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Project I 

1. Issued: On Week 3 / Day 2 
2. Part I due Week 4 / Day 5 
3. Part II due Week 5 / Day 5 

Code for Part I – secret_fall02.scm, substitution_fall02.scm, for Part II – public_fall02.scm 

Note – if you downloaded a standard version of Scheme, it should automatically include a version of 
the Blowfish encryption system. If your version of Scheme does not include Blowfish, please 
contact one of the Lab Assistants for information on how to download it. 

You should begin working on the assignment once you receive it. It is to your advantage to get work done 
early, rather than waiting until the night before it is due. You should also read over and think through 
each part of the assignment for that week (as well as any project code) before you sit down at the 
computer. It is generally much more efficient to test, debug, and run a program that you have thought 
about beforehand, rather than doing the planning ``online.'' Diving into program development without a 
clear idea of what you plan to do generally ensures that the assignments will take much longer than 
necessary. We have separated this project into parts, however, you are encouraged to start subsequent 
parts as soon as you have finished an earlier one, provided you have also seen the appropriate lectures 
covering needed material, rather than waiting for the deadlines. 

You should submit your solutions as a Scheme file, electronically to your TA. You can use the templates 
provided in the code you load for this project as a starting point, and include within that file your 
documented code, and examples of the usage of your code on test cases. Actual submission is to be done 
using the “Submit Project Files” button on the tutor, and selecting the appropriate part (1.1 or 1.2) for 
submission. Note that late work will not be accepted. 

The purpose of this project is to familiarize you with procedural and data abstractions by writing Scheme 
code within a cryptographic context. There is a lot to read and understand; we recommend that you first 
skim through the week’s part of the project to familiarize yourself with the format, before tackling 
problems. 

In PART I of this project, you will use procedural abstractions to deal with a particular style of 
cryptographic system, and you will build on your experience to create more complex procedures for use 
in cryptographic systems. In PART II of this project, you will use procedural and data abstractions to 
create a system for manipulating messages received in a secure fashion. 

Don’t be intimidated! This looks like a lot of reading, but remember that this is a two part project, 
spread out over 3 weeks, with different sections to be read and answered for each part. 



Part I 

1. Introduction to Cryptography 

The desire to send secret messages that only an intended recipient can understand (even if the message is 
intercepted by a foe) is a very ancient one. In this part of the project, you will explore some basic ideas in 
cryptography. You will consider various mathematical functions that encrypt a numeric representation of 
a textual message to disguise its contents so that only an intended recipient can decrypt and read it. Later 
in the project, you will also consider mathematical functions that do not encrypt the message, but rather 
operate on the message to produce a number that can be used later to identify if the message is authentic. 

1.1 Numeric Representations of Textual Messages 

If we want to send a message, it is likely that the message will be composed of English words and 
sentences. Thus we need some way of representing concatenations of words in Scheme. We will see 
throughout the term that there are many ways of doing this, but for the purposes of this project, we are 
going to use strings.  A string is literally that – a string or sequence of characters in a particular order. In 
Scheme, we create a string by using double quotes to delimit the beginning and end of the string, for 
example: 

“This is a string” 

“This is another string, both are made from sequences of characters!” 

Scheme has a number of built-in procedures for manipulating strings, including ways of creating them, 
ways of comparing them, and ways of getting out the individual characters in a string. You should look at 
the online Scheme manual for details. 

In order to explore some of these mathematical manipulations of messages, we need a way to convert a 
simple textual (or string) version of a message into numbers o which our mathematical functions can 
operate. Consider a plain text message "ab". One of the simplest ways to encode the message is to 
assign a unique number to each unique character in the message. For example, we might assign the 
number 1 to a, 2 to b, and so on. A plain text message "ab" would thus be converted to a character 
encoding (which we'll call ``charcodes'') that reads "1 2". Of course, we'd like our computer to handle 
this method for encoding text messages into numbers for us. 

1.1.1 ``charcodes'' - character by character encoding 

The Scheme procedures for this part of the project are in the file secret_fall02.scm. You should 
read through secret_fall02.scm, although there are some procedures in the file that you are not 
likely to understand (as they use concepts we won't cover for a few lectures). 

In secret_fall02.scm, we have provided you with some basic procedures that perform conversions 
between a string message (e.g. "cat") and a ``charcodes'' representation (e.g. " 3 1 20") of that same 
message, in which a numeric character code is presented for each successive character in the message. 
The procedure message->charcodes takes a plain text message (represented as a string) and returns 
a charcodes string using a simple substitution of the number 1 for the character a, 2 for b, etc. The 



procedure charcodes->message does the reverse: it takes charcodes (a string with the successive 
numbers for each character in the message) and returns back the corresponding string text message: 

(message->charcodes "cat")
;Value: " 3 1 20" 

(charcodes->message " 3 1 20")
;Value: "cat" 

1.1.2 “intcode” - full message encoding 

In some cases we will find it convenient to work with a different conversion of a textual message into a 
numeric value. While ``charcodes'' consist of a separate number for each individual character in a text 
message, an ``intcode'' is one single large integer corresponding to the full message all at once. 

In this project, we provide different procedures that convert the message text into an intcode by simply 
abutting together the (three digit) number codes for each character.1 The file secret_fall02.scm 
provides the procedures message->intcode and intcode->message that perform this simple 
transformation between messages and intcode representations of those messages. For comparison with the 
charcodes, we see: 

(message->charcodes "ab")

;Value " 1 2" (or 001 followed by 002). 


(message->intcode "ab")

;Value 1002 (or 001 abutted with 002). 


(intcode->message 1002)

;Value "ab" 


Having these two different ways of representing a message will enable us to explore two different 
approaches to encrypting a message. In the case of ``charcodes'', we will explore character-by-character 
encryption whereby we mathematically operate on each individual character code in succession. In the 
case of the ``intcode'', we will look at mathematical operations on the entire message at once for both 
encryption and authentication. 

1.2 Character by Character Encryption 

So how might we send a ``secret'' version of a plain text message? One might be tempted to simply 
transmit the charcodes or intcode version of a message. But clearly this is not very secure: if a foe knows 
we are doing standard number for letter substitution (i.e. we always start with 1 for a) and he or she 
intercepts our charcodes, then it is trivial for our foe to decode the message. 

In this section, we want to consider some possible mathematical manipulations of our charcodes to 
disguise or encode them in such a fashion that only our intended recipient can easily decode them back to 

1 If you are used to programming in other languages, this approach might concern you – what if we run out of 
“room” in a fixed size integer? Fortunately, Scheme supports arbitrary precision integers: we can have integers with 
as many digits as we need – there is no “maximum” size integer (subject to overall machine memory limitations). 



their original values. We would like to be able to send messages even if everyone knows what method 
we're using for sending the message. It is common to perform encryption using a publicly known 
algorithm in combination with a secret key to encrypt a plain text message into a cipher text. The goal is 
that (hopefully) only the other holder of the key can ``unlock'' the cipher text and decrypt the message. In 
this project we will restrict ourselves to symmetric ciphers where both the sender and the receiver use the 
same key to encrypt or decrypt the message. In the following, we will look at two character-by-character 
encodings; in this part of the project you will experiment with these and also create some encodings of 
your own. 

1.2.1 The Caesar Code 

The ``classic'' Caesar code uses an integer key indicating a rotation of the start (and end) of the alphabet. 
This is illustrated pictorially in the left of Fig. 1, where the outer ring indicates a character in the plaintext 
message, and the inner ring indicates the encoded version of the character assuming a key of 4 (a rotation 
of the inner ring by four places). Thus the plain text character "b" is encoded into the character "F". 

The Caesar code corresponds to a simple addition of the key to the character code for a message character 
in our programming system. For example, the character "b" corresponds to a charcode of 2; for a key 
equal to 4 this is Caesar encoded into the number 6. If we do this for every character in a plain text 
message, we produce the cipher text. For example the Caesar encryption of "cat" results in a secret 
cipher consisting of the charcodes " 7 5 24". (Since we can just as well transmit numbers as strings 
we don't bother changing this back into characters before transmitting). 

Note that in Figure 1, the numeric shift is shown as a ring. In that figure, the alphabet is 26 characters 
long, so a shift of 4 for the letter "z" (number 26) becomes the letter "D" (number 4). This is a variant of 
modular arithmetic where numbers ``wrap around'' to limit the numbers to a given range. Modular 
arithmetic plays a fundamental role in cryptography: you will need to understand modular arithmetic for 
this problem set, and should study the Scheme procedures quotient, remainder, and modulo (see 
the Scheme manuals for what they do). 

The Caesar code thus corresponds to a simple mathematical manipulation of the number representing 
each individual message character. We have defined a procedure caesar-encode that takes the 
character number (num) and the key, and performs this computation to output a new number (an integer) 
for that character: 

(define (caesar-encode num key)
(modulo (+ num key) 256)) 

(define (caesar-decode num key)
(modulo (- num key) 256)) 

In this case, we are assuming that our alphabet consists of 256 possible characters rather than 26, so that 
we can use mixed upper and lower case and other typographical characters in our messages. 

