A Safety and Human-Centered Approach to
Developing New Air Traffic Management Tools*

Nancy Leveson, Maxime de Villepin, Mirna Daouk,
John Bellingham, Jayakanth Srinivasan, Natasha Neogi, Ed Bachelder

Aeronautics and Astronautics Department
Massachusetts Institute of Technology

Nadine Pilon and Geraldine Flynn

Eurocontrol Experimental Centre

Abstract

This paper describes a safety-driven, human-centered process for designing and integrating new
components into an airspace management system. The general design of a conflict detection
function currently being evaluated by Eurocontrol is being used as the testbed for the methodol-
ogy, although the details differ somewhat. The development and evaluation approach proposed
is based on the principle that critical properties must be designed into a system from the start.
As a result, our methodology integrates safety analysis, functional decomposition and alloca-
tion, and human factors from the very beginning of the system development process. It also
emphasizes using both formal and informal modeling to accumulate the information needed to
make tradeoff decisions and ensure that desired system qualities are satisfied early in the design
process when changes are easier and less costly. The formal modeling language was designed
with readability as a primary criterion and therefore the models can act as an unambiguous
communication medium among the developers and implementers. The methodology is sup-
ported by a new specification structuring approach, called Intent Specifications, that supports
traceability and documentation of design rationale as the development process proceeds.

Introduction

The current Air Traffic Control systems have proven over time to be very safe. This high
safety level can be attributed to a variety of factors, all of which are important: a high level
of professionalism in the ATC work force, designed-in redundancy and mutual checking, large
error margins (e.g., in the separation criteria for aircraft), and loose coupling (so that errors
are contained and do not propagate rapidly throughout the various components). The limits of
such a conservative system, however, along with growing demand for increased system capacity
are leading to the introduction of new automation.

*This paper will be presented at ATM 2001 in Albuquerque, December 2001.
tThis work was partially supported by NSF ITR Grant CCR-0085829 and NASA Ames IS (Human-Centered
Computing) Grant NCC2-1223.



Automation has the potential to overcome human perceptual and cognitive limits and to
reduce or eliminate specific common human errors in the current system, such as those that
arise in human voice communication. At the same time, computer automation and assistance
has led to new types of human errors [SW95]. The problems inherent in upgrading a national
or international airspace management system while maintaining high levels of safety are further
exacerbated by the fact that a completely new system is not being designed at one time but
changes will be introduced in stages. There needs to be a way to add tools and new technology
and to evolve functionality over time without compromising the safety of the existing system
and infrastructure.

The Eurocontrol Organization has an additional problem not faced by a country like the
U.S. in that the sovereign countries of Europe will be upgrading and changing their facilities at
different rates and in different ways. This type of asynchronous evolution of system components
has been identified by Leplat [Lep87] as one of the primary contributors to risk and accidents.

No engineering projects of this level of complexity have ever been attempted and the suc-
cessful completion will require new approaches and methodologies that stretch the limits of
what we can currently achieve, particularly in terms of system safety and cognitive engineering.

Safety and human factors are often considered at too late a stage in system development to
have adequate impact on the system design. It has been estimated that 70-90% of the decisions
relevant to safety are made in the early conceptual design stages of a project [Joh80]. Relying
on after-the-fact safety assessment emphasizes creating an assessment model that proves the
completed design is safe rather than constructing a design that eliminates or mitigates hazards.
Too often, after-the-fact safety assessment leads to adjusting the model until it provides the
desired answer rather than to improving the design. In the same way, when the human role in the
system is considered after the basic automation is designed, the choices to ensure usability and
safety are limited to interface design, training, and human adaptation to the newly constructed
tools. The latter approach has been labeled “technology-centered design” and has been accused
of leading to “clumsy automation” [WCK91] and to new types of accidents in high-tech systems,
such as new fly-by-wire aircraft [SW95]. Most of these accidents have been blamed on pilot
error but more accurately can be described as the result of flaws in the overall system design.

