
. �������������	�
� c

System and Software Safety

Nancy G. Leveson

MIT Aero/Astro Dept.

Safeware Engineering Corp.

Copyright by the author, June 2001.
All rights reserved. Copying without fee is permitted provided
that the copies are not made or distributed for direct commercial advantage and provided that credit
to the source is given. Abstracting
with credit is permitted.

�������������	��
c

The Problem

The first step in solving any problem is to understand it.
We often propose solutions to problems that we do not
understand and then are surprised when the solutions
fail to have the anticipated effect.

c

Accident with No Component Failures �������������	��� c
�����	��� ����� ���

LC

COMPUTER

WATER

COOLING

CONDENSER

VENT

REFLUX

REACTOR

VAPOR

LA

CATALYST

GEARBOX

Types of Accidents

Component Failure Accidents

Single or multiple component failures

Usually assume random failure

System Accidents

Arise in interactions among components
No components may have "failed"

c �������������	���

�����	��� ����� ���

Caused by interactive complexity and tight coupling

Exacerbated by the introduction of computers.

. .

c �������������	��$

�����	��� ����� ���

Interactive Complexity

Complexity is a moving target

The underlying factor is intellectual manageability

1. A "simple" system has a small number of unknowns in its
interactions within the system and with its environment.

2. A system is intellectually unmanageable when the level of
interactions reaches the point where
 they cannot be thoroughly

planned

understood

anticipated

guarded against

3. Introducing new technology introduces unknowns and
even "unk−unks."

c �������������	��%

� ���	����� ��� �������	 "! ��#

Computers and Risk

We seem not to trust one another as much as would be
desirable. In lieu of trusting each other, are we putting
too much trust in our technology? . . . Perhaps we are
not educating our children sufficiently well to understand
the reasonable uses and limits of technology.

Thomas B. Sheridan

c �������������	��)

� ���	����� ��� �������	 &! ��#

The Computer Revolution

General Special
Purpose + Software = Purpose
Machine Machine

Software is simply the design of a machine abstracted
from its physical realization.

Machines that were physically impossible or impractical
to build become feasible.

Design can be changed without retooling or manufacturing.

Can concentrate on steps to be achieved without worrying
about how steps will be realized physically.

Advantages = Disadvantages

Computer so powerful and so useful because it has
eliminated many of physical constraints of previous
machines.

Both its blessing and its curse:

+ No longer have to worry about physical
realization of our designs.

c �������������	�('

� ���	����� ��� �������	 &! ��#

− No longer have physical laws that limit
the complexity of our designs.

c �������������	��*

� ���	����� ��� �������	 "! ��#

The Curse of Flexibility

Software is the resting place of afterthoughts

No physical constraints

To enforce discipline on design, construction
and modification

To control complexity

So flexible that start working with it before fully
understanding what need to do

‘‘And they looked upon the software and saw that it
was good, but they just had to add one other feature ...’’

c �������������	�
�,+

� ���	����� ��� �������	 "! ��#

Software Myths

1. Good software engineering is the same for all
types of software.

2. Software is easy to change.

3. Software errors are simply ‘‘teething’’ problems.

4. Reusing software will increase
safety.

5. Testing or ‘‘proving’’ software
 correct will remove
all the errors.

c �������������	�
���

� ���	����� ��� �������	 "! ��#
Abstraction from Physical Design

Software engineers are doing system design

Expert Autopilot
Autopilot

Engineer
Design ofSoftwareSystem

Requirements

Most errors in operational software related to requirements

Completeness a particular problem

Software "failure modes" are different

Usually does exactly what you tell it to do

Problems occur from operation, not lack of operation

Usually doing exactly what software engineers wanted

c �������������	�
�,

� ���	����� ��� �������	 "! ��#

Typical Fault Trees

......

Test software0

MitigationProbabilityHazard Cause

Software Error

(error)
fails

Software

Hazard

OR

�������������	�
�,�c
� ���	����� ��� �������	 "! ��#

Black Box Testing

Test data derived solely from specification (i.e.,
without knowledge of internal structure of program).