These individual encoder and decoder procedures are intended to work in conjunction with a procedure 
encrypt-to-charcodes that accomplishes the encryption of a complete text message. It essentially 
works by taking the encoder procedure, using it to encode each successive character in the plain text 
message, and then aggregating the results into a charcodes output. The procedure has been provided for 
you; you can look at its implementation in secret_fall02.scm. The encoder is used by the 



encryption procedure, together with the plain text message and the key (equal to 77 in this case), as in the 
following example: 

(define cipher-1

(encrypt-to-charcodes "The Ides of March" caesar-encode 77)) 


cipher-1

;Value: " 65 85 82 13 54 81 82 96 13 92 83 13 58 78 95 80 85" 


(decrypt-from-charcodes cipher-1 caesar-decode 77)

;Value: "The Ides of March" 


The example also illustrates the use of caesar-decode in conjunction with the general decryption 
procedure decrypt-from-charcodes to recover the message from the cipher text (assuming we 
have the key!). 

Note that the encrypt-to-charcodes procedure takes another procedure as an argument. This is an 
example of ``higher order procedures'' as discussed in Section 1.3 of the text, and in Lecture 6 on 
September 19. 

1.2.2 The ``NSA'' Code 

The procedures encrypt-to-charcodes and decrypt-from-charcodes are general purpose, 
in that they can take different encoder and decoder procedures. Consider the nsa-encode procedure 
below, which corresponds roughly to the code ring that appears as part of the official National Security 
Agency seal (pictured to the right in Fig. 1). 

(define (nsa-encode num key)
(modulo (+ (* -1 num) key) 256)) 

(encrypt-to-charcodes "bc" nsa-encode 1)
;Value: " 255 254" 

(decrypt-from-charcodes
(encrypt-to-charcodes "bc" nsa-encode 1) nsa-decode 1)

;Value: "bc" 

Note that the ``flip'' of the inner code ring is accomplished by (* -1 num), followed by a rotation of 
the ring by a number of characters given by the key. One difference between our nsa-encode 
procedure and the code ring in the NSA seal is that we have 256 rather than 26 characters in our alphabet. 

In the Problems, you will be asked to provide the corresponding nsa-decode decoder. You will also 
have the opportunity to try cracking the Caesar and NSA codes. 

1.3 Full Message (single intcode) Encryption 

While the Caesar and NSA encoders work on a character by character basis (by repeatedly using an 
encoder procedure on each character), we are also interested in an alternative approach whereby we 



simply use a single mathematical function to encrypt the message all at once. In this case, we want 
encryption methods that work on the ``intcode'' representation (the message as a single integer). 

To support encryption into an intcode, secret_fall02.scm provides for you corresponding 
encryption and decryption procedures: 

(define (encrypt-to-intcode msg encoder key)
(encoder (message->intcode msg) key)) 

(define (decrypt-from-intcode cipher decoder key)
(intcode->message (decoder cipher key))) 

Consider the following simple intcode encoder and decoder procedures that work with these integer 
encryption and decryption procedures: 

(define (encode-add int key) (+ int key))

(define (decode-add int key) (- int key)) 


;; Simple example

(define add-key 8) 


(message->intcode "ab")

;Value: 1002 


(encrypt-to-intcode "ab" encode-add add-key)

;Value: 1010 


;; Bigger example

(define add-key 9234827538182374765023)

(define cipher-3 (encrypt-to-intcode "This is TOP SECRET" encode-add

add-key)) 


cipher-3

;Value: 244008009019192009019192244239240201478056765424604009216 


(decrypt-from-intcode cipher-3 decode-add add-key)

;Value: "This is TOP SECRET" 


;; Note what happens if we try this

(decrypt-from-intcode cipher-3 decode-add (- add-key 1))

;Value: "This is TOP)>\230]\b\274i1" 


1.4 Breaking the code 

Many approaches can be taken to attempt to break a code. With character based encryption (like the 
Caesar code), for example, knowledge about the frequency of characters in typical English usage can give 
clues about what codes relate to which characters. In other cases, the encryption algorithm itself may be 
very weak, so that plain text can be recovered through analysis of a cipher text. In still other cases, one 
may not only want to crack a particular message, but rather one might want to discover the secret key 



being used in association with a given algorithm. If one has cracked the key, then any transmission can be 
quickly decrypted. In the Problems for this part of the project, you will experiment with creating some 
different encryption procedures, and will also try to crack the key for some messages we have found lying 
around. 

2. Programming assignment 
Load the first part of the code for project 1, that is, load the file secret_fall02.scm into a Scheme 
environment. This code file is part of the code package that can be downloaded from the 6.001 web site. 

Preparing material to “hand in” 

We are asking you to prepare your solutions as a Scheme file (that is, a file that has .scm as the 
second part of its name). Since this is a Scheme file, you will need to ensure that any text you 
include (and you should!! – comments and other documentation, examples of code that you used to 
run test cases, and so on) is commented out (using the character ; at the beginning of each such 
line). We suggest that you use the format provided in secret_fall02.scm as a basis for your 
solutions. 

Ideally, your solutions should follow something like the following format. Note that by copying the 
portion of secret_fall02.scm starting with Problem 1, you can easily create a template for your 
solutions. 

;; Problem 1 (please be sure to label each section of your work, so that 
;; your TA can find it easily) 

;; Here are some examples of using the Caesar encoder/decoder 


;(define example1

; (encrypt-to-charcodes “this is an example of some text”

; Caesar-encode 

; 12345)) 


; shown here should be the result of your evaluation of this expression, 
; which you can clip out of your transcript buffer or out of your Scheme 
; buffer, including any comments you want to add to explain why you 
; used this particular example. 

;; When you get to pieces of code that you have written, include them 
;; with the requested procedure name, directly into the file, such as 

(define (here-is-my-procedure some-argument)
some-body) 

When you have completed your project, you should submit this Scheme file electronically to 
your TA. 

So now you are ready to start with the actual problems!! 

Problem 1: Encryption with charcodes 



Gain some experience using the encrypt-to-charcodes and decrypt-from-charcodes
procedures, using the Caesar encoder and decoder. You should be able to encrypt and decrypt several 
messages of your own, using keys of your own. Show your examples. 

The cipher-2 text in secret_fall02.scm was produced with a Caesar code (caesar-encode) 
using 125 as a key. What does it decrypt to? 

As previously described, the procedure (encrypt-to-charcodes msg encoder key) takes a 
plain text msg, a particular encoding procedure encoder, and an integer key. The nsa-encode 
procedure that can act as one of these encoders is also defined for you. However, the corresponding nsa-
decode procedure is missing. Your task is to write this procedure that ``undoes'' the work of nsa-
encode and which can be used with decrypt-from-charcodes to recover an nsa encrypted 
message. The decoder procedure should take two arguments: an integer num (corresponding to an 
encoded single character in the cipher text) and an integer key, and return an integer such that (nsa-
decode (nsa-encode num key) key) returns the value of num for all positive integer keys. 

Write the nsa-decode procedure that undoes the work of nsa-encode. Show that it works on test 
cases of your own. 

The cipher-4 message in secret_fall02.scm was encrypted using nsa-encode with key 007. 
Verify that your nsa-decode procedure works by decrypting cipher-4. 

Note: you might even be able to break cipher-4 by hand, particularly if you recognize the most 
frequent letter in English usage. 

Problem 2: More encryption with charcodes 

Write one or two new encoder procedures of your own, and the corresponding decoders. They do not 
have to involve modular arithmetic operations as in the two examples shown above. Key properties to 
keep in mind are: the encoding function should be one-to-one, meaning that it maps at most one input 
argument to any output argument; the encoding function and decoding function which must be inverses 
of one another, so that applying the decoder to the result of the encoder should return the value with 
which you started; and ideally both the encoder and decoder should be easy things to compute (in part 2 
we will get to the issue of having the decoder be much harder than the encoder). 

Show that your encoders and decoders work in a ``stand-alone'' fashion (on a single numeric character 
code) by testing them given a single number and a key. It is always good practice to work through some 
test cases to verify that any individual procedure works correctly before testing it within a larger system 
(in this case, within the encrypt-to-charcodes and decrypt-from-charcodes procedures). 

Once you have your new separate encoder and decoder procedures working, show that they work with 
encrypt-to-charcodes and decrypt-from-charcodes by encrypting and decrypting some 
full messages. 

Problem 3: Breaking the Caesar code 

We know that Al and Cap1 are using a Caesar code, but we don't know the key they have agreed upon. 
However, at one of their recent crime scenes, we found both plain text and cipher text for one of their 
exchanges (they think that since no one else has their key any future message will remain secret). Your 



mission, should you choose to accept it: figure out the key they used. Write a procedure crack-caesar 
that takes a plain text message and the corresponding cipher string that was encoded with caesar-
encode and some unknown key, and which returns that secret key. Hint: you may find the built-in 
Scheme procedure string=?, which compares two strings for equality, to be helpful. 