While there have been calls in the literature for safety-driven design (e.g., [Lev95]) and
human-centered design (e.g., [Bil97, HKC97] and a few attempts to define such a methodology
(e.g., [KED97, Jac98, Jac99]), the two goals (safety and human-centered design) are usually
separated. This paper describes an integrated safety and human-centered approach to devel-
oping new air traffic control tools and designs. We first outline the methodology and show
how it can be applied to the development of a new ATC conflict detection function. Then we
describe a new specification structuring technique called Intent Specifications that supports the
methodology.

1 Safety and Human-Centered Design

We explain the methodology using an example medium term (0 to 60 minutes) conflict detection
function (MTCD-X) that is similar but not identical to the MTCD function currently being
developed and evaluated by Eurocontrol. We have changed the function slightly in order to
demonstrate and experiment with features that are not part of MTCD.

Figure 1 shows the overall structure of the methodology. The steps in the middle column
represent the general system engineering activities. The right column shows special safety
engineering activities and those in the left column represent human factors engineering. This



Human Factors

Preliminary Task Analysis

Operator Goals and
Responsibilities

Task Allocation Principles

Operator Task and
Training Requirements

Operator Task Analysis

/|

System
Engineering

System Safety

Identify system goals and
environmental assumptions

reliminary Hazard Analysis

N

'

Hazard List

Generate system and
operational requirements
and design constraints

Fault Tree Analysis

< Safety Requirements and
Constraints

!

System Hazard Analysis

Design and allocate tasks

and specify information flow

Completeness/Consistency
Analysis

Simulation and Animation

!

State Machine Hazard

Simulation/Experiments
Usability Analysis

Other Human Factors
Evaluation

Model and evaluate operator

tasks and component
blackbox behavior
(systems analysis)

Analysis
Deviation Analysis (FMECA)

Mode Confusion Analysis

(workload, situation
awareness, etc.)

'

Human Error Analysis

Design and construct
components, controls and
displays, training materials,

and operator manuals

Timing and other analyses

Operational Analysis
Performance Monitoring .
Periodic audits

Change Analysis

!

Verification

'

Field testing, installation,
and training

'

Operations

Safety Verification

Safety Testing

~—™ Software FTA

Operational Analysis
Change Analysis

Incident and accident analysis
Periodic audits

Performance Monitoring

Figure 1: A Human-Centered, Safety-Driven Design Process



figure is notional only—the system engineering procedures (shown in the middle) integrate
the human factors and safety analysis throughout development and operation and also involve
more iteration and feedback than shown. In addition, some of the analysis procedures in the
right column, such as mode confusion and human-error analyses, actually represent an overlap
between safety and human factors engineering and their placement in the right column is
arbitrary.

1.1 Identifying Goals and Assumptions

The process starts with identifying the high-level functional goals for the new system or com-
ponent(s) and the assumptions and constraints on the new ATM function or component design
arising from the environment. For example, two high-level goals for MTCD-X are:

G1: To provide a conflict detection capability to air traffic controllers for all flights in the area
of operation.

G2: To help keep the workload of the controllers within acceptable and safe limits despite an
expected increase in traffic.

Another early step is to describe the environment along with any assumptions and con-
straints about it that must be considered in the design of the new ATC function. Although
some changes might be made to the existing environment when a new function or subsystem is
developed, for the most part the environment will be fixed and the successful and safe devel-
opment of the new tool or process will depend on how well it fits within the existing system.
We consider any new or altered operator tasks related to the new function or component as
“within” the system because such tasks must be designed together with the other new parts of
the system.

For our example, the system consists of the conflict detection function itself (MTCD-X),
the planning and tactical controllers (PC and TC, respectively) for the sector, and the human-
machine interface (HMI) as a blackbox (i.e., the information flow through the HMI). The
system being designed interacts directly with the real-time flight data processing system, the
environment data processing system, and a recording function, and indirectly with various
automated decision aids (such as an arrival sequencing manager and monitoring aids).

Two example assumptions about the interaction of MTCD-X with the real-time flight data
processing system (FDPS) are:

Env-As-FDPS-01: FDPS will provide MTCD-X with system trajectories for all eligible
flights.
Env-As-FDPS-03: FDPS will inform MTDC-X when a flight leaves the area of opera-

tion.

