
6.001, Fall Semester, 2002—Project II 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 2002

Project II

• Issued: Wednesday, Week 7 / Day 3.

• Tutorial Problems Due: Week 8, in tutorial.

• Part I Due: Friday, Week 9 / Day 5, by evening.

• Part II Due: Friday, Week 10 / Day 5, by evening.

• Code: The following code (attached) should be studied as part of this problem set:

–

–

–

objsys fa02.scm—support for an elementary object system

objtypes fa02.scm—a few nice object classes

setup fa02.scm—a bizarre world constructed using these classes

You should begin working on the assignment once you receive it. It is to your advantage to get
work done early, rather than waiting until the night before it is due. You should also read over
and think through each part of the assignment (as well as any project code) before you sit down
at the computer. It is generally much more efficient to test, debug, and run a program that you
have thought about beforehand, rather than doing the planning “online.” Diving into program
development without a clear idea of what you plan to do generally ensures that the assignments
will take much longer than necessary.

Note that you may find it useful to listen to the lectures on Object Oriented Programming ahead
of schedule, in order to get a good start on this project.

You must hand in solutions by submitting them via the online tutor, by 6:00pm on the date listed.
Late work will not be accepted.

Word to the wise: This project is difficult. The trick lies in knowing which code to write, and
for that you must understand the attached code, which is considerable. You’ll need to understand
the general ideas of object-oriented programming and the implementation provided of an object-
oriented programming system (in objsys fa02.scm). Then you’ll need to understand the particular
classes (in objtypes fa02.scm) and the world (in setup fa02.scm) that we’ve constructed for you.
In truth, this assignment in much more an exercise in reading and understanding a software system
than in writing programs, because reading significant amounts of code is an important skill that
you must master. The warmup exercises will require you to do considerable digesting of code before
you can start on them. And we strongly urge you to study the code before you try the programming
exercises themselves. Starting to program without understanding the code is a good way to get
lost, and will virtually guarantee that you will spend more time on this assignment than necessary.

In this project we will develop a powerful strategy for building simulations of possible worlds. The
strategy will enable us to make modular simulations with enough flexibility to allow us to expand
and elaborate the simulation as our conception of the world expands and becomes more detailed.

6.001, Fall Semester, 2002—Project II 2

One way to organize our thoughts about a possible world is to divide it up into discrete objects,
where each object will have a behavior by itself, and it will interact with other objects in some
lawful way. If it is useful to decompose a problem in this way then we can construct a computational
world, analogous to the “real” world, with a computational object for each real object.

Each of our computational objects has some independent local state, and some rules (or code) that
determine its behavior. One computational object may influence another by sending it messages.
The program associated with an object describes how the object reacts to messages and how its
state changes as a consequence.

You may have heard of this idea in the guise of “Object-Oriented Programming systems”(OOPs!).
Languages such as C++ and Java are organized around OOP. While OOP has received a lot of
attention recently, it is only one of several powerful programming styles. What we will try to
understand here is the essence of the idea, rather than the incidental details of their expression in
particular languages.

2. An Object System

Consider the problem of simulating the activity of a few interacting agents wandering around
different places in a simple world. Real people are very complicated; we do not know enough to
simulate their behavior in any detail. But for some purposes (for example, to make an adventure
game) we may simplify and abstract this behavior.

Let’s start with the fundamental stuff first. We can think of our object oriented paradigm as
consisting of classes and instances. Classes can be thought of as the “template” for how we want
different kinds of objects to behave. The way we define the class of an object is with a basic “make
object” procedure; when this procedure is applied, it makes for us a particular instance.

Our object instances are themselves procedures which accept messages. An object will give you
a method if you send it a message; you can then invoke that method on the object (and possibly
some arguments) to cause some action, state update, or other computation to occur.

2.1 Classes, Instances, and Methods

For example, our simulation world will consist of named objects. We can make a named object
using the procedure make-named-object. A named object is a procedure that takes a message and
returns the method that will do the job you want.1 For example, if we call the method obtained
from a named object by the message NAME we will get the object’s name.

(define (make-named-object name . characteristics)
(let ((root-part (make-root-object)))
(lambda (message)

(case message
((NAMED-OBJECT?) (lambda (self) #T))
((NAME) (lambda (self) name))
((CHARACTERISTICS) (lambda (self) characteristics))

1We will use the special form case to do the dispatch. See the Scheme Reference Manual for details. In essense,
this acts much like a cond, matching the first argument against the first clause of each subsequent term using eq?,
when it finds one that matches it evaluates and returns the subsequent part of that expression.

6.001, Fall Semester, 2002—Project II 3

((INSTALL) (lambda (self) ’INSTALLED))
((DESTROY) (lambda (self) ’DESTROYED))
(else (find-method message root-part))))))

(define foo (make-named-object ’george ‘‘a handsome devil’’))

((foo ’NAME) foo) ==> george

Note the use of the “dot” (.) notation in the definition. Check this out in the Scheme manual
for details. Essentially this allows make-named-object to be called with one or more arguments.
The parameter name will be bound to the value of the first argument. The value characteristics
will be bound to a list of the values of all additional arguments. In this case, we are particularly
interested in zero or one additional argument, since some of our objects will have characteristics,
and others will not.

