge of the system to attempt to “trick” the
system into displaying stale data.

Assuming that the computer human interface is
thoroughly documented prior to implementation, it
is possible to perform this part of the analysis at a
relatively early stage in the development cycle
when there is more opportunity to “build safety into
the design”.

Increased Semantic Complexity
As mentioned, a key characteristic of advanced

ATM functionality is the generation of a four-
dimensional trajectory from clearances and other
information. The generation of trajectories from
clearances depends on the correct interpretation of
the information contained in the machine-readable
representation of a clearance.

The phraselogy used by controllers to
communicate with pilots is a constrained form of
natural language. This phraselogy is informally
defined in the “manual of operation” and related
publications. It is learned by controllers and pilots
largely through experience as trainee controllers
and novice pilots.

To allow clearance information to be
processed by a computer system, the clearance
phraseology must be formalized by defining a

4.B.2-5

syntax that constrains the vocabulary of this
language. The syntax rules must also constrain the
way in which words of this vocabulary may be
composed to make elements of a clearance such as
“cross BLI at or above FL210”.

Managing the syntactic complexity of
formalized languages is a solved problem for
software developers. Software developers can
borrow techniques developed for the processing of
other formal languages such as programming
languages to manage the syntactic complexity of a
formal language for expressing clearance
information.

However, dealing with the semantic
complexity of a formalized clearance language is
not so easily addressed. The semantics of the
phraselogy used by controllers to communicate
clearances is very complex compared to the
semantics of most other formal languages designed
for interpretation by a computer system. As a result
of this semantic complexity, there is a considerable
potential for clearance elements to be ambiguous –
that is, have more than one interpretation.

For example, the syntax rules of a formalized
clearance language are not likely to exclude
combinations of restrictions that are impossible to
satisfy – for example, a restriction to cross a certain
fix at or above a particular flight level in
combination with another restriction to cross at
below a lower flight level at the same fix. While
such a combination may be obviously unsatisfiable
and could be detected by software checking, there
are other combinations that are problematic in less
obvious ways.

Such ambiguities may also occur in the voice
communications between controllers and pilots.
However, they are often resolved when the pilot
uses “common sense” to choose the interpretation
intended by the controller. If the pilot is unsure
about the intended interpretation, he can always
query the controller for clarification.

In contrast, computer systems do not have the
benefit of common sense to resolve ambiguities in
clearance information. To a limited extent, it is
possible to add various checks into the software to
detect potentially ambiguous clearance elements.
However, in the absence of a completely formalized
definition of the semantics for the clearance

language, such checks will be ad hoc. There will be
no guarantee that every statement in the clearance
language will be unambiguous, or that its
interpretation will unfailingly agree with the
interpretation intended by the controller.

As well, relying on extensive validation checks
for clearances entered by the controller could have
the undesirable consequence that “reasonable”
clearance elements are too frequently rejected due
to the validation checks. The system will be
deemed unusable if clearance elements are
frequently rejected even if they are unambiguous to
the controllers and pilots, who have the advantage
of common sense over the computer system.

Once again, it is important to consider the use
of the system by a controller in a busy or urgent
situation. In such a situation, the controller may be
compelled to abandon his attempts to update the
computer system with clearance information if
these attempts are repeatedly rejected due to
validation checking. As the computer system
becomes increasingly unsynchronized with reality,
it will become less capable of meeting operational
needs. Also, as previously mentioned, this loss of
synchronization is likely to yield false alarms and
other anomalous behaviors.

A related problem may occur when clearance
information is exchanged between different
computer systems located, for example, at different
centers. Even when the same software is used to
process the clearance information and generate
flight trajectories, there may be significant
differences in the generated trajectories due to
differences in adaptation data or environmental
data. For example, a controller might locally enter
a “spot observation” about the winds aloft that
affects the time estimates for a particular fight.
Even greater differences in the generation of
trajectories may result when different computer
systems with different software are used to interpret
the same clearance information. In the case of
ambiguous clearance information, one computer
system may select one interpretation whereas the
other computer system generates trajectories using a
different interpretation.

The possibility that different computer systems
may generate significantly different trajectories
may or may not yield safety risk. Assuming that
the trajectory generated by the computer system for

4.B.2-6

the controller with jurisdiction is correct (i.e., is
consistent with the controller’s intention), then it is
not necessarily unsafe in the short-term for the
downstream computer system to have generated a
slightly different trajectory. The safety
consequences would need to be investigated in the
context of understanding how the trajectories are
used to automate certain aspects of coordination
between centers. Assessment of the associated
safety risk would also need to take account of
relevant operational procedures – particularly, with
respect to coordination between the controller with
jurisdiction and the downstream controller.