Because we believe the system design must consider human factors and safety from the very
beginning in order to achieve high usability and system safety, the first steps in the methodology
involve a preliminary system hazard analysis (PHA) and a preliminary controller task analysis
(PTA).

1.2 Preliminary Hazard Analysis

The PHA starts from agreed upon system hazards, such as violation of minimum separation
between aircraft or entry of an aircraft into a restricted area, and it identifies system behavior



Controlled aircraft violate
minimum separation

standards
OR
1.0 2.0 | 3.0
The pilot does not PC does not detect conflict
follow ATC advisories

‘ \

! AND

\ 2.1 2.2

PC does not mentally detect PC does not detect
and predict the conflict based MTCD-X conflict info
on the HMI traffic display on HMI display
\
OR
221 ‘ 2.2.2 ‘
PC does not pay attention to HMI does not display
MTCD-X conflict information MTCD-X conflict information
\ \
OR
2211 | 2212 M 2213 2221 2222
PC is busy dealing with PC loses PC is distracted by other Conflict severity .
another conflict concentration displays on HMI classification indicators
\ | set too low
AND :
22111 ‘ 22112
Traffic is congested in Workload imbalance
the area of operation between PC and TC

Figure 2: A Piece of a Fault Tree for Violating Minimum Separation

that could lead to those hazards. Emphasis is placed on identifying potential hazardous behavior
related to the proposed new or changed functionality and new operational requirements and
tasks.

Figure 2 shows a piece of the fault tree for the violation of minimum separation between
controlled aircraft. The fault tree is used to derive requirements and design constraints related
to safety. Each leaf node in the fault tree must either be traced to an operational or training
requirement for the Controller tasks or to an MTCD-X requirement or design constraint (and
thence to the design feature used to eliminate or mitigate it) or must be accepted as a necessary
limitation of the system for those leaf nodes that cannot be eliminated or mitigated. Such
limitations may in turn require changes in the operation or design of the overall ATM system.
Information derived from the fault tree may also be used in the Preliminary Task Analysis (and
vice versa).

The hazard analysis and system engineering processes are iterative and mutually reinforcing.
In the beginning, when few system design decisions have been made, the hazard analysis may be
very general. As the system design emerges, the hazard analysis will become more detailed and
will impact additional design decisions. For example, the need for conflict severity categorization
for MTCD-X was identified in another section of the PHA (not shown here) and leads to a
requirement:

MTCD-X-08: MTCD-X shall support conflict severity categorization.



The box labelled 2.2.2.1 (Conflict severity classification indicators are set too low) will lead to
requirements and design constraints related to conflict severity classification indicators, how
they are set and how they can be changed, the conditions under which conflicts are displayed,
and the need for feedback to the controller about the current value of the conflict severity cate-
gorization indicators. For example, the conflict detection function might include a requirement
to allow the operators to change the conflict severity thresholds. At the same time, there may
be a constraint on the controller tasks and interface design that requires permission before the
conflict categorization indicators can be changed by the controller.

1.3 Preliminary Task Analysis

A Preliminary Task Analysis (PTA) is also performed at this early concept development stage
and interacts closely with the concurrent PHA process. The PTA consists of cognitive engineers,
human factors experts, and operators together specifying the goals and responsibilities of the
users of a new tool or technology, the task allocation principles to be used, and operator task
and training requirements.

For MTCD-X, we started by specifying all of the TC and PC responsibilities, not just those
directly affected by MTCD-X. We included all responsibilities because any safety or usability
analysis will require showing that MTCD-X does not negatively impact any of the controller
activities. For instance, the PC (Planning Controller) is responsible for detecting sector entry
or exit conflicts and formulating resolution plans with the PC of the adjacent sector and the
TC (Tactical Controller) of the current sector. The TC, on the other hand, is responsible for
in-sector tactical conflict detection and for implementing the plans formulated by the PC for
entry or exit conflicts.

The next step in the PTA is to define the task allocation principles to be used in allocating
tasks between the human controllers and the automation. This process uses the results of the
Preliminary Hazard Analysis, previous accidents and incidents, human factors considerations,
controller preferences and inputs, etc. For example, some task allocation principles for conflict
resolution might be:

An automated conflict detection tool will assist the human controller in detecting
conflicts that stretch the limits of human mental processing ability. The human
controller should have final authority as far as the use of the prediction tool, the
need for intervention, and the criticality of the situation. The controller will be
responsible for devising solutions to the conflict.