The first formal parameter of every method is self. The corresponding argument must be the
object that needs the job done. This was explained in lecture, and we will see it again below.

Note that a named object inherits from a root object, which we treat as the most fundamental,
and simplest, of classes.

(define (make-root-object)
(lambda (message)
(no-method)))

This object simply provides a basis for providing common behaviors to all classes, which for now
is simply a way of indicating that no method is available for the desired message. We will by
convention use this class as the base for all other classes.

A named object has a method for five different messages: NAMED-OBJECT?, NAME, CHARACTERISTICS,
INSTALL and DESTROY. Depending on the message, a named object will return a method that
confirms that it is indeed a named-object; it will give a method to return its name; it will give a
method to return its characteristics; it will give a method for installation that does nothing;
and it will give a method for destruction that does nothing.

In the above example, we created an instance foo, then sent it the message NAME to get its name
method, and finally applied that method to the object itself to get the name. Our system provides
a preferred short-hand way of putting together the method lookup and method application using
ask. What ask does here is get the NAME method from foo and then call it with foo as the argument
(so the value of foo will be bound to self in the method body). The full ask procedure is defined
in the file objsys fa02.scm, but here is a simplified version that works for messages requiring no
arguments:

(define (simple-ask object message)
((get-method message object) object))

(define (get-method message object)
(object message))

(simple-ask foo ’NAME) ==> george

6.001, Fall Semester, 2002—Project II 4

We see that our system also provides the procedure get-method to request a method from an
object, which simply sends the message to the object. There is a special way for our objects to
say there is no method: (no-method), as shown in the root-object class definition above. This
returns a special value that can be used later on in our system to detect when there is no method
using the method? predicate, e.g.

(method? (foo ’NAME)) ==> #T
(method? (foo ’SHAPE)) ==> #F

2.2 Inheritance and Subclasses

A thing is another kind of computational object which will be located somewhere in our world.
In the code below we see that a thing is implemented as a message acceptor that intercepts some
messages. If it cannot handle a particular message itself, it passes the message along to a private,
internal named object (named-object-part) that it has made as part of itself to deal with such
messages (see the last line in the definition of make-thing). Thus, we may think of a thing as
a kind of named object except that it also handles the messages that are special to things. This
arrangement is described in various ways in object-oriented jargon, e.g., “the thing class inherits
from the named-object class,” or “thing is a subclass of named-object,” or named-object is a
superclass of thing.”

(define (make-thing name location characteristics)
(let ((named-object-part (make-named-object name characteristics)))
(lambda (message)

(case message
((THING?) (lambda (self) #T))
((LOCATION) (lambda (self) location))
((INSTALL)
(lambda (self) ; Install: synchronize thing and place
(ask (ask self ’LOCATION) ’ADD-THING self)
(delegate named-object-part self ’INSTALL)))

((DESTROY)
(lambda (self) ; Destroy: remove from place
(ask (ask self ’LOCATION) ’DEL-THING self)
(delegate named-object-part self ’DESTROY)))

((EMIT)
(lambda (self text) ; Output some text
(ask screen ’TELL-ROOM (ask self ’LOCATION)

(append (list "At" (ask (ask self ’LOCATION) ’NAME))
text))))

(else (get-method message named-object-part))))))

There are several other interesting aspects of the thing class definition above. We see that a thing
instance will respond to the THING? message with a procedure that, when applied to the instance,
will return #T. But an object that is not a thing will not find the THING? message and an error
will result. To get around this problem, and for improved convenience as well, our system provides
a procedure is-a that can be used to check the class of an object.

(define (is-a object type-pred)

6.001, Fall Semester, 2002—Project II 5

(if (not (procedure? object))
#f
(let ((method (get-method type-pred object)))
(if (method? method)

(ask object type-pred)
#F))))

(define my-book (make-thing ’great-gatsby dark-room))

((get-method ’THING? my-book) my-book) ==> #T
((get-method ’NAMED-OBJECT? my-book) my-book) ==> #T

(is-a my-book ’THING?) ==> #T
(is-a my-book ’NAMED-OBJECT?) ==> #T
(is-a my-book ’EMOTION?) ==> #F

This enables us to ask an object if it is an instance of a particular class. For example, we can see
that a thing we make is a thing, but also is a named-object (you can assume that dark-room
is a location previously made). How does the is-a procedure work? If we ask for the THING?
method from a thing instance (my-book, in this case), my-book immediately gets and returns
the method defined in make-thing. However, if we ask for the NAMED-OBJECT? method from
my-book, the my-book object passes the message along to its internal named-object-part, where
the NAMED-OBJECT? method is finally found and returned. The is-a utility procedure tries to find
the appropriate type check method, and if found invokes it on the object, otherwise concluding
that the object is not an instance of the requested type.

