6.001, Fall Semester, 2002—Quiz II — Sample solutions 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 2002

Quiz II — Sample solutions

Below are example solutions for each of the questions. These are not the only possible answers,
but they are the most common ones.

Part 1: (18 points)

Consider the following procedure:

(define (last-call proc)
(let ((old ’*not-usedx))
(lambda (arg)
(let ((temporary old))
(set! old (proc arg))
temporary))))

For example, we might have:

(define weird (last-call (lambda (x) (* x x))))

(weird 5)
;Value: *not-usedx

(weird 7)
;Value: 25

Suppose we actually evaluate the above sequence of expressions in the order shown:

We want you to draw the environment diagram generated by these expressions, using diagram
fragments that we provide. Attached to the exam is a tear-off sheet, with some fragments from
an environment diagram. In this diagram, we have marked procedure objects as P1, P2, etc.,
environments as E1, E2, etc.

You should EITHER complete this diagram directly on these fragments, OR you should do your
own environment diagram on a separate sheet, then copy the labels for the fragments onto your
diagram (we actually recommend the latter). In either case, answer the questions about the
environment based on the labels used on OUR diagram!!

First, for each procedure object, P1 through P4, identify, if possible, the environment pointer of
the procedure (i.e. one of GE, E1, ..., E8). If the appropriate environment is not shown, write “not
shown”.

Question 1. To what does the environment pointer of P1 point?

6.001, Fall Semester, 2002—Quiz II — Sample solutions 2

GE
Question 2. To what does the environment pointer of P2 point?
GE
Question 3. To what does the environment pointer of P3 point?
E7
Question 4. To what does the environment pointer of P4 point?

E6

Second, for each environment frame, indicate which environment is the enclosing environment
for that frame. If the appropriate environment is not shown, write “not shown”. If there is no
environment, write “none”.

Question 5. What is the enclosing environment for E17
E2

Question 6. What is the enclosing environment for E27
E6

Question 7. What is the enclosing environment for E3?
E6

Question 8. What is the enclosing environment for E47
E3

Question 9. What is the enclosing environment for E57
GE

Question 10. What is the enclosing environment for E6?
E7

Question 11. What is the enclosing environment for E7?7
GE

For each of the following questions, choose from among these possibilities:

e one of the procedure objects, P1, ..., P5,

e a number (say what number)

a symbol (say what specific symbol)

a list of numbers or symbols or procedure objects (which you must draw as box-and-pointer
notation),

e an environment, E1, ..., E7, GE,

6.001, Fall Semester, 2002—Quiz II — Sample solutions 3
e nothing

Do this in terms of the values associated with these variables after all the expressions have been
evaluated.

Question 12. To what is the variable last-call in the global environment bound?
P2

Question 13. To what is the variable proc in E7 bound?

P1

Question 14. To what is the variable o1d in E6 bound?

49

Question 15. What variable is bound to the procedure object P4? Give both the name and the
environment, if applicable.

weird, bound in GE

Question 16. What variable is bound to the procedure object P57 Give both the name and the
environment, if applicable.

nothing

Part 2 (18 points):
At the end of the quiz you will find the code for our object oriented system.

The following object oriented class hierarchy covers different ways objects can hold state. Look
over the code carefully before answering the questions.

(define (make-A state)
(lambda (msg)
(case msg
((GETSTATE) (lambda (self) state))
((ALTER) (lambda (self newstate)
(set! state newstate)
(ask self ’GETSTATE)))
((REPORT) (lambda (self)
(1list (ask self ’GETSTATE))))
(else (no-method)))))

(define (make-B state)
(let ((my-A (make-A state)))
(lambda (msg)
(case msg
((ALTER) (lambda (self newstate)
(set! state newstate)
(ask self ’GETSTATE)))
((REPORT)
(lambda (self)

6.001, Fall Semester, 2002—Quiz II — Sample solutions 4

(cons state (ask my-A ’REPORT))))
(else (get-method msg my-4))))))

