18.S34 (FALL 2002)

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

- 1. (55P) Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor?
- 2. A positive integer n is powerful if for every prime p dividing n, we have that p^2 divides n. Show that for any $k \geq 1$ there exist k consecutive integers, none of which is powerful.
- 3. (56P) Prove that every positive integer has a multiple whose decimal representation involves all ten digits.
- 4. (66P) Prove that among any ten consecutive integers at least one is relatively prime to each of the others.
- 5. (70P) Find the length of the longest sequence of equal nonzero digits in which an integral square can terminate (in base 10), and find the smallest square which terminates in such a sequence.
- 6. (72P) Show that if n is an integer greater than 1, then n does not divide $2^n 1$.
- 7. (a) (77P) Prove that $\binom{pa}{pb} \equiv \binom{a}{b} \pmod{p}$ for all integers p, a, and b with p a prime, p > 0, and $a \ge b \ge 0$.
 - (b) (not on Putnam exam) Show in fact that the above congruence holds modulo p^2 .
 - (c) (not on Putnam exam) Show that if $p \geq 5$, then the above congruence even holds modulo p^3 .
- 8. (82P) Let n_1, n_2, \ldots, n_s be distinct integers such that

$$(n_1+k)(n_2+k)\cdots(n_s+k)$$

is an integral multiple of $n_1 n_2 \cdots n_s$ for every integer k. For each of the following assertions, give a proof or a counterexample:

- (a) $|n_i| = 1$ for some i.
- (b) If further all n_i are positive, then

$${n_1, n_2, \ldots, n_s} = {1, 2, \ldots, s}.$$

9. (83P) Let p be in the set $\{3, 5, 7, 11, \ldots\}$ of odd primes, and let

$$F(n) = 1 + 2n + 3n^{2} + \dots + (p-1)n^{p-2}.$$

Prove that if a and b are distinct integers in $\{0, 1, 2, ..., p-1\}$ then F(a) and F(b) are not congruent modulo p, that is, F(a) - F(b) is not exactly divisible by p.

- 10. (85P) Define a sequence $\{a_i\}$ by $a_1 = 3$ and $a_{i+1} = 3^{a_i}$ for $i \ge 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_i ?
- 11. (86P) What is the units (i.e., rightmost) digit of

$$\left[\frac{10^{20000}}{10^{100}+3}\right]?$$

Here [x] is the greatest integer $\leq x$.

12. (91P) Suppose p is an odd prime. Prove that

$$\sum_{j=0}^{p} {p \choose j} {p+j \choose j} \equiv 2^p + 1 \pmod{p^2}.$$

13. (96P) If p is a prime number greater than 3 and $k = \lfloor 2p/3 \rfloor$, prove that the sum

$$\binom{p}{1} + \binom{p}{2} + \dots + \binom{p}{k}$$

of binomial coefficients is divisible by p^2 .

14. (97P) Prove that for $n \geq 2$,

$$\overbrace{2^{2^{\dots^2}}}^{n \text{ terms}} \equiv \overbrace{2^{2^{\dots^2}}}^{n-1 \text{ terms}} \pmod{n}.$$

15. (99P) The sequence $(a_n)_{n\geq 1}$ is defined by $a_1=1,\ a_2=2,\ a_3=24,$ and, for $n\geq 4,$

$$a_n = \frac{6a_{n-1}^2 a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}.$$

Show that, for all n, a_n is an integer multiple of n.

16. (00P) Prove that the expression

$$\frac{\gcd(m,n)}{n}\binom{n}{m}$$

is an integer for all pairs of integers $n \geq m \geq 1$.