Need to test every possible input

x := y * 2 (since black box, only way to be sure to detect
this is to try every input condition)

Valid inputs up to max size of machine (not astronomical)

Also all invalid input (e.g., testing Ada compiler requires all
valid and invalid programs)

If program has ‘‘memory’’, need to test all possible unique
valid and invalid sequences.

So for most programs, exhaustive in
put testing
is impractical.

c �������������	�
�,�

� ���	����� ��� �������	 "! ��#

White Box Testing

Derive test data by examining program’s logic.

Exhaustic path testing: Two flaws

1) Number of unique paths through program is astronomical.

20x loop 20 19 18 14
5 + 5 + 5 + ... + 5 = 10

= 100 trillion

If could develop/execute/verify one
test case every five minutes = 1 billion years

If had magic test processor that could
develop/execute/evaluate one test per
msec = 3170 years.

(control−flow graph)

c �������������	�
�,$

� ���	����� ��� �������	 "! ��#

White Box Testing (con’t)

2) Could test every path and program may still have errors!

Does not guarantee program matches specification,
i.e., wrong program.

Missing paths: would not detect absence of necessary paths

Could still have data−sensitivity errors.

e.g. program has to compare two numbers for convergence

if (A − B) < epsilon ...

is wrong because should compare to abs(A − B)

Detection of this error dependent on values used for A
and B and would not necessarily be found by executing
every path through program.

c �������������	�
�,%

� ���	����� ��� �������	 "! ��#

Mathematical Modeling Difficulties

Large number of states and lack of regularity

Lack of physical continuity: requires discrete rather than
continuous math

Specifications and proofs using logic:

May be same size or larger than code

More difficult to construct than code

Harder to understand than code

Therefore, as difficult and error−prone as code itself

Have not found good ways to measure software quality

c �������������	�
�,)

� ���	����� ��� �������	 "! ��#

A Possible Solution

Enforce discipline and control complexity

Limits have changed from structural integrity and physical
constraints of materials to intellectual limits

Improve communication among engineers

Build safety in by enforcing constraints on behavior

Example (batch reactor)
System safety constraint:

Water must be flowing into reflux condenser whenever
catalyst is added to reactor.

Software safety constraint:
Software must always open water valve before catalyst valve

�������������	�
�,'

� ���	����� ��� �������	 "! ��#

Stages in Process Control System Evolution

1. Mechanical systems

Direct sensory perception of process

Displays are directly connected to process and thus
are physical extensions of it.

Design decisions highly constrained by:

Available space

c

Physics of underlying process

Limited possibility of action at a distance

c �������������	�
�,*

� ���	����� ��� �������	 "! ��#

Stages in Process Control System Evolution (2)

2. Electromechanical systems

Capability for action at a distance

Need to provide an image of process to operators

Need to provide feedback on actions taken.

Relaxed constraints on designers but created new
possibilities for designer and operator error.

�������������	��
�+c
� ���	����� ��� �������	 "! ��#

Stages in Process Control System Evolution (3)

3. Computer−based systems

Allow multiplexing of controls and displays.

Relaxes even more constraints and introduces
more possibility for error.

But constraints shaped environment in ways that efficiently
transmitted valuable process information and supported
cognitive processes of operators.

Finding it hard to capture and present these qualities
in new systems.

c �������������	��
-�

� ���	����� ��� �������	 "! ��#

The Problem to be Solved

The primary safety problem in computer−based systems

is the lack of appropriate constraints on design.

The job of the system safety engineer is to identify the

design constraints necessary to maintain safety and to

ensure the system and software design enforces them.

.

c �������������	��
��

. ��/ ��� 0����21� "��� ! ����! � ! � 0
. .

Safety Reliability

Accidents in high−tech systems are changing
their nature, and we must change our approaches
to safety accordingly.

. .

c �������������	��
��

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Confusing Safety and Reliability

From an FAA report on ATC software architectures:

"The FAA’s en route automation meets the criteria for
consideration as a safety−critical system. Therefore,
en route automation systems must posses ultra−high
reliability."

From a blue ribbon panel report on the V−22 Osprey problems:

"Safety [software]: ...
Recommendation: Improve reliability, then verify by
extensive test/fix/test in challenging environments."

c �������������	��
�$

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Does Software Fail?