Hint: think carefully about how many possible keys there are given the modular arithmetic used in 
caesar-encode. 

Verify that your crack-caeser works by discovering the key corresponding to al-cap1-
plaintext and al-cap1-ciphertext defined for you in secret_fall02.scm. 

Problem 4: Breaking any Caesar-like code 

Al and Cap1 hear that you've broken their key, and no longer trust the Caesar code. They switch to the 
(presumably) more secure NSA encoder. Again, they hit another target but leave their plain text and 
enciphered transmission behind (in better-al-cap1-plaintext and better-al-cap1-
ciphertext). 

In the previous problem, your procedure assumed that the message had been encrypted with caesar-
encode. To stay one step ahead of Al and Cap1, we want to generalize our cracker so that given any 
encoder procedure (whatever it may be) in addition to the plain and cipher texts, the key can be 
discovered. To make things somewhat bounded, we will also assume that keys are less than or equal to a 
given number of digits (e.g. a 3 digit key will be a positive integer less than (expt 10 3) ->
1000). Your procedure should take arguments as in (crack-string-encryption encoder
plaintext cipher-string max-key-digits) and again produce the key. If no key is found 
you may either generate an error using (error "some error message") or return -1 which we 
will hold as an invalid key. 

Once you have your procedure working, crack the key Al and Cap1 used to nsa-encrypt their new 
message (given better-al-cap1-plaintext and better-al-cap1-ciphertext). Also 
show that your solution still works for Problem 3. 

(crack-string-encryption nsa-encode
better-al-cap1-plaintext
better-al-cap1-ciphertext
3)

;Value: ???? 

If n is the number of possible digits in the key, how long (how many encryption comparison attempts) 
will it take in the worst case to break a general Caesar-like key? 

Problem 5: Encryption with an intcode 

We now switch gears and consider encryption to and from the ``intcode'' representation of our message 
text (rather than the character by character encoders discussed above) as described earlier. 



Consider the simple encode-add and decode-add procedures below (also described in Section 1 of 
this handout) that work with the encrypt-to-intcode and decrypt-from-intcode
procedures, and which can take a positive integer key up to, say, 30 digits long). 

(define (encode-add int key) (+ int key))

(define (decode-add int key) (- int key)) 


(define add-key 1043252235123512351235)

(define cipher-3 (encrypt-to-intcode "This is TOP SECRET" encode-add add-

key))

(decrypt-from-intcode cipher-3 decode-add add-key)

;Value: "This is TOP SECRET" 


Given a plain text message and its corresponding encrypted intcode, we want to think about how long it 
would take to discover the secret key given a known plain text and cipher text pair. Consider first a 
``brute force'' procedure similar to that used in the previous exercises, which tries every key until it finds 
the one used to encrypt the message. What would be the order of growth in computation time as a 
function of the number of digits n in the key? 

Fortunately, however, we can do much better for the special case of encode-add. You should be able 
to write an extremely efficient procedure (quick-crack-add plaintext cipherint) that 
returns the secret key used to encrypt cipherint using encode-add. Hint: you should have a 
procedure that runs in constant time! (Demonstrating that public knowledge of the encryption procedure 
in this case is as good as knowing the key.) If you can't think of a constant time method for the special 
case of encode-add, you can write a general purpose but less efficient version. 

Try to crack the key for two transmissions encoded with encode-add. The first is in add-plain-1 
and add-cipher-1, and the second is in add-plain-2 and add-cipher-2 (both of these are 
defined for you in secret_fall02.scm.) Caution: if you have an inefficient cracker, it may take a 
long time to discover the key for add-cipher-2 (and you may need to know how to terminate a long 
Scheme computation in the middle using C-c C-c). 

Problem 6: More encryption with an intcode 

Write intcode encode and decode procedures of your own that work with encrypt-to-intcode
and decrypt-from-intcode, and show that they work. 

We would like to have a ``standard'' encode and decode procedure (e.g. so they could be coded 
up and embedded in everyone's email program) that would allow people to have secret keys but 
wouldn't require everyone to write their own unique secret algorithm. If someone knows your 
encode procedure, is it easy or hard for them to crack your key? 

3. Substitution codes 

Simple codes, like the Caesar code of the previous part, are often easy to break. Even with 256 
characters in our alphabet, there are only 256 possible Caesar encryptions, and decryption is 
symmetric with encryption. Hence decryption is easy; just write procedures that try out all 
possible decryptions until the message is converted into readable form. A harder encryption 
scheme uses a substitution code. Here, the idea is to randomly select a (unique) new letter for 



each letter in the alphabet. For example, we might choose to replace “a” with “f”, “b” with “w”, 
“c” with “z”, “d” with “a” and so on. Note that we must have a one-to-one mapping between 
characters (that is, two letters in the alphabet cannot be replaced with the same letter in the 
encryption). Clearly, there are many more possible encryption schemes. In fact, if our alphabet 
has 256 characters, there are 256! possible different encryptions, or on the order of different 
choices! Clearly trying out all possible encryptions in order to break a substitution code is not 
possible. Even if we restrict ourselves to messages composed of the 26 letters of the English 
alphabet, plus a space, there are 27! (or roughly) different possibilities. In this part of the 
project, we are going to consider substitution codes, and possible ways of breaking them. 

In this section of Part I of this project, we are going to explore ways to decrypt substitution 
ciphers. We will make some simplifying assumptions in this project. In particular, we restrict 
ourselves to messages composed only of the 26 lower case letters of the English alphabet (a, b, 
…, z) plus a space to indicate separation between words. Thus, in the system we will be 
building, we define 

(define alphabet
(list #\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m
#\n #\o #\p #\q #\r #\s #\t #\u #\v #\w #\x #\y #\z #\ )) 

Note that the elements of this list are “characters”, that is, self-evaluating data objects 
representing the letter or character described. Note as well that the last element of this list is the 
character representing a space, which can also be represented by #\Space. Also note that in 
this part of the project, we are going to be using the data structure of a list; you may find it 
useful to listen to Lecture 7 before starting this part of the project! 

An example message is just a string of characters chosen from this alphabet, such as 

"the cia says it does not spy domestically but you can draw your own
conclusions" 

Note that since this is a string, it is enclosed in the double quotation marks “..”, and a string is 
constructed from a sequence of characters. 

3.1 Substitution code encrypting 

To create a code for encrypting such messages we just need to decide on a substitution for the 
characters in the alphabet. Here is one way of doing this (you should just look over this code to 
ensure you understand how it works; your goal in the project will focus on decryption): 

;;;

;;; code for creating an encryption 


(define (create-substitution-code alphabet)
;; code to create a substitution code for the 26 lower case letters,
;; plus a space
;; idea is to create a random ordering of the numbers 0 to 26, which
;; can then be used to select a match for the current letters
;; thus the output is a random ordering of integers (e.g. (i j k ..)
;; Hence the 0th letter (a) would be replaced by the i'th letter in
;; the alphabet, the 1st letter (b) would be replaced by the j'th letter,
;; and so on 



 (define (loopit used total)
(if (= (length used) total)

used 
(let ((trial (random total)))
(if (memq trial used)

(loopit used total)
(loopit (cons trial used) total)))))

(loopit '() (length alphabet))) 

;;; create an example encoding

(define my-code (create-substitution-code alphabet)) 


The idea is to associate a number with each letter, representing its place in the list of characters; 
thus “a” would correspond to “0”, “b” to “1” and so on. Then, we create a new list of random 
numbers, uniquely selected from the set 0, 1, …, n (where n-1 is the total number of characters in 
the alphabet). By creating such a list, the k’th element in the list can be used to represent the 
number of the new character to be substituted for the k’th letter in the original alphabet. Thus, if 
the initial number in the new list is “7”, this says that “a” would be replaced by “H”; and if the 
second number in the new list is “0”, then “b” would be replaced by “A”, and so on. Note that 
we will use UPPER CASE characters as our substitutions. 