2.3 Delegation

Another idea shown in the “thing” class (which is specified by the make-thing procedure above) is
that of delegation, which is the explicit use of an “internal” object’s method by the object. In the
thing class, we see that the INSTALL method “shadows” or intercepts the INSTALL method in the
named-object class. In make-thing, we want to first do some work to integrate the thing object
into our simulation world (more on that later), but then we also want to invoke the superclass
named-object INSTALL method in case something important happens there as well. But since the
internal named-object-part is really not a “stand-alone” object all its own, we don’t ask it to do
something on its own, instead we delegate the task to the internal object. To delegate is to have
the internal object do the requested work, but on behalf of the full self object.

The important difference is that if we ask an object to do something, then the self value passed to
the method will be the object itself. Using delegate, on the other hand, we can explicitly control
what the self value will be that is passed to the method, and can thus have a part (inherited
superclass) of the object do something to the whole object. This is perhaps the single most subtle
and difficult aspect of our system, and you will explore this idea and issue in more detail in the
exercises.

3. Classes for a Simulated World

When you read the code in objtypes fa02.scm, you will see definitions of several different classes
of objects that define a host of interesting behaviors and capabilities using the OOP style discussed

6.001, Fall Semester, 2002—Project II 6

in the previous section. Here we give a brief “tour” of some of the important classes in our simulated
world.

3.1 Container Class

Once we have things, it is easy to imagine that we might want containers for things. We can define
a utility container class as shown below:

(define (make-container)
(let ((root-part (make-root-object))

(things ’())) ; a list of THING objects in container
(lambda (message)

(case message
((CONTAINER?) (lambda (self) #T))
((THINGS) (lambda (self) things))
((HAVE-THING?)
(lambda (self thing) ; container, thing -> boolean
(not (null? (memq thing things)))))

((ADD-THING)
(lambda (self new-thing)
(if (not (ask self ’HAVE-THING? new-thing))

(set! things (cons new-thing things)))
’DONE))

((DEL-THING)
(lambda (self thing)
(set! things (delq thing things))
’DONE))

(else (find-method message root-part))))))

Notice that a container does not inherit from named-object, so it does not support messages such as
NAME or INSTALL. Containers are not meant to be stand-alone objects; rather, they are only meant
to be used internally by other objects to gain the capability of adding things, deleting things, and
checking if one has something.

3.1 Place Class

Our simulated world needs places (e.g. rooms or spaces) where interesting things will occur. The
definition of the place class is shown below.

(define (make-place name characteristics)
(let ((named-obj-part (make-named-object name characteristics))

(container-part (make-container))
(exits ’())) ; a list of exit

(lambda (message)
(case message
((PLACE?) (lambda (self) #T))
((EXITS) (lambda (self) exits))
((EXIT-TOWARDS)
(lambda (self direction) ; place, symbol -> exit | #F
(let ((ex (find-exit-in-direction exits direction)))

6.001, Fall Semester, 2002—Project II 7

(if (and ex (ask ex ’HIDDEN?))
#f
ex))))

((ADD-EXIT)
(lambda (self exit)
(let ((direction (ask exit ’DIRECTION)))

(cond ((ask self ’EXIT-TOWARDS direction)
(error (list name "already has exit" direction)))

(else
(set! exits (cons exit exits))
’DONE)))))

(else
(find-method message container-part named-obj-part))))))

If we look at the first and last lines of make-place, we notice that place inherits from two different
classes: it has both an internal named-object-part and an internal container-part. Here we
use the object oriented system procedure find-method (defined in objsys fa02.scm) which will
try to find the first matching method by looking (in order) in the provided internal objects. Thus,
if we ask for the NAME method from a place instance, the method will be found in the internal
named-object-part, while if we ask for the HAVE-THING? method from a place instance, the ap
propriate method well be found and returned from the internal container-part object. This idea
is often termed “multiple inheritance”.

You can also see that our place instances will each have their own internal variable exits, which
will be a list of exit instances which lead from one place to another place. In our object-oriented
terminology, we can say the place class establishes a “has-a” relationship with the exit class. You
should examine the objtypes fa02.scm file to understand the definition for make-exit.

3.2. Mobile-thing Class

Now that we have things that can be contained in some place, we might also want mobile-things
(made by make-mobile-thing) that can CHANGE-LOCATION.

(define (make-mobile-thing name location characteristics)
(let ((thing-part (make-thing name location characteristics)))
(lambda (message)

(case message
((MOBILE-THING?) (lambda (self) #T))
((LOCATION) ; This shadows message to thing-part!
(lambda (self) location))
((CHANGE-LOCATION)
(lambda (self new-location)
(ask location ’DEL-THING self)
(ask new-location ’ADD-THING self)
(set! location new-location)))

((ENTER-ROOM)
(lambda (self exit) #t))
((LEAVE-ROOM)
(lambda (self exit) #t))
((CREATION-SITE)
(lambda (self)

6.001, Fall Semester, 2002—Project II 8

(delegate thing-part self ’location)))
(else (get-method message thing-part))))))

When a mobile thing moves from one location to another it has to tell the old location to DEL-THING
from its memory, and tell the new location to ADD-THING. Note that here we use the ask proce
dure, since we are sending a message to the specified location objects that exist external to the
mobile-thing; it would be inappropriate to delegate in this situation.

