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ABSTRACT

A conceptual study was done to reduce the mass and improve the reliability of the solar dynamics space

power system; the efforts were focused on the fluid and heat control components. A nercury-toluene binary

Rankine cycle with 25 kWe output at 42% efficiency was used as the base cycle.

A survey of literature on bearings and seals was done for application in containing the working fluids in

turboalternator pumps. A fluid control system using gas lubricated foil journal bearings, spiral groove thrust

bearings, and ferrofluidic seals is suggested. One possible lubricant is nitrogen. A preliminary design of

rotating film radiator suggests that a radiator with a specific mass of 5.5 kg/kWt or 3.52 kg/m 2 is attainable.

Lastly, a receiver with liquid lithium thermal storage system is suggested. The concept circumvents the thermnal

energy storage material containment problem and reduces its associated mass. A preliminary design suggests

that a specific mass of 5.90 kg/kWt for the collector-receiver assembly. The study concentrated on using

existing technologies to assure reliability.

Thesis Supervisor: Dr. Jean F. Louis
Title: Professor of Aeronautics and Astronautics



3

Acknowledgement

I express my sincere gratitude to Professor Louis for giving me the opportunity to work on this projecl.

His insight, advice, and patience throughout the project have been much appreciated. Working with Professor

Louis has been an enlightening experience.

I would like to thank my friends at MIT for their support, especially the members of Korean Graduate

Students Association, Bor Chuyan Lin, and Randy Cotton.

Finally, I express my deepest appreciation and gratitude to my parents for their never-ending sacrifice.

support, and love.

This work was sponsored by Sundstrand Corporation.



4

List of Symbols

Cp = specific heat (J/kg K)

D = hydraulic diameter

dx = width of oil flow sections in the heat exchanger for rotating film radiator

8 = film height, condensate layer height

£ = emissivity

ff = friction factor

Ah= enthalpy difference

h = heat transfer coefficient (W/m2K)

= efficiency

k = thermal conductivity (W/m K)

I = half height of RBMR container (m)

lfin = fin length

m i = mass flow rate of substance i

p =absolute viscosity (kg/m s)

NOT = number of oil flow sections in heat exchanger

Nu = Nusselt Number

Pr = Prnadtl Number
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p = density (kg/n 3 )

r = radius (m)

Re = Reynolds Number

a = Stefan Boltzmann constant, surface tension

= shear stress

T = absolute temperature (K)

v = specific volume m3/kg)

v = kinematic viscosity (m2 /s)

V = velocity (m/s)

o = rotational speed (rpm)

x = quality

Subscripts

i = inside

o = outside

r, 0, z = axes in the polar coordinate system

vap, g = vapor

f= liquid

w = wall
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Chapter I

INTRODUCTION

Currently, NASA envisions an operational permanent manned Space Station by the mid-1990's. The

Space Station would serve as a base camp for further space exploration. scientific research. and space

industrialization. Such ventures will require durable. multi-kilowatt electrical power systems (EPS) which can

adapt to the evolving Space Station needs. The launch schedule and costs constrain the EPS design. Meeting

the 1990 launch deadline and the 10-year-long service life requirement at a reasonable cost requires a

technically mature EPS which is more efficient, lighter, and more compact than current designs.

The three competitive EPS types are photovoltaic, solar dynamic. and nuclear systems. Photovoltaic EPS

contains solar arrays, which convert solar energy into electricity. and electrochemical batteries, which store

electricity for the eclipse of each orbit. The solar dynamic EPS concentrates the solar energy via a mirror and

heats a fluid which, in turn, drives a turbine to generate power. The energy storage is done in a thermal energy

storage (TES) system which utilizes either latent or sensible heal. The nuclear EPS is similar to the solar

dynamic EPS, except that a nuclear reactor acts as the energy source. Since the nuclear reactor can be run

continuously, an energy storage system is not necessary.

The nuclear EPS has a thermal efficiency comparable to that of solar dynamic EPS. It is potentially

preferable to solar dynamic systems for high power levels (1 MW) because light, compact reactors can replace

the bulky collector mirror and TES. However, for the anticipated initial power range of 75-300 kWe. the mass

of shielding necessary for protection of personnel and equipment from radiation makes the nuclear EPS heavier

than the solar dynamic EPS. Furthermore. nuclear EPS poses extra safety issues such as its effect on astronal.us'

extra-vehicular activity (EVA) and the safety of reactors during launch and reentry.

