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The Problem 

The first step in solving any problem is to understand it. 
We often propose solutions to problems that we do not 
understand and then are surprised when the solutions 
fail to have the anticipated effect. 
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Types of Accidents 

Component Failure Accidents 

Single or multiple component failures 

Usually assume random failure 

System Accidents 

Arise in interactions among components 
No components may have "failed" 
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Caused by interactive complexity and tight coupling 

Exacerbated by the introduction of computers. 

. . 
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Interactive Complexity 

Complexity is a moving target 

The underlying factor is intellectual manageability 

1.  A "simple" system has a small number of unknowns in its 
interactions within the system and with its environment. 

2.  A system is intellectually unmanageable when the level of 
interactions reaches the point where
 they cannot be thoroughly 

planned 

understood 

anticipated 

guarded against 

3.  Introducing new technology introduces unknowns and 
even "unk−unks." 
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Computers and Risk 

We seem not to trust one another as much as would be 
desirable. In lieu of trusting each other, are we putting 
too much trust in our technology? . . . Perhaps we are 
not educating our children sufficiently well to understand 
the reasonable uses and limits of technology. 

Thomas B. Sheridan 
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The Computer Revolution 

General Special 
Purpose + Software = Purpose 
Machine Machine 

Software is simply the design of a machine abstracted 
from its physical realization. 

Machines that were physically impossible or impractical 
to build become feasible. 

Design can be changed without retooling or manufacturing. 

Can concentrate on steps to be achieved without worrying 
about how steps will be realized physically. 

Advantages = Disadvantages 

Computer so powerful and so useful because it has 
eliminated many of physical constraints of previous 
machines. 

Both its blessing and its curse: 

+  No longer have to worry about physical 
realization of our designs. 
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− No longer have physical laws that limit 
the complexity of our designs. 
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The Curse of Flexibility 

Software is the resting place of afterthoughts 

No physical constraints 

To enforce discipline on design, construction 
and modification 

To control complexity 

So flexible that start working with it before fully 
understanding what need to do 

‘‘And they looked upon the software and saw that it 
was good, but they just had to add one other feature ...’’ 
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Software Myths 

1.  Good software engineering is the same for all 
types of software. 

2. Software is easy to change. 

3. Software errors are simply ‘‘teething’’ problems. 

4. Reusing software will increase
safety. 

5.  Testing or ‘‘proving’’ software
 correct will remove 
all the errors. 
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Abstraction from Physical Design 

Software engineers are doing system design 

Expert Autopilot 
Autopilot 

Engineer 
Design ofSoftwareSystem 

Requirements 

Most errors in operational software related to requirements 

Completeness a particular problem 

Software "failure modes" are different 

Usually does exactly what you tell it to do 

Problems occur from operation, not lack of operation 

Usually doing exactly what software engineers wanted 
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Typical Fault Trees 

...... 

Test software0 

MitigationProbabilityHazard Cause 

Software Error 

(error) 
fails 

Software 

Hazard 
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Black Box Testing 

Test data derived solely from specification (i.e.,  
without knowledge of internal structure of program). 

Need to test every possible input 

x := y * 2 (since black box, only way to be sure to detect 
this is to try every input condition) 

Valid inputs up to max size of machine (not astronomical) 

Also all invalid input (e.g., testing Ada compiler requires all 
valid and invalid programs) 

If program has ‘‘memory’’, need to test all possible unique 
valid and invalid sequences. 

So for most programs, exhaustive in
put testing 
is impractical. 
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White Box Testing 

Derive test data by examining program’s logic. 

Exhaustic path testing: Two flaws 

1) Number of unique paths through program is astronomical. 

20x loop 20 19 18 14
5 + 5 + 5 + ... + 5 = 10 

= 100 trillion 

If could develop/execute/verify one 
test case every five minutes = 1 billion years 

If had magic test processor that could 
develop/execute/evaluate one test per 
msec = 3170 years. 

(control−flow graph) 
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White Box Testing (con’t) 

2) Could test every path and program may still have errors! 

Does not guarantee program matches specification, 
i.e., wrong program. 

