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ABSTRACT 
 
The ability to retain multiple items in short-term memory is fundamental for cognition, 
yet almost nothing is known about its neural basis.  To explore the mechanisms 
underlying this ability, we trained two monkeys to remember a sequence of two images 
across a short delay.  We then recorded the activity of neurons from the lateral prefrontal 
cortex during task performance.  We found that the majority of neurons showed delay 
activity that depended on the identity of both images (a minority reflected just one 
image), and that activity related to a given combination of images was only partially 
predictable from each neuron’s activity to individual images.  A model to predict the 
resultant neural activity was tested. 
 
We also examined the effect of task demands on the neural representation of multiple 
images.  Our first experiment showed that each of the two images in memory was 
represented with a certain strength, and that this strength was dependent on how long the 
image had been in memory; image strength decayed as time progressed.  We found that 
changing the way that the memory of the images was reported, from a bar release to a 
sequence of eye movements, changed the relative strength of the image representations.  
In the eye-movement version of the task the strength of the representation of the image 
did not decay with time; in fact the strength of older images could even surpass the 
strength of newer images, depending on how frequently the tasks were switched.  Further 
experiments showed that when the monkey switched between the two tasks individual 
neurons could turn their image coding on and off.  We also found a substantial population 
of cells that directly represented the task that the animal was performing. 
 
 
Thesis Supervisor:  Earl K. Miller 
Title:  Picower Professor of Visual Neuroscience 
          Associate Director, Picower Institute for Learning and Memory 
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INTRODUCTION 
 
 
 
 As an organism interacts with its environment, it is faced with a constant barrage 

of stimuli that it must sense, remember, and use.  In the majority of situations outside of 

the laboratory environment, an organism must remember not only the most recent 

stimulus, but must also integrate this stimulus with other items already present in 

memory.  Remembering and integrating several relevant, recently-seen items is 

fundamental to the process of reasoning effectively about the environment, because 

creating appropriate behavioral strategies requires many pieces of information.  The brain 

must be able to maintain and operate on multiple items in working memory. 

Furthermore, it is important to construct an accurate representation of the 

temporal structure of events in order to determine cause and effect relationships and to 

plan useful action sequences.  For example, the ability to hold a phone number in mind 

during the brief interval between reading and dialing requires both the ability to store the 

digits that make up the number, as well as the ability to store them in their correct 

temporal order.  A more naturalistic example of this phenomenon would be a task that 

animals do all the time – they remember how to get from point A to point B, from their 

nest to the watering hole, a task that most animals accomplish by memorizing a temporal 

string of landmarks.  Both the problem of temporal order and the problem of the 

simultaneous maintenance of multiple items are unsolved, although there have been some 

tantalizing hints at possible mechanisms. 
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The anatomy of working memory 

What brain structure is responsible for the ability to maintain multiple items in 

short term memory?  Decades of research have firmly established the dorsolateral 

prefrontal cortex as critical for the maintenance of single items in short term memory.  

This would, therefore, be the first place to look for a multi-item memory store.  The first 

evidence that the prefrontal cortex might be important for memory came from anatomical 

and behavioral studies on non-human primates.  Many studies found that if regions of the 

frontal lobe sustained damage, either through lesions or through reversible inactivation, 

short term memory was affected adversely (Blum, 1952; Harlow et al., 1952; Mishkin, 

1957; Fuster and Alexander, 1970; Goldman and Rosvold, 1970; Butters et al., 1971; 

Passingham, 1975; Mishkin and Manning, 1978).  These results, coupled with the 

development of the microelectrode, led to the first neurophysiological studies of 

prefrontal cortex, which established the existence of stimulus-selective delay period 

activity (Fuster and Alexander, 1971; Kubota and Niki, 1971; Fuster, 1973; Funahashi et 

al., 1989; Miller et al., 1996).  This activity has since been interpreted as the neural 

signature of short term memory, an idea originally suggested by Donald Hebb (Hebb, 

1949).  Prefrontal cortex, therefore, has been established as a locus in the brain that not 

only was required for short term memory, but that also contained neurons with an 

attractive physiological profile.  Subsequent physiological studies have found selective 

delay period activity in other areas of the brain, including inferotemporal cortex 

(Miyashita and Chang, 1988; Miller and Desimone, 1994) and parietal cortex (Gnadt and 

Andersen, 1988; Gnadt et al., 1991) among others; however, in no area of the brain is 

delay activity as robust and predominant as in the prefrontal cortex.  
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Memory for multiple items 

Several major issues confront us when we think about how the fundamental 

problem of storing multiple short-term memories might be solved.  There is now an 

abundance of evidence that single items are represented in PFC activity by a rate code 

(Fuster and Alexander, 1971; Kubota and Niki, 1971; Fuster, 1973; Funahashi et al., 

1989; Miller et al., 1996).  What about multiple items?  Is information about all of them 

reflected in PFC activity?  If so, how might this be accomplished?  One possible scenario 

is that there is a separate population of cells responsible for maintaining the memory of 

each item.  This mechanism would be analogous to the concept of the address in 

computer memory, where each item to be stored is placed in its own ‘box’.  Another 

possible way to store multiple memories would be to suppose that the PFC contains 

single cells that are capable of representing more than one item simultaneously.  In this 

scenario, the representation of each item would be distributed among the entire 

population of prefrontal cells, or at least a large fraction of the population.  If this is so, it 

is interesting to think about the form that this type of storage might take, particularly with 

regard to how multiple, sequentially presented items might be stored.  Does the delay 

activity of a neuron representing a single memory relate in a straightforward way that 

neuron’s to multi-item activity? 

Most of the research on the memory for multiple items thus far has been at a 

psychological level, and there have been some interesting results.  One topic of research 

has been the capacity of short term memory.  Early studies showed that short term 

memory has a capacity of 7±2 items (Miller, 1956), and many studies have shown that 

the capacity of working memory is of approximately this size (Nickerson, 1965).  
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However, more recent results suggest that the number may be closer to 3 or 4 if the items 

to be remembered are pictographic and not verbal (Luck and Vogel, 1997).  Another well 

studied and related topic is the memory of lists of items.  Many behavioral results have 

been reported, but one of the most important and robust is the serial position effect.  

When subjects are asked to maintain a list of several items in short term memory, their 

memory for the first and last items tends to be better than their memory for items that fall 

in the middle of the sequence (Murdock, 1962).  Short term memory capacity and the 

serial position effect have both been investigated using fMRI, and a mixed pattern of 

results has emerged (Callicott et al., 1999; Osaka et al., 2003; Vogel and Machizawa, 

2004; Talmi et al., 2005). 

Many theorists have attempted to explain how multiple items could be stored in 

the brain (Lashley, 1951; Jensen and Lisman, 1996; Tanaka, 2002; Amit et al., 2003).  

These models usually also have a component that deals with the representation of 

temporal order, and range from the physiologically inspired to the more abstract.  

However, none have yet been directly experimentally verified.  These models will be 

discussed in more detail in Chapter 2. 

 

Memory for sequences 

Although memory for single items, both objects and spatial targets, has been 

studied very thoroughly in the prefrontal cortex, there has been little physiological 

research on the problem of simultaneously representing multiple items.  However, related 

work has been done on the problem of representing entire sequences of events.  

Researchers have found single neurons in the prefrontal cortex that respond selectively to 
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particular sequences of objects or spatial locations (Shima and Tanji, 2000; Averbeck et 

al., 2003; Ninokura et al., 2003; Averbeck et al., 2006), as well as single neurons that 

encode the temporal position within a given sequence (Hahnloser et al., 2002; Fujii and 

Graybiel, 2003; Ninokura et al., 2004).   

At this point in time, however, no one has yet attempted to examine the signal 

related to each item stored in memory independently.  There are a number of interesting 

directions that this line of research could take.  For example, does the delay period 

activity corresponding to one item change as more items are added to memory?  If it does 

change, does it do so in a systematic way that can be predicted from the activity related to 

a single item?  When several memories are stored at the same time, are they all stored at 

the same strength, or does this depend on serial order?  These issues are very different 

from the question of whether or not sequence-selective cells exist. 

 

Task-selective responses in the prefrontal cortex 

Until this point we have solely discussed the mnemonic functions of the prefrontal 

cortex.  However, this function is only a small part of its overall role.  Over a century of 

research has established that the prefrontal cortex is essential in all tasks that require 

anything but the most rote, automatic behavior.  It is a crucial component in the 

transformation of stimulus to response, and allows us to behave flexibly when context 

demands it, rather than mindlessly mapping the same stimulus to the same response every 

time.  It also allows us to control our impulse to respond to a stimulus by inhibiting 

inappropriate behaviors; one of the hallmarks of prefrontal damage is the lack of impulse 

control. 
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One of the first hints that the prefrontal cortex was important for impulse control 

and the control of context-dependent behavior was the case of frontal damage in the 

patient Phineas Gage (Harlow, 1848, 1868).  Gage recovered from the passage of an iron 

rod through his frontal cortex and exhibited what are now known as classic symptoms of 

prefrontal syndrome.  Although previously calm and reliable, after the accident he was 

capricious, irreverent, and impulsive, exhibited inappropriate behavior, and was unable to 

hold a job.  Similar symptoms have since been described in many patients suffering from 

prefrontal damage. 

Subsequent studies have confirmed the importance of the prefrontal cortex in the 

appropriate mapping of stimulus to response.  The Wisconsin Card Sorting Test was 

developed to probe this aspect of prefrontal function.  In this task, subjects are required to 

follow a continually evolving rule instructing them how to sort cards into piles.  Patients 

with prefrontal damage are inevitably unable to perform well on this task.  They are 

typically able to learn the first card-pile association rule, but are unable to suppress this 

mapping when the rule changes. 

Recent years have seen several intriguing neurophysiological studies that shed 

light on this aspect of prefrontal function.  In particular, several studies have reported the 

existence of cells that encode rules, or are context- or task-selective (White and Wise, 

1999; Asaad et al., 2000; Wallis et al., 2001; Wallis and Miller, 2003).  These cells have 

the potential to form the core of a processing system that allows for the flexible control of 

behavior.  At this point there is an overwhelming amount of evidence that implicates the 

prefrontal cortex as the central locus of executive control. 
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Interaction of task-selectivity and image-selectivity 

Given that the prefrontal cortex is responsible for both the short term memory 

buffer and executive control, the natural question is whether context has an effect on the 

representation of items in short term memory, or if these two processes are completely 

independent.  In particular, we are interested in determining whether the context within 

which a multi-item memory task is performed has an impact on how each item is 

represented.  Also, it will be interesting to determine whether individual cells carry 

information about both the stimuli and the behavioral context, or whether separate 

networks of cells are responsible for carrying these pieces of information.  These issues 

will be addressed. 

 

Multi-item memory experiment 

 To address the questions we have outlined above, we designed an experiment to 

study the mechanism that the brain employs to represent multiple items.  Monkeys were 

trained to remember two items presented sequentially at the fovea, and to release a lever 

when a matching sequence was seen.  In this first set of experiments we found that the 

monkeys remembered the sequences of items at a high level of performance, as judged by 

their patterns of responses.  We recorded neuronal activity from the prefrontal cortex 

while the monkeys were performing this task, and discovered that the majority of single 

cells encoded the identity of both items simultaneously, rather than the alternative 

possibility of a separate population of cells for each item.  Also, the activity related to a 

given sequence of items was only partially predictable from each neuron’s response to 
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individual items.  Finally, the strength of coding of an individual item decayed as time 

progressed, leading to a stronger representation of more recently seen items. 

 

Task-dependent multi-item memory experiment 

 In the second set of experiments we studied the representation of multiple items in 

memory under different behavioral contexts.  In one version of the task, the monkeys 

were required to report their memory of the sequence with a bar release.  In another 

version, their memory was reported with a sequence of two eye movements.  In both 

versions of the task the sample stimulus to keep in memory was exactly the same; the 

only thing that differed was how the animal would act on this information.  This 

experiment was designed to investigate the influence of behavioral context on the 

representation of multiple items in memory.  Following training on the saccade task, 

prefrontal recordings confirmed that the behavioral report did indeed have a profound 

impact on the way sequences were coded.  Instead of a decaying memory trace associated 

with each item, the older item now had a stronger representation than the newer item 

during the memory delay period. 