These principles, together with the PHA and high-level system goals, will be used to write
requirements for the controller tasks, the automated function, and the human-machine interface.
For example, the above PHA, the controller responsibilities, and the task allocation principles
may lead to the following operator requirements:

MIT-OP-R02: The PC shall plan traffic using MTCD-X output, and where a problem
persists shall notify its existence and nature to the TC.

MIT-OP-R03: If incorrect or inconvenient behavior (e.g. high rate of false alarms) is
observed, the controller shall not use the MTCD-X function.

MIT-OP-RO07: The controller shall address conflicts detected by MTCD-X in a criticality-
based order rather than time-based order.



The final step of the PTA is the generation of operator task and training requirements and
constraints.

1.4 Generating Requirements, Constraints, and Preliminary Designs

The system goals and environmental assumptions and constraints along with the results from
the PHA and PTA are then used to generate a complete set of system requirements (includ-
ing functionality, maintenance, management, and interface requirements), operational require-
ments, and design constraints.

Using the system requirements and design constraints as well as the other information that
has been generated to this point, a system design (or alternative system designs) is created
and tasks are allocated to the system components (including the operators) to satisfy the
requirements, task allocation principles, and operational goals. Note that this process will
involve much iteration as the results of analysis, experimentation, review, etc. become available.

1.5 Evaluating the System Design

The next step involves validating the system design and requirements and performing any
tradeoff and evaluation studies that may be required to select from among a set of design
alternatives. Various types of operator task analyses and system hazard analyses play a part
in this process.

The methodology includes using formal models in a language called SpecRL (Specification
Requirements Language) to assist in this evaluation and validation process. Using SpecRL,
designers construct formal, blackbox models of the required component behavior and operator
tasks. The modeling language was designed with readability and reviewability of the models by
various domain experts as a major goal. The models act as a communication medium among
everyone involved and therefore must be easily understandable and unambiguous.

An earlier version of the current modeling language was used to specify the official require-
ments for TCAS II, and one goal of that project was to provide a specification language that
could be read and reviewed by any interested parties with minimal training (less than an hour).
The latest version of the formal modeling/specification language attempts to enhance readabil-
ity and reviewability by reducing even further the semantic distance between the reviewer’s
mental model and the specification.

The blackbox component behavior models are built on an underlying state machine model.
SpecRL blackbox models combine a graphical model of the system and its environment with
tabular descriptions of the legal state changes. Figures 3 and 4 show pieces of our SpecRL
model for MTCD-X. The MTCD-X model could be combined with a model of the airspace and
models of the other system components and executed or analyzed together.

The graphical part of the model (as shown in Figure 3), is drawn in the form of a control loop
showing the direct interactions of MTCD-X with other system components (the environment
data processing system, the flight data processing system, and the controller working position).
A future planned interface with a new arrival manager tool (AMAN) is shown, but no details
provided because AMAN is still in the planning process.

A SpecRL model of a component itself (in this case MTCD-X) can have four parts:

e Display modes: the display mode will affect the information to be provided to the con-
troller; a display mode specification is not needed for MTCD-X



e Supervisory modes: the supervisory mode specifies who is using the component at any
time, which affects which operations are legal; in this case the supervisors may be the
PC, the operations manager, or AMAN

e Component control modes: the mode the automation is in, in the case of MTCD-X these
include unconfigured, configured, active, stopped, and failed.

e Inferred airspace state: a model of the inferred state of the controlled system, in this case,
the airspace in the area of operation.

The controlled system (airspace) state at any time is inferred from the inputs received and
may be incorrect if those inputs are incorrect or not timely. The airspace model within MTCD-
X consists of a model of the assumed state of each of the aircraft being evaluated for conflicts.
State variables represent the information needed to perform conflict detection in addition to the
actual inputs to MTCD-X. These values must be inferred from the information that MTCD-X
gets from the controller working position or other devices. The model of MTCD-X shown has,
for each aircraft, state variables representing the status of the flight data from that aircraft,
the conflict detection status, the flight phase (needed because separation criteria will vary with
flight phase), and the status of the current position information. Note that accidents occur
when this inferred airspace state differs from the real state. The validation phase involves
assuring that the model is correct and that the overall system is robust against errors in the
information received about the current airspace state.

