18.06 Problem Set \#3 Solutions

1. The set in (a) can't be a basis because two vectors can span an at most 2 dimensional vector space, while \mathbb{R}^{3} is 3 dimensional. The sets in (b) and (d) can't be bases since these sets cannot be linearly independent. (If the vectors are the columns of a matrix, then the matrix is 3×4, so has a non trivial null space, and the vectors have a non-trivial dependence relation.) For (c), we put the vectors in a matrix and row reduce.

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
2 & 2 & 1 \\
2 & 1 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since the matrix is invertible, the columns of the original matrix form a basis. (A has full column rank so the columns span \mathbb{R}^{3}, and A has a trivial nullspace so the columns are linearly independent.)
2. We show that the set is a basis by showing that it spans M_{2} and is linearly independent. Denote the vectors in this set $m_{1}, m_{2}, m_{3}, m_{4}$.

Spanning: Let $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ be any vector in M_{2}, and we look for constants a, b, c, d so that

$$
a m_{1}+b m_{2}+c m_{3}+d m_{4}=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]
$$

This gives

$$
\left[\begin{array}{cc}
a+c & a+d \\
b+d & b+c+d
\end{array}\right]=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]
$$

This gives rise to a system of four equations in the four unknowns a, b, c, d. We get the augmented matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & x \\
1 & 0 & 0 & 1 & y \\
0 & 1 & 0 & 1 & z \\
0 & 1 & 1 & 1 & w
\end{array}\right]
$$

Row reducing, we get the unique solution

$$
a=x-w+z, b=2 z-y+x-w, c=w-z, d=y-x+w-z
$$

We conclude that the set above spans M_{2}.
Linear Indepencence: Suppose $a m_{1}+b m_{2}+c m_{3}+d m_{4}=0$, where $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. We get the same system of equations as above with x, y, z, w all zero. But the coefficient matrix has full rank, so the nullspace is the zero vector. Hence $a m_{1}+b m_{2}+c m_{3}+d m_{4}=0$ only when $a=b=c=d=0$. We conclude that the set is linearly independent.
3. (a) We have $\{(a, b, c, a+b)\}=\operatorname{span}\{(1,0,0,1),(0,1,0,0),(0,0,1,0),(0,1,0,1)\}$. Since the last vector in this set is a linear combination of the other three, we can remove it. The resulting set is a basis, so the dimension is 3 .
(b) The set $\{(a, b, a-b, a+b)\}$ is the span of the linearly independent set $\{(1,0,1,1),(0,1,-1,1)\}$. Hence the dimension is 2 .
(c) The set $\{(a, a, c, d)\}$ is the span of the linearly independent set $\{(1,1,0,0),(0,0,1,0),(0,0,0,1)\}$. Hence the dimension is 3 .
(d) The set $\{(a+c, a-b, b+c,-a+b)\}$ is the span of the linearly independent set $\{(0,-1,1,1),(1,0,1,0)\}$. Hence the dimension is 2 .
4. Row reducing A gives

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The rank is 2. A basis for the row space consists of the non-zero rows of the echelon matrix, so $\mathcal{B}_{\text {row }}=\{(0,1,2,0,-2),(0,0,0,1,2)\}$. The nullspace has dimension $5-2=3$. Assigning the value one or zero to the free variables x_{1}, x_{3}, x_{5} gives our basis $\mathcal{B}_{\text {null }}=\{(1,0,0,0,0),(0,-2,1,0,0),(0,2,0,-2,1)\}$. A basis for the column space (which has dimension 2) is given by the columns of the original matrix that correspond to pivot columns in the echelon matrix. Hence $\mathcal{B}_{\text {col }}=\{(1,1,0),(3,4,1)\}$. Finally, for the left nullspace, $N\left(A^{T}\right)$, we can use the fact that $N\left(A^{T}\right)$ is the orthogonal complement of the column space in \mathbb{R}^{3}. It's easy to see that the (one dimensional) space of vectors orthogonal to the column space of A has basis $\mathcal{B}_{N\left(A^{T}\right)}=\{(1,-1,1)\}$.
5. We show that this set spans \mathbb{R}^{n} and is linearly independent. Since A is invertible, given any vector \mathbf{b} in \mathbb{R}^{n}, there is exactly one vector \mathbf{x} in \mathbb{R}^{n} with $A \mathbf{x}=\mathbf{b}$. But \mathbf{x} can be written as a linear combination of the basis vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$. That is, $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ for some constants c_{1}, \ldots, c_{n}. But then we have

$$
\mathbf{b}=A \mathbf{x}=A\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right)=c_{1} A \mathbf{v}_{1}+\cdots+c_{n} A \mathbf{v}_{n}
$$

Hence, we have written \mathbf{b} as a linear combination of the vectors $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$. Since \mathbf{b} was an arbitrary vector in \mathbb{R}^{n}, The set $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right\}$ spans \mathbb{R}^{n}.
Now, suppose that there are constants d_{1}, \ldots, d_{n} so that $d_{1} A \mathbf{v}_{1}+\cdots+d_{n} A \mathbf{v}_{n}=0$. Then

$$
0=d_{1} A \mathbf{v}_{1}+\cdots+d_{n} A \mathbf{v}_{n}=A\left(d_{1} \mathbf{v}_{1}+\cdots+d_{n} \mathbf{v}_{n}\right)
$$

Since A is invertible, it has trivial nullspace, and we conclude that $d_{1} \mathbf{v}_{1}+\cdots+d_{n} \mathbf{v}_{n}=0$. But the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent, so we must have $d_{1}=d_{2}=\cdots=d_{n}=0$. But that says that if $d_{1} A \mathbf{v}_{1}+\cdots+d_{n} A \mathbf{v}_{n}=0$ then all the constants are zero. That is, the set $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right\}$ is linearly independent. Since this set is a linearly independent spanning set in \mathbb{R}^{n}, it is a basis.