  The purpose of the third set of experiments was to determine how this behavioral 

report-dependent change of coding was manifested at the single cell level.  For these 

experiments we trained monkeys to switch back and forth between the two types of 

behavioral report, bar-release and eye-movement.  When we recorded neuronal activity 

from the prefrontal cortex, we found that single cells were capable of exhibiting both 

types of activity, and could flip their coding back and forth depending on which task was 
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being performed.  We also found neurons that directly represented the task that the 

monkey was currently performing. 
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INTRODUCTION 

 

Although much is known about how neurons represent single items in working 

memory, relatively little is known about how neurons encode several items 

simultaneously.  This is an important question, because in order to effectively interact 

with the world an animal must be able to maintain more than one item at a time in 

memory.  Reasoning about cause and effect relationships requires this ability, as does 

learning about associations between items.  Any number of demonstrations of this ability 

can be drawn from the spectrum of mental operations we are able to perform.  For 

example, in order to add two numbers together we must be able to simultaneously hold in 

mind the identities of the two numbers we are adding, and, furthermore, we must also 

remember the rule (addition) that we are going to apply to the numbers.  This requires 

multi-item memory. 

We know that the primate prefrontal cortex (PFC) plays a critical role in the 

maintenance of items in working memory, as has been demonstrated by several lines of 

evidence.  Decades of investigation have shown that lesioning or reversibly inactivating 

the lateral PFC in non-human primates causes deficits in performance on delayed-

response tests (Mishkin, 1957; Gross and Weiskrantz, 1962; Fuster and Alexander, 1970; 

Goldman and Rosvold, 1970; Goldman et al., 1971; Passingham, 1975; Mishkin and 

Manning, 1978), and that comparable lesions in human subjects cause short-term 

memory deficits (Muller et al., 2002).  Functional magnetic resonance imaging (fMRI) 

and positron emission tomography (PET) have provided evidence that prefrontal regions 

in humans and monkeys are selectively activated in tasks utilizing working memory 
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(Jonides et al., 1993; Petrides et al., 1993; McCarthy et al., 1994; Swartz et al., 1995; Fiez 

et al., 1996; Leung et al., 2002; Inoue et al., 2004).  Neurophysiological data from non-

human primates has suggested the idea that working memory has as its neural basis the 

activity of single cells in the PFC.  Beginning with the pioneering studies of the early 

1970’s, many experiments have shown that PFC cells are selectively activated during 

delay periods in tasks that require the maintenance in short-term memory of single items 

or spatial locations (Fuster and Alexander, 1971; Kubota and Niki, 1971; Fuster, 1973; 

Funahashi et al., 1989; Miller et al., 1996).  The overwhelming weight of evidence tells 

us that the prefrontal cortex is the locus of short term memory, and it is therefore the 

logical place to record when looking for the networks of cells responsible for multi-item 

memory. 

There is evidence from human behavioral studies that working memory has the 

capacity of several items, with estimates ranging from 3-4 items to “7 plus or minus 2” 

items, depending on the type of item to be stored (Miller, 1956; Luck and Vogel, 1997; 

Vogel and Machizawa, 2004).  The subject of storing multiple memories has been 

investigated through human neuroimaging, particularly with respect to memory load 

(Braver et al., 1997), through computational modeling (Sompolinsky and Kanter, 1986; 

Jensen and Lisman, 1996; Amit et al., 2003), and through behavioral work in nonhuman 

primates (Sands and Wright, 1980; Swartz et al., 1991; Swartz et al., 2000; Orlov et al., 

2002), but not yet through neurophysiology. 

 To address the questions we have outlined above, we designed an experiment to 

study the mechanism that the brain employs to represent multiple items.  Monkeys were 

trained to remember two items presented sequentially at the fovea, and to release a lever 
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when a matching sequence was seen.  In this set of experiments we found that the 

monkeys remembered both items at a high level of performance, as judged by their 

pattern of responses.  We recorded neuronal activity from the prefrontal cortex while the 

monkeys were performing this task, and discovered that the majority of single cells 

encoded the identity of both items simultaneously, rather than the alternative possibility 

of a separate population of cells for each item.  Also, the activity related to a given 

sequence of items was only partially predictable from each neuron’s response to 

individual items. 

 

 

 
 

 - 24 -  



EXPERIMENTAL DESIGN AND METHODS 

 

Subjects   

The subjects were two rhesus monkeys (Macaca mulatta), one male and one 

female, weighing 6.0 and 6.5 kg.  Eye movements were monitored and stored using an 

infrared eye-tracking system (ISCAN, Burlington, MA).  Using previously described 

methods, monkeys were implanted with recording chambers and with a head bolt to 

immobilize the head during neuronal recordings.  The location of the recording chambers 

and the location of recording penetrations were determined by structural magnetic 

resonance imaging scans.  Recording chambers were placed over the lateral prefrontal 

cortex, centered over the principal sulcus and anterior to the arcuate sulcus.  All surgeries 

were performed under aseptic conditions while the animals were anesthetized with 

isoflurane.  The animals received post-operative antibiotics and analgesics and were 

always handled in accord with NIH guidelines and the recommendations of the MIT 

Animal Care and Use Committee. 

 

Bar-release sequence task 

Monkeys performed a two-item image sequence memory task (delayed-match-to-

sequence, Figure 2.1) that required them to judge if two successively presented sequences 

of two natural images were the same.  The task was administered and behavior monitored 

by two computers running the “CORTEX” real-time control system 

(http://www.cortex.salk.edu).  The trial began when the monkeys grasped a lever and 

fixated a small (0.15º) white spot at the center of a CRT screen.  They were required to 
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maintain fixation within a ±1.5º square window around the fixation spot for the entire 

trial.  After the initial 1,000 ms of fixation, an image was presented at the center of the 

screen for 500 ms.  The image was then extinguished and was followed by a 1,000 ms 

memory delay (the one-item memory delay).  A second image was then presented for 500 

ms and was also followed by a 1,000 ms memory delay (the two-item memory delay).  

The presentation of these two images constituted the sample phase of the task, because 

the monkeys were required to remember both of these images throughout the duration of 

the trial.  The sample phase was followed by the presentation of a temporally identical 

test sequence, again consisting of two images presented on the screen for 500 ms each, 

separated by a 1,000 ms delay.  If the test sequence exactly matched the sample sequence, 

the monkeys were required to release the lever before 900 ms following the onset of the 

second test item in order to receive a juice reward.  If the test sequence differed in any 

way from the original sample sequence (if either of the images was different, or if their 

order was reversed), the monkey was required to continue holding the lever until a 

second test sequence was presented.  This second test sequence was always a match and 

thus required a lever release.  As a result, a sequence judgment was only required for the 

first test sequence; the second test sequence was used so that a behavioral response would 

be required on every trial.  This ensured that the monkeys were always paying attention.  

Note that with this design, the behavioral response (lever release) is not uniquely 

associated with a sequence (it was used to signal “match”, not a particular sequence) and, 

further, the monkeys could not predict whether the first test sequence would require a 

response.  Thus any differential activity to the sample sequences could not be related to 
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the behavioral response.  50% of all trials were nonmatch trials, and 50% were match 

trials.  A 1,000 ms inter-trial interval followed all trials.   

For each recording session, four novel cue stimuli, never before seen by the 

animal, were chosen at random from a database of images (Corel, Ottawa, Canada).  The 

stimuli were small complex images about 2ºx2º in size.  The images were presented on a 

computer screen positioned directly in front of the animal.  We made no attempt to 

determine which features of particular images were responsible for the cells’ responses; 

for this study, it was necessary only that different cues elicited selective activity from a 

number of PFC neurons.  Complex images were used because they have been shown to 

elicit robust activity from lateral prefrontal neurons (Miller et al. 1996).  Each of the four 

images had the same chance (25%) of appearing as the first cue and of appearing as the 

second cue (25%).  All combinations of two images in sequence were used, including the 

four sequences composed of a single image shown twice, leading to a total of 16 

sequences.  The design was completely balanced, in that each possible first image was 

followed equally often by each possible second image.  The converse was also true; each 

possible second image was preceded equally often by each possible first image.  This 

allowed us to disambiguate the signals related to the first and second images, and to 

follow each signal independently throughout the course of the trial.  This design ensures 

that if the second image simply erased the effects of the first image (as one might expect 

to find in a primary sensory area), the cell would show no selectivity for the first image 

during the latter phase of the trial.  However, if activity related to the first image was still 

carried by the cell, this task design would allow us to extract that signal. 
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Three types of nonmatching test sequences were used to ensure that the monkeys 

were remembering the sequence correctly (Figure 2.2A).  One type of nonmatch was that 

in which the first image changed and the second image remained the same.  This 

nonmatch was used to ensure that the monkey remembered the first cue – it would be 

impossible to correctly respond to this type of trial if the monkey only remembered the 

second cue.  The second type of nonmatch was a sequence in which the first image stayed 

the same but the second image changed.  This was used to test the memory of the second 

image.  The third type of nonmatch was that in which the same images were used, but 

they were presented in the reverse order.  This type of nonmatch was used to ensure that 

the monkeys were remembering the images in the correct order.  The monkeys performed 

well on all types of trials (Figure 2.2B; first cue 91% correct; second cue 85% correct; 

order 95% correct; chance on all conditions was 50%), indicating that they were 

remembering both items and the order in which they were presented. 

 

Recording technique 

Electrode penetration sites (Figure 2.3A) were determined using magnetic 

resonance imaging (MRI) scans obtained prior to surgery.  The recording chambers were 

positioned stereotaxically over the left lateral PFC of each animal such that the principal 

sulcus and lateral prefrontal cortex were readily accessible (Figure 2.3A).   

Monkeys were seated in primate chairs within sound-attenuating enclosures (Crist 

Instruments, Damascus, MD).  Their heads were restrained, and a juice spout was placed 

at their mouths for automated reward delivery.  Recordings were made using arrays of 

eight independently moveable dura-puncturing tungsten microelectrodes (FHC 
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Instruments, Bowdoinham, ME).  The electrodes were advanced using custom-made 

screw-driven mini-microdrives (Nichols et al. 1998) mounted on a plastic grid (Crist 

Instruments, Damascus, MD) with 1-mm spacing between adjacent locations.  Neuronal 

activity was amplified, filtered, and stored for off-line sorting into individual neuron 

records (Plexon Systems, Dallas, TX).  We did not prescreen neurons for task-related 

activity such as visual responsiveness or stimulus selectivity.  Rather, we randomly 

selected neurons for study by advancing each electrode until the activity of one or more 

neurons was well isolated, and then began data collection.  This procedure was used to 

ensure an unbiased estimate of prefrontal activity.  In any given session, we were able to 

simultaneously record the activity of up to 12 individual neurons (an average of 5.8 per 

recording session). 

 

Analysis of neural data 

Data were analyzed using custom-written routines in MATLAB (Mathworks, 

Natick, MA).  Trials were divided into five epochs for the analysis of neural activity.  

The ‘fixation’ epoch consisted of the 500 ms immediately preceding stimulus onset.  The 

‘first cue’ epoch began 100 ms after the onset of the first cue and had a duration of 400 

ms.  The first 100 ms were excluded to compensate for the minimum latency of visual 

responses in PF cortex.  The ‘first delay’ epoch started 200 ms after the offset of the first 

cue and had a duration of 800 ms.  Likewise, the ‘second cue’ epoch started 100 ms after 

the onset of the second cue and had a duration of 400 ms, and the ‘first delay’ period 

started 200 ms after the offset of the first cue and had a duration of 800 ms.  These 
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epochs were chosen for simplicity.  The results reported here were insensitive to the exact 

time windows used. 

To assess the effect of each of the two cues on neural activity, a two-way 

ANOVA was performed for each cell on the activity from each epoch.  A significant 

effect of the first or second cue stimulus means that activity varied significantly with the 

identity of the first or second cue during the analysis epoch.  If the effect of one of the 

cues on neural activity depended on the identity of the other cue, this would produce a 

significant interaction between cues.  All ANOVAs were evaluated at p ≤ 0.05.  All 

neural activity histograms were calculated with a resolution of 1 ms, and then smoothed 

with a boxcar window. 

To generate the normalized data in Figures 2.4, 2.5, and 2.8, we divided the firing 

rate obtained with a particular image during an epoch by the average firing rate during 

that epoch, which transformed the mean firing rate during that epoch to 1.  This was in 

order to be able to compare epochs with very different firing rates.  We did this for each 

cell.  To generate the population averages in Figure 2.5 we averaged all the cells together. 