Missing paths: would not detect absence of necessary paths 

Could still have data−sensitivity errors. 

e.g. program has to compare two numbers for convergence 

if (A − B) < epsilon ... 

is wrong because should compare to abs(A − B) 

Detection of this error dependent on values used for A 
and B and would not necessarily be found by executing 
every path through program. 
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Mathematical Modeling Difficulties 

Large number of states and lack of regularity 

Lack of physical continuity: requires discrete rather than 
continuous math 

Specifications and proofs using logic: 

May be same size or larger than code 

More difficult to construct than code 

Harder to understand than code 

Therefore, as difficult and error−prone as code itself 

Have not found good ways to measure software quality 
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A Possible Solution 

Enforce discipline and control complexity 

Limits have changed from structural integrity and physical 
constraints of materials to intellectual limits 

Improve communication among engineers 

Build safety in by enforcing constraints on behavior 

Example (batch reactor) 
System safety constraint: 

Water must be flowing into reflux condenser whenever 
catalyst is added to reactor. 

Software safety constraint: 
Software must always open water valve before catalyst valve 
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Stages in Process Control System Evolution 

1. Mechanical systems 

Direct sensory perception of process 

Displays are directly connected to process and thus 
are physical extensions of it. 

Design decisions highly constrained by: 

Available space 

c 

Physics of underlying process 

Limited possibility of action at a distance 
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Stages in Process Control System Evolution (2) 

2. Electromechanical systems 

Capability for action at a distance 

Need to provide an image of process to operators 

Need to provide feedback on actions taken. 

Relaxed constraints on designers but created new 
possibilities for designer and operator error. 
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Stages in Process Control System Evolution (3) 

3. Computer−based systems 

Allow multiplexing of controls and displays. 

Relaxes even more constraints and introduces 
more possibility for error. 

But constraints shaped environment in ways that efficiently 
transmitted valuable process information and supported 
cognitive processes of operators. 

Finding it hard to capture and present these qualities 
in new systems. 
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The Problem to be Solved 

The primary safety problem in computer−based systems 

is the lack of appropriate constraints on design. 

The job of the system safety engineer is to identify the 

design constraints necessary to maintain safety and to 

ensure the system and software design enforces them. 

. 
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Safety Reliability 

Accidents in high−tech systems are changing 
their nature, and we must change our approaches 
to safety accordingly. 

. . 
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Confusing Safety and Reliability 

From an FAA report on ATC software architectures: 

"The FAA’s en route automation meets the criteria for 
consideration as a safety−critical system. Therefore, 
en route automation systems must posses ultra−high 
reliability." 

From a blue ribbon panel report on the V−22 Osprey problems: 

"Safety [software]: ... 
Recommendation: Improve reliability, then verify by 
extensive test/fix/test in challenging environments." 
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Does Software Fail? 

Failure: Nonperformance or inability of system or component 
to perform its intended function for a specified time 
under specified environmental conditions. 

A basic abnormal occurrence, e.g., 

burned out bearing in a pump 

relay not closing properly when voltage applied 

Fault: Higher−order events, e.g., 
relay closes at wrong time due to improper functioning 
of an upstream component. 

All failures are faults but not all faults are failures. 
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Reliability Engineering Approach to Safety 

Reliability: The probability an item will perform its required 
function in the specified manner over a given time 
period and under specified or assumed conditions. 

(Note: Most software−related accidents result from errors  
in specified requirements or function and deviations  
from assumed conditions.) 

Concerned primarily with failures and failure rate reduction 

Parallel redundancy 
Standby sparing 
Safety factors and margins 
Derating 
Screening 
Timed replacements 
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Reliability Engineering Approach to Safety (2) 

Assumes accidents are the result of component failure. 

Techniques exist to increase component reliability 
Failure rates in hardware are quantifiable. 

Omits important factors in accidents. 
May even decrease safety. 

Many accidents occur without any component ‘‘failure’’ 

e.g.  Accidents may be caused by equipment operation 
outside parameters and time limits upon which 
reliability analyses are based. 

Or may be caused by interactions of components 
all operating according to specification 

Highly reliable components are not necessarily safe. 

�������������	��
�) 

. ��/ ��� 0����21� "��� ! ����! � ! � 0 

c �������������	��
�' 

. ��/ ��� 0����21� "��� ! ����! � ! � 0 

Reliability Approach to Software Safety 

Standard engineering techniques of 

Preventing failures through redundancy 

Increasing component reliability 

Reuse of designs and learning from experience 

won’t work for software and system accidents. 
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Preventing Failures through Redundancy 

Redundancy simply makes complexity worse. 

NASA experimental aircraft example 

Any solutions that involve adding complexity will not 
not solve problems that stem from intellectual 
unmanageability and interactive complexity. 

Majority of software−related accidents caused by 
requirements errors. 

Does not work for software even if accident is caused by 
a software implementation error. 