Safety concerns about differences in the
machine interpretation of clearance information by
different computer systems will also be important in
the context of emerging technology. In particular,
CPDLC involves the transmission of clearance
information from ground systems to airborne
systems. The initial single-site deployment of
CPDLC known as Build-1 will not involve
clearance messages that affect the trajectory of the
aircraft. However, planned future deployments of
CPDLC are expected to support clearance messages
that would affect the trajectory of the flight.

There is no “silver bullet” to mitigate safety
concerns related to the semantic complexity of
clearance information, and its interpretation by a
computer system. However, the combination of
several measures would be prudent in the
development of advanced ATM functionality,
including:

• careful design of the formalized
clearance language so that it is rich
enough to meet operational needs, but
without excessive variation

• a balanced approach to automated
clearance validation that will detect
obvious ambiguities and other semantic
problems in clearances, but not result in
the frequent rejection of “reasonable”
clearances

• dedicated safety testing focused on the
identification of anomalies in the
machine interpretation of clearance
information, especially situations in
which the machine interpretation of a
clearance may differ from a “common

sense” interpretation by the controller
and pilot.

In addition to the above measures, the
challenge of developing software to consistently
and accurately interpret clearance information
would benefit from research initiatives to study how
analogous problems for other formal languages
have been addressed. For example, the ubiquity of
Java and other interpreted programming languages
owes much to portability of these languages across
different platforms. Perhaps, the accurate and
consistent rendering of trajectories from clearance
information across different computer systems may
be addressed by the development of a “bytecode”
for clearance information.

Not Enough Visibility into Automated
Processes

The automation of routine time-consuming
tasks is one of the primary motivations for the
introduction of advanced ATM functionality. Such
automation is seen as a means to improve the
efficiency of the air navigation system. It is also
often suggested that such automation is a safety
improvement because it reduces opportunities for
operator error.

But as Leveson [2] observes, “the truth is that
automation does not remove people from the
systems -- it merely moves them to maintenance
and to higher-level supervisory control and
decision-making. The effects of human decisions
and actions can then be extremely serious. At the
same time, the increased system complexity makes
the decision-making process more difficult.”

One of the tasks most likely to be automated in
an advanced ATM system is the distribution of
flight data to downstream sectors and centers.

 The distribution of flight data is mostly
routine. In an operational environment without
automated support, it represents a significant
portion of a controller’s workload even when some
aspects of flight data distribution are delegated to
other personnel. Typically, the flight data is
distributed by a combination of data links and voice
channels, e.g., “hotlines”. The distribution of flight

4.B.2-7

data is governed by various rules and agreements
established locally with adjacent jurisdictions.

While the automation of flight data distribution
may indeed reduce safety risk due to human error, it
is still necessary to provide controllers with
visibility into flight data distribution so that they
can in fact act in a supervisory manner and, when
necessary, have sufficient information to intervene
when the automated system fails to meet
operational needs in a particular situation. It is not
enough to simply notify controllers when
transmission of a particular message is
unsuccessful. In addition to such notifications,
controllers require visibility into when, what and
where a message has been sent. They also required
sufficient visibility to determine when the system
has decided not to send a message.

As with many other aspects of a controller’s
responsibility, the rules and agreements that govern
the distribution of flight data have evolved over
many years prior to the introduction of advanced
ATM functionality. Just as the accurate and
consistent interpretation of clearance information
may rely on common sense, the manual distribution
of flight data has also relied on common sense.
Even when great care is taken to formalize these
rules and agreements as algorithms for the
automated distribution of flight data, there will
always be a possibility of anomalous situations that
result in critical flight data not being sent when or
where it needs to be sent. Such problems would not
be considered “failures” in the traditional sense
since the system is performing exactly as required.
Rather, they are the result of limitations on the
ability to automate common sense in software.

For this reason, the initial premise of the safety
analyst when analyzing the safety of automated
flight data distribution should be that the required
behavior will sometimes fail to meet the operational
needs. The safety assessment then becomes mostly
a matter of determining whether the controller will
have sufficient visibility into the activity of flight
plan distribution to recognize this problem so that
he can intervene. This approach to the safety
analysis of an ATM contrasts with a “reliability-
oriented” concept of system safety that would likely
focus on the possibility of defects in the
implementation of the algorithm for the distribution
of flight data.