The purpose of the response surface analyses shown in Figures 2.6-2.7 was to 

predict the multi-item activity of a neuron from its response to single items.  We 

regressed the second-delay activity of a neuron on a two-factor linear model using the 

firing rates driven by each item in isolation as the regressors.  First we determined the 

average firing rate of a cell for each cue during its presentation.  This data represents the 

cell’s response to a single item.  We used these values to create a two dimensional grid of 

16 points, one point corresponding to each combination of two items.  The grid was 

created in this way because our hypothesis was that the combination of two images would 
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be linear, and if so, this is the most convenient way of visualizing the data.  We then plot 

the actual firing rate of the cell (normalized as described above for single items) in 

response to each combination of two items as a point floating above this grid.  All points 

together create a response surface which, assuming an additive model, should 

approximate a plane.  In our regression model, the tilt of the plane and its offset were 

unconstrained to allow differential weighting of each item.  All the cells used in the 

regression analyses were selective for the first image during the first cue period, the 

second image during the second cue period, and both images during the second delay 

period.  We used this population because the purpose of the analysis was to use the firing 

rates observed during the cue periods to predict the response during the second delay 

period.  All models were fit using least-squares. 

In order to produce figure 2.7 the data was transformed to a zero to one scale by 

fixing the lowest firing rate at zero and the highest firing rate at one, with the two other 

rates linearly scaled.  This normalization measure was used because we wanted a metric 

of selectivity that would have the same range for all cells so that we could produce a 

meaningful average.  The response rates were similarly transformed.  In the individual 

cell response surface plots the values between the data points were linearly interpolated. 
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RESULTS 

 

Visual responsiveness 

A total of 222 lateral prefrontal neurons were recorded from the left hemispheres 

of two monkeys during performance of the two-image sequence task (121 from monkey 

A, 101 from monkey S).  Most of the neurons showed a significant change in activity 

relative to baseline activity, during one or more of the task epochs (206/222 or 92.8%, 

112 from monkey A and 94 from monkey S; two-tailed t tests, evaluated at P < 0.05).  In 

any single epoch, many neurons were responsive (128/222 or 57.7% during the first cue 

period; 150/222 or 67.6% during the first delay period; 159/222 or 71.6% during the 

second cue period; and 142/222 or 64.0% during the second delay period).   

 

Selectivity for single images 

To identify single neurons whose activity varied with the cue images, a two-factor 

ANOVA (one factor for each cue, evaluated at P ≤ 0.05) was performed on the average 

activity of each neuron over each epoch (see Methods).  A majority of neurons (163/222, 

73.4%, 100 and 63 in monkeys A and S, respectively) showed activity that varied 

significantly with the identity of at least one of the images during at least one trial epoch.  

Table 1 shows the incidence of selectivity for each epoch; from one-third to one-half of 

all neurons showed selectivity during a given epoch. 

 

 

 

 - 32 -  



Simultaneous selectivity for both images during the second delay period 

A main interest was to determine whether information about each of the two 

images was maintained in a separate population of PFC neurons or, instead, whether the 

memories of both images were somehow combined on the single-neuron level.  We found 

examples of both, but the majority of image-selective neurons exhibited activity that 

depended on the identity of both images held in memory. 

During the second, two-item, delay, over half of the recorded neurons (132/222, 

59.5%) showed activity that varied significantly with one or both cue images.  There was 

no obvious topography for neurons selective for the first or the second image (Figure 

2.3A).  The majority of these neurons (78/132, 59.1%) showed activity that depended on 

both images (‘two-image’ neurons).  Fewer neurons were selective for only the first 

(17/132, 12.9%) or only the second (37/132, 28.0%) image during the second delay 

(Figure 2.3B).  Some two-image neurons (48/78, 61.5%) showed initial selectivity for the 

first image during the cue presentation or the first delay, which was subsequently 

modulated by selective activity for the second image following its presentation, resulting 

in activity driven by both images during the second delay period.  Other two-image 

neurons (30/78, 38.5%) only began to show selectivity following the appearance of the 

second cue image; they did not show any selectivity during and immediately after 

presentation of the first image in the sequence (the first cue and first delay epochs, 

ANOVA, P > 0.05).  These neurons, therefore, required the presence of both images in 

memory in order to show any selective activity, and are most likely examples of the 

sequence neurons that have been previously reported (Averbeck et al., 2003; Ninokura et 

al., 2003).   
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The relationship of two-image activity to individual-image activity 

Given that the activity of the majority of single PFC neurons reflected both 

images, we naturally wondered whether this ‘two-image’ activity bore any simple 

relationship to the neural activity elicited by the individual images in isolation.  For 

example, was a neuron’s activity for the two images a simple addition of its activity 

associated with each single image?  The following analyses will address this issue.  At 

this point, it is important to note one of the crucial features of our experimental design:  

image presentation was balanced.  That is, across a set of trials in which a given image 

was a cue, it was followed (when it was cue 1) and preceded (when it was cue 2) by each 

and every image with equal frequency.  Thus, when we sort trials by a given image as 

say, the first cue, any neural selectivity seen is directly attributable to that image because 

the influence of the images used as the other cue is factored out across trials. 

A single neuron with image-selective activity is shown in Figure 2.4.  When the 

trials are grouped according to the identity of the first cue (Figure 2.4A), activity during 

its presentation (i.e. during the first cue epoch) is strongest for a particular image (image 

‘D’).  This selective activity is maintained through the first delay period immediately 

after the first cue presentation.  This pattern of activity is revealed in a plot of the 

neuron’s average, normalized activity associated with each image when it was used as the 

first cue during both the first cue presentation and the first delay (Figure 2.4B; see 

METHODS for details).  The fact that these curves are the same shape indicates that the 

neuron’s image preferences during cue presentation and during the subsequent delay 

period are very similar.  Likewise, when we sort the trials according to the identity of the 

second cue (Figure 2.4C), it is apparent that this neuron’s activity is also strongest for 
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image D when it appears as the second cue during both the second cue period and the 

subsequent delay period.  The corresponding average activity plot is similar to that for the 

first cue (data not shown).  But note this neuron’s pattern of selectivity during the second 

delay period when the trials are grouped according to the identity of the first cue (Figures 

2.4A and D).  Its activity varies with the identity of the first cue but in quite a different 

way than seen earlier in the trial.  During delay 2, rather than image D eliciting a 

relatively high degree of activity as it did during delay 1, the activity corresponding to 

image D is now lower than when other images were the first cue.  This effect is seen 

clearly when the average activity associated with each first cue image is plotted during 

cue 1 and compared with the first cue activity during delay 2 (Figure 2.4D).  The 

relatively high level of activity to image D as cue 1 does not simply carry over into the 

second delay or add to the activity elicited by cue 2 in a straightforward way, at least in 

this example cell.  Again, because image presentation is balanced in our experimental 

design, the activity differences seen in the second delay are directly attributable to the 

first cue image; any image-selectivity directly attributable to the second cue is factored 

out.   

This change in first cue-driven activity following the addition of a second cue to 

memory did not simply reflect differences in neural representation during sensory 

stimulation (cue presentation) versus memory (delay epochs).  Indeed, as can be seen in 

Figure 2.4A and 2.4B, this neuron’s image preference during the delay epochs was 

virtually identical to its image preference during the immediately preceding cue.  This 

was also true across the entire population of neurons.  Figure 2.5A shows the average 

normalized activity of all neurons selective for the first image during the both the first 
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cue epoch and following delay.  The concept behind this figure is the same as that for 

Figure 2.4A, except that Figure 2.4A was for an individual neuron, whereas Figure 2.5A 

is the average of the population of image-selective neurons.  This figure clearly indicates 

that, at a population level, relative image preferences established during cue presentation 

are maintained into the following delay period. 

We performed a regression analysis to further examine the correspondence 

between cue-1 related activity during cue presentation and the subsequent delay (Figure 

2.5B).  We fit a linear model to each cell (response = α + β*cue1), using its activity 

during the first cue period as the regressor and the activity during the first delay period as 

the response (see METHODS).  A positive β indicates that the response of the cell during 

the first delay period varies directly with its response during cue presentation.  All βs 

were tested for a significant difference from zero (two-tailed t test, p ≤ 0.05).  Most cells 

in the population had βs greater than zero, and the distribution of βs was significantly 

greater than zero (one-tailed t test, p ≤ 0.05).  These results lend support to the conclusion 

that image preferences during the first delay period are very similar to image preferences 

during cue presentation. 

Across the population of neurons, there were a variety of changes in neural 

selectivity as a result of adding a second cue to memory; some neurons invert their 

preferences (as did the neuron of Figure 2.4), some changed in a different non-obvious 

fashion, a few maintained their preference.  This is reflected in Figure 2.5C, which shows 

the average normalized activity across all neurons that showed significant image 

selectivity for the first cue during both the first cue and the second delay periods.  While 

the average activity during presentation of the first cue shows clear selectivity for that cue 

 - 36 -  



(the data are sorted by this cue), the average activities during the second delay for the 

images appearing as that cue are relatively equal - the line is flat - when sorted by the 

identity of the first cue.  This does not mean that the image selectivity has disappeared; 

rather, the averaging of different neurons with different changes in selectivity due to 

addition of a second cue has created a population average that is flat.  It is worthwhile 

noting here that the proportion of neurons selective for the first cue image is roughly 

comparable during the first and second delay periods (36.9% in the first delay period and 

42.8% in the second delay period, Table 1), and only cells that were selective for images 

during this delay period went into this analysis, so we are sure that the selectivity for the 

first cue has not disappeared – it has just changed form. 

 In order to gain a better understanding of how two images are simultaneously 

represented in one population of neurons, we attempted to predict the delay period 

activity of cells driven by both images from the activity of the cells driven by a single 

image.  To do this, we fit a linear response surface model to the data (see METHODS for 

details) using the activity driven by each cue in isolation as the regressors: 

   

response = α + β1*cue1 + β2*cue2. 

 

This model describes a plane in three dimensional space (an example plane is 

shown in Figure 2.6A); the height of the plane at each point is the predicted response.  α, 

β1, and β2 are the offset and two slope parameters determined by the regression; cue1 is 

the response to the image used as cue 1 during its presentation; cue2 is the response to the 

image used as cue 2 during its presentation.  This is perhaps the most intuitively plausible 
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model; it would simply require the more recent memory to be linearly combined with the 

original memory.  This model was free to vary in three parameters (α, β1, and β2), and 

therefore was capable of finding the best weighted sum of the two cues, not just a 

straightforward addition.  We fit all of the image-selective cells in the population (see 

METHODS for details of cell selection) using this model, and discovered that this model 

did a fair job at describing the cells’ actual responses.  Based on the R2 values, the model 

explained on average about 10% of the variance of the activity of these cells; there were 

some cells that were very well fit by the model, with an R2 approaching 80%.  Obviously 

there is a lot of variation in the activity of these cells that is not explained by the presence 

of the two cues in memory.  This is probably a result of the fact that prefrontal cells are 

capable of carrying information about several task-relevant pieces of information 

simultaneously, including the contingencies of the task at hand.  This issue will be 

discussed more completely in Chapter 3. 

 When we fit each cell to this model, we found that the distribution of β1s was 

centered on zero (Figure 2.6B), and that the mean of the distribution was not significantly 

greater than zero (one-tailed t test, p > 0.05).  There are many cells with significant 

slopes, as would be expected given that all of the cells show image selectivity for the first 

cue during this delay period.  However, there are just as many negative slopes as positive 

slopes, indicating that these cells have changed their image preferences as a result of the 

addition of the second item to memory.  This result is consistent with that shown in 

Figure 2.5C, and indicates that, while the memory of the first image is preserved after the 

addition of a second item to memory, it has changed form. 
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The mean of the distribution of β2s, on the other hand, is significantly greater than 

zero (one-tailed t test, p ≤ 0.05).  There are many cells with significant slopes, but most 

of these cells have a positive slope.  This result is also consistent with that discussed 

previously, and indicates that the delay activity representing the second cue is very 

similar in image preference to the activity seen during second cue presentation.  These 

results taken together suggest that it is only partially possible to predict the two-item 

delay activity from the activity driven by cues in isolation.  The two-item delay activity is 

most similar to that of the most recently represented cue, and is very different from that 

of older cues. 