Given such an encoding scheme (e.g., my-code), which we will want to keep secret, we can then 
encode any message by simply substituting the new character for each character in the original 
message: 

(define (string-lookup char sequence n)
(if (null? sequence)

(error "char not in set" char sequence)
(if (char=? char (list-ref sequence 0))

n 
(string-lookup char (cdr sequence) (+ n 1))))) 

(define (convert-message-substitute msg code)
;; msg is a string of characters, code is a list of integers
;; output will be encoded string of characters
(define (aux done todo)
(if (null? todo)

(list->string done) ; return result as a string
(let ((next (car todo)))
(let ((index (string-lookup next alphabet 0)))
(let ((new-index (list-ref code index)))
(let ((new-char (list-ref alphabet new-index)))
(aux (append done (list new-char))

(cdr todo))))))))
(let ((msg-as-list (string->list msg)))

(aux '() msg-as-list))) 

;;; here is an example 

(define simple-test-msg
(convert-message-substitute "we see everyone and we need to know everything"

my-code))
;Value: "pyg yygyxybvdtygqtugpygtyyugndgjtdpgyxybvnostr" 



3.2. Breaking a substitution code 

Now, given that we intercept an encrypted message, how can we break it? Well, the simplest 
approach is to try to guess the encoding scheme, but with 27! (or) choices, this is clearly 
impractical. Fortunately, we can take advantage of the structure of the English language. In 
particular, not all letters in normal English use appear with the same frequency. Here is the 
frequency of letters based on an analysis of a large body of English text: 

Frequency distribution of letters in English text 

Source: H. Beker and F. Piper, Cipher Systems, Wiley-Interscience, 1982. 

A 8.167 
B 1.492 
C 2.782 
D 4.253 
E 12.702 
F 2.228 
G 2.015 
H 6.094 
I 6.996 
J 0.153 
K 0.772 
L 4.025 
M 2.406 
N 6.749 
O 7.507 
P 1.929 
Q 0.095 
R 5.987 
S 6.327 
T 9.056 
U 2.758 
V 0.978 
W  2.360 
X 0.150 
Y 1.974 
Z 0.074 

Thus, as you might expect, the most common letter in English is an “E”, followed by “T, A, O, I, 
N…” and here is the list of characters ordered by frequency of use. 

(define legal-alphabet
(list #\_ #\E #\T #\A #\O #\I #\N #\S #\H #\R #\D #\L #\C #\U

#\M #\W #\F #\G #\Y #\P #\B #\V #\K #\J #\X #\Q #\Z)) 

Note that we are going to use upper case letters as our target alphabet for reasons that will be 
clear shortly, and we use #\_ in place of #\Space for similar reasons. 



Here is our rough plan. Given an intercepted message, we need to determine the frequency with 
which characters appear. We can do this by building a data abstraction called a histogram. A 
histogram is a collection of bins (or buckets) each of which has a key (in our case a character 
from the alphabet) and a count (in our case the number of times that character has appeared in 
the message). In the code for this part of the project (substitution_fall02.scm) we have 
provided a partial implementation of a histogram. Once we have built such a histogram, we can 
use it to determine relative frequencies of characters in the message. If we are lucky, this 
relative frequency will match up with the data above, i.e., the most common character in the 
secret message will correspond to the character “e”, the next most common will correspond to 
“t” and so on. Thus, we need to create code to let us find histograms of character frequencies, 
and then we need to use that information to help us decode the message. 

Problem 7: You need to create abstractions for a histogram.  A histogram is constructed from 
bins: create a constructor make-bin that takes a key and a count as arguments, and constructs a 
representation of this coupled information. Associated with this constructor should be two 
selectors: bin-key and bin-count for retrieving the associated parts of the data structure. 

A histogram is also a data structure. For this, you will need to provide a constructor for making 
a blank histogram, called create-hist which should be a procedure of no arguments. The 
constructor extend-hist should take a bin (as a data abstraction) and a histogram, and return 
a new histogram, with the bin attached to the original histogram. The corresponding selectors 
are next-bin which takes a histogram as argument and returns the first bin in that histogram, 
and rest-bins which takes a histogram as argument and returns a histogram consisting of all 
but the first bin of the original histogram.  Finally you should create a predicate empty-hist?
which returns true if the supplied argument is an empty histogram, and otherwise returns false. 

Complete the implementation of a histogram. Demonstrate that your abstraction satisfies the 
associated contract. 

Problem 8: To count the frequency of characters in a string, we need to build a histogram of the 
occurrences of characters. You should do this in stages. First, create a procedure increment-
bin, which takes a bin as input, and returns a new version of that bin (using your selectors and 
constructors!) with the count portion increased by 1. 

Second, create a procedure increment-hist which takes a character and a histogram as input, 
and returns a new histogram with the following properties. If the original histogram contains a 
bin with a key matching the character, then the new histogram will have the count portion of the 
corresponding bin increased by 1, using increment-bin. If the original histogram does not 
contain a bin with a key matching the character, then the new histogram will include a new bin 
with that character as key, and with a count of 1 (since this is the first time we have seen this 
character). Note that you will find it useful to use char=? to compare two characters. 

Third, create a procedure update-histogram which takes as input a string (representing an 
encrypted message) and a histogram.  It returns a new histogram, wherein each bin’s count value 
has been increased by the number of times the bin’s character appears in the string. For 



simplicity, we will convert the string to a list of characters (see the template in the file). 

Show examples of your procedure working correctly. 

Here is an example of the expected behavior: 

(define test-hist (update-histogram simple-test-msg (create-hist))) 


test-hist 

;Value: ((#\p 3) {#\y 11) (#\g 8) (#\Space 1) ... (#\s 1) (#\r 1)) 


Problem 9: Now that you have completed the procedures for creating histograms, you can try it 
out. Use update-histogram to find the frequency of characters in the message long-test-msg. 
What are the values of the bins in the histogram for this message? 

3.2.1 Sorting a histogram 

In the previous problem, we were able to measure the occurrence of characters in a test message, 
but to put this into a useful form, we would like to sort the result, so that the most frequent 
character is first, then the second most frequent, and so on. To do this, we are going to build a 
simple sorting procedure, built around the following idea. 

Start with a sequence of elements (such as the sequence of bins in a histogram, or more simply 
such as a list of integers). Imagine walking down this sequence in order, keeping track of the 
best element seen so far (e.g. the largest), a sequence of all the other elements you have looked at 
so far, in arbitrary order, and the remaining elements of the sequence to be examined. At each 
step, you can compare the best element to date against the next element in the sequence to be 
examined, and continue with a new “best” element, a new sequence of things seen so far, and a 
new sequence of things still to be examined. When you get to the end of the sequence, you 
should place the “best” element at the beginning of an output sequence, the remainder of which 
you will get by repeating this process on all the other elements. Of course, we have some 
freedom in what kinds of elements we are sorting (e.g. a list of histogram bins) and some 
associated freedom in how we compare those elements to decide which is larger. Though this is 
a slow process, it will get the job done. 

Problem 10: Implement sort-histogram, using this idea as applied to a histogram data 
structure. Demonstrate it working on the histogram you built for long-test-msg. An example 
of the expected behavior is 

(define sorted-test-hist (sort-histogram test-hist)) 


sorted-test-hist 

;Value: ((#\y 11) (#\g 8) (#\t 5) (#\p 3) … (#\o 1) (#\j 1)) 


The idea of sorting a histogram can be generalized. If we want to sort any sequence of elements, 
we can use the same general idea, but simply add two new pieces of information: the procedure 
needed to extract the information to be used in sorting from each element of the sequence (in the 



case of our histogram, we used the histogram value) and the procedure to be used to compare 
two values to decide which comes first. 

Problem 11: Write a procedure called general-sort-histogram, which takes as arguments a 
histogram, a means of extracting a value from each entry and a means of comparing two values 
to decide which comes first. 

1. Demonstrate the use of this procedure to sort the histogram as in problem 10. 
2.	 Demonstrate the use of this procedure to sort the histogram by key, rather than by value. 

For this, you may find the predicate char>? to be useful. 

Problem 12: Suppose we want to further generalize this idea of sorting, so that we can create 
different sorters for different purposes. We would like to write a procedure, called make-sort, 
which takes as input a means of selecting values from entries, and a means of comparing those 
values, and returns a procedure that can then be applied to any histogram to sort it. For example, 
we would like to do: 

(define histogram-sorter-by-count (make-sort hist-value >)) 

(histogram-sorter-by-count test-hist) 

and have this accomplish the same task as in Problem 10. 

Write the procedure make-sort, and demonstrate its use in each of the cases of Problem 11. 

3.2.2 Cracking a substitution coded message 

Now that you have a histogram of the frequency of characters in the message, you are set to try 
cracking the code. You know that the normal frequency of characters is given by the order 
shown in legal-alphabet. So the most obvious thing to do is to replace the first character in 
your sorted histogram with the new character for a space #\_, then replace the second character 
in your sorted histogram with the new character #\E, and so on. Note that we are going to use 
upper case characters to represent replacement characters, to distinguish them from the original 
characters in the message. Think about why we do this?  Why not just use lower case 
characters? 

