18.06 Problem Set 3

Due Wednesday, March 13.

Problem 1. (5) Which of the following sets are bases for \mathbb{R}^3 ?

- (a) $\{(1,2,0), (0,1,-1)\}$
- (b) $\{(1,1,-1), (2,3,4), (4,1,-1), (0,1,-1)\}$
- (c) $\{(3,2,2), (-1,2,1), (0,1,0)\}$
- (d) $\{(1,0,0), (0,2,-1), (3,4,1), (0,1,0)\}$

Problem 2. (5)

- (a) Let M_2 be the vector space of 2×2 matrices. Determine whether or not the following set is a basis for M_2 : $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$.
- (b) Find a basis for the subspace of M_2 consisting of symmetric matrices.

Problem 3. (8) Find the dimensions of the following subspaces of \mathbb{R}^4 :

- (a) All vectors of the form (a, b, c, d) with d = a + b.
- (b) All vectors of the form (a, b, c, d) with c = a b and d = a + b.
- (c) All vectors of the form (a, b, c, d) with a = b.
- (d) All vectors of the form (a+c, a-b, b+c, -a+b).

Problem 4. (6) Find a basis for each of the four subspaces associated to the matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{array} \right].$$

Problem 5. (6) Suppose that $\{v_1, v_2, \ldots, v_n\}$ is a basis for \mathbb{R}^n . Show that if A is an $n \times n$ invertible matrix, then $\{Av_1, Av_2, \ldots, Av_n\}$ is also a basis for \mathbb{R}^n .

1