Software errors not caused by random wearout failures. 
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Increasing Software Reliability (Integrity) 

Appearing in many new international standards for software 
safety (e.g., 61508) 

"Safety integrity level" 

Sometimes give reliability number (e.g., 10
−9

) 

Can software reliability be measured? What does it even mean? 

Safety involves more than simply getting software "correct" 

Example: altitude switch 

1.  Signal safety−increasing => 
Require any of three altimeters report below threshold 

2. Signal safety−reducing => 

c 

Require all three altimeters to report below threshold 
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Software Component Reuse 

One of most common factors in software−related accidents 

Software contains assumptions about its environment. 

Accidents occur when these assumptions are incorrect. 

Therac−25 

Ariane 5 

U.K. ATC software 

Most likely to change the features embedded in or 
controlled by the software. 

COTS makes safety analysis more difficult. 

Safety and reliability are different qualities! 
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Software−Related Accidents 

Are usually caused by flawed requirements 

Incomplete or wrong assumptions about operation of 
controlled system or required operation of computer. 

Unhandled controlled−system states and environmental 
conditions. 

Merely trying to get the software ‘‘correct’’ or to make it 
reliable will not make it safer under these conditions. 
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Software−Related Accidents (con’t.) 

Software may be highly reliable and ‘‘correct’’ and still 
be unsafe. 

Correctly implements requirements but specified 
behavior unsafe from a system perspective. 

Requirements do not specify some particular behavior 
required for system safety (incomplete) 

Software has unintended (and unsafe) behavior beyond 
what is specified in requirements. 
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A Little Systems Theory 

Systems theory can act as an alternative 
to reliability theory for dealing with safety. 
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Ways to Cope with Complexity 

Analytic Reduction (Descartes) 

Divide system into distinct parts for analysis purposes. 

Examine the parts separately. 

Three important assumptions: 

1. The division into parts will not distort the 
phenomenon being studied. 

2. Components are the same when examined singly 
as when playing their part in the whole. 

3. Principles governing the assembling of the components 
into the whole are themselves straightforward. 
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Ways to Cope with Complexity (con’t.) 

Statistics 

Treat as a structureless mass with interchangeable parts. 

Use Law of Large Numbers to describe behavior in 
terms of averages. 

Assumes components sufficiently regular and random 
in their behavior that they can be studied statistically. 
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What about software? 

Too complex for complete analysis: 

Separation into non−interacting subsystems distorts 
the results. 

The most important properties are emergent. 

Too organized for statistics 

Too much underlying structure that distorts 
the statistics. 
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Systems Theory 

Developed for biology (Bertalanffly) and cybernetics (Norbert Weiner) 

For systems too complex for complete analysis 

Separation into non−interacting subsystems distorts results 

Most important properties are emergent. 

and too organized for statistical analysis 

Concentrates on analysis and design of whole as distinct from parts 

(basis of system engineering) 

Some properties can only be treated adequately in their entirety, 
taking into account all social and technical aspects. 

These properties derive from relationships between the parts of 
systems −− how they interact and fit together. 
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Systems Theory (2) 

Two pairs of ideas: 

1. Emergence and hierarchy 

Levels of organization, each more complex than one below. 

Levels characterized by emergent properties 

Irreducible 

Represent constraints upon the degree of freedom of 
components a lower level. 

Safety is an emergent system property 

It is NOT a component property. 

It can only be analyzed in the context of the whole. 
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Systems Theory (3) 

2. Communication and control 

Hierarchies characterized by control processes working at 
the interfaces between levels. 

A control action imposes constraints upon the activity 
at one level of a hierarchy. 

Open systems are viewed as interrelated components kept 
in a state of dynamic equilibrium by feedback loops of 
information and control. 

Control in open systems implies need for communication 
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An Overview of The Approach 

Engineers should recognize that reducing risk is not an 
impossible task, even under financial and time constraints. 
All it takes in many cases is a different perspective on the 
design problem. 

Mike Martin and Roland Schinzinger 
Ethics in Engineering 
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System Safety 
A planned, disciplined, and systematic approach to 
preventing or reducing accidents throughout the life 
cycle of a system. 

‘‘Organized common sense ’’ (Mueller, 1968) 

Primary concern is the management of hazards: 

Hazard 
identification 
evaluation 
elimination 
control 

through 
analysis 
design 
management 

MIL−STD−882 
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Hazard analysis and control is a continuous, iterative process 
throughout system development and use. 

development 
Conceptual Design Development Operations 

Operational feedback 

Change analysis 

Verification 

Hazard resolution 

Hazard identification 

Hazard resolution precedence: 

1. Eliminate the hazard 
2. Prevent or minimize the occurrence of the hazard 
3. Control the hazard if it occurs. 
4. Minimize damage. 