Problem 13: As a first step in accomplishing this substitution, complete the procedure 
substitute. This procedure should take a string as input, together with an old character and a 
new character, and replace each instance of the old character with the new. For simplicity, we 
will convert the input string into a list of characters, and when you have completed the 
substitution, we will convert the result back into a string. Show examples of your code working, 
such as 

(substitute simple-test-msg #\g #\_)

;Value: "py_ yy_yxybvdty_qtu_py_tyyu_nd_jtdp_yxybvnostr" 




Problem 14: Now take a shot at breaking the message. Complete the definition for multi-
substitute, so that it takes as input a string representing a message, and a list of substitutions. 
That is, the second argument should be a list of replacements, where each replacement indicates 
a character from the coded message, and the character with which to replace it. You should 
design your own abstraction for a replacement, using the constructor make-replacement and 
selectors old-char new-char. Then, using the information about the most common 
frequency of characters in English and the frequency of characters that you find in long-test-
msg, try decoding this message. If the most obvious choice (i.e. matching the order of normal 
frequency to the order you found) doesn’t work, try some variations. Show your trials as well as 
your code for multi-substitute. 

4. A more clever crack at substitution codes 

Clearly even with information about frequency of characters it is going to take too long to crack 
a code. So how can we do better?  The problem is that knowledge of frequency helps, but it is 
not guaranteed to exactly match the frequency of letters in general. So we would like to have 
some way to search for alternative orders of frequency. 

Imagine the following idea. Suppose that the most common character in our message is an “a”, 
followed by “d” then “f”, and so on. We can represent all possible replacements for “a” as a set 
of nodes in a tree, as shown below. 

Thus all the nodes at the first level of this tree represent all possible replacements for the most 
common character, “a”, and they are ordered by the most common occurrences of characters in 
general (i.e., the space character, _, then E, then T, and so on). If we walk down the leftmost 
branch of this tree, we reach the node representing the assignment of “a” to “_”. Now suppose 
we consider all the branches below this node. They correspond to assignments of the second 
most common character in our message (in this case “d”) to possible characters from the 
replacement alphabet, in order of frequency, but excluding the assignment already made (i.e. we 
don’t include “_”). Similarly as we move to the next lower node down the left most branch. On 
the other hand, if we take the second branch from the top, we assign “a” to the second most 
common character “E”. If we look at the choices below this node, we see that “d” can be 
assigned to any character except “E”, since we have already used that one. 

Now one possibility is to create a procedure that searches this tree of possibilities, by walking 
down the left most branch at each node until we reach the bottom of the tree (where all 
characters have been assigned a replacement), doing the substitution at each stage. When we 
reach a leaf of the tree, we can see if the substitution results in a clear message. If not, we can 
back up one level, go down the next branch, and try again. Of course, if we explore this entire 
tree, we are back to where we started, as we will explore all possible substitutions. The trick is 
to note that as we try initial substitutions, we can be a bit more clever. 

In particular, suppose we have already substituted the space character “_” for a character in our 
coded message, and we have substituted a few more characters. Suppose as a consequence that 
in the new version of the message string, we have a sequence of characters, all of which have 
been substituted, and which are separated by “_” at the beginning and end, e.g. 



“ay_WE_sEWEs_sjdhw_FRZD_adnmsyd” 

Here, we see that the word “WE” occurs in the string, as well as a partial word, “sEWEs” and a 
second word, “FRZD”. Before we go any further in the substitution of characters, we could 
check whether these words are real. Given that we have a dictionary of possible words, we could 
see if “WE” and “FRZD” are legal words. If they both are, then we can continue with the search, 
i.e. going to the next level in the tree. If they are not (and as far as we know, “FRZD” is not a 
word), then we can stop at this stage and backtrack. That is, there is no sense in considering 
further substitutions, since the current substitutions lead to garbage, so we can go back to our last 
choice, and try the next option. In this way, we hope to explore only a small part of this tree of 
possibilities. 

Problem 15: We have provided some machinery to help you implement this idea. The 
procedure message-passes-dictionary, and its associated procedures, will take as input a 
message, represented as a string using “_” to represent spaces, and using upper case letters to 
represent translated characters; as well as a starting point, and ending point, and a dictionary 
(such as my-dictionary). This procedure returns true if all the words between the starting point 
and the ending point in the message string are in the dictionary. 

Using this idea, you are to complete the definition for decode-with-dictionary. We have 
provided part of the code for you. This procedures takes several arguments as input: msg is a 
string to be decoded; histogram is a histogram of characters whose order is the order in which 
to try substitution; tried represents the set of characters already tried as substitutions for the 
first element in the histogram; todo represents the remaining choices, and dictionary is the set 
of known words. For example, if new-hist is a sorted histogram of character frequency in the 
message, and my-dictionary is a list of legal words, then we would evaluate: 

(decode-with-dictionary long-test-msg new-hist ‘()
legal-alphabet my-dictionary) 

Note how the procedure stops if either the histogram is empty or the value of a bin is 0, since 
there are no more choices worth considering. Also notice how the procedure returns false if 
there are no more choices for substitution. Finally, notice how we return a labeled list of the tag 
“done” and the decoded message when we get a solution, so that at other stages of the search, we 
can simply return this value. 

Your job is to implement the recursive step. Think carefully about this stage. The local variable 
next represents the next stage in the search, in which the next most frequent character in the 
message has been replaced by the current choice.  If this substitution is legal, then you want to 
continue the search, otherwise you want to try the next option at this stage. Also note that if 
continuing with the search does not result in a decryption of the message, then you want to back 
up to the previous stage, and try the next option there. 

Show your code, and use it to decode the message long-test-msg. 

Problem 16: So how much does this help?  To demonstrate this, we have provided you with a 
means of measuring the amount of time taken by a procedure. The last expression in the file 



substitution_fall02.scm uses a special form called with-timings. Evaluating this form will 
cause the first procedure to be evaluated and its value returned (in this case it will decode our 
message for us). The form will also print out the amount of time spent processing the 
expression, the amount of time spent in garbage collection, and the total amount of time spent. 
Copy this expression into your Scheme buffer and try running it several times, replacing 
histogram with whatever variable you use to hold your information about frequency of 
characters. What are the average times for processing, garbage collection and total time? 

Now replace legal-alphabet with legal-unsorted-alphabet, and do the same thing. How 
much longer does it take if we don’t use the normal frequency of letters to guide our search? 
Can you even get this to run to completion before you either run out of space in your machine, or 
you get so bored you kill the process? 

Addendum: 

Please identify any collaborators on this project, and indicate to what portions they contributed. 



Part II 

1. Background on public-key cryptography 

People have been using secret codes for thousands of years. So it is surprising that in 1976, Whitfield 
Diffie and Martin Hellman at Stanford University discovered a major new conceptual approach to 
encryption and decryption: public-key cryptography.2 

As we saw in Part 1, cryptographic systems are typically based on ciphers (i.e., codes) that use keys for 
encryption and decryption. In traditional ciphers, the so-called symmetric ciphers, the key used to encrypt 
a message is also the key that decrypts the message. As a consequence, if you know how to encrypt 
messages with a particular key then you can easily decrypt messages that were encrypted with that key. 
Diffie and Hellman's insight was to realize that there are cryptographic systems for which knowing the 
encryption key gives no help in decrypting messages. In traditional cryptographic systems, someone can 
send you coded messages only if the two of you share a secret key. Since anyone who learns that key 
would be able to decrypt the messages, keys must be carefully guarded and transmitted only under tight 
security. In Diffie and Hellman's system, you can tell your encryption key, or public key to anyone who 
wants to send you messages, and not worry about key security at all. Even if everyone in the world knew 
your public key, no one could decrypt messages sent to you without knowing some additional secret 
information, which you keep private. Diffie and Hellman called this a public-key cryptography system. 

1.1 Diffie-Hellman key agreement 

The public-key system we will investigate is based on the method of Diffie-Hellman key agreement. This 
is a method by which two people can construct a shared secret that will be known only to the two of 
them, even though all the communication between them is public. Here is the basic idea, as 
illustrated below 

Alyssa Ben 

Publicize prime, generator 

Picks random secret Picks random secret 
Computes Computes 

Key system: 
Public key: 
Private key: 

Key system: 
Public key: 
Private key: 

Exchange of public keys 

2 The first publication of this idea appeared in W. Diffie and M. Hellman, “New directions in cryptography,” IEEE 
Transactions on Information Theory, IT-22:6, 1976, pp. 644-654, and Diffie and Hellman have been credited with 
the invention. In December 1997, however, the British Communications Electronics Security Group (part of British 
Intelligence), published a memo describing how the technique was invented by CESG’s Malcolm Williamson in 
1973, but kept secret. See James Ellis, “The Story of Non-Secret Encryption”, http://www.cesg.gov.uk/ellisint.htm. 



Computes Computes 
__________________________________________________________________________________ 

If Alyssa and Ben wish to communicate they agree (in public) on a large prime number p and a number g, 
which is a generator for p. (For g to be a generator means that the powers, taken modulo p, produce all 
the integers, in some order.) 

Remember that modular arithmetic simply means using the remainders of values. For example, given any 
integer n and any integer p, the value of n mod p is simply the remainder of n after division by p.  For 
example, 10 mod 3 = 1, while 10 mod 7 = 3. Thus, in modular arithmetic with a base of p, only the values 
0, 1, …, p-1 will be used, because all other numbers are equivalent to these. 

