Understanding the Induced Self-Assembly System Between PEOb-PAA and Iron

H. Ronny SONDJAJA¹, Michael K.C. TAM^{1,2}, Miranda G.S. YAP^{1,3} and T. Alan HATTON^{1,4}

 ¹ Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore 117576
² School of Mechanical & Aerospace Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798

³Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138868 ⁴Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract—The induced self-assembly phenomenon between PEO-b-PAA and Fe(II) was investigated. It was revealed electrostatic interaction that the between Fe(II) in the form of green rust (GR^{2+}) particles and the COO⁻ groups from the PAA backbone at pH 7 causes the formation of stable aggregates with D_{h} ~156 nm. While it is stable at pH 7, the induced self-assembly structure, however, is disordered during the transformation of GR²⁺ into Fe₃O₄. The pH increment and the oxidation process itself were found to affect the stability.