Determining whether a controller has sufficient
visibility into flight data distribution is not merely a
question of whether it is possible for a controller to
obtain sufficient information from the system. This
determination must also take into account the ease
with which the controller can answer specific
questions as he monitors the distribution of flight
data. For instance, it is not enough for the
controller to have the ability to see a list of all
messages sent to a downstream center in the past
hour. Instead, the controller would require a means
of answering specific queries – for example, to see
all messages sent to a downstream center for a
specific flight.

As previously mentioned, the distribution of
flight data by an advanced ATM system is likely to
be partially determined by the trajectories generated
from clearances and other information for each
flight. Thus, potential problems with the
distribution of flight data due to limitations of an
automated system to implement a common sense
interpretation of the rules and agreements for flight
data distribution would be exacerbated in situations
where the trajectory generated by the computer
system is not consistent with the common sense
interpretation of the clearance information intended
by the controller.

Although the discussion in this section has
focused mostly on the distribution of flight data,
this is just one example of a routine task that may
be automated with the introduction of advanced
ATM functionality. Another example would be the
automation of a manual process for the acquisition
and distribution of environmental data such as
altimeter settings. Yet another example would the
management of special use airspaces. For such
cases where a routine task has been automated by
the introduction of advanced ATM functionality,
the safety analyst should start with the premise that
the automation will sometimes fail to meet
operational needs, and then consider whether the
controller has sufficient visibility to recognize when
a problem has occurred so that he can intervene.

Coarse-Grained Reuse of Software
The software implementation of advanced

ATM functionality is inherently larger and more
complex than the implementation of legacy
systems. An advanced ATM system would

4.B.2-8

typically involve between one and two million
source lines of code (SLOC), supplemented by
substantial use of commercial off the shelf (COTS)
components. Other commonly used measures of
software complexity would similarly show that the
software implementation of advanced ATM
functionality involves significant complexity.

For obvious reasons, stakeholders in the
procurement and development of an advanced ATM
system are compelled to pursue strategies that
reduce cost and schedule. One of the most common
strategies is the reuse of previously developed
software. Fine-grained forms of software reuse
typically involve generic components which are
instantiated for a variety of different purposes
within a single implementation. Such forms of
software reuse typically involve implementations of
commonly used abstract data types, e.g., queues,
stacks, lists. A coarser-grain form of software
reuse involves the reuse of a subsystem from
another product, or an earlier member of a specific
product family.

Fine-grained forms of software reuse, such as
the implementation of commonly used abstract data
types, almost certainly makes a positive net
contribution to the safety of an advanced ATM
system. The only caution is that the use of generic
components at this level can significantly increase
the difficulty of performing safety verification using
static methods, e.g., tracing the datapath for certain
critical data element from input to output.

The course-grained reuse of software raises
more serious concerns from a safety perspective.
Leveson [2] suggests: “Although reuse of proven
software components can increase reliability, reuse
may actually decrease safety because of the
complacency it engenders and because the specific
hazards of the new system were not considered
when the software was originally designed and
constructed.” Leveson and Clark [3] elaborate
further on the assumption that reuse increases
safety: “A naive assumption is often made that
reusing software or using commercial off-the-shelf
software increases safety because the software has
been exercised extensively. Reusing software
modules does not guarantee safety in the new
system to which they are transferred and sometimes
leads to awkward and dangerous designs. Safety is

a quality of the system in which the software is
used; it is not a quality of the software itself.”

In addition to the above mentioned reasons,
safety problems due to coarse-grained reuse of
software are often the result of undocumented
assumptions made during the original development
of software. When the previously developed
software is reused, these assumptions may not be
fully appreciated.

A particular class of coarse-grained software is
COTS. A distinction should be made between
COTS software and the use of code that has been
“lifted” from an earlier implementation. Typical
examples of COTS include the operating system,
databases and elements of the graphic user interface
(GUI). These examples of COTS software are not
domain-specific and for this reason, are less likely
to be affected by problems caused by
undocumented assumptions about the operational
environment. A more likely source of safety
problems with the use of COTS software is the need
to compromise on certain aspects of the design to fit
the limitations of the COTS software. For instance,
the use of a particular COTS product in the
implementation of the GUI may cause certain
elements of the controller’s display to be refreshed
less frequently than desired from a safety
perspective. Such a problem might, for example, be
caused by an intrinsic limitation in the COTS
product that makes it impossible to refresh certain
elements of data more frequently.