Now, having agreed on p and g, Alyssa picks a secret number xa and computes.3 Ben picks a secret 
number xb and computes. Alyssa sends ya to Ben, and Ben sends yb  to Alyssa (alternatively, they both 
simply publish these numbers; in either case, they can be assumed to be publicly known values). Having 
obtained yb, Alyssa now computes and similarly, Ben, having received ya, computes. But these are the 
same number because 

Now that Alyssa and Ben have this shared number, call it K, they can use K as a key for sending and 
receiving messages using some ordinary symmetric cipher. 

The essential point is that during this protocol, all communications between Alyssa and Ben could be 
public, and an eavesdropper would still not know K and so could not decrypt the messages. All the 
eavesdropper would know is p, g, ya, and yb. If p is a large prime, there is no efficient way to use these to 
compute K. 

1.2 ElGamal Encryption and Decryption 

Suppose Alyssa wants to set up a system that allows anyone in the world to send her an encrypted 
message that only she can decrypt. She can do this with a small variation of the key exchange scheme 
above. 

Just as above, Alyssa picks a prime p, a generator g, and a secret number xa, and she computes. She keeps 
xa secret to herself and publishes the values (p,g,ya). These published values form Alyssa's public key. 

Suppose now that Ben (or anyone) wants to send Alyssa an encrypted message. He gets Alyssa's public 
key, which has the values of p, g, and ya. Next he picks his own secret number xb. From this, he computes, 
and he also computes. Ben uses K as the key for encrypting the message to Alyssa using some symmetric 
algorithm (such as those explored in Part I of the project). He sends the encrypted text to Alyssa, along 
with yb. 

When Alyssa receives an encrypted message, she takes the yb part that came with it, and computes. 
(Remember: Alyssa, and only Alyssa, knows xa.) She now uses K as the key for decrypting the message. 

3 The notation r s mod p (read “r is congruent to s modulo p”) means that r and s produce the same value when 
they are reduced modulo p, that is, that r and s have the same remainder modulo p. 



Other people who see the message can't decrypt it: They know p, g, ya and yb, but they can't compute K 
from this without knowing either xa or xb. 

This method of public-key encryption is known as ElGamal key agreement4.  The method is also 
sometimes called half-certified Diffie-Hellman. ``Half-certified'' here refers to the fact that Ben can be 
sure that he is sending a message to Alyssa (or to whomever published that key). Alyssa, however, has no 
idea who really sent her the message, since anyone in the world can see her public key. 

1.3 Implementing encryption and decryption 

Our main tools for implementing encryption and decryption are computing primes and doing fast modular 
exponentiation as in section 1.2.6 of the textbook. We strongly suggest that you read that section of the 
textbook, to be sure you understand the ideas behind the following code. 

We have the procedure that computes a power of a number modulo another number: 

(define (expmod b e m)
(cond ((zero? e) 1)

((even? e)
(modulo (square (expmod b (/ e 2) m)) m))

(else
(modulo (* b (expmod b (-1+ e) m)) m)))) 

We also have the Fermat test, which gives us a way of finding prime numbers: 

(define (fermat-test n)
(let ((a (choose-random n)))

(= (expmod a n n) a))) 

(define (fast-prime? n times)
(cond ((= times 0) true)

((fermat-test n) (fast-prime? n (- times 1)))
(else false))) 

To generate a prime, we pick a random value with a specified number of digits and start testing 
successive odd numbers from there until we find a prime. We'll consider a number to be prime if it passes 
two rounds of the Fermat test. 

(define (choose-prime digits)
(let ((range (expt 10 (- digits 1))))

;;start with some number between range and 10*range
(let ((start (+ range (choose-random (* 9 range)))))

(search-for-prime (if (even? start) (+ start 1) start))))) 

(define (search-for-prime guess) 

4 This method, and the digital signature method discussed below, are based on work during the early 80s by 
cryptographer Taher ElGamal. 



 (if (fast-prime? guess 2)
guess
(search-for-prime (+ guess 2)))) 

The procedure choose-random used here takes an arbitrary integer n and returns a number chosen at 
random between 2 and n-2, inclusive. Picking random numbers in this range will be useful for several of 
the procedures in this project. 

1.3.1 Finding generators: safe primes 

Unfortunately, it's not enough just to find a prime. We also have to find a generator for the prime. Finding 
a generator for an arbitrary prime can be complicated, but there is a certain kind of prime for which it is 
easy. These are so-called safe primes. A safe prime is a prime number p of the form p=2q+1 where q is 
also prime. The following theorem lets us compute generators for safe primes:5 

If p=2q+1 is a safe prime, then for any number either, or, or g is a generator for p. 

We can use these ideas as follows: 

1.	 To find a safe prime, we search for a prime q and test if p=2q+1 is also prime. If it is, we've found 
a safe prime. If it's not, we keep searching. 

2.	 To find a generator for a safe prime p=2q+1, we choose a random number g such that and check 
whether g2 and gq are both different modulo p from 1. If so, g is a generator. If not, we try again 
with a new guess for g.6 

1.3.2 Key systems and public keys 

Given the above procedures, arranging to do encryption and decryption is straightforward. Let's call the 
list of four numbers--p, g, x, and y--a key system. The public part of this, namely, p, g, and y, we'll call a 
public key. 

The following procedure constructs a key system according to the method described above: pick a safe 
prime p, pick a generator g, pick a random number x, and compute y=gx modulo p: 

(define (generate-key-system digits)
(let ((p (choose-safe-prime digits))) ; p will be public

(let ((g (find-generator p))) ; g will be public
(let ((x (choose-random p))) ;x will be secret

(let ((y (expmod g x p))) ;y will be public
(make-key-system p g x y))))))

The argument here specifies the number of digits (minus 1) for the prime. 

The procedure make-key-system in the final line of the procedure is an example of a data 
constructor. All it does is package the four numbers together into a structure called a list. Once a key 

5 We won’t include the proof here, since this is not a number theory class. Just take the result on faith. 

6 There’s a bit of number theory we’ve sloughed over that guarantees that these algorithms are reasonable. Given a 

safe prime, the odds that a randomly picked g is a generator are about 1 in 2. Given a prime q, the odds that 2q+1 is 

also prime are about 1 in ln q.  So trying random guesses is likely to succeed without too long a wait. 




system has been constructed, we can select the individual pieces using data selectors: key-system-p, 
key-system-g, key-system-x, and key-system-y. These constructors and selectors are all very 
simple procedures. 

Once we have a key system, we can extract the public parts to form the corresponding public key. 

(define (key-system->public-key key-system)
(make-public-key (key-system-p key-system)

(key-system-g key-system)
(key-system-y key-system))) 

Here make-public-key is another data abstraction we have provided for you, with selectors 
public-key-p, public-key-g, and public-key-y. 

1.3.3 Encrypting and decrypting 

The final element we need in order to implement ElGamal public-key encryption is a symmetric cipher, 
which will use the shared key to encrypt and decrypt. For this project, we've provided procedures 
symmetric-encrypt and symmetric-decrypt. Symmetric-encrypt takes a text string 
message and a numeric key, and encrypts the message using the key to produce a cipher-intcode. Given 
the cipher-intcode and the same key, symmetric-decrypt will recover the message text. We could 
implement these using an encoder and decoder from part 1 of this project. As you discovered, coming up 
with a good symmetric private key encryption algorithm is itself somewhat tricky. In order to provide you 
with an ``industrial grade'' encryption system, we will use a particular symmetric cipher called Blowfish, 
which was invented by cryptographer Bruce Schneier.7 If this is not already part of your system, 
instructions on how to download Blowfish may be found in the section of the course web site on 
downloading Scheme. 

For example, 

(symmetric-encrypt "My little secret" 87)

;Value:

217056195070110126076206155091206150169205088225245023075107233145109225 


(symmetric-decrypt

217056195070110126076206155091206150169205088225245023075107233145109225 87)

;Value: "My little secret" 


Putting this all together, given a message together with Alyssa's public key, we encrypt the message as 
described above. Namely, we pick a random value for xb (not to be confused with the xa of Alyssa's key 
system, which only Alyssa knows), use Alyssa's ya raised to the xbth power modulo p as the shared key for 
the symmetric cipher, and send the result together with. 

(define (encrypt message-text public-key) 

7 We wont’ show you the code for Blowfish, which is buried in the guts of the Scheme system. For a description of 
the algorithm see Schneier’s book Applied Cryptography, second edition, Wiley, 1996. 



 (let ((p (public-key-p public-key))
(g (public-key-g public-key))
(y (public-key-y public-key)))

(let ((my-x (choose-random p)))
(make-encrypted-message
(expmod g my-x p)
(symmetric-encrypt message-text (expmod y my-x p)))))) 

The procedure make-encrypted-message is another data constructor. The associated selectors that 
retrieve the two pieces are encrypted-message-y and encrypted-message-cipher-
intcode. 