Management 
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System Safety Engineering 

Emphasizes building in safety rather than adding it on to 
a completed design. 

Looks at systems as a whole, not just components 

Takes a larger view of hazards than just failures. 

Emphasizes hazard analysis and design to eliminate 
or control hazards. 

Emphasizes qualitative rather than quantitative approaches. 
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Accident: An undesired and unplanned (but not necessarily 
unexpected) event that results in (at least) a specified 
level of loss. 

Incident: An event that involves no loss (or only minor loss) 
but with the potential for loss under different 
circumstances. 

Hazard: A state or set of conditions that, together with other 
conditions in the environment, will lead to an accident 
(loss event). 

Note that a hazard is NOT equal to a failure. 

‘‘Distinguishing hazards from failures is implicit in 
understanding the difference between safety and 
reliability engineering. 

C.O Miller 

Hazard Level: A combination of severity (worst potential damage 
in case of an accident) and likelihood of occurence of the hazard. 

Risk: The hazard level combined with the likelihood of the hazard 
leading to an accident plus exposure (or duration) of the hazard. 

RISK 

HAZARD LEVEL 

Hazard Likelihood of Hazard Likelihood of hazard 
severity hazard occurring exposure leading to an accident 

Safety: Freedom from accidents or losses. 

SAFE 

Increasing level 
No loss of loss 
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Hazard analysis affects, and in turn, is affected by all aspects of the 
development process. 

Operations Training 

Test 

QA Hazard analysis 

Maintenance 

Management 

Design 

Hazard Analysis 

Hazard analysis is the heart of any system safety program. 

Used for: 

Developing requirements and design constraints 

Validating requirements and design for safety 

Preparing operational procedures and instructions 

Test planning 

Management planning 

Serves as: 

A framework for ensuing steps 
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A checklist to ensure management and technical responsibilities 
for safety are accomplished. 
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"Types" (Stages) of Hazard Analysis 

Preliminary Hazard Analysis (PHA) 

Identify, assess, and prioritize hazards 

Identify high−level safety design constraints 

System Hazard Analysis (SHA) 

Examine subsystem interfaces to evaluate safety 
of system working as a whole 

Refine design constraints and trace to individual 
components (including operators) 
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"Types" (Stages) of Hazard Analysis (2) 

Subsystem Hazard Analysis (SSHA) 

Determine how subsystem design and behavior can 
contribute to system hazards. 

Evaluate subsystem design for compliance with safety 
constraints. 

Change and Operations Analysis 

Evaluate all changes for potential to contribute to hazards 

c 

Analyze operational experience 
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Preliminary Hazard Analysis 

1. Identify system hazards 

2.  Translate system hazards into high−level 
system safety design constraints. 

3. Assess hazards if required to do so. 

4. Establish the hazard log. 

. 
. 
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System Hazards for Automated Train Doors 

Train starts with door open. 

Door opens while train is in motion. 

Door opens while improperly aligned with station platform. 

Door closes while someone is in doorway 

Door that closes on an obstruction does not reopen or reopened 
door does not reclose. 

Doors cannot be opened for emergency evacuation. 
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System Hazards for Air Traffic Control 
Controlled aircraft violate minimum separation standards (NMAC). 

Airborne controlled aircraft enters an unsafe atmospheric region. 

Controlled airborne aircraft enters restricted airspace without 
authorization. 

Controlled airborne aircraft gets too close to a fixed obstable 
other than a safe point of touchdown on assigned runway (CFIT) 

Controlled airborne aircraft and an intruder in controlled airspace 
violate minimum separation. 

Controlled aircraft operates outside its performance envelope. 

Aircraft on ground comes too close to moving objects or collides 
with stationary objects or leaves the paved area. 

Aircraft enters a runway for which it does not have clearance. 

Controlled aircraft executes an extreme maneuver within its 
performance envelope. 

Loss of aircraft control. 
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Exercise: Identify the system hazards for this cruise−control system 

The cruise control system operates only when the engine is running. 
When the driver turns the system on, the speed at which the car is 
traveling at that instant is maintained. The system monitors the car’s 
speed by sensing the rate at which the wheels are turning, and it 
maintains desired speed by controlling the throttle position. After the 
system has been turned on, the driver may tell it to start increasing 
speed, wait a period of time, and then tell it to stop increasing speed. 
Throughout the time period, the system will increase the speed at a 
fixed rate, and then will maintain the final speed reached. 