A complete model also needs to specify the conditions under which each of the MTCD-X
control modes is used, the conditions under which the outputs are generated and their content,
and how each of the inferred state variables is assigned a value. Figure 4 shows the logic for
selecting the MTCD-X operating mode. The conditions under which each of the four values
for operating mode become enabled are described using AND/OR tables. The operating mode
takes a particular value when the table associated with that value evaluates to TRUE, which
in turn happens when any column of the table evaluates to TRUE. A column is TRUE when
each row satisfies the truth value shown (with a dot denoting “don’t care”). In the example,
the MTCD-X status becomes ACTIVE if either (1) the previous mode was CONFIGURED and an
area of operation is received by MTCD-X or (2) the previous mode was STOPPED and a start
command is received.

An executable human task modeling language has also been defined. In previous experi-
mentation, we found that a different notation was more useful for modeling human tasks than
that used for describing the automation behavior. Both generate the same type of underlying
formal model, which allows integrated execution and analysis of the system as a whole, both the
automation and the user tasks. An important aspect is the specification of the communication
between the various controllers as well as between the controllers and the automation. We have
shown how these task models can be used to find features of the combined automation and task
design that can lead to mode confusion and other human errors [RZK00].

In addition to being reviewed by aviation and air traffic management experts, the formal
models are executable and can be executed alone or integrated into an ATC simulation en-
vironment. Animation and visualization of the executing models assist in understanding and
evaluating the proposed design of the automation and controller tasks. The executable speci-
fications can also be used in experiments involving controllers to evaluate human factors. An
advantage of executable specifications over prototypes or special simulation languages is that
the specification can be changed as the evaluation proceeds. At the end of the evaluation



Controller}-- ™ CONTROL MODE |
HMI |

)| 1
@ Unconfigured |

i Configured i

3 Active i

i Stopped i

} Failed |

Manager |
AMAN @, |
- AMAN |

Environment Data
Processing

MTCD-X

SUPERVISORY
MODE

PC

INFERRED AIRSPACE STATE

Flight Data
Processing

System

AIRCRAFT (ID) [1...Max-aircraft]

Flight Data

I

Conflict Detection Status
Va

Known
»
Unknown

Unknown
Included
Excluded
Current Position
»
Unknown

Known

Obsolete

Radars/
Data Link
Flight Phase Aircraft
— Unknown in
Area of
— Departure i
— Outbound
— Enroute
— Inbound
— Holding
— Sequenced
- Landing

@ FDPD— MTCD-X
For each aircraft:
Flight_ID
Aircraft_Type
Nav_Capabilities
Class_of_Flight

EDPD— MTCD-X

For each airspace:
Airspace_ID

Current_Position (X,Y, Level)

Trajectory

@ AMAN — MTCD-X
MTCD-X — AMAN
Undefined at this ti

Upper_Level

Lower_Level

Boundary
Start_Time_of_Restriction
End_Time_of_Restriction
Type_of_Airspace
Separation_Parameters
Uncertainty_Parameters

For each parallel route:

me

Route_ID
Separation_Parameters

Area _of_Operation

©n

©wm

Ml — MTCD-X

Stop_MTCD-X
Start_ MTCD-X
Configuration_Params
Include_Aircraft (ID)
Exclude_Aircraft (ID)

TCD-X — HMI

For each conflict::
Conflict_ID
Conflict_Type

Severity
Conflict_Data

Figure 3: Part of a SpecRL Model of MTCD-X



DEFINITION

= Unconfigured
Powerup ‘
CONTROL MODES
= Configured
~ g
Unconfigured In-mode Unconfigured
AND
Received Start MTCD-X
Configured
Active = Active o
Stopped In-mode Configured E
Received Area_of_Operation 1T

AND
In-mode Stopped

Received Start_MTCD-X

= Stopped

In-mode Active
Received Stop_MTCD-X

AND

E1E1

Figure 4: The Logic for Selecting the Current Operating Mode

stage, a final specification is ready for implementation without having to reverse engineer a
specification from a prototype.