We'll leave it to you to implement the corresponding decrypt procedure, which takes an encrypted 
message and a key system, and returns the decrypted text (provided that the key system is the correct 
one). 

1.4 Cracking the system; The discrete logarithm problem 

Suppose someone wants to decrypt a message not intended for them. Suppose this someone is the kind of 
someone who happens to have massive computational power available to devote to the problem8. They 
have to start with the public key of the recipient and recover the secret number x. That is, given p, g, and y 
they must find the number x such that. This is called the discrete log problem. 

How does one compute discrete logs? One way is simply brute-force search: Try all the values for x 
between 2 and p-2 until you find the one that works. Unfortunately for our ``someone,'' the computational 
burden here is vast. Remember that if we use successive squaring, the time required to raise a number to a 
power up to p has order of growth, i.e., grows as the number of digits of p. But to scan all the numbers 
less than p has order of growth . Each time you add one more digit to your prime, you increase the 
computation for cracking discrete logs by a factor of 10, while you increase the computation required to 
do encryption and decryption by a much smaller amount. Thus, you can quickly ``overpower'' anyone 
trying to crack your codes by simply making your primes larger. 

Are there better algorithms than brute force search? Yes, but they don't help much. There's a method 
called Pohlig's rho algorithm, with order of growth, but this is still exponential in the number of digits in 
p. The fastest algorithm known is called the number-field sieve, and has order of growth 

which is not quite exponential in the number of digits, but still grows pretty damned fast.9 

2. Digital signatures 

In their seminal 1976 paper, Diffie and Hellman suggested applying public-key cryptography to solving 
another important problem of secure communication: Suppose you want to send a message by electronic 
mail. How can people who receive the message be sure that it is authentic -- that it really comes from you 

8 Typical someones who come to mind here are certain government agencies, international crime rings, and MIT 

undergraduates. 

9 As a consequence of this, the encryption you are implementing as part of this project is really a high-grade security 

method.  For instance, the encryption system PGP 5.0 uses ElGamal encryption with a suggested prime size of

around 300 digits. If anyone has the ability to crack something like that, they aren’t talking.




and is not a forgery? As we discussed earlier, what is required is some scheme for marking a message in a 
way that can be easily verified, but cannot be forged. Such a mark is called a digital signature. 

In order to perform digital signatures, one generally makes use of some standard message-digest function 
(also called a hash function) that transforms an arbitrary length string into a single number of uniform 
length. The first step (the hashing) is performed by a procedure message-digest, which takes an 
arbitrary string and returns a number between 0 and 2128 as its result.10 The second step is to perform a 
clever computation on the hashed value using our key system. 

A digital signature scheme consists of two procedures, one that signs messages and one that verifies 
signatures. Signing a message uses the secret information in a key system. Verification uses the 
corresponding public key. The idea is that anyone can have the public key and thus verify the signature, 
but only the person who knows the secret value x in the key system could have produced the signature. 
This is like the opposite of public-key encryption, where anyone can encrypt the message, but only the 
person with the secret can decrypt the message. A verified signature attests to the facts that 

1.	 The message was signed by the person who knows the secret x (who is presumably the person 
who distributed the public key). 

2.	 The message that was received is the authentic message that was signed (i.e., it was not tampered 
with). 

There are many (in fact, an infinite number) of signature schemes. The one we present, called ElGamal 
signatures, is closely related to ElGamal encryption as described above. 

To sign a message M (which may itself be encrypted or not) Alyssa first applies the message digest 
function to M and reduces that modulo p to produce a number h. Then she uses h together with the values 
p, g, and the secret xa in her key system as follows: 

1. Pick a random integer k between 2 and p-2 such that, and compute the inverse of k modulo p-1, i.e., 
find the number d such that. 
2. Compute. 
3. Compute 
4. The signature is the pair of numbers r and s, which are transmitted along with the message. 

To verify a signed message M, r, s, using Alyssa's public key p, g, ya: 

1. Check that 0<r<p. Otherwise, the signature is bad. 
2. Compute h by applying the digest function to M and reducing modulo p. 
3. Check whether. If so, the signature is good. If not, the signature is bad.11 

The algebra that shows why this works is a bit messy, but it is straightforward to check. (Trust us.) The 
main point to remember is that anyone can verify a signature, but only the person with the secret x 
information from the key system can produce the signature. Notice that if we can crack someone's public 
key, we can then forge that person's digital signature. 

10 There are tremendous subtleties in designing a good message-digest function. One property it should have is that 

it should be computationally infeasible to find two strings that hash to the same value. The particular function used 

in message-digest, called MD5, was invented by Ron Rivest of MIT.

11 Note that when checking this condition we can compute each term modulo p before multiplying and comparing,

because ab  mod p is congruent to (a mod p)(b mod p) mod p. 




2.1 Implementing signing and verifying 

Here is the procedure that signs a message, using the information in a key system to implement the steps 
above. 

(define (sign message key-system)
(let ((p (key-system-p key-system))

(g (key-system-g key-system))
(x (key-system-x key-system)))

(let ((h (modulo (message-digest message) p))
(k (good-k p)))

(let ((r (expmod g k p))
(d (invert-modulo k (- p 1))))

(let ((s (modulo (* d (- h (* x r))) (- p 1))))
(make-signature r s)))))) 

Make-signature here is another data constructor, which combines the two parts into a structure. You 
get the parts back using the selectors signature-r and signature-s. 

Good-k finds a random number k with. It's easy: just keep picking values for k until you find a good one: 

(define (good-k p)
(let ((k (choose-random p)))

(if (= (gcd k (- p 1)) 1)
k 
(good-k p)))) 

The only hard part is invert-modulo, which finds a number d such that. We'll discuss that below. 

We'll also leave it to you to implement the corresponding verify procedure, which takes the message (a 
string), a signature (i.e., a pair r and s), and a public key, and checks the signature. 

2.2 Modular inverses 

The number d required for the signature must satisfy, where m=p-1. Using the definition of equality 
modulo m, this means that d must satisfy the equation em + dk=1 where e is a (negative) integer. Put 
another way, if we can subtract off some integral number of m's to get to 1. One can show that a solution 
to this equation exists if and only if (that is to say, k and m have no common factors). The following 
procedure generates the required value of d, assuming that we have another procedure available which, 
given two integers a and b, returns a pair of integers (x,y) such that ax+by=1. 

(define (invert-modulo k m)
(if (= (gcd k m) 1)

(let ((y (cadr (solve-ax+by=1 m k))))
(modulo y m)) ;just in case y was negative

(error "gcd not 1" k m))) 



2.3 Solving ax + by = 1 

The hard part about invert-modulo above is writing the procedure solve-ax+by=1. Given a and 
b, where we require that, how do we find (x,y) that solves ax + by = 1? (The requirement on a and b that 
is crucial.) 

Let's consider a simple case first to get a feel for this equation. What if b=0? Then we have to solve ax + 
0y= 1. But the requirement means we can't be solving the general equation ax=1 for any a, because if b=0 
the only way  is if a is 1 (because if a was anything else we could ``cancel'' the common factors in a and 
0). So in the simple case where our input b=0, our solution is simply (x,y) = (1,0). What if b is not zero? 
Then a and b have some relationship a = bq + r, where we know that r is non-zero (otherwise a and b 
have the common factor q, which is not allowed). Substituting for a in ax + by = 1, we get (bq + r) x + by 
= 1. Gathering all the terms involving b together, we have b(qx + y) + rx = 1. But this looks just like our 
original equation: if we let and, we must now solve. We've transformed our problem into another problem 
that looks just like it... but with one big difference. The new problem is smaller or simpler than the 
original problem, because the remainder r has to be smaller than the divisor b. This neat recursive trick, 
whereby we keep reducing the problem until we get back to our trivial problem (where our inputs are a=1 
and b=0) is closely related to the recursive GCD algorithm in section 1.2.5 of the text. 

You might need one more trick in order to write solve-ax+by=1. We need to return two values: x and 
y. Your solve-ax+by=1 procedure may use the Scheme primitive list data constructor. Given two 
(or more) items, list combines them into a single structure called a list. The selector car returns the 
first item in the list, and the selector cadr returns the second item. If you need to return two values, you 
can put them together using (list a b), and can then later get the first item back out of it using car, 
and the second item out using cadr. 

We'll leave to you the details of how to write the actual procedure. This is not easy: you should study 
closely the discussion above, as well as the integer GCD algorithm in the book to get a feel for how 
solve-ax+by=1 might work, and then think very carefully about the appropriate base case and 
recursive reductions. 

3. Programming assignment 

Begin by loading the code for this part of the project, namely public_fall02.scm. 

