18.S34 PROBLEMS #12

Fall 2002

117. [1] Find all solutions in integers to (a) x + y = xy, (b) x + y + 1 = xy, (c) $x^2 + y^2 = xy + x + y$.

118. [1.5] Choose 23 people at random. What is the probability some two of them have the same birthday? (You may ignore the existence of February 29.)

119. [1] Let p and q be consecutive odd primes (i.e., no prime numbers are between them). Show that p+q is a product of at least three primes. For instance, 23+29 is the product of the three primes 2, 2, and 13.

120. [3.5] Evaluate in closed form:

$$\int \frac{x \, dx}{\sqrt{x^4 + 4x^3 - 6x^2 + 4x + 1}}.$$

121. [1.5] Suppose that for each $n \geq 1$, $f_n(x)$ is a continuous function on the closed interval [0, 1]. Suppose also that for any $x \in [0, 1]$,

$$\lim_{n \to \infty} f_n(x) = 0.$$

Is it then true that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0?$$

122. Let $x \ge 1$ be a real number. Let f(x) be the maximum number of 1×1 squares that can fit inside an $x \times x$ square without overlap. (It is *not* assumed that the sides of the 1×1 squares are parallel to the sides of the $x \times x$ square.) For instance, if x is an integer then $f(x) = x^2$.

(a) [3] Show that for some values of x, $f(x) > \lfloor x \rfloor^2$, where $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.

(b) [5] Find a formula for (or at least a method of computing) f(x) for any x.

123. [3] Let S be any finite set of points in the plane such that not all of them lie on a single straight line. Show that some (infinite) line intersects exactly two points of S.

1

124. [2.5] (The non-messing-up-theorem) Let M be an $m \times n$ matrix (= rectangular array with m rows and n columns) of integers. For example,

$$M = \left[\begin{array}{rrrrr} 7 & 3 & 1 & 4 & 2 \\ 5 & 6 & 3 & 1 & 5 \\ 2 & 2 & 1 & 8 & 4 \end{array} \right].$$

Rearrange the rows of M in increasing order.

$$\left[\begin{array}{ccccc} 1 & 2 & 3 & 4 & 7 \\ 1 & 3 & 5 & 5 & 6 \\ 1 & 2 & 2 & 4 & 8 \end{array}\right].$$

Now rearrange the columns in increasing order.

$$\left[\begin{array}{ccccc} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 4 & 7 \\ 1 & 3 & 5 & 5 & 8 \end{array}\right].$$

Show that the rows remain in increasing order.

- 125. (a) [2.5] Let a(n) be the number of ways to write the positive integer n as a sum of distinct positive integers, where the order of the summands is not taken into account. Similarly let b(n) be the number of ways to write n as a sum of odd positive integers, without regard to order. For instance, a(7) = 5, since 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1; while b(n) = 5, since 1+1+1+1+1+1+1=3+1+1+1+1=3+3+1=5+1+1=7. Show that a(n) = b(n) for all n.
 - (b) [3] Let A and B be subsets of the positive integers. Let $a_A(n)$ be the number of ways to write n as a sum (without regard to order) of distinct elements of the set A. Let $b_B(n)$ be the number of ways to write n as a sum (without regard to order) of elements of B. Call (A, B) an Euler pair if $a_A(n) = b_B(n)$ for all n. For instance, (a) above states that if A consists of all positive integers and B consists of the odd positive integers, then (A, B) is an Euler pair. Show that (A, B) is an Euler pair if and only if $2A \subseteq A$ (i.e., if $k \in A$ then $2k \in A$) and B = A 2A.
 - (c) [1.5] Note that according to (b), if $A = \{1, 2, 4, 8, ..., 2^m, ...\}$ and $B = \{1\}$, then (A, B) is an Euler pair. What familiar fact is this equivalent to?

- 126. [2.5] Let

$$f(n) = \sum a_1 a_2 \cdots a_k,$$

where the sum is over all 2^{n-1} ways of writing n as an ordered sum $a_1 + \cdots + a_k$ of positive integers a_i . For instance,

$$f(4) = 4 + 3 \cdot 1 + 1 \cdot 3 + 2 \cdot 2 + 2 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 + 1 \cdot 1 \cdot 2 + 1 \cdot 1 \cdot 1 \cdot 1 = 21.$$

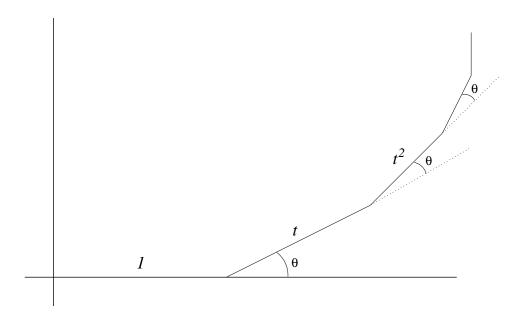
Find a simple expression for f(n) in terms of Fibonacci numbers.

127. [2] Let $0^{\circ} \leq \theta \leq 180^{\circ}$ and 0 < t < 1. A person stands at the origin in the (x,y)-plane and steps a distance of 1 in the positive x-direction. He then turns an angle θ counterclockwise and steps a distance t. He again turns θ counterclockwise and steps t^2 . Continuing in this way, at the nth step he turns θ and steps a distance of t^{n-1} . As n increases, he will approach a limiting point $f(\theta,t)$ in the (x,y)-plane. For instance,

$$f(0^{\circ}, t) = (1 + t + t^{2} + \dots, 0) = (1/(1 - t), 0)$$

$$f(180^{\circ}) = (1 - t + t^2 - t^3 + \dots, 0) = (1/(1+t), 0).$$

Find a simple formula for $f(\theta, t)$.



128. [2.5] Let x be a positive real number. Find the maximum value of the product $\prod_{i \in S} i$, where S is any subset of the positive real numbers whose sum is x. (HINT: First show that if the number k of elements of S is fixed, then maximum is achieved by taking all the elements of S to be equal to x/k. Then find the best value of k. For most numbers, k will be unique. But for each $k \geq 1$, there is an exceptional number x_k such that there are two sets S and S' which achieve the maximum, one with k elements and one with k+1 elements.)