Failure: Nonperformance or inability of system or component
to perform its intended function for a specified time
under specified environmental conditions.

A basic abnormal occurrence, e.g.,

burned out bearing in a pump

relay not closing properly when voltage applied

Fault: Higher−order events, e.g.,
relay closes at wrong time due to improper functioning
of an upstream component.

All failures are faults but not all faults are failures.

�������������	��
�%c
. ��/ ��� 0����21� "��� ! ����! � ! � 0

Reliability Engineering Approach to Safety

Reliability: The probability an item will perform its required
function in the specified manner over a given time
period and under specified or assumed conditions.

(Note: Most software−related accidents result from errors
in specified requirements or function and deviations
from assumed conditions.)

Concerned primarily with failures and failure rate reduction

Parallel redundancy
Standby sparing
Safety factors and margins
Derating
Screening
Timed replacements

c

Reliability Engineering Approach to Safety (2)

Assumes accidents are the result of component failure.

Techniques exist to increase component reliability
Failure rates in hardware are quantifiable.

Omits important factors in accidents.
May even decrease safety.

Many accidents occur without any component ‘‘failure’’

e.g. Accidents may be caused by equipment operation
outside parameters and time limits upon which
reliability analyses are based.

Or may be caused by interactions of components
all operating according to specification

Highly reliable components are not necessarily safe.

�������������	��
�)

. ��/ ��� 0����21� "��� ! ����! � ! � 0

c �������������	��
�'

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Reliability Approach to Software Safety

Standard engineering techniques of

Preventing failures through redundancy

Increasing component reliability

Reuse of designs and learning from experience

won’t work for software and system accidents.

c �������������	��
�*

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Preventing Failures through Redundancy

Redundancy simply makes complexity worse.

NASA experimental aircraft example

Any solutions that involve adding complexity will not
not solve problems that stem from intellectual
unmanageability and interactive complexity.

Majority of software−related accidents caused by
requirements errors.

Does not work for software even if accident is caused by
a software implementation error.

Software errors not caused by random wearout failures.

�������������	����+

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Increasing Software Reliability (Integrity)

Appearing in many new international standards for software
safety (e.g., 61508)

"Safety integrity level"

Sometimes give reliability number (e.g., 10
−9

)

Can software reliability be measured? What does it even mean?

Safety involves more than simply getting software "correct"

Example: altitude switch

1. Signal safety−increasing =>
Require any of three altimeters report below threshold

2. Signal safety−reducing =>

c

Require all three altimeters to report below threshold

c �������������	���-�

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Software Component Reuse

One of most common factors in software−related accidents

Software contains assumptions about its environment.

Accidents occur when these assumptions are incorrect.

Therac−25

Ariane 5

U.K. ATC software

Most likely to change the features embedded in or
controlled by the software.

COTS makes safety analysis more difficult.

Safety and reliability are different qualities!

c �������������	����

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Software−Related Accidents

Are usually caused by flawed requirements

Incomplete or wrong assumptions about operation of
controlled system or required operation of computer.

Unhandled controlled−system states and environmental
conditions.

Merely trying to get the software ‘‘correct’’ or to make it
reliable will not make it safer under these conditions.

c �������������	�����

. ��/ ��� 0����21� "��� ! ����! � ! � 0

Software−Related Accidents (con’t.)

Software may be highly reliable and ‘‘correct’’ and still
be unsafe.

Correctly implements requirements but specified
behavior unsafe from a system perspective.

Requirements do not specify some particular behavior
required for system safety (incomplete)

Software has unintended (and unsafe) behavior beyond
what is specified in requirements.

c �������������	�����

A Little Systems Theory

Systems theory can act as an alternative
to reliability theory for dealing with safety.

c �7���2�������	�(��$

. 0���� ���43&��5���� �	6������ 02��! �

Ways to Cope with Complexity

Analytic Reduction (Descartes)

Divide system into distinct parts for analysis purposes.

Examine the parts separately.