Cost and schedule priorities are likely to
overrule the total exclusion of previously developed
code in the implementation of an advanced ATM
system. But previously developed code should not
be excluded from the testing regime that would
have been applied to new code, especially at the
system level. In particular, the argument that “this
software has already been proven in the field” is not
valid in the case of previously developed code that
has been lifted from an earlier implementation.
Whenever a non-trivial amount of code has been
lifted from an earlier implementation and
transferred into a new implementation, there are just
too many opportunities for one or more the
undocumented assumptions made by the original
developers to be invalid for the new
implementation. Indeed, the fact that the
implementation of a particular function involves

4.B.2-9

previously developed code should prompt a more
rigorous regime of safety verification for any
hazards that may be implicated by this function.

Conflicts Between Availability and
Safety

For the general public, the safety of an ATM
system is largely perceived to be a matter of
assessing the likelihood of a “system crash”, i.e., a
sudden, unplanned and severe loss of system
functionality. Such concerns have, for example,
have recently prompted headlines in the U.K. with
the deployment of a new ATM system at
Swanwick.

Without a doubt, the sudden, unplanned and
severe loss of system functionality is a very
significant event that could potentially contribute to
an accident in a busy airspace. However, there is a
risk that too much emphasis on system availability
could actually jeopardize safety.

There are many potential causes of a severe
failure in a complex software system – for example,
the exhaustion of limited resources such as
memory, an invalid reference to a memory location
or a computational error such as attempting to
divide by zero.

In general, fault tolerance strategies involve
the detection, containment and, in some cases,
correction of a problem. To mitigate system
crashes, software mechanisms called “exception
handlers” can be used to tolerate faults. For
servers, there are also coarser-grain mechanisms for
tolerating faults such as automatically switching
over to a standby machine in a manner that is
mostly transparent to controllers. For workstations
connected to the servers, part of the overall fault
tolerance strategy may involve providing
controllers with a means to disconnect the
workstation from a failed server or failed network
and use the standalone workstation with locally
stored data as an emergency measure.

In some cases, the problem may be benign.
But in other cases, it may be symptomatic of a
problem that could potentially cause a controller to
be misled by the system in an unsafe way. For
example, a problem that interferes with the timely
update of Mode C altitude data on a situation

display could rapidly and directly result in a loss of
separation.

Safety concerns arise when faults are not
merely tolerated by the system, but occurrences of
the fault are effectively hidden from end users. To
put it simply, it is not safe to design a system to
tolerate faults “at any cost”, especially if this
involves masking problems and creating an illusion
that the system is operating normally.

To avoid the introduction of new safety risks
due to overzealous fault tolerance, the use of fault
tolerance as a means of achieving availability
objectives must be considered in terms of its
visibility to end users. Sotirovski [4] describes an
approach to “large-grained objects” based on
experience with the development of the Canadian
Automated Air Traffic System (CAATS). A key
insight is to choose an appropriate level of
granularity for fault tolerance so that system users
such as controllers can be notified of how the
service has been degraded. This avoids the
dangerous situation of creating an illusion that the
system is operating normally.

Choosing the appropriate level of granularity is
important because the notification provided to users
needs to be understandable in such a way that the
users can work around the problem. It is not
meaningful to notify a controller that a “divide by
zero” exception occurred in a particular function.
But it is meaningful to notify a controller that a
problem with the flight data for a particular flight
has been detected. In this case, the controller can
probably work around this problem by re-creating
the flight, or resorting to a paper strip approach for
this particular flight.

Fault tolerance strategies are intended to allow
the system to survive the occurrence of a fault that
might otherwise bring the system to a screeching
halt. In general, fault tolerance should be viewed as
“life raft” rather than a repair to the system. It
would usually be prudent for a controller to regard
the notification of a failure as a prompt to look for a
more durable solution. In some cases, this might
mean emergency measures to shed jurisdiction to
adjacent sectors or centers depending on the nature
of the failure.

The difference between viewing fault tolerance
as a “life raft” and viewing it as a form of repair

4.B.2-10

could have a significant bearing on the design of an
ATM system. The “life raft” view of fault
tolerance is likely to encourage relatively simple
mechanism design to be extremely robust for a
limited period of time. But if fault tolerance is
viewed as a form of repair, then there is likely to be
more emphasis on designing degraded modes of
operation to “look and feel” as much as possible
like the fully operational system.