3.3. Person Class

A person is a kind of mobile thing. When a person is made, an internal mobile thing is also made to
handle messages such as CHANGE-LOCATION. The mobile thing is bound to a variable that is visible
only within the person object – mobile-thing-part. When a person moves from one place to
another, it does so by using the CHANGE-LOCATION method from its internal mobile-thing-part.
However, it is the person that moves. Thus, it is the person that must be added or removed
from the location, not the mobile thing from which the method was obtained. The internal
mobile-thing-part is not a whole person – it is only a fragment of the person. To implement
the desired behavior the CHANGE-LOCATION method needs to know the complete or whole moving
object (the person), and this is what is passed to the method as self. This is crucial for you to
understand if your objects are to maintain their integrity!

If we consider the (partial) definition of make-person, we also notice that a person is a container
as well as a mobile thing. Again, this is an example of multiple inheritance. The idea here is that
people can also “contain things” which they carry around with them when they move.

A person can SAY a list of phrases. A person can TAKE something, as well as DROP something. Some
of the other messages a person can handle are briefly shown below; you should consult the full
definition of make-person in objtypes fa02.scm to understand the full set of capabilities a person
instance has.

(define (make-person name birthplace characteristics)
(let ((mobile-thing-part (make-mobile-thing name birthplace characteristics))

(container-part (make-container))
(health 3)
(strength 1))

(lambda (message)
(case message
((PERSON?) (lambda (self) #T))
((STRENGTH) (lambda (self) strength))
((HEALTH) (lambda (self) health))
((SAY)
(lambda (self list-of-stuff)
(ask screen ’TELL-ROOM (ask self ’location)

(append (list "At" (ask (ask self ’LOCATION) ’NAME)
(ask self ’NAME) "says --")

list-of-stuff))
’SAID-AND-HEARD))

((HAVE-FIT)
(lambda (self)
(ask self ’SAY ’("Yaaaah! I am upset!"))

6.001, Fall Semester, 2002—Project II 9

’I-feel-better-now))
((PEOPLE-AROUND) (lambda (self) ...))
...
((TAKE) (lambda (self thing) ...))
((LOSE)
(lambda (self thing lose-to)
(ask self ’SAY (list "I lose" (ask thing ’NAME)))
(ask self ’HAVE-FIT)
(ask thing ’CHANGE-LOCATION lose-to)))

((DROP)
(lambda (self thing)
(ask self ’SAY (list "I drop" (ask thing ’NAME)

"at" (ask (ask self ’LOCATION) ’NAME)))
(ask thing ’CHANGE-LOCATION (ask self ’LOCATION))))

((GO) (lambda (self direction) ...))
...
(else (find-method message mobile-thing-part container-part))))))

3.4 Avatar Class

One kind of character you will use in this problem set is an avatar. The avatar is a kind of person
who must be able to do the sorts of things a person can do, such as TAKE things or GO in some
direction. However, the avatar must be able to intercept the GO message, to do things that are
special to the avatar, as well as to do what a person does when it receives a GO message. This is
again accomplished by explicit delegation. The avatar does whatever it has to, and in addition, it
delegates to its internal person the processing of the GO message, with the avatar as self. Notice
that we have a fairly fine degree of control over how inheritance and delegation are managed. In
the case of the avatar, we first delegate to the internal person to handle the GO message, and then
do something more after that (in this case, invoke the simulation clock).

(define (make-avatar name birthplace murder-details characteristics)
(let ((person-part (make-person name birthplace characteristics))

(crime-details murder-details)
(count 0))

(lambda (message)
(case message
((AVATAR?) (lambda (self) #T))
((LOOK-AROUND) ; report on world around you
(lambda (self) ...))
((GO)
(lambda (self direction) ; Shadows person’s GO
(let ((success? (delegate person-part self ’GO direction)))

(if success? (ask clock ’TICK))
success?)))

...
((TAKE) (lambda (self thing) ...))
(else (get-method message person-part))))))

The avatar also implements an additional message, LOOK-AROUND, that you will find very useful
when running simulations to get a picture of what the world looks like around the avatar.

6.001, Fall Semester, 2002—Project II 10

3.5 Autonomous-person Class

Our world would be a rather lifeless place unless we had objects that could somehow “act” on their
own. We achieve this by further specializing the person class. An autonomous-player is a person
who can move or take actions at regular intervals, as governed by the clock through a callback.

Our clock works by using what are known as “callbacks”. This means that we create an instruction
which we install in the clock, with the property that every time the clock iterates, it executes all
the instructions it has stored up. Each of these instructions sends a message to an object, causing
it to synchronously execute an action. In the example below, installing an autonomous person
causes the clock object to add an instruction that will send this object a “move-and-take-stuff”
message, which will then cause this object to select an action. See the discussion on the clock in the

However, the template used below for
sending the clock a “callback” will be valuable to you in creating your own objects and methods.
Also note how, when an autonomous player dies, we send a “remove-callback” message to the clock,
so that we stop asking this character to act.

objsys fa02.scm file for details on how the clock operates.