Photovoltaic EPS have successfully powered most of the past space ventures: therefore. it has the highest

technical maturity and poses the least development risk. However. its low efficiency (-10%) requires large solar

arrays and high capacity batteries. The large arrays can interfere with EVA and shuttle docking. Furthemlore.

the low-earth orbit (LEO) of the Space Station will cause excessive atmospheric drag on large surface
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structures. The high drag will require frequent boosting which increases the system maintenance cost. Worse

yet, the high specific masses of arrays and batteries mean a massive system with high launch costs.

Although it lacks the technical maturity of the photovoltaic EPS. the solar dynamic EPS also offers many

advantages. Its high thermal efficiency (20-40 %) decreases the size and mass of the collector mirror and

radiator, the two most massive components of the EPS. Smaller components allow compact configuration

which is easier to control. Also, the TES is lighter than the heavy electrochemical batteries used by

photovoltaic EPS. Furthermore, the solar dynamic EPS can provide both thermal and electrical energy

(cogeneration) at any temperature within the cycle's temperature range. This leads to an even more efficient

energy production as the thermal energy can be directly supplied from the heat rejection legs of the cycle

without going through the losses in the thermal-mechanical-electrical-thermal transformation process.

Three candidate cycles for solar dynamic EPS are Stirling, Brayton, and Rankine Cycles. Due to the

extensive terrestrial experience with the latter two, much of research effort to date has focused on Rankine and

Brayton Cycles. Rankine cycle is a two-phase cycle in which a liquid is pumped, vaporized. expanded, and

condensed. Brayton cycle is a single-phase cycle in which a vapor is compressed. heated, expanded. and

cooled. In both cycles, energy is extracted during the vapor expansion leg.

Relative to the Brayton Cycle, the Rankine Cycle has the following disadvantages. First. the stability of

two-phase flow in zero gravity is uncertain; vapor contact with heat exchanger surface can form hot spots which

can cause premature failure. Second, the risk of pump cavitation exists if the inlet pump pressure is not

properly controlled. Third, low quality vapor expansion can cause turbine erosion.

However, the Rankine Cycle also offers important advantages over the Brayton Cycle. First. constant

temperature heat rejection, instead of over a range of temperatures, results in a lighter radiator. Second.

pumping a liquid takes much less work than compressing a vapor: therefore. more net power can be extracted

per given enthalpy drop. Most importantly, however, the constant temperature heat addition and rejection in the

Rankine Cycle yields a high thermal efficiency which, theoretically. can approach the Carnot efficiency (Figure

1). Heat addition/rejection over a range of temperatures in Brayton Cycle causes large irreversihility and lowers

effiency. Thus for comparable pressure and temperature ratios the Rankine Cycle can attain higher efficiency

which reduces mass.

According to Fox [1], the Rankine Cycle's efficiency can be increased to over 40% by adding a topping

cycle. Current Organic Rankine Cycle (ORC) systems have efficiencies of about 2() % because the maximunm
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temperature is limited to prevent excessive degradation of the working fluid (e.g. toluene). The addition of a

topping cycle raises the thermal efficiency by increasing the heat addition temperature without increasing the

working fluids' degradation rate. The system configuration is shown in Figure 2.

To reduce the overall mass and improve the reliability of the Binary Rankine Cycle, following key issues

were identified; first, the design of a light weight condenser/boiler unit which can connect the topping cycle

with the ORC for varying power outputs: second. containment of working fluids: and third. mass reduction of

the two most massive components in the system, the radiator and the collector-receiver assembly. The first

issue has already been addressed by Cotton [2]. The study found that a light-weight, compact condenser/boiler.

whose mass is insignificant relative to the overall mass, can be built with existing technologies.