Although this model has given us a good sense of how these cells are encoding 

two items in memory, it is informative to look at actual response surfaces obtained from 

individual cells without fitting them to a model.  To do this, we first transformed the 

activity of the cues in isolation and the second delay period activity to a 0-1 scale.  This 

made it easier to compare the response surfaces of different cells.  The axes are as before, 

but the surface is now the actual average firing rates for each combination of two images.  

Examples of actual response surfaces for two individual cells are shown in Figure 2.7A 

and B.  Figure 2.7A shows a cell that has a maximal response when the best first item and 

the best second item are used as the sequence of items.  This is the type of cell we would 

have expected to see if the cells were simply adding their responses to each item to 

produce a combined response.  The cell shown in Figure 2.7B is interesting because it 

shows the best possible response when the worst first image is used in combination with 

the best second image.  These cells are both representative of the population effect.  They 

both exhibit the maximal firing rate for the previously determined ‘best’ second image.  
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Also, their preference for which item was presented first is variable; one cell prefers the 

original best first image, while the other cell has changed its first-image preference. 

 We computed the population average response surface simply by averaging all the 

individual response surfaces together (Figure 2.7C).  Only cells selective for both images 

during the second delay were used in this analysis.  The net surface shows an interesting 

characteristic:  there is a large net positive slope in the Cue 2 direction, and no net slope 

in the Cue 1 direction.  This means that the representation of the second cue during the 

second delay period is quite faithful to the representation we would find if it was 

presented in isolation.  Also, since the selectivity profiles of the cells for the first cue 

have been changed so dramatically in each of the cells, when they are averaged together 

they produce a surface with zero tilt.  This means that the first cue is not represented 

faithfully at all.  These results are completely consistent with those previously presented.  

They indicate that the newest item in memory is represented like it would be if it were the 

only item in memory, while the representation of the older item has changed 

significantly.   

As a further test of the assertion that image-selectivity changes in a non-obvious 

fashion with the addition of a new cue image to memory, we plotted the normalized 

response (see METHODS) of each neuron to its best first image during the presentation 

of the first cue versus its activity to that same image during either the first delay (black 

dots and line, Figure 2.8A) or during the second delay (black dots and line, Figure 2.8B).  

As a point of reference, we also plotted the response of each neuron to its best first cue 

image during the presentation of the first cue versus its activity to the best image as 

determined by the activity during that delay period (large grey dots).  It is important to 
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remember that these may not be the same image – the best image in the first case was 

always the best image defined during the presentation of the first cue, while the best 

image in the second case was defined independently during each epoch.  The purpose of 

the grey dots was to provide a comparison of how correlated across epochs each neuron’s 

activity might be if we defined each neuron’s preference independently for each epoch; it 

essentially provides a “best case scenario” for how well correlated activity could be 

across the epochs.   

Figure 2.8A shows the correlation between the response to each best first image 

during the first cue and the first delay periods.  A high response to the best image during 

cue presentation is correlated with a high response to the same image during the first 

delay period, indicating that image preferences are maintained during this delay period.  

The same effect with approximately the same slope is seen when the best image is 

determined independently for each epoch, giving strength to this argument.  Also, there is 

a lot of overlap between the grey dots and the black dots in this figure, indicating that the 

same image was most-preferred across the two epochs.  Overall, 54% of neurons prefer 

the same image during the first delay period as during the first cue period, which is an 

impressive alignment, given that the four images were chosen randomly, and firing rates 

to different images may be very similar.  Figure 2.8B shows a comparison between the 

first cue period and the second delay period.  Here, a different result is seen.  The 

response to the best image during the first cue period is not correlated with its activity to 

that same image during the second delay period.  This is to be expected if the image 

rankings are not being preserved during the second delay period.  It should also be noted 

that in this figure there is not a lot of overlap between the grey dots and the black dots, 
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indicating that the preferred image during the first cue period is rarely the preferred 

image during the second delay period (in our sample, the two images were the same for 

25% of the neurons, which is what would be expected by chance).  Again, because image 

presentation is balanced, these analyses indicate that the activity related to the first cue 

image is not preserved in a straightforward way across addition of a second image to 

memory. 
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DISCUSSION 

 

We have found that when two images held in short-term memory, they are both 

reflected in the activity of single prefrontal neurons.  These findings are consistent with 

the hypothesis that multiple items are stored in working memory using a single 

population of neurons, and less compatible with an alternative model that posits that 

separate memories are stored in separate ‘boxes’ in the brain analogous to addresses in 

computer memory.  Further, we found that there was not a straightforward relationship 

between the neural activity corresponding to a single item and neural activity after a 

second image was added to memory.  The addition of the second item had a profound 

impact on the representation of the first, in most cases changing the preferred first item of 

the cell.  However, the representation of the second item was very similar to its 

representation when presented in isolation.  Also, we found two different categories of 

neurons:  a large number of ‘superposition’ neurons that showed selectivity for single 

images in isolation as well as for two images in memory together, and a relatively small 

number of ‘sequence’ neurons that only began to show selective activity after the second 

image was presented. 

These findings support those models that suggest that short-term memories of 

multiple items overlap in neural populations.  We will discuss these results in relation to 

recent developments in the theoretical modeling of multiple memories and place them in 

the context of prior neurophysiological studies. 
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Relationship to prior neurophysiological studies 

Recently, there have been several studies that have investigated the representation 

of sequences of items in the prefrontal cortex.  Typically in these studies an animal is 

sequentially presented with a number of items to remember, and the activity related to the 

entire sequence is studied during the pre-choice delay period.  These studies have found 

that single neurons selective for specific sequences of images, spatial locations, and 

movement sequences (Barone and Joseph 1989; Ninokura et al. 2003; Shima and Tanji 

2000).  Several studies have also reported the existence of neurons selective for rank 

order, a signal which may be used in the creation of sequence-selective neurons 

(Averbeck et al. 2002; Carpenter et al. 1999; Ninokura et al. 2004).  In order to respond 

highly selectively to specific sequences, the neurons found in these studies are 

necessarily combining several memories in a non-straightforward fashion, which is 

consistent with the results reported here; if all possible sequences are to be represented, it 

is necessary that a cell change its image preference for at least one of the items.  Our 

results extend these studies by addressing the question of how the memory trace for a 

single item is modified when new items are loaded into memory.  We have shown here 

that the majority of neurons with dual image selectivity are created from neurons with 

ordinary image-selective delay activity.  These neurons do not just fire selectively after a 

particular sequence is seen; they fire selectively after a single image is seen, and then 

change their firing pattern to accommodate an additional image. 
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Comparison to computational studies and models of multi-item working memory 

The ability to store multiple items in memory has been explored through several 

different computational lines of research, and has lead to the creation of neural network 

models that are able to store more than one item in memory.  There have been two 

general classes of model created to address these issues, and they differ in whether 

storage is defined as the encoding of multiple items through the long-term modification 

of synaptic weights (an analog of long-term memory), or as the simultaneous activation 

of several delay circuits (an analog of short-term memory).  The first class is typified by 

the Amari-Hopfield type of model (Amari 1972; Hopfield 1982), composed of a network 

of binary neurons, which can store a number of memories in the synaptic matrix.  This 

type of model is particularly useful with respect to long-term memory storage of multiple 

memories, but does not address the issue of several memories simultaneously stored in a 

short-term buffer (as represented by delay activity), the issue under investigation in this 

study.   

The second class of models, however, directly speaks to these issues, and we will 

therefore give a broad overview of these models and how the current results fit into this 

context.  Several groups have approached this problem, and although the specific systems 

under study are quite different, the solutions that they propose are strikingly similar.  

Amit and colleagues have created a network of excitatory and inhibitory integrate-and-

fire neurons that is capable of simultaneous delay activity for up to six images in working 

memory (Amit et al. 2003; Yakovlev et al. 2004).  Each image is represented by a distinct 

population of neurons, each with a “perfectly sharp” tuning curve; in other words, if a 
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neuron responds selectively to a particular image, it has a complete lack of response to all 

other images.  Since this model assumes that a population of neurons corresponds to each 

image, multiple images are represented by the activation of multiple, corresponding 

populations of neurons.  This model is perfectly additive, since memories for different 

images do not directly interfere with each other.   

Another approach has been that of Tanaka, who created a neural network for the 

simultaneous representation of several spatial targets (Tanaka 2002a, b).  This is also an 

integrate-and-fire network, and it relies on a topographically organized spatial map with 

hills of activity representing the memory of particular spatial locations.  Although in this 

model the neurons are not perfectly sharply tuned, as they are in the Amit model, the 

same effect is realized because the model represents multiple spatial memories with non-

overlapping hills of activity.  This type of network does a very good job at storing 

multiple memories when they are distant on the spatial map, but breaks down when the 

memories are close enough in space to interfere with each other.  Multiple memories can 

only be stored with high accuracy by completely separate subpopulations within these 

networks; when memory traces begin to overlap, fidelity is compromised.  This model, is 

a result, is also completely additive. 

These two models are similar in that they store memories for different images 

using distinct populations of neurons.  They are also similar in that new memories are 

added to the network in an additive way.  The results that we have reported in this chapter 

indicate that it will be necessary to tweak models such as these to incorporate the idea 

that, in most cases, single neurons respond simultaneously to more than one item.  

Prefrontal cells rarely have a strong response to one image and a baseline response to all 
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other images; in most cases, a spectrum of firing rates is observed for a large number of 

images.  Given that this is the case, there will necessarily be an overlap between 

representations of different items.  This is difficult to reconcile with models that require 

completely separate populations of neurons for each image/spatial location.  Curti, Amit 

and colleagues (Curti et al. 2004) have begun to address these issues through the creation 

of a more realistic spiking network model that incorporates neurons that respond 

selectively for more than one image.   

In conclusion, we have shown that the primate lateral prefrontal cortex exhibits 

signals related to the maintenance of multiple items in working memory.  We have found 

that a single population of neurons is capable of coding two images, and that the signal 

related to a newer image is overlaid on the signal related to an older image, in the process 

dramatically changing the older signal.  These two signals are combined in a partially 

predictable way.  It remains to be shown how each memory can be reliably read out and 

reconstructed based on such a population code. 
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FIGURES 

 

Figure 2.1.  Behavioral task.  The monkey was presented with a sequence of two images, 

which consisted of one sample cue, an intervening delay period, a second sample cue, 

and a second delay period.  This was followed by the presentation of a test sequence 

which had the same temporal structure as the first.  If this test sequence matched the 

sample sequence, the monkey was rewarded for releasing a lever during the presentation 

of the second matching test cue.  If the test sequence was not an exact match, the monkey 

was required to continue grasping the lever until a match sequence appeared.  A match 

sequence always appeared immediately following a nonmatch test sequence.  See 

METHODS for further information. 

 

Figure 2.2.  Test trial types.  A:  Three types of nonmatching sequences were used to 

ensure that the monkey was correctly remembering the entire sequence.  The sample 

sequence shown in the top row is followed by a test sequence that has a nonmatching first 

cue and a matching second cue.  This type of sequence tested the monkeys’ memory of 

the first cue – it would be impossible to respond correctly on this type of trial if only the 

second cue was being held in memory.  The sample sequence shown in the middle row is 

followed by a test sequence that has a matching first cue and a nonmatching second cue.  

This type of sequence was used to test the monkeys’ memory of the second cue.  The 

sample sequence shown in the bottom row was followed by a sequence composed of the 

same cues, but presented in the reverse order.  This type of sequence was used to test the 

monkeys’ memory for the cue order.  B:  Behavioral performance.  The monkeys 
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performed well on all three types of test sequence.  The percent correct for each type of 

test sequence is shown; error bars represent the 95% confidence interval around the 

mean.  The accuracy rate was 91% for the first condition (first cue), 85% for the second 

condition (second cue), and 95% for the third condition (order).  Chance performance 

was 50% for each condition.   

 

Figure 2.3.  A:  Anatomical location of recording sites and image-selective neurons in 

both monkeys.  X and O, recording sites at which neurons selective for image 1 or image 

2 during the second delay period were found, respectively.  Black •, locations at which no 

image selective neurons were encountered.  Multiple neurons were recorded at many 

locations.  There was no obvious topography to task-related neurons.  B:  Relative 

proportions of neurons selective for only image 1, both images, or only image 2 during 

the second delay period.  Area is to scale. 