(define (make-autonomous-player name birthplace activity miserly characteristics)
(let ((person-part (make-person name birthplace characteristics))

(alibi-room ’nowhere)
(alibi-possessios ’nothing)
(alibi-witnesses ’nobody))

(lambda (message)
(case message
((AUTONOMOUS-PLAYER?) (lambda (self) #T))
((INSTALL) (lambda (self)

(ask clock ’ADD-CALLBACK
(make-clock-callback ’move-and-take-stuff self

’MOVE-AND-TAKE-STUFF))
(delegate person-part self ’INSTALL)))

((MOVE-AND-TAKE-STUFF)
(lambda (self)
;; first move
(let loop ((moves (random-number activity)))

(if	 (= moves 0)
’done-moving
(begin
(ask self ’MOVE-SOMEWHERE)
(loop (- moves 1)))))

;; then take stuff
(if (= (random miserly) 0)

(ask self ’TAKE-SOMETHING))
’done-for-this-tick))

((DIE)
(lambda (self)
(ask clock ’REMOVE-CALLBACK self ’move-and-take-stuff)
(delegate person-part self ’DIE)))

((MOVE-SOMEWHERE)
(lambda (self)
(let ((exit (random-exit (ask self ’LOCATION))))

(if (not (null? exit)) (ask self ’GO-EXIT exit)))))
((TAKE-SOMETHING)

6.001, Fall Semester, 2002—Project II 11

(lambda (self)
(let* ((stuff-in-room (ask self ’STUFF-AROUND))

(other-peoples-stuff (ask self ’PEEK-AROUND))
(pick-from (append stuff-in-room other-peoples-stuff)))

(if	 (not (null? pick-from))
(ask self ’TAKE (pick-random pick-from))
#F))))

...

(else (get-method message person-part))))))

3.6 Installation

One final note about our system.

INSTALL method which does some appropriate initialization for a newly made object. For example,

if you create a new mobile thing at a place, the object must be added to the place. As you’ll see in

the code, we define two procedures for each type of object: make- and a create- procedure. The

make procedure (e.g. make-person) simply makes a new instance of the object, while the create

procedure (e.g. create-person) both (1) makes the object and (2) installs it. When you create

objects in our simulation world, you should do this using the appropriate create procedure. Thus,

to create a new person, use create-person rather than calling make-person directly.

If you look in objtypes fa02.scm, you’ll see that objects have an

The following distinction should also help you think about make-object versus create-object

procedures. The make-object procedure should only be used “inside” our object oriented pro

gramming code: e.g., in objtypes fa02.scm you “make” a stand-alone person or part of an person
using, for example make-person or make-named-object or whatever. But this only gives you an

object that is not yet connected up with our world. To get a fully functioning object in a particular

world, you need to “create” that object. Thus you should use the create-object variant when you

actually want to make and install an object in a simulation world, as we do in setup fa02.scm.

Our world is built by the setup procedure that you will find in the file setup fa02.scm. You
are the deity of this world. When you call setup with your name, you create the world. It has

rooms, objects, and people based on the Clue game (by Parker Brothers) and it has an avatar (a

manifestation of you, the deity, as a person in the world). The avatar is under your control. It

goes under your name and is also the value of the globally-accessible variable me. Each time the

avatar moves, simulated time passes in the world, and the various other creatures in the world take

a time step. The way this works is that there is a clock that sends a clock-tick message to all

autonomous persons. (The avatar is not an autonomous person; it is directly under your control.)

In addition, you can cause time to pass by explicitly calling the clock.

e.g. using (run-clock 20).

If you want to see everything that is happening in the world, do

(ask screen ’DEITY-MODE #t)

which causes the system to let you act as an all-seeing god. To turn this mode off, do

(ask screen ’DEITY-MODE #f)

in which case you will only see or hear those things that take place in the same place as your avatar
is. To check the status of this mode, do

--

--

--

6.001, Fall Semester, 2002—Project II 12

(ask screen ’DEITY-MODE?)

To make it easier to use the simulation we have included a convenience procedure, thing-named
for referring to an object at the location of the avatar. This procedure is defined at the end of the
file setup fa02.scm.

When you start the simulation, you will find yourself (the avatar) in one of the rooms of the Clue
mansion. The Clue characters are also present somewhere in the mansion, and one of them is about
to commit a murder by using one of the Clue weapons. 2 When a murder is committed, the victim
screams and it’s up to you to figure out who did it, in which room and with what weapon... but
look out because you too (the avatar) can be killed. Note however, that once the murderer has
found a victim, he becomes filled with remorse, repents and does not commit any more murders
for the duration of the current simulation.

Here is a sample run of the system. Rather than describing what’s happening, we’ll leave it to you
to examine the code that defines the behavior of this world and interpret what is going on.

(setup ’eric)

eric moves from heaven to hall

;Value: ready

(ask (ask me ’location) ’name)

;Value: hall

(ask me ’look-around)

You are in hall

You are not holding anything.