(define (make-C state)
(let ((my-A (make-A state))
(my-B (make-B state)))
(lambda (msg)
(case msg
((GETSTATE) (lambda (self) (ask my-A ’GETSTATE)))
((ALTER) (lambda (self newstate)
(ask my-A ’ALTER newstate)))
((REPORT) (lambda (self)
(delegate my-B self ’REPORT)))
(else (get-method msg my-A))))))

Assume we make the above definitions, and then evaluate

(define alex (make-A ’alpha))
(define bruce (make-B ’beta))
(define chris (make-C ’gamma))

What gets returned as value for each of the following expressions? (Assume that they are evaluated
in this order.) You may find it helpful to draw an instance diagram or a class diagram to keep
track of the state and structure of the objects created in this example.

Question 17.
(ask alex ’REPORT)

(alpha)
Question 18.

(ask alex ’ALTER ’alef)

alef
Question 19.

(ask alex ’REPORT)

(alef)
Question 20.

(ask bruce ’REPORT)

(beta beta)
Question 21.

6.001, Fall Semester, 2002—Quiz II — Sample solutions
(ask bruce ’ALTER ’betel)

beta
Question 22.

(ask bruce ’REPORT)

(betel beta)
Question 23.

(ask chris ’REPORT)

(gamma gamma)

Question 24.

(ask chris ’ALTER ’gum)

gum

Question 25.

(ask chris ’REPORT)

(gamma gamma)

Part 3 (20 points)

We are going to add a new special form to our meta-circular evaluator (a copy of which is attached
at the end of the quiz). The form we are going to add is an unless expression, such as

(define test ’(1 2 3))

(unless (null? test)
(display (car test))
(set! test (cdr test)))

The idea is that an unless expression consists of two parts. The first sub-expression is a test
clause, the remaining sub-expressions are the body. The evaluation of an unless is to first evaluate
the test. If it is true, then evaluation of the entire unless is terminated, with an unspecified
return value. Otherwise, the body of the unless is evaluated and the process repeats.

To the meta-circular evaluator, we add the following clause

((unless? exp) (eval-unless exp env))

where

6.001, Fall Semester, 2002—Quiz II — Sample solutions 6

(define (unless? exp) (tagged-list? exp ’unless))
(define (unless-test exp) (cadr exp))

(define (unless-body exp) (cddr exp))

Question 26. Write the procedure eval-unless by completing the following defintion. Be sure
to use the appropriate data abstractions.

(define (eval-unless exp env)
(IF (NOT (M-EVAL (UNLESS-TEST EXP) ENV))
(BEGIN (EVAL-SEQUENCE (UNLESS-BODY EXP) ENV)
(EVAL-UNLESS EXP ENV))))

Question 27. Suppose instead that we add the following clause to the evaluator:

((unless? exp) (m-eval (unless->if exp) env))

Complete the syntactic transformation

(define (unless->if exp)
(LIST ’IF
(LIST °NOT (UNLESS-TEST EXP))
(CONS ’BEGIN
(APPEND (UNLESS-BODY EXP)
(LIST EXP)))))

so that this will correctly evaluate unless expressions.

Part 4: (22 points)

We want to construct a data abstraction called a queue. A queue consists of an ordered sequence
of items, which we will represent using a list. Users of queues see a data abstraction, with a queue
consisting of two components, a head and a tail. One can read the element at the head of the
queue, but cannot directly access other elements in the queue. Attempting to read an empty queue
is an error.

One can only add new elements to a queue at the tail of the queue, and one can only remove
elements from the head of the queue.

For example, here is some code to create queues, and some interactions with a queue.