The driver may turn off the system at any time. The system will turn 
off if it senses that the accelerator has been depressed far enough to 
override the throttle control. If the system is on and senses that the 
brake has been depressed, it will cease maintaining speed but will not 
turn off. The driver may tell the system to resume speed, whereupon 
it will return to the speed it was maintaining before braking and resume 
maintenance of that speed. 



c �������������	��$�$ 

3"��5���� �	69����� 0���! �

Hazard Identification 

Use historical safety experience, lessons learned, trouble reports, 
hazard analyses, and accident and incident files. 

Look at published lists, checklists, standards, and codes of practice. 

Examine basic energy sources, flows, high−energy items, hazardous 
materials (fuels, propellants, lasers, explosives, toxic substances, 
and pressure systems). 

Look at potential interface problems such as material incompatibilties, 
possibilities for inadvertent activation, contamination, and adverse 
environmental scenarios. 

Review mission and basic performance requirements including 
environments in which operations will take place. Look at all 
possible system uses, all modes of operation, all possible 
environments, and all times during operation. 
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Hazard Identification (2) 

Examine human−machine interface. 

Look at transition phases, nonroutine operating modes, system  
changes, changes in technical and social environment, and  
changes between modes of operation. 

Use scientific investigation of physical, chemical, and other 
properties of system. 

Think through entire process, step by step, anticipating what might 
go wrong, how to prepare for it, and what to do if the worst happens. 
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Hazards must be translated into design constraints. 

HAZARD DESIGN CRITERION 

Train starts with door open. 
any door open. 
Train must not be capable of moving with 

Door opens while train is in motion. 
motion. 
Doors must remain closed while train is in 

with station platform. 
Door opens while improperly aligned Door must be capable of opening only after 

train is stopped and properly aligned with 
platform unless emergency exists (see below). 

doorway. 
Door closes while someone is in Door areas must be clear before door 

closing begins. 

Door that closes on an obstruction 
does not reopen or reopened door 
does not reclose. reclose. 

removal of obstruction and then automatically 
An obstructed door must reopen to permit 

Doors cannot be opened for 
emergency evacuation. 

emergency evacuation. 
anywhere when the train is stopped for 
Means must be provided to open doors 

Example PHA for ATC Approach Control 

HAZARDS REQUIREMENTS/CONSTRAINTS 

1. A pair of controlled aircraft 
violate minimum separation 
standards. 

1b. ATC shall provide conflict alerts. 

maintain safe separation between 
aircraft. 

1a. ATC shall provide advisories that 

areas, thunderstorm cells) 
(icing conditions, windshear 

unsafe atmospheric region. 
2. A controlled aircraft enters an 

direct aircraft into areas with unsafe 
atmospheric conditions. 

2a. ATC must not issue advisories that 

2b. ATC shall provide weather advisories 
and alerts to flight crews. 

2c. ATC shall warn aircraft that enter an 
unsafe atmospheric region. 
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Example PHA for ATC Approach Control (2) 

to avoid intruders if at all possible. 
5. 

HAZARDS REQUIREMENTS/CONSTRAINTS 

3. 
restricted airspace without 
authorization. 

4. 
close to a fixed obstacle or 
terrain other than a safe point of 
touchdown on assigned runway. 

5. 
intruder in controlled airspace 
violate minimum separation 
standards. 

3a. 
direct an aircraft into restricted airspace 
unless avoiding a greater hazard. 

3b. 
aircraft to prevent their incursion into 
restricted airspace. 

4. 
maintain safe separation between 
aircraft and terrain or physical obstacles. 

ATC shall provide alerts and advisories 

A controlled aircraft enters 

A controlled aircraft gets too 

A controlled aircraft and an 

ATC must not issue advisories that 

ATC shall provide timely warnings to 

ATC shall provide advisories that 

HAZARDS 

6. Loss of controlled flight or loss 
of airframe integrity. 

REQUIREMENTS/CONSTRAINTS 

safety of flight. 

the pilot or aircraft cannot fly or that 
6c. ATC must not issue advisories that 

6b. ATC advisories must not distract 
or disrupt the crew from maintaining 

degrade the continued safe flight of 
the aircraft. 

it at the wrong place. 

that cause an aircraft to fall below 

6a. ATC must not issue advisories outside 
the safe performance envelope of the 
aircraft. 

6d. ATC must not provide advisories 

the standard glidepath or intersect 


