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Announcements

• Please remember to put your name at the top of your paper.

• Problem Sets can also be downloaded from http://web.mit.edu/8.20/

• It is possible that some problems will be omitted if we do not get to cover the necessary
material in class. Please watch for announcements!

• The problems are confined to special relativity especially relativistic momentum and
energy, and the kinematics of reactions and decays. Although there are no problems
on general relativity, you are responsible for the basic concepts as presented in lecture
and the reading.

Topics for this period

• Relativistic collisions and decays

• Four vectors and transformation properties

• The Lorentz transformation of energy and momentum

• Invariants

• The equivalence principle

• Looking forward to general relativity

’

Reading Assignment 3

• Resnick and Halliday, §3, Supplements C (on General Relativity)

• French, §7 (and §6, if you haven’t studied it yet)

• Einstein, §18 – §29. This is the important reading.
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Problem Set 3

1. “Hyperbolic” space travel Assume that a rocket can produce an acceleration
g0 = 10m/sec2. [As described in lecture, this acceleration is approximately the same
as that due to gravity at the surface of the earth. Astronauts will be able to live
comfortably in this spaceship, as if in earth’s gravity.) Assume, in addition, that
in travelling to any destination the rocket will accelerate half the way and decelerate
during the second half of the journey.

(a) Calculate the travel time as measured by the space traveller to the moon. (As-
sume the moon is at a distance of 382,000 km.) Compare with the Galilean
answer.

(b) Answer the same questions for travel to Neptune, assumed to be at a distance
of 4.5 × 109 km.

(c) Answer the same questions for travel to Alpha Centauri, assumed to be at a
distance of 4.3 light years away. What is the velocity of the rocket, in the earth’s
reference frame, at the half way point of the journey?

(d) What is the value of β that would enable a second astronaut, travelling at con-
stant speed, to travel from the earth to Alpha Centauri in the same travel time
as that taken by the rocket described above?

2. E = mc2 I.

When methane burns competely to form CO2 the reaction is:

CH4 + 2O2 → CO2 + 2H2O

the energy released is 212.8 Kilocalories per gram molecular weight (KCal/mole) of
methane. Suppose 1000 kg of methane gas is combined with just enough oxygen to
burn completely. What is the mass equivalent of the energy released in the reaction?
[You will first have to convert KCal/mole to MKS units, ie. to joules/kg.]

3. E = mc2 II.

The net result of the fusion reaction that fuels the sun is to turn four protons and
two electrons into one helium nucleus,

4p+ + 2e− → 4He++.

Other particles are given off (neutrinos and photons), but you can assume they even-
tually show up as energy. The masses of the relevant nuclei are as follows:

mp = 1.6726 × 10−27 kg.
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me = 9.1094 × 10−31 kg.

m 4He = 6.6419 × 10−27 kg.

(a) How much energy is released when a kilogram of protons combines with just
enough electrons to fuse completely to form helium?

(b) How many kilograms of methane would you have to burn to produce the same
amount of energy?

4. E = mc2 III.

Assume that the heat capacity of water is constant and equal to 4.2 joules/◦gm. How
much does the mass of a kilogram of water increase when it is heated from freezing
(0◦C) to boiling (100◦C)?

5. Enormous energies

Quasars are the nuclei of active galaxies in the early stages of their formation. A
typical quasar radiates enery at the rate of 1041 watts. At what rate is the mass of
this quasar being reduced to supply this energy? Express your answer in solar mass
units per year, where one solar mass unit, 1smu = 2 × 1030kg is the mass of our sun.

6. Classical physics and the speed of light

(a) How much energy would it take to accelerate an electron to the speed of light
according to “classical” (before special relativity) physics?

(b) With this energy what would its actual velocity be?

7. A useful approximation

(a) Show that for an extremely relativistic particle, the particle speed, u differs from
the speed of light, c, by

∆u = c − u =
c

2

(
m0c

2

E

)2

where m0 is the rest mass and E is the energy.

(b) Find ∆u for electrons produced by

i. MIT’s Bates Accelerator Center, where E = 800 MeV.
ii. The Jeffreson Lab (in Newport News, Virginia), where E = 6 GeV.