(define (make-queue elt)
(let ((temp (list elt)))
(cons temp temp)))

(define (head q) (car q))

6.001, Fall Semester, 2002—Quiz II — Sample solutions

(define change-head! set-car!)
(define (tail q) (cdr q))
(define change-tail! set-cdr!)
(define (read q) (car (head q)))

(define (add-queue elt q)
(let ((new-part (list elt)))
(cond ((null? (tail q))
INSERT-1)
(else INSERT-2
INSERT-3)))

q)

(define (delete-queue q)

(cond ((eq? (head q) (tail q))
(change-head! q #f)
(change-tail! q #f))

(else INSERT-4))
qQ)

;3 HERE IS AN EXAMPLE QUEUE

(define my-queue (make-queue 1))
;Value: ((1) 1)

(read my-queue)
;Value: 1

Question 28: Draw a box and pointer diagram for the value of my-queue.

my-queue —-—---- > | | |

6.001, Fall Semester, 2002—Quiz II — Sample solutions 8

Now, consider the following actions on a queue:

(add-queue 2 my-queue)
;Value: ((1 2) 2)

(read my-q)
;Value: 1
;; NOTE: the same value is still at the head

(add-queue 3 my-queue)
;Value: ((1 2 3) 3)

(delete-queue my-queue)
;Value: ((2 3) 3)

(read my-q)
;Value: 2
;; NOTE: the value under the head has now changed

(delete-queue my-queue)
;Value: ((3) 3)

(delete-queue my-queue)
;Value: (#f)
;;NOTE: we are now left with an empty queue

Question 29: Provide code for INSERT-1, which should create a queue with one element.

Question 30: Provide code for INSERT-2, so that the internal representation of the elements of
the queue is modified correctly.

Question 31: Provide code for INSERT-3, so that the external representation of the queue is
modified correctly.

(define (add-queue elt q)
(let ((new-part (list elt)))
(cond ((null? (tail q))
(CHANGE-HEAD! Q NEW-PART)
(CHANGE-TAIL! Q NEW-PART))
(else (SET-CDR! (TAIL Q) NEW-PART)
(CHANGE-TAIL! Q (CDR (TAIL Q))))))

qQ)

Question 32: Provide code for INSERT-4.

(define (delete-queue q)

6.001, Fall Semester, 2002—Quiz II — Sample solutions 9

(cond ((eq? (head q) (tail q))
(change-head! q #f)
(change-tail! q #f))
(else (CHANGE-HEAD! Q (CDR (HEAD Q)))))

q)

Now suppose we decide to change the underlying representation of a queue, to use a list rather
than a pair to represent the head and tail of the queue.

(define (make-queue elt)
(let ((temp (list elt)))
(1ist temp temp))) ;3 NOTE THE CHANGE HERE

Question 33: What is the minimal set of definitions that must change for the system to still
operate correctly? Provide the correct new definitions.

(DEFINE (TAIL Q) (CADR Q))

(DEFINE (CHANGE-TAIL! Q NEW)
(SET-CAR! (CDR Q) NEW))

Part 5 (22 points): Attached at the end of the quiz is a copy of the meta-circular evaluator. As
it presently stands, this version of the evaluator cannot deal with procedures that use the “dot”
notation for their arguments, such as:

(define foo
(lambda (x . y)
(if (> x 0) (length y))))

(foo 1 2 3 4)
;Value: 3
(foo 1)
;Value: O
(foo 2 5)
;Value: 1

Remember that the idea behind the “dot” notation was to allow a procedure to be called with
variable numbers of arguments. In this example, foo must be called with at least one argument,
and the formal parameter x would be bound to that value.

However, foo could also be called with 2 or more arguments, and the formal parameter y would
then be bound to a list of the values of all the subsequent arguments. Thus in

6.001, Fall Semester, 2002—Quiz II — Sample solutions 10

(foo 1 2 3 4)

the formal parameter x would be bound to the value 1 and the formal parameter y would be bound
to the list (2 3 4).

