1. From the book: 4.11, 5.50, 5.55, 5.62, 5.92

2. A homogeneous plate $ABCD$ (See Figure 3) is subjected to a biaxial loading which results in the normal stresses $\sigma_x = 150\, MPa$ and $\sigma_y = 100\, MPa$. Knowing that the plate is made of steel for which $E = 200\, GPa$ and the Poisson's ratio $\nu = 0.30$, determine the change in length of (a) edge AB, (b) edge BC, and (c) diagonal AC.

![Figure 1: A plate ABCD under stresses](image)

3. A long rod hanging vertically in a well supports a load P at its lower end as shown in Figure 2. The material has the bilinear stress-strain curve shown in the figure, in which E_1 and E_2 represent the slopes of the two parts of the diagram. Find the elongation δ of the bar due to its own weight and the force P if the unit weight $\gamma = 28\, kN/m^3$, the cross-sectional area $A = 960\, mm^2$, the length $L = 360\, m$, and the load $P = 92\, kN$.
4. A bimetallic bar consisting of a copper core securely bonded to two steel stripes is heated uniformly by an amount ΔT. Assuming that the width of the bar is b, the length is L, and the thickness of each layer is t, determine the stress σ_s and σ_c in the steel and copper, respectively. Also, draw free-body diagrams of each of the three strips. (Note: Coefficients of thermal expansion for steel and copper are $\alpha_c > \alpha_s$. Moduli of elasticity are E_s and E_c.)

![Figure 3: Diagrams for problem 5](image)

This Problem Set is worth 36 points.