You see stuff in the room: knife rembrandt

There are no other people around you.

The exits are in directions: west south

;Value: ok

(ask me ’examine (thing-named ’rembrandt))

It is one of Rembrandt’s masterpieces!

;Value: message-displayed

(ask me ’take (thing-named ’knife))

At hall eric says I take knife from hall

;Value: #[unspecified-value]

(ask screen ’deity-mode #f)

;Value: #f

(run-clock 3)

---the-clock Tick 0---

At foyer : miss-scarlet says I take wrench

---the-clock Tick 1---

mrs-white moves from lounge to dining-room

At billiard-room : professor-plum says I lose rope

miss-scarlet moves from foyer to ballroom

2If you are unfamiliar with the Clue game, just peruse the setup fa02.scm code to become more familiar with
this world.

--

6.001, Fall Semester, 2002—Project II 13

---the-clock Tick 2----

professor-plum moves from billiard-room to library

mrs-peacock moves from study to library

At library : mrs-peacock says Hi professor-plum

;Value: done

3.7 Changing the World

In parts of this project, you will be asked to elaborate or enhance the world (e.g. add things in
modify

If you do make such changes, you must remember to re-evaluate all defi
nitions and re-run (setup ’your-name) if you change anything, just to make sure that all your
definitions are up to date. An easy way to do this is to reload all the files (be sure to save your
files to disk before reloading), and then re-evaluate (setup ’your-name).

setup fa02.scm), as well as add to the behaviors or kinds of objects in the system (e.g.
objtypes fa02.scm).

4. Tutorial Exercises

You should prepare these exercises early, in order to get a sense for the world you will be exploring.
You will be expected to turn in answers to these problems during tutorials the week
of October 21.

Exercise 1: In the transcript above there is a line: (ask (ask me ’location) ’name). What
kind of value does (ask me ’location) return here? What other messages, besides name, can you
send to this value?

Exercise 2:
in this system and how the classes are related. For example, place is a subclass of named-object.

Draw a class
diagram and a skeletal instance diagram like the ones presented in lecture. You will find such a
diagram helpful (maybe indispensable) in doing the programming assignment.

Look through the code in objtypes fa02.scm to discover which classes are defined

Also look through the code in setup fa02.scm to see what the world looks like.

Exercise 3: Look at the contents of the file setup fa02.scm. What places are defined? How
are they interconnected? Draw a map. You must be able to show the places and the exits that
allow one to go from one place to a neighboring place.

Exercise 4: Aside from you, the avatar, what other characters roam this world? What sorts of
things are around? How is it determined which room each person and thing starts out in?

Exercise 5: The avatar, as a person, may have possessions. How does the avatar handle the
request (ask me ’things)? In particular, which method is used to respond to the request and
which variable holds the list of possessions? Sketch a skeletal environment diagram to help. Note
that we are not asking you to draw a fully detailed environment diagram here—it is huge and more
confusing than helpful!

6.001, Fall Semester, 2002—Project II 14

Exercise 6: Draw an environment diagram showing the state of the environment after evaluating:

(define foo (make-mobile-object ’eric lounge ’()))

Assume that lounge is bound to some procedure, but don’t worry about the details of that proce
dure.

Further, show the state of the environment after evaluating

(ask foo ’location)

Don’t worry about showing the frames created by calling ask or ask-helper.

Though it is more work, you may find it useful to think about what happens when other methods,
such as install or name are called.

5. Programming Assignment

To warm up, load the three files objsys fa02.scm, objtypes fa02.scm and setup fa02.scm
and start the simulation by typing (setup ’<your name>). (If you are using Athena, the M-x
load-problem-set command, with argument 2, will work.) Play with the world a bit. One simple
thing to do is to stay where you are and run the clock for a while with (run-clock <ticks>). Since
the characters in our simulated world have a certain amount of restlessness, people should come
walking by and say Hi to you. Try running the clock with the screen’s deity-mode parameter set
to both true and false. When it is set to true, you see almost everything that happens everywhere
in the simulation. When it is set to false, you see only what happens in the room you are in. You
should set deity-mode to false when you are ready to “play” the game and attempt to solve the
murder.

What to turn in: When preparing your answers to the questions below, please just turn in the
procedures that you have either written or changed (highlighting the actual portions changed) for
each problem, a brief description of your changes, and a brief transcript indicating how you tested
the procedure. Please do not overwhelm your TA with huge volumes of material!!

Computer Exercise 1: Getting Acquainted with the System Walk the avatar to a room
that has an unowned weapon. Have the avatar take this weapon, only to drop it somewhere else.
Show a transcript of this session.

Computer Exercise 2: Understanding Installation Note how install is implemented as
a method defined as part of thing and autonomous-person. Notice that the autonomous-person
version puts the person on the clock list (this makes them “animated”) then delegates an install
message from its self to its internal thing, which contains the INSTALL method responsible for
adding the person to its birthplace. The relevant details of this situation are outlined in the code
excerpts below:

6.001, Fall Semester, 2002—Project II 15

(define (make-autonomous-person name birthplace laziness characteristics)
;; Laziness determines how often the person will move.
(let ((person-part (make-person name birthplace characteristics)))
...