 

Figure 2.4.  A:  Activity of a single prefrontal cell, trials grouped according to which 

item appeared as the first cue.  B:  Normalized response of this cell to the first cue during 

both the first cue period and the first delay period (see METHODS).  Curves with similar 

slopes indicate a similar selectivity profile in both epochs.  C:  Activity of the same cell, 

now grouped according to which item appeared as the second cue.  D:  Normalized 

response of the cell during both the first cue period and the second delay period for the 

first cue.  Dissimilar curves indicate that the cells selectivity profile for the first cue has 

changed with the addition of a second item to memory. 
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Figure 2.5.   A:  The same analysis shown in Figure 2.4B, averaged over all cells in the 

population.  B:  The histogram shows the distribution of β across the population of 

image-selective cells.  Colored bars are cells with significant β, p ≤ 0.05.  The mean of 

the distribution was significantly greater than zero, p ≤ 0.05.  C:  The same analysis 

shown in Figure 2.4D, averaged over all image-selective cells in the population. 

  

Figure 2.6.  A:  An additive model was used to fit the cell’s response to all combinations 

of two items.  An example of one possible response surface is shown to illustrate the 

model.  B:  The histogram shows the distribution of the values of β1 obtained when every 

image selective cell was fit with the above model.  Colored bars are significant values of 

β, p ≤ 0.05.  The mean of the distribution was not significantly greater than zero, p > 

0.05.  C:  The distribution of the values of β2.  The mean of the distribution was 

significantly greater than zero (p ≤ 0.05). 

 

Figure 2.7.  A and B:  Two actual response surfaces from two cells are shown.  C:  The 

average response surface of all cells in the population.  A response surface was created 

for each image-selective cell in the population, as illustrated in Figure 2.7A and B.  These 

surfaces were averaged together to produce an average response surface. 

 

Figure 2.8.  A:  The correlation between the response to the best first image during the 

first cue and the first delay periods.  Black dots, response of each neuron to its best image 

during cue 1 versus its response to that same image during the first delay period.  Black 

line, linear fit to these points.  Grey dots, response of each neuron to its best image during 
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cue 1 versus its response to its best image during the first delay period.  Grey line, linear 

fit to these points.  54% of these neurons retain their image preference into the first delay 

period.  B:  The correlation between the response to the best first image during the first 

cue and the second delay periods.  Black dots, response of each neuron to its best image 

during cue 1 versus its response to that same image during the second delay period.  

Black line, linear fit to these points.  Grey dots, response of each neuron to its best image 

during cue 1 versus its response to its best image during the second delay period.  Grey 

line, linear fit to these points.  25% of these neurons retain their image preference into the 

second delay period. 
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FIGURE 2.1 
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FIGURE 2.2 
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FIGURE 2.3 
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FIGURE 2.4 
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FIGURE 2.5 
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FIGURE 2.6 
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FIGURE 2.7 
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FIGURE 2.8 
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CHAPTER 3 
 

 
Task-Specific Representation of Multiple Items in the 

Primate Prefrontal Cortex 
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INTRODUCTION 

 

One of the main functions of the prefrontal cortex is to guide the transformation 

of a stimulus into a behavioral response (White and Wise, 1999; Asaad et al., 2000; 

Miller and Cohen, 2001).  This transformation is highly dependent on the behavioral 

context, or the “rules of the game”, and is therefore quite flexible.  It is often the case that 

a stimulus might be associated with several different responses, depending on context.  

For example, a ringing phone might trigger different behaviors depending on the 

environment; at home, the appropriate response to this stimulus would be to answer the 

phone, while this response at a restaurant would be inappropriate.   

Damage to the prefrontal cortex in both humans and monkeys produces impaired 

behavior that is consistent with the idea presented above.  An example of this is the effect 

of prefrontal damage on patients performing the Wisconsin Card Sorting Task, a task 

which assesses the ability to adapt to changing context.  In this task, subjects are required 

to sort cards into different piles; which pile a card ends up in is dependent on the rule 

currently in effect, which changes periodically.  Therefore, a given card is associated with 

more than one pile during the course of an experiment, and the subject must keep the 

current rule in mind to perform well on this task.  Humans are impaired on this task when 

they have sustained damage to the prefrontal cortex (Milner, 1963), and monkeys are 

similarly impaired on simpler analogs of this task (Dias et al., 1997).   

There is also evidence that this function of the prefrontal cortex has a 

neurophysiological correlate.  Neural activity corresponding to a given stimulus has been 

shown to vary depending on behavioral context, such as the upcoming motor response 

 - 66 -  



(Asaad et al., 1998), which part of a stimulus is attended (Rainer et al., 1998), what type 

of task the animal is performing (Asaad et al., 2000), and which rule the animal is using 

to solve a task (Wallis et al., 2001). 

An idea proposed by Goodale and Milner (Goodale and Milner, 1992) meshes 

nicely with the results of the studies discussed above.  The primate neocortex has 

traditionally been divided into two separate processing streams, dorsal cortex being 

responsible for spatial vision, and ventral cortex responsible for object vision 

(Ungerleider and Mishkin, 1982).  Goodale and Milner proposed an alternative division 

between the dorsal and ventral streams, based on observations from their own research.  

In their new model, the division would instead be between vision-for-action, handled by 

dorsal cortex, and vision-for-perception, handled by ventral cortex.  Vision-for-action, 

thought to be the more primitive system, would be responsible for tasks such as catching 

a ball, or putting a card into a slot – tasks that involve quick coordination between what 

you see and what you do.  The vision-for-perception system, on the other hand, thought 

to be a more recent development, would perhaps allow us to perceive events in the world, 

think about them, and decide what to do in a more leisurely way.  There have been many 

studies over the past decade that have lent support to this hypothesis.  For example, 

patients with damage to their dorsal cortex can have difficulty producing accurate 

grasping or orienting movements toward visual objects, even while they can accurately 

describe these objects (Perenin and Vighetto, 1988).  Similarly, patients with damage to 

their ventral cortex have problems describing objects that they are able to accurately 

grasp and orient towards (Milner et al., 1991). 
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The above distinction between two visual systems, one for action and one for 

perception, says something far more than first meets the eye.  The authors are essentially 

arguing that it doesn’t make sense for the brain to have a general purpose representation 

of a stimulus when it could potentially be used for so many different things, and the 

resulting possible actions shunted through different motor systems.  It would perhaps be 

more efficient to have different representations of a stimulus that depend on behavioral 

context, or how the stimulus will be used: 

 

As soon as we direct a motor act towards an object an entirely different set of 

constraints applies.  We can no longer rely on the perception system’s ‘general 

purpose’ representation…  Directing a saccadic eye movement, for example, will 

demand different transformations of visual input to motor output from those 

required to direct a manual grasping movement.  The former will involve 

coordinate systems centered on the retina and/or head, while the latter will 

involve shoulder and/or wrist centered coordinates.  While it is theoretically 

possible that a highly sophisticated ‘general-purpose’ representation could 

accommodate such transformations, such a possibility seems unlikely and 

unnecessary.  (Goodale and Humphrey, 1998) 

 

What is the role of the prefrontal cortex in this alternative model of visual 

processing?  Does it provide a space for a general purpose representation in short-term 

memory of the stimuli that seem most useful, stored there temporarily for the purpose of 
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directing upcoming actions?  Or is the representation of items in the PFC dependent on 

how this information will be used and what actions will be taken? 

In the what/where model, the prefrontal cortex is thought to be the cortical 

terminus of both the object and the spatial streams, and, in a rough sense, where the two 

streams finally converge.  For example, single cells that represent the memory of both an 

object and a spatial location have been found in the PFC (Rao et al., 1997).  It is clear that 

the PFC receives abundant input from both streams, and many of its cells are selective for 

the spatial and non-spatial characteristics of visual input, among other things.  However, 

if one of the principal functions of the PFC is to produce context-appropriate behavior, as 

argued above, then perhaps it might also be interesting to examine how it represents these 

visual pieces of information when they are going to be used for different purposes.  For 

example, it would be interesting to look, within the PFC, at the distinction between visual 

information used for action and visual information used for perception, or the distinction 

between visual information used to direct a saccadic eye movement and visual 

information used to guide a grasping movement.  The PFC maps stimuli onto actions.  It 

is also a short-term memory buffer.  How do these functions interact? 

One of the questions that we are particularly interested in is whether or not the 

prefrontal delay activity representing images is dependent on how they will be used.    To 

address this question, we trained two monkeys to remember a sequence of two items and 

report this information in one of two ways.  The first variant of the task used a bar release 

as the behavioral report, and required the monkeys to release a bar when they viewed a 

sequence of two items that matched the original sample sequence.  This version was 

called the bar-release task.  The second version, called the eye-movement task, required 
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that the monkeys report their memory of the sequence of items using a sequence of two 

saccadic eye movements to the matching items in an array of images. 

The objective of this second set of experiments is to determine the effect of the 

rule (type of behavioral report) on the neural representation of the memory of a sequence 

of items.  In particular, we are interested in how this change in task contingencies affects 

the strength of representation of each individual item.  In previous work (Chapter 2) we 

investigated the issue of how multiple memories are encoded in prefrontal delay activity.  

In that study we focused on the issue of stimulus selectivity preferences independent of 

the notion of strength of stimulus encoding.  In this study, we focus primarily on the 

strength of stimulus representation, not the particular images that are preferred by a given 

cell.  We are particularly interested in investigating how the relative image strengths 

evolve over time depending on how and when the information is going to be used. 
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EXPERIMENTAL DESIGN AND METHODS 

 

Subjects   

The subjects were two rhesus monkeys, Macaca mulatta, one male and one 

female, weighing 6.0 and 6.5 kg.  Eye movements were monitored and stored using an 

infrared eye-tracking system (ISCAN, Burlington, MA).  Using previously described 

methods (Miller et al., 1993), monkeys were implanted with recording chambers and with 

a head bolt to immobilize the head during neuronal recordings.  All surgeries were 

performed under aseptic conditions while the animals were anesthetized with isoflurane. 

The animals received post-operative antibiotics and analgesics and were always handled 

in accord with NIH guidelines and the recommendations of the MIT Animal Care and 

Use Committee. 

 

Bar-release sequence task 

Monkeys first performed a two-item image sequence memory task (delayed-

match-to-sequence, Figure 3.1) that required them to judge if two successively presented 

sequences of two natural images were the same.  The task was administered and behavior 

monitored by two computers running the “CORTEX” real-time control system 

(http://www.cortex.salk.edu).  The trial began when the monkeys grasped a lever and 

fixated a small (0.15º) white spot at the center of a CRT screen.  They were required to 

maintain gaze within a ±1.5º square window around the fixation spot for the entire trial.  

After an initial 1,000 ms fixation period, an image was presented at the center of the 

screen for 500 ms.  The image was then extinguished and was followed by a 1,000 ms 
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memory delay (the one-item memory delay).  A second image was then presented at the 

same position for 500 ms and was also followed by a 1,000 ms memory delay (the two-

item memory delay).  The presentation of this sequence of images constituted the sample 

phase of the task, because the monkeys were required to remember both of these images 

and their order throughout the duration of the trial.  The sample phase was followed by 

the presentation of a temporally identical test sequence, again consisting of two images 

presented on the screen for 500 ms each, separated by a 1,000 ms delay.  If the test 

sequence exactly matched the sample sequence, the monkeys were required to release the 

lever within the 900 ms following the onset of the second test item in order to receive a 

juice reward.  If the test sequence differed in any way from the original sample sequence 

(if either of the images was different, or if their order was reversed), the monkey was 

required to continue holding the lever until a second test sequence was presented.  This 

second test sequence was always a match and thus required a lever release.  As a result, a 

sequence judgment was only required for the first test sequence; the second test sequence 

was used so that a behavioral response would be required on every trial.  This ensured 

that the monkeys were always paying attention.  Note that with this design, the behavioral 

response (lever release) is not uniquely associated with a sequence (it was used to signal 

“match”, not a particular sequence) and, further, the monkeys could not predict whether 

the first test sequence would require a response.  Thus any differential activity to the 

sample sequences could not be related to the behavioral response.  50% of all trials were 

match trials, and 50% were nonmatch trials.  A 1,000 ms inter-trial interval followed all 

trials.   
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For each recording session four novel cue stimuli, never before seen by the 

animal, were chosen at random from a database of images (Corel, Ottawa, Canada).  The 

stimuli were small, complex images about 2º by 2º in size.  The images were presented on 

a computer screen positioned directly in front of the animal.  We made no attempt to 

determine which features of particular images were responsible for the cells’ responses; 

for this study, it was necessary only that different cues elicited selective activity from a 

number of PFC neurons.  Complex images were used because they have been shown to 

elicit robust activity from lateral prefrontal neurons (Miller et al. 1996).  Each of the four 

images had a 25% chance of appearing as the first cue and a 25% chance of appearing as 

the second cue.  All combinations of two images in sequence were used, including the 

four sequences composed of a single image shown twice, leading to a total of 16 

sequences.  The design was completely balanced, in that each possible first image was 

followed equally often by each possible second image.  The converse was also true; each 

possible second image was preceded equally often by each possible first image.  This 

allowed us to disambiguate the signals related to the first and second images, and to 

follow each signal independently throughout the course of the trial.  This design ensured 

that if the second image simply erased the effects of the first image (as one might expect 

to find in a primary sensory area), the cell would show no selectivity for the first image 

during the latter phase of the trial.  However, if activity related to the first image was still 

carried by the cell, this task design would allow us to extract that signal. 