Because the modeling language is based on a formal mathematical model, various types of
automated mathematical analysis can also be applied. We have developed techniques for analy-
sis of consistency and completeness, robust operation in an imperfect environment, reachability
of hazardous states, and potential mode confusion. A new hybrid (continuous and discrete) ver-
sion of the basic modeling language (SpecRL-H) allows safety analysis of the conflict detection
algorithms themselves.

Requirements errors and incompleteness account for most of the accidents in which digital
automation has been involved. It is, therefore, particularly important that the requirements
specification distinguish the desired behavior from that of any other, undesired behavior, that
is, the specification must be precise (unambiguous), complete, and correct (consistent) with
respect to the encompassing system requirements. We have built prototype tools to check our
specifications for consistency and some aspects of mathematical completeness [HL96]. Other
important completeness aspects are enforced by the design of SpecRL itself [Lev0Ob].

Robustness can be evaluated using an automated technique called Software Deviation Anal-
ysis [RL87]. SDA allows determining the effects of deviations of system parameters (inputs) on
software in order to determine how the software will operate in an imperfect environment. The
input to the SDA tool is an input deviation, for example, “the altitude reported by the radar
data processing function is lower than the actual altitude.” The output is a list of scenarios,
where a scenario is defined as a set of deviations in the software inputs plus constraints on the
software execution states that are sufficient to lead to a deviation in an identified safety-critical
output. The deviation analysis procedure can optionally add further deviations as it constrains
the software state, allowing for the analysis of the effects of multiple, independent failures.

Other tools can be used to assist in system and subsystem hazard analysis [LS87]. Informa-
tion from these analyses is useful in eliminating hazards from the design or in designing controls

10



and hazard mitigation. For example, one tool assists the designer in tracing back through the
model from hazardous states to determine if and how they are reachable. Backward search can
also reveal how the system can end up in a hazardous state if a failure occurs. Our backward
reachability analysis on discrete state models has recently been augmented to include contin-
uous states (a hybrid model) [NeoO1]. Neogi has experimentally applied this approach to the
conflict detection algorithm used in MTCD-X.

Finally, the specification/model of the blackbox automation behavior can be evaluated for its
potential to lead to mode confusion [LRK97, LP97]. Six automation design categories have been
identified as leading to mode confusion, based on accidents and simulator studies: ambiguous
interface modes, inconsistent automation behavior, indirect mode changes, operator authority
limits, unintended side effects, and lack of appropriate feedback. Analysis procedures are being
developed to detect these features in SpecRL models.

Once the engineers are happy with the operator task and logical system design, detailed
design and construction of the system components, controls and displays, training materials,
and operator manuals can begin.

2 Intent Specifications

The methodology outlined above is supported by a new specification approach called Intent
Specifications [Lev00a] and automated tools to assist with model construction, recording of
design rationale, and traceability.

ATM systems are going to evolve and change continually as new technology and tools are
added and new operational concepts are implemented. Maintaining safety in such a changing
environment requires high-quality specifications that include detailed descriptions of the exter-
nally visible behavior of the existing components as well as the rationale for the system design
choices. The design of any new system component must be based on the design and constraints
of the surrounding environment and any changes to the current system must be analyzed for
their effect on system requirements, operator tasks and respounsibilities, safety constraints, and
human factors.

When considering a requirements, design, or implementation change, it must be possible to
determine any potential effect on system safety or usability. This need, in turn, calls for a level
of traceability not normally found in system specifications. Although such traceability implies
more planning and specification effort at the beginning of a project, the effort will allow changes
to be made much more quickly and easily. It could be prohibitively expensive, for example, to
generate a new hazard and safety assessment for each system change that is proposed. Being
able to trace a particular design feature to the original hazard analysis will allow decisions to
be made about whether and how that feature can be changed. The same is true for changes
that affect operator activities and basic task allocation and usability principles that have been
established for the ATM system. Pabel and Garron have noted the importance of specifying
design rationale and the need for communication among experts in the HMI specification process
[PGJO01]: Both are supported by Intent Specifications.