(case message
...
((INSTALL)
(lambda (self)
(ask clock ’ADD-CALLBACK

(make-clock-callback ’move-and-take-stuff self
’MOVE-AND-TAKE-STUFF))

(delegate person-part self ’INSTALL))) ; **
...)))

(define (make-thing name location characteristics)
(let ((named-object-part (make-named-object name characteristics)))
...

(case message
...
((INSTALL)
(lambda (self) ; Install: synchronize thing and place

...
(ask (ask self ’LOCATION) ’ADD-THING self)
(delegate named-object-part self ’INSTALL))

...))))))

Louis Reasoner suggests that it would be simpler if we change the last line of the make-autonomous-person
version of the install method (marked ; **) to read:

(ask person-part ’INSTALL))) ; **

Alyssa points out that this would be a bug. “If you did that,” she says, “then when you make
and install an autonomous person, and this person moves to a new place, he’ll be in two places at
once!”

What does Alyssa mean? Specifically, what goes wrong? You may need to draw an appropriate
environment diagram to help you to explain carefully.

Computer Exercise 3: Who Just Died? Explore the world until “An earth-shattering, soul-
piercing scream is heard...”, which means that someone (hopefully not you) has just been murdered.
Where does the victim go? If you know where the victim goes (and assuming you are not in
deity-mode), what simple scheme expression can you evaluate to find out who just died?

Computer exercise 4: Having a quick look

Change the behavior of the avatar, to LOOK-AROUND whenever it successfully moves to a new
location. Shows the change to your code, and demonstrate it working in an example scenario.

Now, for some real changes! In the next several exercises you will extend the system to add
additional behaviors and nuances.

6.001, Fall Semester, 2002—Project II 16

Computer Exercise 5: On Closer Inspection You may have noticed that some rooms contain
secret passages. When you first enter a room, these do not show up on the list of exits for the
room, because they are hidden.

Add a new method to person objects, called SCOUR. This method should find all the exits (whether
hidden or not) in a location, and for those that are hidden, change them to no longer be hidden.
It should then print out a list of all exits. For example, in the example given earlier, if we had
evaluated (while in the kitchen)

(ask me ’scour)

our new system might return

On closer examination, you see that the exits are (north west secret-passage)
;Value: message-displayed

thus indicating that there is a secret passage.

Add this method, then recreate the world and test it out. Show a transcript indicating your code
at work.

Computer Exercise 6: Pardon me! Coming through! Even once you have the ability to
find hidden passages, you may discover that you can’t get through them. This is a nuisance! So
we want you to change the system to allow this.

If you look carefully at the code, you will discover that each exit has a variable that indicates if the
exit is locked (which is different from being hidden). This prevents the method USE from moving
through the exit.

Note how this is currently done. Each exit has a procedure it calls to see if it can unlock itself (see
setup fa02.scm for examples of these procedures). In our case, we just require that some object
be in the person’s possession when they try to use the exit. If so, the state of the exit is changed,
and subsequently anyone can move freely through the exit. You may find it interesting to play the
game to see that this works as described by trying to move through locked exits without and with
the necessary “key” object.

In this problem, we want to improve this idea. To do this, you are to create a new kind of object,
called a key-object. This object has a name, and a location, like other objects. It also has a
target location and a key missing piece. The object should support a method in which it checks to
see if it is in the target location and if the missing piece is in the same location. If so, it should
then change the status of the secret passage, to be unlocked.

Using this new kind of object, create two such key objects – a whistle and a chime. The whistle
needs a pea in order to work and should be in the lounge or conservatory to open the passage.
When the whistle gets the message BLOWIT, it will try to open the passage.

The chime needs a tapper, and should be in the kitchen or study to open the passage. When the
chime gets the message RINGIT, it will try to open the passage.

You should think carefully about how each of these objects should access methods of internal
objects.

--
--
--

6.001, Fall Semester, 2002—Project II 17

You will need to modify the setup fa02.scm file to create and place the whistle, the chime, the
pea, and the tapper randomly in the house.

You may also need to modify the definition of the exit class so that its USE method no longer relies
on a procedure to attempt to unlock.

Reinitialize your world, then find each new object, move to the right place, and use the object to
demonstrate that you can now move through the secret passages.

Submit your code and detail any design decisions you made. Also include a short transcript (only
the relevant parts in your excerpt) that shows that this code is working properly.

Computer Exercise 7: Fingerprinting Weapons Next, extend the system so that when
someone picks up a weapon (or any thing object), his/her fingerprints are left behind and recorded
on the object.

(a) modify make-thing so that it can keep track of its previous owners.

(b) extend make-thing with a method FINGERPRINT that returns a list of all its previous owners.

Submit your code and include a short transcript (only relevant parts) that shows that this code is
working properly.

Computer Exercise 8: Reading Fingerprints Carefully Now create a magnifying glass,
and modify the system so that the fingerprints on a weapon are visible only to someone who is
holding the magnifying glass.