Three types of nonmatching test sequences were used to ensure that the monkeys 

were remembering the sequence correctly (Figure 3.2A).  One type of nonmatch was that 

in which the first image changed and the second image remained the same.  This 
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nonmatch was used to ensure that the monkey remembered the first cue – it would be 

impossible to correctly respond to this type of trial if the monkey only remembered the 

second cue.  The second type of nonmatch was a sequence in which the first image stayed 

the same but the second image changed.  This was used to test the memory of the second 

image.  The third type of nonmatch was that in which the same images were used, but 

they were presented in the reverse order.  This type of nonmatch was used to ensure that 

the monkeys were remembering the images in the correct order.  The monkeys performed 

well on all types of trials (Figure 3.2B, first cue 91% correct; second cue 85% correct; 

order 95% correct; chance on all conditions was 50%), indicating that they were 

remembering both items and the order in which they were presented. 

 

Eye-movement sequence task 

After recordings were completed for the bar-release sequence task, training began 

on an alternative version of this task.  In this version the monkeys responded to the 

presentation of the sample sequence with two sequential eye movements (Figure 3.3) 

instead of reporting their memory of the sequence with a bar release.  The sample 

sequence was identical to that seen in the bar-release task - two images were presented 

sequentially on the fovea for 500 ms each with an intervening delay period of 1000 ms.  

After the second delay period, however, the structure of the trial was different.  In this 

new version, an array of three images was presented, two of which had just been seen in 

the sample sequence.  These images were presented in a triangle around the fixation point 

at an eccentricity of 5°.  The monkey was required to saccade to the images that he had 

just seen in the order in which they were presented.  Loose time constraints were in place; 
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the monkey had 2000 ms to initiate a saccade to the first item.  However, once the eyes 

had left the fixation point, the monkey was required to reach the first item within 70 ms.  

This was to ensure that the monkey made a saccade directly to an image without any 

intervening saccades.  The time constraints for the second saccade were identical.  In this 

task repeated items were not allowed, unlike the bar-release task; this was because the 

monkey needed to saccade to two different items sequentially.  Again, four novel objects 

were used each day, and each could appear at either position.   

Performance on the eye-movement task was somewhat worse than performance 

on the bar-release task, largely due to the difficulty of quickly identifying two images in 

the periphery of the visual field without the chance to visually inspect them.  The 

monkeys performed better both as the number of items in the choice grid decreased, and 

as they moved closer to the fovea.  Chance performance was at 16.7%, and the monkeys 

performed significantly better than chance at 63% correct averaged over all recording 

sessions.  The monkeys’ memory of the first cue and the second cue were both 

significantly above chance (first cue was 75% correct, chance was 33%; second cue was 

70% correct, chance was 33%; given that the first cue was correct, the second cue was 

83% correct, chance was 50%).  The monkeys’ performance on cue order was also 

significantly above chance (given that both items were correct, order was 85% correct, 

chance was 50%).  Only neural data from correct trials was used in all analyses.  On 

average, 469 correct trials were performed each day.  There was no spatial bias in 

responses; each two-saccade path was represented with equal frequency among all 

completed trials. 

 

 - 75 -  



Switching task 

During this task, the above two tasks were performed on the same day.  Blocks of 

100 trials of each type were used, and the monkey alternated between task types.  4 

blocks (occasionally 3) of each type were performed each day.  On two days, blocks of 

250 trials were used, and the monkey performed 2 blocks of each type.  There was no 

explicit cue for switching behavioral response; this was obvious from context.  Each day 

a different task (bar-release or eye-movement) was chosen as the first block of the 

experiment.  In this version, the repeated-item trials were omitted from the bar-release 

part of the task.  This was to ensure that the sample portion of both tasks was exactly the 

same under both conditions, since these trials were necessarily not included in the eye-

movement task. 

Performance was good on both versions of the task.  During the bar-release task 

the monkey performed an average of 264 correct trials each day, at a performance level 

of 95% correct, again performing each of the three trial types significantly above chance 

(test of first cue: 95% correct; test of second cue: 94% correct; test of order: 97% correct; 

chance for all was 50%).  During the eye-movement task the monkey performed an 

average of 265 correct trials each day, at a performance level of 76% correct, 

significantly above the chance level of 16.7%.  Performance on the first cue and the 

second cue was good (first cue was 84% correct, chance was 33%; second cue was 81% 

correct, chance was 33%; given that the first cue was correct, the second cue was 91% 

correct, chance was 50%), and performance on order was good (given that both items 

were correct, order was 92% correct, chance was 50%).  All analyses only used neural 

data from correct trials. 
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Recording technique 

Electrode penetration sites and the location of the recording chambers were 

determined using structural magnetic resonance imaging (MRI) scans obtained prior to 

surgery.  The recording chambers were positioned stereotaxically over the lateral 

prefrontal cortex of each animal, anterior to the arcuate sulcus, such that the principal 

sulcus and lateral prefrontal cortex were readily accessible. 

Monkeys were seated in primate chairs within sound-attenuating enclosures (Crist 

Instruments, Damascus, MD).  Their heads were restrained, and a juice spout was placed 

at their mouths for automated reward delivery.  Recordings were made using arrays of 

eight independently moveable dura-puncturing tungsten microelectrodes (FHC 

Instruments, Bowdoinham, ME).  The electrodes were advanced using custom-made 

screw-driven mini-microdrives (Nichols et al., 1998) mounted on a plastic grid (Crist 

Instruments, Damascus, MD) with 1-mm spacing between adjacent locations.  Neuronal 

activity was amplified, filtered, and stored for off-line sorting into individual neuron 

records (Plexon Systems, Dallas, TX).  We did not prescreen neurons for task-related 

activity such as visual responsiveness or stimulus selectivity.  Rather, we randomly 

selected neurons for study by advancing each electrode until the activity of one or more 

neurons was well isolated, and then began data collection.  This procedure was used to 

ensure an unbiased estimate of prefrontal activity.  In any given session, we were able to 

simultaneously record the activity of up to 12 individual neurons (an average of 5.8 per 

recording session). 
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Analysis of neural data 

Data were analyzed using custom-written routines in MATLAB (Mathworks, 

Natick, MA).  Trials were divided into five epochs for the analysis of neural activity.  

The ‘fixation’ epoch consisted of the 500 ms immediately preceding stimulus onset.  The 

‘first cue’ epoch began 100 ms after the onset of the first cue and had a duration of 400 

ms.  The first 100 ms were excluded to compensate for the minimum latency of visual 

responses in the prefrontal cortex.  The ‘one-item delay’ or ‘first delay’ epoch started 200 

ms after the offset of the first cue and had a duration of 800 ms.  Likewise, the ‘second 

cue’ epoch started 100 ms after the onset of the second cue and had a duration of 400 ms, 

and the ‘two-item delay’ or ‘second delay’ period started 200 ms after the offset of the 

second cue and had a duration of 800 ms.  These epochs were chosen for simplicity.  The 

results reported here were insensitive to the exact time windows used. 

To assess the effect of each of the two cues on neural activity, a two-way 

ANOVA was performed for each cell on the activity during each epoch.  A significant 

effect of the first or second cue means that activity varied significantly with the identity 

of the first or second cue during the analysis epoch.  If the effect of one of the cues on 

neural activity depended on the other cue, this would produce a significant interaction 

between cues.  All ANOVAs were evaluated at p ≤ 0.05.  All neural activity histograms 

were calculated with a resolution of 1 ms, and then smoothed with a boxcar window. 

 Figures depicting neural selectivity were created by performing ANOVAs on a 

sliding 200 ms time window that moved forward every 20 ms.  Simple-effects ANOVAs 

were done for these analyses instead of two-way ANOVAs because of the presence of a 

large amount of interaction between the first and second cues; over 80% of cells showed 
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significant interaction in a standard two-way ANOVA, which had the potential to obscure 

selective activity.  The resultant sums of squares for each ANOVA were used to estimate 

the percentage of variance attributable to either the first or the second cue for each cell 

(Sokal and Rohlf, 1995) as a function of time.  All cells were then averaged together, 

yielding a population estimate of the average percentage of variance explained by each 

cue.  All cells contributed to the variance component figures shown in this paper, 

although repeating the analysis using only image-selective cells did not alter the pattern 

of the results.  The only effect of this modification was to increase the overall percentage 

of variance explained. 
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RESULTS 

 

Visual responsiveness, bar-release task 

A total of 222 lateral prefrontal neurons were recorded from the left hemispheres 

of two monkeys during performance of the bar-release sequence task (121 from monkey 

A, 101 from monkey S).  Most of the neurons showed a significant change in activity 

relative to baseline (fixation) activity during one or more task epochs (206/222 or 92.8%, 

112 from monkey A and 94 from monkey S; two-tailed t tests, evaluated at P < 0.05).  In 

any single epoch, many neurons were responsive (128/222 or 57.7% during the first cue 

period; 150/222 or 67.6% during the one-item delay period; 159/222 or 71.6% during the 

second cue period; and 142/222 or 64.0% during the two-item delay period).   

 

Strength of image selectivity, bar-release task 

An issue that has not yet been addressed is how strongly each of the two items is 

encoded in prefrontal delay activity; the previous study only dealt with relative image 

preferences.  As a rough estimate of how strongly each item is encoded in each of the 

four major epochs (both cue and both delay periods), we can determine the number of 

cells showing significant selectivity for each image using a two-way ANOVA.  This data 

is shown in Table 3.1, and here we see that during both delay periods approximately one 

third to one half of recorded cells show selectivity for the first cue.  Likewise, a similar 

proportion of cells show selectivity for the second cue during the second delay period, 

although the second item is represented somewhat more strongly than the first. 
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This rough estimate does not give a very clear picture of how the strength of 

image selectivity evolves over time.  We therefore looked at much smaller time bins 

across the extent of the trial, and calculated the percentage of the variance of the neural 

activity explained by the first cue or the second cue during each of these bins (see 

METHODS for further explanation).  This allowed us to visualize how strongly the 

population of neurons encoded each image at each moment in time, and made it possible 

for us to compare the relative strengths of the representation of each of the two items in 

prefrontal delay activity.  The result of this analysis (Figure 3.4) shows that the strength 

of the first cue increased shortly after it was seen by the monkey, and then decayed as 

time progressed.  The strength of the second cue did roughly the same thing.  If we 

examine the relative strengths of the two cues during the second delay period, we see that 

the second item, most recently seen, had a stronger representation than the first item, 

which was presented further in the past.  Alternative measures of stimulus selectivity 

(mutual information and ROC analysis, among others, were tried) showed an identical 

pattern of results.  Although it appears from this figure that the percentage of variance 

explained by each object is relatively low (peaking at about 5%), this quantity is an 

average across every cell in the population.  If a selective subset of cells is used for this 

analysis, the shapes of the curves remain the same, but the overall percentage of variance 

explained is greater; up to 67% of the variance of individual cells was accounted for by 

one of the images.  
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Eye-movement task 

After the monkeys had completed training and all recording on the bar-release 

task, we trained the monkeys on a variant of that task (Figure 3.3; see METHODS for 

details).  In this new version, the eye-movement sequence task, we presented the monkey 

with a sample two-item sequence identical in structure to that seen in the bar-release task.  

