18.06 Problem Set \#1

Due Wednesday, Feb. 13

1) (a) Find all values of a so that the vectors $(a, 4)$ and $(2,5)$ are parallel.
(b) Find all values of a so that the vectors $(a, 2)$ and $(a,-2)$ are orthogonal.
(c) Find all values of a so that the vector $(1, a,-3,2)$ has length 5 .
2) Suppose that v and w are non-parallel vectors in \mathbb{R}^{2}, with starting point at the origin. Show that the diagonals of the parallelogram determined by v and w bisect each other. (Hint: Use vectors to show that the midpoints of the two diagonals coincide.)
3) Consider the system of equations

$$
\begin{aligned}
-3 x+4 y & =8 \\
6 x+t y & =s
\end{aligned}
$$

where t ans s are real numbers.
(a) Write the matrix equation for this system.
(b) Find values for s and t so that the system has exactly one solution.
(c) Find values for s and t so that the system has no solutions.
(d) Find values for s and t so that the system has infinitely many solutions.
(e) Give a geometric interpretation of (b), (c), and (d).
4) True or False: If A and B are 2 x 2 matrices, then $(A+B)^{2}=A^{2}+2 A B+B^{2}$. If true give a brief explanation, if false give an example where the equality fails.
5) Write down a 3×3 matrix A so that if the vector $v=(x, y, z)$ in \mathbb{R}^{3} is multiplied by A, the x and y coordinates of v are unchanged, but the z coordinate becomes zero.