MIT 8.20 Special Relativity IAP 2003 4

iii. The Stanford Linear Accelerator Center (in Palo Alto, California), where
E = 50 Gev.

8. Pressure of light I.

The solar constant (energy per unit area) at the top of the earth’s atmosphere is 100
watts per square meter. [Remember, a watt is a joule/sec.] What is the pressure
exerted by sun’s light on the Earth? You should assume that the light is absorbed,
not reflected.

9. Pressure of light II.

French, §6, Problem 6-8, page 201.

10. Useful kinematic relationships

Resnick and Halliday, §3, Problem 22, page 119.

11. Sticking reaction

French §6, Problem 6-3, page 200. This problem is easiest if you use invariants.

12. Impossible processes

French §6, Problem 6-14, page 202. Again, this problem is easiest if you use invariants.

13. Compton scattering

Derive the relationship between scattering angle and wavelength change for Compton
scattering.

∆λ =
h

mc
(1 − cos θ)

Explain what the notation means. What is ∆λ? What is cos θ? [You can derive
this using energy and momentum conservation or you can use invariants to make this
problem easier.]

14. Limits of production

French §7, Problem 7-3, page 225.
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15. An ultimate energy

Magnetic fields in the universe accelerate charged particles in intergalactic space up
to enormous energies. These energetic particles rain down on the Earth as “cosmic
rays”. Particle physicists conjecture that there is an ultimate limit to the energy of
cosmic rays due to their collisions with the “cosmic background radiation” (CBR)
that suffuses the Universe. Suppose the cosmic rays are protons (with rest mass
mp = 1.67 × 10−27 kg.). Suppose the CBR consists of photons of energy 2.1 × 10−4

eV. [This is the energy corresponding to the temperature (E = kT ) of 2.3◦K that
characterizes the background radiation.] The reaction that degrades the energy of
the cosmic rays is “pion production”

γ + p → π0 + p,

where γ is a CBR photon and the π0 is a “meson” with rest mass, mπ0 = .240 ×
10−27kg.

(a) What is the threshold energy of the proton, ie. what is the minimum proton
energy necessary for this reaction to go in the frame where the photons have
energy 2.1 × 10−4 eV?

Hint 1: As always, the use of invariants will make this problem much simpler.

Hint 2: Consider the threshold condition in the center of mass of the final proton
and pion. What is their configuration at threshold?

(b) Suppose the proton has just enough energy to make the reaction possible. What
is its energy after the collision?

16. A magic energy

The K− meson and the Λ0 hyperon are two commonly encountered unstable particles.
For example, they are commonly produced in air showers by cosmic rays and several
of each have whizzed through you during the time you have been working on this
problem set. The reaction

K− + p → Λ0 + π0

can be used to make Λ0’s at rest in the laboratory by scattering K− mesons off a
stationary proton (hydrogen) target.

(a) Find the energy of the incident K− beam required to just produce Λ0 hyperons
at rest in the lab.

(b) What is the π0 energy for this “magic” K− energy?

(c) Check momentum conservation.

(d) Could the process be run the other way? That is, could a π0 beam (assuming one
was available) be used to make a K+ at rest by the reaction π0 + p → Λ0 +K+?
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The rest energies of all the particles involed are: mpc
2 = 939MeV, mK±c2 = 494MeV,

mπ0c2 = 135MeV, mΛ0c2 = 1116 MeV.

17. s, t, and u

When particles scatter off one another, the fundamental physics effects are the same in
all reference frames even though the energies of the particles and the angles at which
they scatter differ from frame to frame. That means that the interesting information
can depend only on Lorentz invariant combinations of the four momenta pµ

i .

Consider the general “two-to-two” scattering process,

a + b → c + d

where the four momentum and rest mass of particle i are pµ
i and mi, respectively,

where i = a, b, c, d. Of course p2
i = m2

i c
4.

(a) Show that all the products of the form pi · pj can be expressed in terms of the
three variables,

s ≡ (pa + pb)2

t ≡ (pa − pc)2

u ≡ (pa − pd)2

and the rest masses mi.

(b) Show that s, t, and u are related by

s + t + u =
∑

i=a,b,c,d

m2
i c

4

(c) Show that when the masses are all equal s ≥ 4m2 and t, u ≤ 0.