The monkey was then shown a triangular array of three images, two of which had been 

seen during sample presentation.  He was required to make a saccadic eye movement to 

each of the items that he had seen during sample presentation in the correct temporal 

order.  It should be noted that the memory demands of this task were identical to those 

required by the bar-release task; in both tasks, the monkeys were required to remember 

the identity of both items and the order in which they were presented.  However, in this 

task the behavioral report was destined to be routed through the saccadic system rather 

than through the motor system used to control grasping movements.  We reasoned that 

this might have an impact on how the sequence of items was stored in short-term 

memory. 

 

Visual responsiveness, eye-movement task 

A total of 177 lateral prefrontal neurons were recorded from the left hemispheres 

of two monkeys during performance of the eye-movement sequence task (91 from 

monkey A, 86 from monkey S).  Most of the neurons showed a significant change in 

activity relative to baseline (fixation) activity during one or more task epochs (158/177 or 

89.3%, 83 from monkey A and 75 from monkey S; two-tailed t tests, evaluated at P < 

0.05).  In any single epoch, many neurons were responsive (97/177 or 54.8% during the 
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first cue period; 97/177 or 54.8% during the one-item delay period; 123/177 or 69.5% 

during the second cue period; and 106/177 or 59.9% during the two-item delay period).   

 

Strength of image selectivity, eye-movement task 

We repeated the image strength analysis previously performed on data from the 

bar-release task and found a profound difference in how strongly each item was encoded 

during the two-item memory delay period (Figure 3.5).  During the eye-movement task 

the image seen earlier in the sample period was maintained with a much greater strength 

and did not decay over time, in contrast to the result found in the bar-release task.  In fact, 

at the end of the second delay period the representation of the item seen first was actually 

stronger than the representation of the second, more recently seen item.  This result is 

robust, and does not depend on the method used to calculate strength of stimulus 

selectivity. 

 

Difference in relative strength of image representations 

 We wanted to quantify the relative strengths of the image representations, so we 

looked at the difference in the percentage of variance accounted for by each of the two 

items within each task.  We begin with the bar-release task.  For each cell recorded 

during this task we subtracted the percent variance explained by the second object from 

the percent variance explained by the first object.  This led to a set of difference values 

associated with each point in time, one value per cell.  We can take the average of these 

values to obtain the average difference in coding strength between the first and second 

images at each point in time for the bar-release task; this is the blue curve in Figure 3.6.  
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Analogously, we can compute the same difference curve for the eye-movement task; this 

is the red curve in Figure 3.6.  When these curves are overlaid, we see that there is an 

obvious difference between tasks during the second, two-item delay period.  At each 

point in time a t test (p<0.05) was computed to assess whether the two tasks were 

significantly different.  The two curves were found to be significantly different beginning 

during the second, two-item delay period.  During all other epochs there was no 

difference in relative item strengths between the two tasks.  This result supports our 

hypothesis that differences in behavioral report can affect how information is held in 

working memory. 

 

Switching task 

Having found that the behavioral report can affect relative memory strengths, we 

were interested to see how individual cells were impacted by this change.  In order to do 

this, we trained a monkey to flip between the two tasks using blocks of 100-250 trials 

(see METHODS).  There was no explicit cue indicating the switch; the response was 

obvious by the context.  We blocked the trials so that the monkey could settle into one 

strategy during one type of behavioral report, and then change his strategy when the task 

changed.  We recorded the activity of 137 single PFC neurons while the monkey 

alternated between the two tasks.   

 

Visual responsiveness, switching task 

A total of 132 lateral prefrontal neurons were recorded from the left hemisphere 

of one monkey during performance of the switching task.  Most of the neurons showed a 
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significant change in activity relative to baseline (fixation) activity during one or more 

task epochs (123/132 or 93.2%, two-tailed t tests, evaluated at P < 0.05).  In any single 

epoch, many neurons were responsive (87/132 or 65.9% during the first cue period; 

72/132 or 54.5% during the one-item delay period; 90/132 or 68.2% during the second 

cue period; and 97/132 or 73.5% during the two-item delay period).   

 

Strength of image selectivity, switching task 

We first established that the behavioral report had an impact on relative memory 

strengths when the monkey was performing both tasks in one recording session; in this 

case, the same population of neurons was used for the determination of cue strength in 

each task, bar-release and eye-movement.  We found that the neurons continued to show 

a difference in relative memory strengths (Figure 3.7A, B), lending strength to our prior 

conclusion.  We observed a difference in relative memory strengths that was somewhat 

less than that which we observed in separate recording sessions, which was perhaps due 

to the fact that the monkeys only had 100 trials to adopt a behavioral strategy for each 

task.  However, the difference between tasks was still significant, as seen when we 

compare the differences in relative memory strength between the two tasks (Figure 3.8).   

We found that we could observe individual cells changing how they represented 

the items when the behavioral report was changed.  Figure 3.9A shows the activity of a 

single prefrontal cell during the performance of the bar-release task.  The trials are 

grouped according to the identity of the first cue.  In this panel, we see that during the 

second delay period, when the animal is remembering both items, this cell is not showing 

any selectivity for the first item.  However, during the eye-movement task (Figure 3.9B) 
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the same cell shows a very different profile of activity.  Now, this cell is showing a great 

deal of selectivity for the first item during the second delay period.  This single cell has a 

response pattern that is dependent on the task that the animal is performing, even though 

the stimulus presentation and memory demands are identical.  This cell is one of those in 

the population that contribute to the effect that we observe. 

We also found examples of cells that showed reduced selectivity for the second 

item during the eye-movement task.  An example of such a cell is shown in Figure 3.9C 

and D.  The trials are grouped according to the second cue.  As seen in the first panel, this 

cell shows selectivity for the second item during the second delay period, but only during 

the bar-release task.  During the eye-movement task, this selectivity disappears, as seen in 

the second panel.  This cell also contributes to our population effect. 

 

Task selectivity 

A large fraction of cells in the population showed differential firing rates 

depending on which task was being performed, independent of the issue of image 

selectivity strength.  These cells did not necessarily show image-selective activity, but did 

respond preferentially during the performance of one task.  Four example cells are shown 

in Figure 3.10A-D.  The cells in panels A and C showed a higher firing rate during the 

second delay period for the bar-release task, while the cells in panels B and D showed a 

higher firing rate during this period for the eye-movement task.  These cells are typical of 

those found in the population. 

Across the population, roughly the same number of cells showed a higher firing 

rate for each task (Figure 3.11).  Each point in this figure represents the activity of a 
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single cell during the second delay period.  The firing rate during the bar-release task is 

plotted against the firing rate during the eye-movement task.  The data is plotted 

logarithmically due to the spread of the data and the large number of points at low firing 

rates.  Overall, 54% of cells showed a significantly different response during the second 

delay period depending on the task the monkey was performing.   

Of these task-selective cells, we found that 79% were also image selective.  An 

example of such a cell is shown in Figure 3.12.  Panel A demonstrates that this cell 

responds more strongly during the second delay period when the monkey is performing 

the eye-movement sequence task.  Panel B shows the selectivity that the cell has for the 

first image during the eye movement task.  We see that this cell is not only encoding the 

task that the monkey is performing, it is also encoding the image that the monkey is 

remembering.  Panel C shows that this cell does not exhibit image coding when the 

animal is performing the bar-release sequence task.  This result is very interesting, 

because it demonstrates that the mnemonic buffer and executive control functions of the 

prefrontal cortex are dependent on the same network of cells. 
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DISCUSSION 

 

The results that we have obtained show that the mnemonic representation of 

stimuli in the prefrontal cortex is highly dependent on the way the information will 

eventually be used.  When more than one image is simultaneously remembered, each 

item is represented in the neural activity as a memory trace of a certain strength.  Our 

results indicate that the relative strengths of different memory traces can change 

depending on the context under which the animal is performing the task.  During a task 

that involved a passive bar release upon the presentation of a matching sequence of 

images, the prefrontal cortex represented multiple images as decaying memory traces; 

items that had been seen further back in time were represented less strongly than more 

recently seen items.  However, during a task that required an active eye movement to 

each of the items in the sequence, items in memory did not decay over time.  Instead, the 

first item either was maintained at the same level as the more recent item, or even more 

strongly, depending on whether the two tasks were performed on the same day or in 

separate recording sessions.  Individual cells in the population reflected these differences, 

and the strength with which a single cell encoded the first or the second item was highly 

dependent on which task the animal was performing.  We also found a large population 

of cells that directly represented the specific task that the animal was performing, a result 

consistent with previous reports (Morton, 1968; White and Wise, 1999; Asaad et al., 

2000; Wallis et al., 2001; Wallis and Miller, 2003), and further confirmation that the rules 

guiding behavior are strongly represented in the prefrontal cortex. 
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This result is interesting because it shows that there is no single, canonical way to 

store items in working memory; the storage depends on the context.  This notion runs 

counter to the notion that single cells in the prefrontal cortex possess defined response 

properties that can be relied upon to accurately convey information about what an animal 

is remembering.  The standard model of prefrontal cortex function posits that there is a 

separation between various components, in particular between the central executive and 

the various types of storage buffers, e.g. the visuospatial sketch pad and the phonological 

loop (Baddeley, 1986; Lie et al., 2006; Repovs and Baddeley, 2006).  However, our 

results indicate that this boundary is blurry at best, and probably non-existent.  Not only 

is the maintenance of multiple items in memory deeply affected by the task the animal is 

performing, we have found that 79% of the task-selective neurons are also selective for 

images.  These results can only be interpreted to mean that executive processing and 

mnemonic functions are deeply intertwined in the prefrontal cortex, and any model that 

attempts to explain prefrontal function should recognize this fact. 

Our results also shed light on one of the unsolved problems of neural coding:  

how does the brain represent temporal order?  There have been many theories proposed 

to explain how this might be accomplished, but one of the more popular theories relies on 

using the differing strength of memory traces to represent order (Konorski, 1961; Morton, 

1968; Hinrichs, 1970; Bugmann and Bapi, 2000).  According to this theory, as each 

stimulus enters memory it is represented by a trace that increases until the stimulus 

disappears.  At this point, the strength of the trace begins to decreases, and continues to 

do so as time progresses.  The recency of an item could therefore be determined based on 

the relative strengths of the items in memory.  Short term memory has also been 
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generally found to be primarily sustained by the prefrontal cortex.  If this is the primary 

locus of short term memory, our results cast doubt on this theory of temporal coding.  

The strengths of the memory traces in the prefrontal cortex are evidently quite variable, 

given our data, and their relative order is highly dependent on what the animal will 

eventually do with the stored information.  It seems that the relative strengths of each of 

the memory traces are not enough to determine the temporal order of item presentation.  

It is possible that relative stimulus order is maintained in a different brain structure 

through the use of trace strengths; however, others have reported that, at least in the 

hippocampus, it is unlikely that trace strength supports the memory for stimulus order 

(Fortin et al., 2002). 

 Together, these results indicate that the processing and the maintenance of 

information in the prefrontal cortex cannot be thought of as distinct entities.  Rather, 

processing has a strong impact on maintenance, as demonstrated by its effect on relative 

memory strengths.  Also, the cells that encode the items to be remembered are the very 

same cells that encode task identity.  Context appears to shape many aspects of the 

prefrontal cortex, including the most basic mnemonic functions. 
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FIGURES 

 

Figure 3.1.  Bar-release task.  The monkey was presented with a sample sequence of two 

images.  This sequence consisted of one sample cue, an intervening delay period (the 

one-item delay), a second sample cue, and a second delay period (the two-item delay).  

The sample sequence was followed by the presentation of a test sequence which had the 

same temporal structure as the first.  If this test sequence exactly matched the sample 

sequence, the monkey was rewarded for releasing a lever during the presentation of the 

second matching test cue.  If the test sequence was not an exact match, the monkey was 

required to continue grasping the lever until a match sequence appeared.  A match 

sequence always appeared immediately following a nonmatch test sequence.  See 

METHODS for further information. 

 

Figure 3.2.  A:  Three types of nonmatching sequences were used to ensure that the 

monkey was correctly remembering the entire sequence.  The sample sequence shown in 

the top row was followed by a test sequence that had a nonmatching first cue and a 

matching second cue.  This type of sequence tested the monkeys’ memory of the first 

cue; it would be impossible to respond correctly on this type of trial if only the second 

cue was being held in memory.  Analogously, the sample sequence shown in the middle 

row is followed by a test sequence that has a matching first cue and a nonmatching 

second cue.  This type of sequence was used to test the monkeys’ memory of the second 

cue.  The sample sequence shown in the bottom row was followed by a sequence 

composed of the same cues, but presented in the reverse order.  This type of sequence 
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was used to test the monkeys’ memory for the cue order.  B:  Behavioral performance.  