Note on debugging procedures that use randomness: Many of the procedures you will be working with 
this assignment depend on selecting random numbers, and so will give different answers each time you 
run them. Such procedures can be confusing to debug, since it's hard to tell whether things are changing 
due to your modifications or just due to selecting different random numbers. To help you in debugging, 
we've provided a procedure reset-random! (which takes no arguments). Whenever you run 
(reset-random!) the random number generator will be returned to its initial state. This permits you 
to do repeatable experiments. 

Problem 1: 



Implement the decrypt procedure, which takes as arguments an encrypted message and a key system 
and produces the unencrypted message (assuming the key system is the correct one for decrypting the 
message). For testing your procedure, we've provided a key-system ks-ex-1 and a test encrypted 
message, enc-message-ex-1. Turn in a listing of your procedure and demonstrate that you can 
decrypt the message. 

Problem 2: 

Write the procedures choose-safe-prime and find-generator. Choose-safe-prime
should take a digits input (as does choose-prime) and return a safe prime. Find-generator
should take a safe prime and return a generator for the prime. Test them by finding a safe prime (use size 
equal to 5) and a generator for it. Once you think this is working, you should be able to run the procedure 
generate-key-system. Generate a key system and the corresponding public key. Demonstrate that 
you can use the public key to encrypt messages and then use the key system to decrypt them. 

Problem 3: 

Implement the verify procedure for ElGamal digital signatures. To test your code, we've pre-defined a 
public key pk-ex-3 and two signed messages: m1-ex-3 with signature s1-ex-3, and m2-ex-3 with 
signature s2-ex-3. Determine which message is authentic. 

Problem 4: 

Define the procedure solve-ax+by=1. It takes two non-negative integer arguments a and b whose 
GCD is assumed to be 1 and returns the list consisting of integers x and y. Demonstrate that your 
procedure works by finding integers x and y that satisfy the equation: 

1915954701x + 2019374789y = 1 

Don't forget to check your answer! Once this is working, you should be able to generate a key system and 
use this to sign a message with the sign procedure. Demonstrate that you can sign messages and then 
verify the signatures with the corresponding public key. 

Problem 5: 

Write a procedure find-discrete-log that solves the discrete log problem by brute-force search. It 
should take as arguments values for y, g, and p, and return an x such that. Once this has been defined, you 
should be able to run the supplied procedure crack-public-key that cracks a public key, returning 
the original key system. Test your procedure by cracking the public key pk-ex-5 of size 4, which is 
predefined in this problem set to be p=8699, g=4469, y=3222. 

Problem 6: 

How long does it take to crack the ElGamal system? To help you determine this, we've included a 
procedure called timed, which, if you place at the beginning of a combination, will evaluate the rest of 
the combination (as if the timed weren't there) and return the value along with the time required for the 
evaluation. Thus, evaluating 

(timed crack-public-key pk) 



will apply the procedure crack-public-key to the argument pk (or whatever argument you want to 
use) and return the result, together with the time (in seconds) required to do the computation. Crack some 
public keys of size 3. Remember that all the random choices will result in a wide range of results, but you 
should be able to get some sort of average time. Now try some public keys of size 4 and of size 5. How do 
you expect the time to crack the key to grow as the size of the prime increases? Suppose you had a 
million times the computational resources that you are now using in working on this problem set, and that 
all these resources could be dedicated to cracking a single key. How long would it take to crack a key of 
size 50? Of size 100? Give your answer in seconds, minutes, days, or years, whichever seems most 
appropriate. 

Problem 7: 

It was a dark and stormy night.12 A 6.001 lecturer sat hunched over his terminal. Suddenly there was a 
crash as a rock flew through the window. Attached to the rock was a note: 

Our network sniffer has just intercepted the following e-mail
addressed to Charles Vest. -- A friend 

41204 

170146241058085224019033029160020215198243090246204123199024174125183067250132 
123120206195119048126098008240027021028134242001037050221050140135222225209175 
098080195152012185127051110185055028188210219100024100176078085009174094207186 
157251051194202119228122016038058254168106017088032166041108234169006237029203 
068231130179096143006015065211172082244068153234002022184084051101069167229141 
122190027027188153076023064228216083021158144245086202227037169148152014014143 
207161182105008077026234224007158092121027213130009229132194254239076235153096 
255209041030116112180058033001132225254020110242049243040060108174087155189042 
044082119068160133022231118152188245005026209090113010182003088057050170060221 
252061047151061135209113093148139212143158037100185076220023217165022015167079 
148165081055111189243220106236086151121162182052063141115240088180059247141095 
071229204121042182025094066238246187163245190160028004098173087137106131114096 
209140004003178083123139204232014057123102178056068234031175199018077188248167 
127139002028042060124089024130124032093119039199023213069038221078050254247023 
120136135023234230026028228240030145221256249188092203192127155013253178126051 
081040172097176008094249119133031047036076022221117089202016226245060136004242 
022048153256013232100250251175246215068250050080102172252076086192002069132166 
111087057209239082009148107029020010092089196115044143093133095012250199243135 
211060150043117031096028130002119102188141001037037155053170226078116242114076 
040225185151168056189019011086146091194244118089145048026188130160251049207211 
089129122192056186085143101197036220166251030155157118122040219253113058015164 
031128046205080079102050162173073058136237017099248201220124170156074236223201 
177180129034066087119034170102112070030090202081051196176161055170079134198182 
081130014148218133091214023246008068204084239234105001123136226131046143184182 
106160138128076159125087068175226048226131027194062200135121122013242215069084 
024197115190080202096104055131232036220195005240039212208129082159153243054052 
079080144067188204044027164005128150006092005102244171160092126144124092158019 
196114190140065032180011069189019133067079173056035225128049120048106021028190 
093194 

12 …with apologies to Baron Bulwer-Lytton and to Radia Perlman, Michael Speciner, and Charles Kaufman, who 
begin their excellent book Network Security like this. 



The MIT President's office is working on better security, but due to reengineering, they have been unable 
to issue public keys of size greater than 5. Vest's public key and the above cipher-intcode are defined for 
you as pk-ex-vest and message-ex-vest. Crack the key and decrypt the message. It sounds 
exciting, doesn't it? (Be patient in cracking the key, which may take a minute or two. Note that this is a 
longer key than the ones you cracked in exercise 6.) 

Addendum: 

Please identify any collaborators on this project, and indicate what portions they contributed to, in 
accordance with the course policy on collaboration. 

13[1] If you are used to programming in other languages, this approach might concern you – what if we run out of 
“room” in a fixed size integer? Fortunately, Scheme supports arbitrary precision integers: we can have integers with 
as many digits as we need – there is no “maximum” size integer (subject to overall machine memory limitations).
14[2] The first publication of this idea appeared in W. Diffie and M. Hellman, “New directions in cryptography,” 
IEEE Transactions on Information Theory, IT-22:6, 1976, pp. 644-654, and Diffie and Hellman have been credited 
with the invention. In December 1997, however, the British Communications Electronics Security Group (part of 
British Intelligence), published a memo describing how the technique was invented by CESG’s Malcolm 
Williamson in 1973, but kept secret. See James Ellis, “The Story of Non-Secret Encryption”, 
http://www.cesg.gov.uk/ellisint.htm. 
15[3] The notation r s mod p (read “r is congruent to s modulo p”) means that r and s produce the same value when 
they are reduced modulo p, that is, that r and s have the same remainder modulo p. 

16[4] This method, and the digital signature method discussed below, are based on work during the early 80s by

cryptographer Taher ElGamal. 

17[5] We won’t include the proof here, since this is not a number theory class. Just take the result on faith. 

18[6] There’s a bit of number theory we’ve sloughed over that guarantees that these algorithms are reasonable. Given 

a safe prime, the odds that a randomly picked g is a generator are about 1 in 2. Given a prime q, the odds that 2q+1

is also prime are about 1 in ln q.  So trying random guesses is likely to succeed without too long a wait. 

19[7] We wont’ show you the code for Blowfish, which is buried in the guts of the Scheme system. For a description

of the algorithm see Schneier’s book Applied Cryptography, second edition, Wiley, 1996. 

20[8] Typical someones who come to mind here are certain government agencies, international crime rings, and MIT 

undergraduates. 

21[9] As a consequence of this, the encryption you are implementing as part of this project is really a high-grade 

security method. For instance, the encryption system PGP 5.0 uses ElGamal encryption with a suggested prime size 

of around 300 digits. If anyone has the ability to crack something like that, they aren’t talking.

22[10] There are tremendous subtleties in designing a good message-digest function. One property it should have is

that it should be computationally infeasible to find two strings that hash to the same value. The particular function 

used in message-digest, called MD5, was invented by Ron Rivest of MIT.




23[11] Note that when checking this condition we can compute each term modulo p  before multiplying and 

comparing, because ab  mod p is congruent to (a mod p)(b mod p) mod p. 

24[12] …with apologies to Baron Bulwer-Lytton and to Radia Perlman, Michael Speciner, and Charles Kaufman, who 

begin their excellent book Network Security like this. 