This thesis deals with the remaining two issues. Chapter 2 describes the reference cycle and the working

fluids. The next two chapters focus on fluid control issues with emphasis on sealing the working fluids in the

turbo-altemator-pumps (TAP). Chapter 3 discusses the bearing concepts and chapter 4 discusses the seal

concepts. The remaining chapters address the thermal issues by focusing on the the radiator and the collector-

receiver assembly. Chapter 5 contains a description and a preliminary design of a rotating film radiator (RFR)

concept. Chapter 6 compares different receiver/TES concepts and recommends a concept utilizing liquid

lithium TES. Chapter 7 contains conclusions and appendices contain analyses for different components.
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Chapter 2

Binary Cycle

The reference binary cycle assumed in this thesis is equivalent to the one initially set by Fox [II and

modified by Cotton [2]. The objective of their cycle analyses was to improve the cycle efficiency utilizing only

the well-proven components and working fluids.

Toluene (C7H8 ) and mercury were chosen as working fluids for the following reasons. Toluene has

outstanding thermodynamic properties. The positive slope of liquidus on T-s diagram (Figure 3) means that any

vapor expansion would occur under dry conditions, removing the risk of erosion. Its low critical pressure

allows supercritical vaporization, eliminating problems associated with two-phase flow in zero-gravity. Its high

heat of vaporization means large heat transfer capacity for a given temperature range. Furthermore. it has

sufficiently high viscosity to be a lubricant [1].

Mercury has relatively low heat of vaporization which increases the required mass flow rate.

Furthermore, its high vapor pressure and steep liquidus means that supercritical vaporization is not viable and

that superheat is necessary to avoid erosion problems during the vapor expansion leg (Figure 4). Nevertheless.

its high density results in mercury having the highest heat transfer rate per volume flow rate [ I.

Best of all, both fluids have been well tested and extensively used. Mercury has been used as a working

fluid in many terrestrial applications and tested for many hours in space-like environment during the SNAP-8

tests. Sundstrand has been testing Organic Rankine Cycle (ORC) using toluene for many years [3].

Fox set the following conditions on the reference cycle.

Maximum mercury temperature 1033 K
Minimum mercury temperature 654 K
Maximum toluene temperature 644 K
Minimum toluene temperature 350 K

Mercury turbine efficiency 0.75

Cotton set the cycle and determined power and heat transfer rates for each cycle by assuming certain punmp ant

turbine efficiencies and pressure drop in each cycle. Figure 5 shows the mercury cycle superimposed over the

toluene cycle with a summary of cycle points. The net power and heat transferred from each cycle per unit

mass flow rate of the cycle's working fluid are as follows
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Pnet/mHg 78.51 kWe/(kg/s)
Qout/mHg 251.13 kWt/(kg/s)
Pnet/m,,o 144.99 kWe/(kg/s)
Qin/m,,o 554.00 kWt/(kgls)

Matching the Qout with Qin and assuming combined altemator/power distribution efficiency of 81 1%, the shaft

output required to produce 25 kWe is 30.08 kWt. The reference cycle values are shown in the first section of

Table 5.

Using the assumptions made by Fox [1]. the binary Rankine cycle solar dynamic EPS mass-breakdown is

as follows.

Collector Mirror 477 kg
Receiver 161 kg
Radiator 250 kg

Turbomachinery 34 kg
Condenser/Heater 8 kg

Regenerator 8 kg
Alternator and PMAD 15 kg

In the above mass-breakdown, the assumed receiver specific mass is 2.3 kg/kWt and the radiator specific

mass is 5 kg/m 2 which are lower than the industrial figures of 10 kg/kWt and 10 kg/m2, respectively. Even with

these assumptions, the collector-receiver assembly and radiator masses account for 888 kg out of the total 953

kg. Since reductions in the masses of these components can favorably increase the specific power of this

system, chapters 5 and 6 focus on reliable methods to reduce the masses of the radiator and the collector-

receiver assembly. To improve the reliability of the EPS, attention was focused on the rotating machinery since

they are inherently less reliable than components without moving parts. Furthermore, bearings and seals for the

rotating machinery were identified as the critical components in not only preventing rotating machinery failure

but also containing the working fluids and the next two chapters discuss the issues associated with the two

components.
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Chapter 3

Bearings for Turlbo-Alternator-Pum p

Prevention of contamination and containment of working fluids in the binary cycle depend strongly on

the performance of the system's bearings and seals. Of the two, the bearings determine the type of seals

needed. Therefore, a judicious choice of bearings could simplify the bearing/seal design. improve its efficiency.

and reduce its mass. This chapter reviews past bearing designs and discusses a conceptual fluid control system

using gas bearings and ferrofluidic seals.