Three important assumptions:

1. The division into parts will not distort the
phenomenon being studied.

2. Components are the same when examined singly
as when playing their part in the whole.

3. Principles governing the assembling of the components
into the whole are themselves straightforward.

c �7���2�������	�(��%

. 0���� ���43&��5���� �	6������ 02��! �

Ways to Cope with Complexity (con’t.)

Statistics

Treat as a structureless mass with interchangeable parts.

Use Law of Large Numbers to describe behavior in
terms of averages.

Assumes components sufficiently regular and random
in their behavior that they can be studied statistically.

�7���2�������	�(��)

. 0���� ���43&��5���� �	6������ 02��! �
c

What about software?

Too complex for complete analysis:

Separation into non−interacting subsystems distorts
the results.

The most important properties are emergent.

Too organized for statistics

Too much underlying structure that distorts
the statistics.

c �7���2�������	�(��'

. 0���� ���43&��5���� �	6������ 02��! �

Systems Theory

Developed for biology (Bertalanffly) and cybernetics (Norbert Weiner)

For systems too complex for complete analysis

Separation into non−interacting subsystems distorts results

Most important properties are emergent.

and too organized for statistical analysis

Concentrates on analysis and design of whole as distinct from parts

(basis of system engineering)

Some properties can only be treated adequately in their entirety,
taking into account all social and technical aspects.

These properties derive from relationships between the parts of
systems −− how they interact and fit together.

c �7���2�������	�(��*

. 0���� ���43&��5���� �	6������ 02��! �

Systems Theory (2)

Two pairs of ideas:

1. Emergence and hierarchy

Levels of organization, each more complex than one below.

Levels characterized by emergent properties

Irreducible

Represent constraints upon the degree of freedom of
components a lower level.

Safety is an emergent system property

It is NOT a component property.

It can only be analyzed in the context of the whole.

�7���2�������	�(��+c
. 0���� ���43&��5���� �	6������ 02��! �

Systems Theory (3)

2. Communication and control

Hierarchies characterized by control processes working at
the interfaces between levels.

A control action imposes constraints upon the activity
at one level of a hierarchy.

Open systems are viewed as interrelated components kept
in a state of dynamic equilibrium by feedback loops of
information and control.

Control in open systems implies need for communication

�������������	���-�

�����	6������ ����8��
c

An Overview of The Approach

Engineers should recognize that reducing risk is not an
impossible task, even under financial and time constraints.
All it takes in many cases is a different perspective on the
design problem.

Mike Martin and Roland Schinzinger
Ethics in Engineering

c �������������	����

�����	6������ ����8��

System Safety
A planned, disciplined, and systematic approach to
preventing or reducing accidents throughout the life
cycle of a system.

‘‘Organized common sense ’’ (Mueller, 1968)

Primary concern is the management of hazards:

Hazard
identification
evaluation
elimination
control

through
analysis
design
management

MIL−STD−882

c �������������	�����

�����	6������ ����8��System Safety (2)
Hazard analysis and control is a continuous, iterative process
throughout system development and use.

development
Conceptual Design Development Operations

Operational feedback

Change analysis

Verification

Hazard resolution

Hazard identification

Hazard resolution precedence:

1. Eliminate the hazard
2. Prevent or minimize the occurrence of the hazard
3. Control the hazard if it occurs.
4. Minimize damage.

Management

c �������������	�����

�����	6������ ����8��

System Safety Engineering

Emphasizes building in safety rather than adding it on to
a completed design.

Looks at systems as a whole, not just components

Takes a larger view of hazards than just failures.

Emphasizes hazard analysis and design to eliminate
or control hazards.

Emphasizes qualitative rather than quantitative approaches.

c ���������2���	�(��$�:���%

3"��5���� �	69����� 0���! �Terminology

Accident: An undesired and unplanned (but not necessarily
unexpected) event that results in (at least) a specified
level of loss.

Incident: An event that involves no loss (or only minor loss)
but with the potential for loss under different
circumstances.

Hazard: A state or set of conditions that, together with other
conditions in the environment, will lead to an accident
(loss event).

Note that a hazard is NOT equal to a failure.

