18.06 Problem Set 3

Due Wednesday, March 13.
Problem 1. (5) Which of the following sets are bases for \mathbb{R}^{3} ?
(a) $\{(1,2,0),(0,1,-1)\}$
(b) $\{(1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)\}$
(c) $\{(3,2,2),(-1,2,1),(0,1,0)\}$
(d) $\{(1,0,0),(0,2,-1),(3,4,1),(0,1,0)\}$

Problem 2. (5)
(a) Let M_{2} be the vector space of 2×2 matrices. Determine whether or not the following set is a basis for $M_{2}:\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\right\}$.
(b) Find a basis for the subspace of M_{2} consisting of symmetric matrices.

Problem 3. (8) Find the dimensions of the following subspaces of \mathbb{R}^{4} :
(a) All vectors of the form (a, b, c, d) with $d=a+b$.
(b) All vectors of the form (a, b, c, d) with $c=a-b$ and $d=a+b$.
(c) All vectors of the form (a, b, c, d) with $a=b$.
(d) All vectors of the form $(a+c, a-b, b+c,-a+b)$.

Problem 4. (6) Find a basis for each of the four subspaces associated to the matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Problem 5. (6) Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbb{R}^{n}. Show that if A is an $n \times n$ invertible matrix, then $\left\{A v_{1}, A v_{2}, \ldots, A v_{n}\right\}$ is also a basis for \mathbb{R}^{n}.

