Philosophy of QM 24.111

Eighth lecture.

Strategy for analysis

- 1. Break the experimental situation up into steps.
- 2. At each step, look for easy cases.
- 3. Describe hard cases as linear combinations of easy cases.
- 4. Make use of the linearity of Schrödinger's Equation to "transfer" the analysis of the easy cases over to the hard cases: if

```
\Phi \rightarrow \Phi',
```

and

$$\Psi \rightarrow \Psi$$
,

then

$$a\Phi + b\Psi \rightarrow a\Phi' + b\Psi'$$
.

5. Make discreet use of the collapse postulate, as needed.

What the hell sort of state is that???

Never mind. It will quickly "collapse" into either

- = $1/\sqrt{2}$ (| up, 0°> + | down, 0°>) | in R1 >
- = $1/\sqrt{2}$ | up, 0°> | in R1 > + $1/\sqrt{2}$ | down, 0°> | in R1 >

What the hell sort of state is that???

Never mind. It will quickly "collapse" into either

or

- = $1/\sqrt{2}$ (| up, 0°> + | down, 0°>) | in R1 >
- $= 1/\sqrt{2} \mid \text{up}, 0^{\circ} > | \text{in R1} > + 1/\sqrt{2} \mid \text{down}, 0^{\circ} > | \text{in R1} >$

Coupled spin measurements 1

FIRST CASE:

Initial state is | up, 0°> | in R1 >

Next state is $|\mathbf{up}, \mathbf{0}^{\circ}\rangle |\mathbf{in} \mathbf{R2}\rangle$

Final state is | up, 0°> | in R4 >

Coupled spin measurements 3

SECOND CASE:

Coupled spin measurements 5

THIRD CASE:

Then:

 $1/\sqrt{2} \mid up, 0^{\circ} > \mid in R2 > + 1/\sqrt{2} \mid down, 0^{\circ} > \mid in R3 >$ via Schrödinger $1/\sqrt{2} \mid up, 0^{\circ} > \mid in R4 > + 1/\sqrt{2} \mid down, 0^{\circ} > \mid in R5 >$

Coupled spin measurements 6

THIRD CASE:

Then:

 $1/\sqrt{2}$ | up, 0°> | in R4 > + $1/\sqrt{2}$ | down, 0°> | in R5 > via "collapse" | up, 0°> | in R4 > (PROB = .5)

Coupled spin measurements 7

THIRD CASE:

orientation = 0°

Then:

 $1/\sqrt{2}$ | up, 0°> | in R4 > + $1/\sqrt{2}$ | down, 0°> | in R5 > via "collapse" | up, 0°> | in R4 > OR | down, 0°> | in R5 > (PROB = .5) | (PROB = .5)

THE TWO-PATH EXPERIMENT—What we observe:

 $| \text{ up, } 90^{\circ} > | \text{ in R1} > \longrightarrow 1/\sqrt{2} | \text{ up, } 0^{\circ} > | \text{ in R2} > + 1/\sqrt{2} | \text{ down, } 0^{\circ} > | \text{ in R3} >$

Second easy step:

 $| down, 0^{\circ} > | in R3 > \longrightarrow | down, 0^{\circ} > | in R4 > \bigcirc$

Two-path with detector 1

Two-path with detector 2

Two-path revisited

A warning about "superposition"

Remember that

| down, 0° | in R3 >.

"SUPERPOSITION"

is a mathematical term. It means the same thing as

"LINEAR COMBINATION".

Thus,

```
1/\sqrt{2} | up, 0°> | in R2 > + 1/\sqrt{2} | down, 0°> | in R3 > is a superposition of | up, 0°> | in R2 > and
```

It does not follow that the components $|up, 0^{\circ}|$ in R2 > and $|down, 0^{\circ}|$ in R3 > describe distinct parts of the particle (one part located in R2, the other located in R3.

The rotation box 1

We can build a box with the following feature:

The rotation box 2

The rotation box 3

Remember that we didn't have to choose the upward pointing arrow to represent | up, 0 >. We could equally well represent things this way:

The "total-of-nothing" box 1

Now let's build a more complicated box

whose insides look like this:

What will this box do to the spin state of a particle sent through it?

Answer: NOTHING.

The "total-of-nothing" box 2

To see why, observe how the spin-state vector changes:

A twist on the two-path 1

What we observe is this:

What is going on???

A twist on the two-path 2

A twist on the two-path 3

 $1/\sqrt{2}$ | up, 0°> | in R2 > - $1/\sqrt{2}$ | down, 0°> | in R3 > $1/\sqrt{2}$ | up, 0°> | in R4 > - $1/\sqrt{2}$ | down, 0°> | in R4 > = | down, 90°> | in R4 > $1/\sqrt{2}$ | down, 90°> | in R6 >

Here is a box.

Inside it there might be a

If there is a bomb, and you

- open the box;
- jiggle the box;
- send but a single photon through the box;
- try to find out whether there is a bomb by any other
- "classical" means;

YOU WILL SET THE BOMB OFF.

- set $\omega = \pi/n$
- cycle particle through **n** times before second magnet

- set $\omega = \pi/n$
- cycle particle through **n** times before second magnet

- set $\omega = \pi/n$
- cycle particle through **n** times before second magnet

- set $\omega = \pi/n$
- cycle particle through **n** times before second magnet

SECOND CASE: BOMB Assume it never explodes Orientation = 0° Orientation = 0° cycle 1 up, 0 > | in R0| up, 0 > | in R0 > $| up, \pi/n > | in R1 >$ superposition collapse up, 0 > | in R2 >|up, 0>| in R4>

superposition = $\cos(\pi/2n)$ | up, 0>| in R2> + $\sin(\pi/2n)$ | down, 0>| in R3>

SECOND CASE: BOMB Assume it never explodes Orientation = 0° Orientation = 0° cycle 2 up, 0 > | in R4 || up, 0 > | in R0 > $| up, \pi/n > | in R1 >$ superposition collapse up, 0 > | in R2 >|up, 0>| in R4>

superposition = $\cos(\pi/2n)$ | up, 0>| in R2> + $\sin(\pi/2n)$ | down, 0>| in R3>

superposition = $\cos(\pi/2n)$ | up, 0>| in R2> + $\sin(\pi/2n)$ | down, 0>| in R3>

If there is a bomb, what is the probability that it never explodes?

ANSWER: Just the probability of getting **n** "up" outcomes in a row.

The probability of getting one "up" outcome, given that the spin state of the measured particle is $|up, \pi/n\rangle$, is $\cos^2(\pi/2n)$.

So the probability of getting n "up" outcomes is

$$\cos^{2n}(\pi/2n)$$

This number goes to 1, in the limit as $n \Rightarrow \infty$.

So quantum bomb-detection works!!!

×		