When we evaluate a lambda expression, it will create a representation for a procedure (see make-procedure
in the evaluator code). In particular, when the reader converts the input expression such as (lambda

(x y) ...) into an internal representation for the evaluator, it provides list structure like this:
- | === >l === >
[_1_1__I [_1_1__|
| |
\ I/ \ I/
lambda ______ ______
S >l 1/l
[_1_1__| [_1_1/_1
| |
\ I/ \ I/
X Y
whereas if the reader is given input such as (lambda (x . y) ...), this is converted into list

structure like this:

[I [D .
| |

\I/ \I/

lambda

Thus when we evaluate a lambda expression whose parameter list is of the ordinary sort (e.g., (x y)
or (x y z a)), the internal representation of this parameter list is an ordinary list (i.e., a sequence
of cons cells whose cdr-pointers end in nil).

However, when the parameter list includes a “dot” (such as (x . y) or (x y z . a)), the
representation for this parameter list will not be an ordinary list. It will differ in one small but
important detail: the cdr of the last cons cell in the sequence will point to the last parameter
(rather than to nil).

To change our evaluator to handle “dot” notation,, we just need to modify extend-environment:

6.001, Fall Semester, 2002—Quiz II — Sample solutions 11

(define (extend-environment vars vals base-env)
(let ((processed-lists (find-dot vars vals)))
(cons (make-frame (car processed-lists)
(cadr processed-lists))
base-env)))

The find-dot procedure walks down the sequence of variable names and associated values, checking
to see whether vars is an ordinary list (i.e., no “dot”) or whether it is a sequence of cons cells that
terminates by pointing at a variable rather than at nil (i.e., it had a dot). When we find that the
cdr of the last cons cell points to a variable name rather than to nil, we want to

(a) add that variable to the end of a list of variables, and

(b) add the remaining values as a list, which should be added to the end of the list of all values.
(Notice that we still add the variable name to a list of variables, but handle the remaining values
differently.)

Finally, find-dot will return a list of two lists — one for the variables, and one for the values.

Here is a template for this:

(define (find-dot vars vals)
(define (help vars-seen vars-todo vals-seen vals-todo)

(cond ((null? vars-to-do) ; no more variables to examine
(if (null? vals-to-do) ; if no more values either
INSERT-5 ; then return collection of vars and vals

(error ‘wrong number args’’ vars vals))) ; else report error
((null? (cdr vars-to-do)) ; we’re at the last variable and
; there was no dot

(if (null? vals-to-do) ; if no more values...
(error ¢‘wrong number args’’ vars vals) ; ...report error
(if (not (null? (cdr vals-to-do))) ; else if >1 more value
(error ‘‘wrong number args’’ vars vals) ; that’s an error too
INSERT-6))) ; otherwise, do this
((not (pair? (cdr vars-to-do))) ; sequence of vars doesn’t end in nil
(if (null? vals-to-do) ; if no values left...
(error ¢‘wrong number args’’ vars vals) ; ... report error
INSERT-7)) ;... else do this
(else ; otherwise collect next var and associated val, and continue

(help (cons (car vars-to-do) vars-seen)
(cdr vars-to-do)
(cons (car vals-to-do) vals-seen)
(cdr vals-to-do)))))
(help >() vars ’() vals))

Question 34:
What code should be used for INSERT-57

(LIST (REVERSE VARS-SEEN) (REVERSE VALS-SEEN))

6.001, Fall Semester, 2002—Quiz II — Sample solutions

Question 35:
What code should be used for INSERT-67

(LIST (REVERSE (CONS (CAR VARS-TO-DO) VARS-SEEN))
(REVERSE (CONS (CAR VALS-T0-D0) VALS-SEEN)))

Question 36:
What code should be used for INSERT-77

(LIST (REVERSE (CONS (CDR VARS-T0-DO)
(CONS (CAR VARS-T0-DO) VARS-SEEN)))

(REVERSE (CONS (CDR VALS-T0-DO)
(CONS (CAR VALS-TO-DO) VALS-SEEN)))

12