The space environment is affected by the following particularities not encountered on earth: first. very

low ambient pressure: second, radiation; third, presence of atomic or ionized oxygen and nitrogen: fourth.

zero-gravity condition [4]. The vacuum causes accelerated evaporation of conventional lubricants such as oil

and semi-solid grease; however, for a hermetically sealed system, the space vacuum should not affect the

performance of the bearing system. The level of radiation, while considerable, is insufficient to damage either

the bearing or the lubricant. The lack of molecular oxygen would retard the formation of oxide film on metal

surfaces; the effects of such reduced protective oxide film formation on the friction and wear of the bearings is

not clear. If necessary, however, such an oxide layer could be formed by operating the system on the ground

prior to space operations. The zero-gravity conditions would lead to light load conditions which cause

instability problems in radial bearings such as the half frequency swirl.

The binary cycle's turbo-alternator-pumps (TAP) are high speed. high temperature devices witfh a

requirement of 10-year-long service life. The main loads on the bearings will be from the rotor

imbalance/dynamics and the alternator's magnetic asymmetry. Uinder these conditions, efficiency, durahility

and reliability are of prime importance in the bearings.
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3.1. Comparison of Bearing Types

The bearings are categorized into rolling element bearings and fluid film bearings. The rolling element

bearings' capacity results from the direct contact of ball/rollers with both the journal and the bearing. The fluid

film bearing use either gas or liquid for both lubrication and load capacity generation. The load capapcity is

generated internally and/or externally (Figure 6)151.

For application in TAP, the fluid film bearings offer more advantages than the rolling element bearings.

The latter kind contains many attractive features such as reduced starting friction: less bearing power loss:

higher tolerance of load, temperature, and speed fluctuations: stability at light load conditions: and ability to

support both radial and axial loads. However, they are limited to moderate temperature and pressure ranges and

need oil lubrication. Furthermore, the bearing materials have to meet the strict hardness requirement to

withstand the contact loads, constraining the material selection. The direct contact results in a relatively high

coefficient of friction at high speeds and can cause the bearing to fail without warning. Furthermore. the cyclic

load; limit the reliability and the service life of the bearings 6].

Unlike the rolling element bearings, fluid film bearings can only support either radial or axial loads:

therefore, a journal bearing and a thrust bearing are needed. Under light loads. the fluid film bearings are prone

to experience fractional frequency instabilities. The most frequent one is the half frequency swirl in which the

journal rotates about the bearings center at half the angular velocity at which the journal rotates about its own

center. Also, in the case of liquid film bearings, the power losses are higher than in rolling element bearings.

However, these weaknesses are more than offset by the lack of problems associated with direct contact. The

fluid film bearings do not have the wear, friction problems and they do not have hardness constraint on material

selection. Lastly, their performance at high speed and temperature is more efficient and reliable than the rolling

element bearings [7].

Fluid film bearings are divided into six groups (Figure 6). They can be lubricated by either gas or liquid.

Each group can then be subdivided into three subgroups. Hydrodynamic ones generate their own pressure: the

hydrostatic ones are externally pressurized: and the hybrid ones are combinations of the former two (Figure 7).

The hybrid bearings of both gas and liquid have been successfully tested in Brayton Rotating UInits (BRIT).

potassium turboaltemators, and Brayton Isotope Power Systems (BIPS) [8.9.1(0].

In the above examples, the tilting pad design was experimentally determined to be the most stable journal

bearing. The tilting pad design was also more tolerant of thermal distortion, misalignments. and contaminant
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particles than other bearings. However. its weaknesses are pivot wear. severe manufacturing and mounting

tolerances; and the complexity of design.

Foil bearing development has sufficiently matured to substitute tilting pad bearing designs in the TAP.