Intent specifications organize system specifications not only in terms of “what” and “how”
(using refinement and part-whole abstractions) but also in terms of “why” (using intent ab-
straction) and integrate traceability and design rationale into the basic specification structure.
They include both natural language and formal executable models, as described above. The
design of intent specifications, using ideas from Rasmussen’s means-ends abstraction hierarchy
[Ras85], is based on fundamental knowledge about human problem solving and also on system

11



theory and basic system engineering principles.

There are six levels in an Intent Specification, each supporting a different type of reasoning
about the system and representing a different model of the system. Each level also includes in-
formation about the verification and validation of the system model at that level. By organizing
the specification in this way and linking the information at each level to the relevant informa-
tion at the next higher and next lower level, higher-level purpose or intent, i.e., the rationale
for design decisions, can be determined. In addition, by integrating and linking the system,
software, human task, and interface design and development into one specification framework,
intent specifications support an integrated rather than stovepiped approach to system design.

3 Conclusions

An experimental human-centered, safety-driven design process for ATM systems has been de-
scribed. The process is supported by a specification methodology (intent specifications) and
various modeling and analysis languages and tools. Parts of the process have been applied ex-
perimentally to CTAS [Lev97], TCAS II [LHH94], and, as described in this paper, ATC conflict
detection.

The approach considers and builds safety and usability into the system design from the very
beginning. Potential users of the automation, such as controllers and pilots, are an integral part
of the process starting in the early concept formation stage and assist in setting goals, writing
requirements, and establishing principles for allocating tasks between humans and automation.
Formal specification methods allow analysis and detection of errors or poor design choices
early in the design process before implementation of the software and other components. The
specifications/models are executable and can also be subjected to various sophisticated types of
automated analysis and used in human-in-the-loop simulations and experiments. At the same
time, readability was stressed during the design of the formal specification language (SpecRM)
so the models would be reviewable by engineering and human factors experts with a large variety
of backgrounds and expertise. The successful achievement of this goal was demonstrated for
an earlier version of the language during the development of the requirements specification for
TCAS II for the U.S. FAA.

Evaluation of requirements often uses rapid prototyping. A software prototype is written
quickly (without careful design and documentation) and then evaluated and changed until it
exhibits acceptable behavior. But the software prototype has usually changed so much in that
process that reverse engineering is required to determine exactly what it does so that a hardened
and high-quality version of the final design can be constructed. This reverse engineering process
is extremely expensive and difficult. The alternative, often chosen, is simply to deliver and use
the prototype version, which has serious implications for safety and maintainability. By using
executable specifications, the requirements specification itself becomes the prototype and when
the process of analysis and design is completed, it can be used for the implementation and
documentation process. This feature is particularly useful in a setting such as the Eurocontrol
Organization where new ATM functions are developed and evaluated by Eurocontrol but the
specifications are given to ATM providers to implement.

A set of commercial-quality tools are being developed to support this human-centered,
safety-driven approach to ATM system design. Our next planned steps involve developing
and improving further the parts of the approach through additional experimentation. We also
want to experiment further with the use of the executable models and visualization to assist
controllers in understanding and learning about the automation they are using.

12



References

[Bil97] Billings, C.E. Awiation Automation: The Search for a Human-Centered Approach.
Lawrence Erlbaum Associates, 1997.

[HKC97] Hansman, R.J., Kuchar, J., Clarke, J.P., Vakil, S., Barhydt, R., and Pritchett, A. In-
tegrated Human-Centered Systems Approach to the Development of Advanced Cockpit
and Air Traffic Management Systems. Digital Aviation Systems Conference, 1997.

[HL96] Heimdahl, M.P.E. and Leveson, N.G. Completeness and Consistency in Hierarchical
State-Based Requirements. IEEE Transactions on Software Engineering, SE-22, No.
6, June 1996.

[Jac98] Jackson, A. HF Integration within Concept Development, Design, and Pre-Operational
Evaluation: A Pragmatic Approach. Third EUROCONTROL Human Factors Work-
shop, Luxembourg, 1998.