‘‘Distinguishing hazards from failures is implicit in
understanding the difference between safety and
reliability engineering.

C.O Miller

Hazard Level: A combination of severity (worst potential damage
in case of an accident) and likelihood of occurence of the hazard.

Risk: The hazard level combined with the likelihood of the hazard
leading to an accident plus exposure (or duration) of the hazard.

RISK

HAZARD LEVEL

Hazard Likelihood of Hazard Likelihood of hazard
severity hazard occurring exposure leading to an accident

Safety: Freedom from accidents or losses.

SAFE

Increasing level
No loss of loss

c �������������	����)

3"��5���� �	69����� 0���! �

Hazard analysis affects, and in turn, is affected by all aspects of the
development process.

Operations Training

Test

QA Hazard analysis

Maintenance

Management

Design

Hazard Analysis

Hazard analysis is the heart of any system safety program.

Used for:

Developing requirements and design constraints

Validating requirements and design for safety

Preparing operational procedures and instructions

Test planning

Management planning

Serves as:

A framework for ensuing steps

c �������������	����'

3"��5���� �	69����� 0���! �

A checklist to ensure management and technical responsibilities
for safety are accomplished.

c �������������	����*

3"��5���� �	69����� 0���! �

"Types" (Stages) of Hazard Analysis

Preliminary Hazard Analysis (PHA)

Identify, assess, and prioritize hazards

Identify high−level safety design constraints

System Hazard Analysis (SHA)

Examine subsystem interfaces to evaluate safety
of system working as a whole

Refine design constraints and trace to individual
components (including operators)

�������������	��$�+

3"��5���� �	69����� 0���! �

"Types" (Stages) of Hazard Analysis (2)

Subsystem Hazard Analysis (SSHA)

Determine how subsystem design and behavior can
contribute to system hazards.

Evaluate subsystem design for compliance with safety
constraints.

Change and Operations Analysis

Evaluate all changes for potential to contribute to hazards

c

Analyze operational experience

c �������������	��$-�

. 3"��5���� �	69����� 0���! �
.

Preliminary Hazard Analysis

1. Identify system hazards

2. Translate system hazards into high−level
system safety design constraints.

3. Assess hazards if required to do so.

4. Establish the hazard log.

.
.

c �������������	��$�

3"��5���� �	69����� 0���! �

System Hazards for Automated Train Doors

Train starts with door open.

Door opens while train is in motion.

Door opens while improperly aligned with station platform.

Door closes while someone is in doorway

Door that closes on an obstruction does not reopen or reopened
door does not reclose.

Doors cannot be opened for emergency evacuation.

c �������������	��$��

System Hazards for Air Traffic Control
Controlled aircraft violate minimum separation standards (NMAC).

Airborne controlled aircraft enters an unsafe atmospheric region.

Controlled airborne aircraft enters restricted airspace without
authorization.

Controlled airborne aircraft gets too close to a fixed obstable
other than a safe point of touchdown on assigned runway (CFIT)

Controlled airborne aircraft and an intruder in controlled airspace
violate minimum separation.

Controlled aircraft operates outside its performance envelope.

Aircraft on ground comes too close to moving objects or collides
with stationary objects or leaves the paved area.

Aircraft enters a runway for which it does not have clearance.

Controlled aircraft executes an extreme maneuver within its
performance envelope.

Loss of aircraft control.

3"��5���� �	69����� 0���! �

c �������������	��$��

3"��5���� �	69����� 0���! �

Exercise: Identify the system hazards for this cruise−control system

The cruise control system operates only when the engine is running.
When the driver turns the system on, the speed at which the car is
traveling at that instant is maintained. The system monitors the car’s
speed by sensing the rate at which the wheels are turning, and it
maintains desired speed by controlling the throttle position. After the
system has been turned on, the driver may tell it to start increasing
speed, wait a period of time, and then tell it to stop increasing speed.
Throughout the time period, the system will increase the speed at a
fixed rate, and then will maintain the final speed reached.