The concept of safety espoused in this paper
favors the “life raft” view of fault tolerance, while a
different concept of safety that places less emphasis
on a distinction between safety, reliability and
availability would likely favor an approach that
views fault tolerance as a form of repair.

Safety-Related Standards and
Guidelines

A variety of general sources of safety risk for
advanced ATM functionality have been discussed
in this paper. Most of these problems would not
necessarily be recognized as potential sources of
safety risk in an approach to system safety that
mostly views safety in terms of other qualities such
as reliability and availability. As discussed, there
may even be situations in which the pursuit of
reliability or availability objectives might actually
jeopardize safety.

Unfortunately, some of the standards and
guidelines called upon in the development of
advanced ATM functionality fail to adequately
distinguish safety as a separate quality of a software
system. This is typically expressed by an emphasis
on the detection of defects in the implementation
that could cause the actual behavior of the system to
deviate from its required behavior. It is also often
expressed by an emphasis on attempting to quantify
safety risk in terms of the estimated likelihood of
latent defects in various portions of the
implementation.

In the author’s experience, a significant portion
of the unsafe behaviors of a safety-related system
are consequences of the requirements, rather than
deviations from the required behavior. In other
words, the safety problem often originates with the
requirements. In such cases, testing (against the
requirements) is not likely to be very effective as a

means of minimizing safety risk. If some aspect of
the requirements entails unsafe behaviour,
requirements-based testing will only ensure that this
unsafe behaviour has been implemented. For
similar reasons, an attempt to quantify safety risk in
terms of latent defects is not likely to provide a
sound basis for deciding to deploy a safety-related
system.

On a positive note, MIL-STD-882C (“System
Safety Program Requirements”) is an example of a
standard that could be used to establish the
foundation of an effective approach to the safety
analysis of an advanced ATM system. A key aspect
of this standard is its emphasis on the identification
of hazards. Each hazard postulates the occurrence
of an unsafe condition that could directly contribute
to the occurrence of a mishap. For example, the
display of a corrupted Mode C altitude is likely to
be one of the hazards identified for any ATM
system that involves the acquisition, processing,
distribution or display of Mode C altitudes.

The identification of hazards creates a
framework for the assessment of safety risk that
allows questions about safety to be separated from
questions about reliability, availability and other
qualities. Ideally, the overall test methodology for
development of an advanced ATM system will
dedicate a portion of the testing effort specifically
to a safety verification activity that is driven by the
hazard analysis rather than the functional
requirements.

Summary
Stakeholders must look beyond the safety-net

functions to thoroughly understand the safety
impact of introducing advanced ATM functionality
to an operational environment. This includes
consideration of the various categories of problems
highlighted in this paper. Stakeholders must also be
careful to distinguish safety objectives from other
objectives related to system reliability and
availability. With a sound approach to safety, it is
possible to minimize safety risks to an acceptable
level and fulfill promises of greater efficiency and
improved safety for the air navigation system.

4.B.2-11

Acknowledgements
I am indebted to a group of extraordinary

Raytheon engineers, subcontractors and technical
representatives of the customer who worked on the
development of the Canadian Automated Air
Traffic System (CAATS) for many insights into the
safety of advanced ATM systems.

References
[1] Joyce, Jeffrey J., 2002, Generic Safety Criteria
for Air Traffic Management Systems, Second
Meeting of the U.S. Software System Safety
Working Group, Massachusetts Institute of
Technology, Boston.

[2] Leveson, Nancy G., 1995, Safeware: System
Safety and Computers, Addison-Wesley.

[3] Leveson Nancy G. and Clark S. Turner, 1993,
An Investigation of the Therac-25 Accidents, IEEE
Computer, Vol. 26, No. 7, pp. 18-41

[4] Sotirovski, Drasko, 2001, Towards Fault-
tolerant Software Architectures, Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2001), Amsterdam, pp. 28-31

	SOFTWARE SAFETY FOR AIR TRAFFIC MANAGEMENT SYSTEMS
	Introduction
	Advanced ATM
	Definition of “Safety”
	Too Much Effort Spent Entering Data
	Too Much Information Displayed
	Increased Semantic Complexity
	Not Enough Visibility into Automated Processes
	Coarse-Grained Reuse of Software
	Conflicts Between Availability and Safety
	Safety-Related Standards and Guidelines
	Summary
	Acknowledgements
	References
	=============================
	Table of Contents
	Continue
	Exit