[Jac99] Jackson, A. HMI—Requirements to Implementation: learning from Experience. EU-
ROCONTROL/FAA TIM on Lessons Learned in HMI Design, Toulouse, 1999.

[Joh80] Johnson, W.G. MORT Safety Assurance Systems, Marcel Dekker, Inc., 1980.

[KED97] Kirwan, B., Evans, A., Donohoe, L., Kilner, A, Lamoureux, T, Atkinson, T, and H.
MacKendrick. Human Factors in the ATM System Design Life Cycle. FAA /Eurocontrol
ATM R&D Seminar, Paris, June, 1997.

[Lep87] Leplat, J. Occupational Accident Research and Systems Approach. In Rasmussen,
Duncan, and Leplat (Ed.), New Technology and Human Error, John Wiley & Sons,
pp. 181-191, 1987.

[Lev95] Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley, 1995.

[Lev00a] Leveson, N.G. Intent Specifications. IEEE Trans. on Software Engineering, January
2000.

[LevOOb] Leveson, N.G. Completeness in Formal Specification Language Design for Process-
Control Systems. ACM Formal Methods in Software Practice, Portland, August 2000

[Lev97] Leveson, N.G. Alfaro, L., Alvarado, C., Brown, M., Hunt, E.B., Jaffe, M., Joslyn, S.,
Pinnel, D., Reese, J., Samarziya, J, Sandys, S., Shaw, A., and Zabinsky, Z. Safety
Analysis of Air Traffic Control Upgrades. Technical Report, University of Washington,
1997 (see http://sunnyday.mit.edu/papers.html).

[LH83] Leveson, N.G. and Harvey, P.R. Analyzing Software Safety. IEEE Transactions on
Software Engineering, vol. SE-9, no. 5, 1983.

[LHH94] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., and Reese, J.D. Requirements Spec-
ification for Process-Control Systems. IEEE Transactions on Software Engineering,
SE-20, No. 9, September, 1994.

[LP97] Leveson, N.G. and Palmer, E. “Designing Automation to Reduce Operator Errors,
International Conference on Systems, Man, and Cybernetics, Florida, Oct. 1997.

13



[LRK97] Leveson, N.G., Reese, J.D., Koga, S., Pinnel, L.D., and Sandys, S.D. Analyzing
Requirements Specifications for Mode Confusion Errors. First International Workshop
on Human Error and System Development, Glasgow, March 1997.

[LS87] Leveson, N.G. and Stolzy, J.L. Safety Analysis Using Petri Nets. IEEE Trans. on
Software Engineering, Vol. SE-13, No. 3, March 1987, pp. 386-397.

[NeoO1] Neogi, N. Hybrid Modeling and Backwards Reachability. Ph.D. Dissertation, Aero-
nautics and Astronautics Dept., MIT, in preparation.

[PGJO1] Pabel, D. and Garron, J. Expression of Requirements for HMI Specifications for
ATC/CWP. EEC Note No. 06/01.

[Ras85] Rasmussen, J. The Role of hierarchical knowledge representation in decision making
and system management. IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-15, no. 2, March/April 1985.

[RL87] Reese, J.D. and Leveson, N.G. Software Deviation Analysis. International Conference
on Software Engineering, Boston, May 1997.

[RZK00] Rodriguez, M., Zimmerman, M., Katahira, M., de Villepin, M., Ingram, B., and Leve-
son, N.G. Identifying Mode Confusion Potential in Software Design. Digital Aviation
Systems Conference, Philadelphia, October 2000.

[SW95] Sarter, N.D. and Woods, D. “How in the World did T Ever Get into That Mode?”:
Mode Error and Awareness in Supervisory Control. Human Factors 37, 5-19.

[SW95] Sarter, N.D., Woods, D.D. and Billings, C.E. Automation Surprises. in G. Salvendy
(Ed.) Handbook of Human Factors/Ergonomics, 2nd Edition, Wiley, New York, in
press.

[WCK91] Wiener, E.L., Chidester, T.R., Kanki, B.G., Palmer E.A., Curry, R.E., and Gre-
gorich, S.E. The Impact of Cockpit Automation on Crew Coordination and Commu-
nications. NASA Ames Research Center, 1991.

14