The driver may turn off the system at any time. The system will turn
off if it senses that the accelerator has been depressed far enough to
override the throttle control. If the system is on and senses that the
brake has been depressed, it will cease maintaining speed but will not
turn off. The driver may tell the system to resume speed, whereupon
it will return to the speed it was maintaining before braking and resume
maintenance of that speed.

c �������������	��$�$

3"��5���� �	69����� 0���! �

Hazard Identification

Use historical safety experience, lessons learned, trouble reports,
hazard analyses, and accident and incident files.

Look at published lists, checklists, standards, and codes of practice.

Examine basic energy sources, flows, high−energy items, hazardous
materials (fuels, propellants, lasers, explosives, toxic substances,
and pressure systems).

Look at potential interface problems such as material incompatibilties,
possibilities for inadvertent activation, contamination, and adverse
environmental scenarios.

Review mission and basic performance requirements including
environments in which operations will take place. Look at all
possible system uses, all modes of operation, all possible
environments, and all times during operation.

c �������������	��$�%

3"��5���� �	69����� 0���! �

Hazard Identification (2)

Examine human−machine interface.

Look at transition phases, nonroutine operating modes, system
changes, changes in technical and social environment, and
changes between modes of operation.

Use scientific investigation of physical, chemical, and other
properties of system.

Think through entire process, step by step, anticipating what might
go wrong, how to prepare for it, and what to do if the worst happens.

c �������������	�($�)�1	$�'

3&��5���� �	6������ 02��! �

Hazards must be translated into design constraints.

HAZARD DESIGN CRITERION

Train starts with door open.
any door open.
Train must not be capable of moving with

Door opens while train is in motion.
motion.
Doors must remain closed while train is in

with station platform.
Door opens while improperly aligned Door must be capable of opening only after

train is stopped and properly aligned with
platform unless emergency exists (see below).

doorway.
Door closes while someone is in Door areas must be clear before door

closing begins.

Door that closes on an obstruction
does not reopen or reopened door
does not reclose. reclose.

removal of obstruction and then automatically
An obstructed door must reopen to permit

Doors cannot be opened for
emergency evacuation.

emergency evacuation.
anywhere when the train is stopped for
Means must be provided to open doors

Example PHA for ATC Approach Control

HAZARDS REQUIREMENTS/CONSTRAINTS

1. A pair of controlled aircraft
violate minimum separation
standards.

1b. ATC shall provide conflict alerts.

maintain safe separation between
aircraft.

1a. ATC shall provide advisories that

areas, thunderstorm cells)
(icing conditions, windshear

unsafe atmospheric region.
2. A controlled aircraft enters an

direct aircraft into areas with unsafe
atmospheric conditions.

2a. ATC must not issue advisories that

2b. ATC shall provide weather advisories
and alerts to flight crews.

2c. ATC shall warn aircraft that enter an
unsafe atmospheric region.

c �������������	��$�*�:�%�+

3"��5���� �	69����� 0���! �

Example PHA for ATC Approach Control (2)

to avoid intruders if at all possible.
5.

HAZARDS REQUIREMENTS/CONSTRAINTS

3.
restricted airspace without
authorization.

4.
close to a fixed obstacle or
terrain other than a safe point of
touchdown on assigned runway.

5.
intruder in controlled airspace
violate minimum separation
standards.

3a.
direct an aircraft into restricted airspace
unless avoiding a greater hazard.

3b.
aircraft to prevent their incursion into
restricted airspace.

4.
maintain safe separation between
aircraft and terrain or physical obstacles.

ATC shall provide alerts and advisories

A controlled aircraft enters

A controlled aircraft gets too

A controlled aircraft and an

ATC must not issue advisories that

ATC shall provide timely warnings to

ATC shall provide advisories that

HAZARDS

6. Loss of controlled flight or loss
of airframe integrity.

REQUIREMENTS/CONSTRAINTS

safety of flight.

the pilot or aircraft cannot fly or that
6c. ATC must not issue advisories that

6b. ATC advisories must not distract
or disrupt the crew from maintaining

degrade the continued safe flight of
the aircraft.

it at the wrong place.

that cause an aircraft to fall below

6a. ATC must not issue advisories outside
the safe performance envelope of the
aircraft.

6d. ATC must not provide advisories

the standard glidepath or intersect