Submit your code and detail any design decisions you made. Also include a short transcript (only
the relevant parts in your excerpt) that shows that this code is working properly.

Computer Exercise 9: Solving the Crime Once a murder has been committed, it is your
task to solve the mystery. You can figure out where the murder occurred (examine the code and
explain how). Armed with the magnifying glass, you can examine the fingerprints on each weapon
you find to figure out which people it has come in contact with. Lastly, you can ask each character
for his/her ALIBI. An alibi is simply a report from a Clue character (now turned suspect) that says
(1) where they were when the murder occurred, (2) what was in their possession at that time and
(3) who else was in the room. These three pieces of information are returned as a list, and the
suspect will interpret them for you as a side effect. For example:

(ask (thing-named ’colonel-mustard) ’ALIBI)

colonel-mustard says Me? I was in the conservatory

colonel-mustard says I had in my possession: (knife)

colonel-mustard says Oh, and (miss-scarlet) was in the room with me

;Value: (conservatory (knife) (miss-scarlet))

If you think you have solved the crime, you can then hazard a GUESS as to the room, weapon and
murderer (in this order). For example:

(ask me ’GUESS ’library ’wrench ’mr-green)

6.001, Fall Semester, 2002—Project II 18

Turn in a sample excerpt (not the whole transcript) showing that everything works appropriately
and that you can indeed figure out who did it, where and with what. Note that in some cases, you
may not be able to deduce the answer uniquely so you may have to make a few guesses.

Collaboration Statement Please respond to the following question as part of you answers to
the questions in the project set:

We encourage you to work with others on problem sets as long as you acknowledge
it (see the 6.001 General Information handout). If you cooperated with other students,
LA’s, or others, please indicate your consultants’ names and how they collaborated. Be
sure that your actions are consistent with the posted course policy on collaboration.

6.001, Fall Semester, 2002—Project II 19

Part II
Now that you have had an opportunity to play with our “world” of characters, places, and things,
we want you to extend this world in some substantial way. Part II of this project will give you an
opportunity to do this.

In Part II, we want you to plan out the design for some extensions to your world. You will submit a
brief description of your plan to your TA. As well, you will implement your ideas, and demonstrate
their use.

Designing changes to the world – a new class We want you to design some new elements to
the “Clue” world. The first thing we want you to do is design a new class of objects to incorporate
into the world. To do this, you should plan each of the following elements.

1.	 Object class: First, define the new class you are going to build. What kind of object is it?
What are the general behaviors that you want the class to capture?

2.	 Class hierarchy: How does your new class relate to the class hierarchy of the existing world?
Is it a subclass of an existing class? Is it a superclass of one or more existing classes?

3.	 Class state information: What internal state information does each instance of the class
need to know?

4.	 Class methods: What are the methods of the new class? What methods will it inherit from
other classes? What methods will shadow methods of other classes?

5.	 Demonstration plan: How will you demonstrate the behavior of instances of your new class
within the existing simulation world?

Here are some examples of a possible new class of objects:

•	 A video camera. If you place a camera in a room, it should be able to record all the people
who pass through the room. It might also be able to record when they were in the room.
Note that this already suggests some information about the new class. First, it is likely to
be a specialization of an object, but it may not need to be a mobile-object (in fact, if we
were to make this a movable object we might want to consider that as a different class, since
it would probably need to keep track of more information than a stationary camera). Second,
it is going to need to get information from the clock, in order to know when people enter or
leave the room. And it is going to need some internal state information, such as a list or some
other data structure, for capturing when people enter and leave.

•	 A dog. This is a very loyal dog, so it always wants to stay with its owner. Thus, if the owner
is in some room together with the dog, the dog should stay in that room. If, however, the
owner changes locations, the dog will want to follow. If it doesn’t know which direction the
owner moved, then it will need to move randomly until it finds its owner. Clearly this needs
to be a specialization of a mobile-object. You might even consider it as a kind of person,
though you will then need to think about what methods of a person will need to be shadowed
by this kind of object.

What to turn in

6.001, Fall Semester, 2002—Project II 20

Design of your improvements You should work out a design of some new object. Use your
imagination, and invent something intriguing (i.e., you don’t have to make cameras or dogs!). Write
up a BRIEF description of your design, addressing each of the issues raiseed above.

Submit your description as the first part of your writeup for Part II of Project 2.

Making it work Now, implement your new class of objects, and test them out.

For this part of the project, submit your code, and a transcript of your system in action. Do not
just submit the entire file of objects, rather submit only those changes (if any) that you have made
to the existing system, and the new code that you have written. Be sure to document appropriately!

We will award prizes for the most interesting modifications combined with the cleverest technical
ideas. Note that it is more impressive to implement a simple, elegant idea than to amass a pile of
characters and places.

Collaboration Statement Please respond to the following question as part of you answers to
the questions in the project set:

We encourage you to work with others on problem sets as long as you acknowledge
it (see the 6.001 General Information handout). If you cooperated with other students,
LA’s, or others, please indicate your consultants’ names and how they collaborated. Be
sure that your actions are consistent with the posted course policy on collaboration.