The monkeys performed well on all three types of test sequence.  The percent correct for 

each type of test sequence is shown; error bars represent the 95% confidence interval 

around the mean.  The accuracy rate was 91% for the first condition (first cue), 85% for 

the second condition (second cue), and 95% for the third condition (order).  Chance 

performance was 50% for each condition.   

 

Figure 3.3.  Eye-movement task.  The monkey was presented with a sample sequence of 

two images identical to that shown in Figure 3.1-1.  This sample sequence was 

immediately followed by the presentation of an array of three images around the fixation 

point, two of which had been shown as part of the sample sequence.  The monkey was 

required to saccade to the two previously seen images in the correct order.  See 

METHODS for further information.  

 

Figure 3.4.  Relative image strengths, bar-release task.  Dark blue curve: percent 

variance explained by the first cue, averaged across the population of neurons.  Light blue 

curve:  percent variance explained by the second cue, averaged across the population of 

neurons.  During this task, the population of neurons encoded the second cue more 

strongly than the first during the pre-test delay period. 

 

Figure 3.5.  Relative image strengths, eye-movement task.   Dark red curve:  percent 

variance explained by the first cue, averaged across the population of neurons.  Light red 

curve:  percent variance explained by the second cue, averaged across the population of 
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neurons.  During this task, the population of neurons encoded the first cue more strongly 

than the second during the pre-test delay period, which is the opposite of the result found 

in the bar-release task. 

 

Figure 3.6.  Difference in relative image strengths, bar-release task vs. eye-movement 

task.  Blue curve:  percent variance explained by the first cue minus percent variance 

explained by the second cue, bar-release task.  Red curve:  percent variance explained by 

the first cue minus percent variance explained by the second cue, eye-movement task.  

Shaded grey areas are statistically significant, p<0.05. 

 

Figure 3.7.  Blocks of bar-release and eye-movement task, interleaved, same neurons.  A:  

Relative image strengths, bar-release task blocks.  Dark blue curve: percent variance 

explained by the first cue, averaged across the population of neurons.  Light blue curve:  

percent variance explained by the second cue, averaged across the population of neurons.  

During this task, the population of neurons encoded the second cue more strongly than 

the first during the pre-test delay period.  B.  Relative image strengths, eye-movement 

task blocks.   Dark red curve:  percent variance explained by the first cue, averaged 

across the population of neurons.  Light red curve:  percent variance explained by the 

second cue, averaged across the population of neurons.  During this task, the population 

of neurons encoded the first cue as strongly as the second during the pre-test delay 

period. 
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Figure 3.8.  Difference in relative image strengths, bar-release task vs. eye-movement 

task, interleaved blocks, same neurons.  Blue curve:  percent variance explained by the 

first cue minus percent variance explained by the second cue, bar-release task.  Red 

curve:  percent variance explained by the first cue minus percent variance explained by 

the second cue, eye-movement task.  Shaded grey areas are statistically significant, 

p≤0.05. 

 

Figure 3.9.  Two single neuron examples.  A,B:  The first panel shows the activity of a 

cell during the bar-release task.  Trials are grouped according to the identity of the first 

cue.  The second panel shows the activity of the same cell during the eye-movement task.  

Trials are again grouped according to the identity of the first cue.  This cell shows 

enhanced first-cue-related activity during the eye-movement task.  C,D:  The first panel 

shows the activity of a different cell during the bar-release task.  Trials are grouped 

according to the identity of the second cue.  The second panel shows the activity of the 

same cell during the eye-movement task.  Trials are again grouped according the identity 

of the second cue.  This cell shows reduced second-cue-related activity during the eye-

movement task. 

 

Figure 3.10.  Four example cells showing task-dependent differences in firing rate.  

Panels A and C show cells that show enhanced firing rate during the second delay period 

during the bar-release task.  Panels B and D show cells that show enhanced firing rate 

during the second delay period during the eye-movement task. 
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Figure 3.11.  Population distribution of cells showing task-dependent differences in 

firing rate.  Each point in this figure represents the activity of one cell during the second 

delay period.  Average firing rate during the bar-release task is plotted against average 

firing rate during the eye-movement task.  Cells that show significantly different firing 

rates between tasks are plotted using + or x.  54% of cells showed a significant difference 

between tasks. 

 

Figure 3.12.  A:  A single cell that responds differentially depending on which task is 

being performed.  B:  The same cell during the eye-movement task, with the trials 

grouped according to which image was presented as the first cue.  This cell shows task-

dependent and image-dependent coding.  C:  The same cell during the bar-movement 

task, with the trials grouped according to which image was presented as the first cue. 
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FIGURE 3.1 
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FIGURE 3.2 
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FIGURE 3.3 
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FIGURE 3.4 
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FIGURE 3.5 
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FIGURE 3.6 
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FIGURE 3.7 
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FIGURE 3.8 
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FIGURE 3.9 
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FIGURE 3.10 

 

 

 - 105 -  



FIGURE 3.11 
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FIGURE 3.12 
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CONCLUSIONS 

 

The representation of multiple items in memory 

Through the course of these studies, we have taken a comprehensive look at the 

representation of multiple items in short term memory.  We began with the basic question 

of how a single brain region, the prefrontal cortex, might represent more than one item at 

a time.  First, we established that single neurons in the prefrontal cortex are capable of 

simultaneously representing multiple items.  When a monkey is holding two items in 

memory, the delay period activity of a single cell is modulated by both of these items.  

Most of these cells also show selective activity when the monkey is only holding a single 

item in memory; the second item, when it is seen and added to memory, modulates the 

cell’s activity to accommodate its representation.  It seems that the brain does not 

represent items in separate ‘boxes’ in memory, analogous to an address in computer 

memory; rather, a distributed network of cells is responsible for maintaining multiple 

items, with individual cells participating in the maintenance of more than one item. 

We have also found that when a cell represents more than one item in memory, 

the addition of a second item to memory profoundly changes the representation of the 

first item.  The representation of the newest item in memory is very similar to the 

representation of an item in isolation, while the representations of older items in memory 

are very different. 

Our results are complimentary to those obtained by groups that have concentrated 

on the representation of whole sequences of items in memory.  There have been several 

reports of cells that represent the memory of sequences of movements, spatial positions, 
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and objects (Shima and Tanji, 2000; Averbeck et al., 2003; Ninokura et al., 2003; 

Averbeck et al., 2006).  These results are very interesting, because they show the result of 

a computation that is probably designed to facilitate storage of temporal epochs in 

working memory.  However, the question remains of how it is possible to create these 

cells from cells that are selective for single images.  We are reporting here for the first 

time the existence of a population of cells that is capable of encoding both individual 

items and multiple items, which may be an intermediary stage in this computation. 

 

Task-dependent representation of multiple items 

The results of our second and third sets of experiments demonstrated that the way 

in which a monkey reported the memory of a sequence of items had a strong impact on 

the way that the items were represented in memory.  If the monkey was using a bar 

release to indicate its memory, each item in memory was represented by a trace that 

decayed in strength as time progressed.  However, if the monkey was using a sequence of 

eye movements to indicate its memory, the strength of each item did not decay with time.  

Instead, the representation of each item was maintained at a roughly equivalent level.  If 

the monkey had sufficient time to settle into a new strategy for the eye movement task, 

the pattern of results even reversed:  there was a stronger representation of the older item.  

When we had a monkey perform both of these tasks on the same day, we were able to 

record the activity of individual neurons that were consistent with the population results.  

We found, for example, individual neurons that did not represent the first item in the bar-

release task, but did represent it in the eye-movement task.  We also found neurons that 

represented the second item in the bar-release task, but that did not represent it in the eye-
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movement task.  Consistent with previous reports (White and Wise, 1999; Asaad et al., 

2000; Wallis et al., 2001; Wallis and Miller, 2003), we also found a large population of 

cells that represented which task the monkey was performing.  We found that a large 

fraction of these task-selective cells were modulated by the images that the monkey was 

holding in memory. 

These results are interesting because they indicate that the various components of 

working memory may not be as separate as they appear to be at first.  Working memory 

assumes the existence of a central executive that is separate from the short term storage 

buffers, the visuospatial sketch pad and the phonological loop.  We have found, however, 

that how an animal is going to use a piece of information can have a profound impact on 

its neural representation.  We also found cells that simultaneously represented task and 

item identity.  We interpret these results to mean that the central executive and the 

storage buffers are not separate, and in fact probably involve the same networks of cells. 

 

Future directions 

There are several ways that these experiments could be extended to shed more 

light on the issues that we have discussed here.  First, it would be interesting to repeat the 

first experiment with a broader sampling of possible objects.  We would obtain more 

insight from the response surface graphs if they were created with more points in order to 

more fully sample the representation space.   

Also, it would be interesting to train animals to remember more than two items, 

although this may not be possible.  There were several interesting effects that were not 

discussed here because we had only two data points: one or two items in memory.  If we 
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had three or more, we could begin to say something interesting about how memory 

capacity is represented at the single neuron level.  As it stands, the trends that we found 

but did not report could be attributed to other causes. 

One future direction that we intend to pursue is to look for interesting multi-item 

memory and/or temporal order signals in other brain areas.  In particular, we would like 

our next target to be the hippocampus.  This area is a particularly interesting one because 

many decades of study have shown that its cells are specialized for encoding 

relationships between stimuli.  This is true for spatial stimuli (the hippocampus as 

cognitive map) as well as for other stimuli that are not as naturally associated, such as 

odors or visual stimuli (Nadel, 1991; Dusek and Eichenbaum, 1997; Wirth et al., 2003).  

The hippocampus is also interesting because of a hypothesis that the signal for temporal 

order might be found there.  John Lisman and colleagues have proposed a model that 

suggests that the theta and gamma rhythms found in the hippocampus might be the key to 

understanding how we remember the relative timing of events (Jensen and Lisman, 

1996).  There are roughly 7 gamma cycles per theta cycle, a number that is spookily 

reminiscent of the idea that we can hold 7±2 items in working memory.  The theory 

contends that one item can be represented in each gamma cycle, for a total of 7 memories 

per theta cycle.  This theory has not yet been directly verified, so finding support for this 

hypothesis in monkey hippocampus would revolutionize our understanding of how the 

brain represents temporal order. 
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Conclusions 

In conclusion, we have found that a single network of cells represents multiple 

items in the primate prefrontal cortex, and it does so in a way that is not easily predictable 

from the response to individual items in isolation.  Exactly how these items are stored is 

highly dependent on context, and we have found single cells that represent both the task 

that the animal is performing as well as the stimuli that it is keeping in mind.  Executive 

control appears to use the same network of cells as mnemonic storage in the prefrontal 

cortex. 

 - 117 -  



REFERENCES 

 
 
Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate 

prefrontal cortex. J Neurophysiol 84:451-459. 

Averbeck BB, Sohn JW, Lee D (2006) Activity in prefrontal cortex during dynamic 
selection of action sequences. Nat Neurosci 9:276-282. 

Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003) Neural activity in 
prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, 
sequence, and metric parameters. Exp Brain Res 150:127-141. 

Dusek JA, Eichenbaum H (1997) The hippocampus and memory for orderly stimulus 
relations. Proc Natl Acad Sci U S A 94:7109-7114. 

Jensen O, Lisman JE (1996) Novel lists of 7 +/- 2 known items can be reliably stored in 
an oscillatory short-term memory network: interaction with long-term memory. 
Learn Mem 3:257-263. 

Nadel L (1991) The hippocampus and space revisited. Hippocampus 1:221-229. 

Ninokura Y, Mushiake H, Tanji J (2003) Representation of the temporal order of visual 
objects in the primate lateral prefrontal cortex. J Neurophysiol 89:2868-2873. 

Shima K, Tanji J (2000) Neuronal activity in the supplementary and presupplementary 
motor areas for temporal organization of multiple movements. J Neurophysiol 
84:2148-2160. 

Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor 
and prefrontal cortex. J Neurophysiol 90:1790-1806. 

Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode 
abstract rules. Nature 411:953-956. 

White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp 
Brain Res 126:315-335. 

 - 118 -  



Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003) Single neurons 
in the monkey hippocampus and learning of new associations. Science 300:1578-
1581. 

 
 

 - 119 -  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