The two types of foil bearings, the cantilevered and the tensioned (Figure 8). are stable and have load capacity

comparable to other types of bearings: a I-in diameter shaft has been run upto 240.000 rpm without instability

[11]. The bearings are also more tolerant than the tilting pad designs of dirt/moisture ingestion: they have beett

known to ingest particles larger than the clearance without failure and also run on liquid-vapor mixture without

any problems. Furthermore, the compliance allows higher tolerance of thermal growth as well. and the much

less severe manufacturing/mounting tolerance make them easier and cheaper to produce. The most significant

advantage is the foil design's compactness and simplicity relative to the tilting pad design. Lastly. the foil

bearing technology is a proven one. They have been successfully test-run on BRU's [12]. and have perforned

satisfactorily in various turbomachines under severe conditions. They performed under upto 22.6 g's and 81 I K

and showed mean time between failures of 55.00 to 95.000 hours [13].

For thrust loads, a bi-directional, spiral-groove, inward-pumping disk bearing is recommended (Figure 9).

Foil thrust bearings is still in development stage. The tilting pad thrust bearing. like its journal counterpart. is

complex, needing a load-equalizer and self-aligner for the pads: also it is sensitive to pressure fluctuations. On

the other hand, the disk spiral-groove bearing is simple, and much design informations if readily available. The

spiral groove was chosen because the grooves offer higher load capacity than steps. pockets or sectors in diks.

and the inward-pumping was chosen over outward-pumping or the herringbone for the same reason 141.

3.2. Lubrication

As for lubrication, liquid lubrication offers high damping capability with better stability and a higher

load/size coefficient than that of gas lubrication. However. they are limited to moderate temperature range by

the lubricant's viscosity (liquid T. P gas d-). Gas lubrication, on the other hand. offers more efficient. and

reliable performance at high temperature and speed: there is less bearing power loss and the temperature range

is constrained by the material and not by the viscosity of the lubricant. Also, the cavitation problem is

eliminated by using gas. However, one weakness is the low damping capability with consequent stability

problems. Yet the air foil bearings' and He/Xe foil bearings' performances in airplanes and BRU's.

respectively, show that such stability problems can be overcome [12. 13].

The three candidates for lubrication gases are toluene, mercury, and an inert gas such as nitrogen. Table
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I shows the physical properites of the three gases along with those of air. Toluene and mercury have sufficently

high viscosity to be used as lubricants. However, the use of either in bearings would require a new technology

development, and in the mean time, nitrogen, whose properties are similar to those of air. can be used for

lubrication. Furthermore. until the seals prove themselves. nitrogen is also recommended as a purge gas for

alternator rotor because of its relatively low density. Toluene. despite its high specific heat which would

facilitate heat removal, is not recommended because of its high vapor density which would increase the

windage losses.

3.3. Fluid Control System

The schematic of the proposed fluid control system is shown in Figure 10. Liquid toluene is used to cool

the alternator stators, taking advantage of its high specific heat of 2.05 kJ/kg K at 400 K. Nitrogen. circulated

through a separate loop, is used to purge the alternator rotor and lubricate the bearings. The system is an

adaptation of the new Sundstrand RFMD concept [15].

Non-condensing nitrogen will be pumped through pipe 3 to cool the alternator rotors and lubricate the

bearings. The liquid toluene will be pumped by a pitot tube (pipe 1) in the cold end of the RFMD to the

alternator stator and the mercury seals to be used as the coolant. The nitrogen and mercury vapors will be kept

separate by the ferrofluidic seals. Pipe 2 will return the liquid toluene to the RFMD and pipe 4 will return the

nitrogen to the nitrogen pump. Visco-ferrofluidic mercury seals can be used on the mercury power shaft. These

have shown zero leakage, performance for sealing moderate-pressure gases [16]. Thus. intermixing or

contamination of the vapors can be prevented.

As a redundant safety mechanism, an optional mercury trap is suggested: it is shown with dotted lines in

Figure 10. Should any mercury/nitrogen vapor intermixing occur, the return flow in pipe 4 can be put through a

cold mercury trap. This mercury trap could be a rotating mercury condenser cooled by liquid toluene or its own

radiator. As the mercury condenses, the liquid mercury will centrifuge out and collect in pipe 5. later to be

joined with other mercury in the cold end of mercury RFNI). The remaining nitrogen in the mercury trap will

be returned to the nitrogen loop.

The system's advantages are many. First, the use of gas bearings simplifies the seal design by reducing

the number of seals needed. This will be made more clear in the seal section. Such a reduction decreases the

total power loss due to the seals. Second, the system solves the problems of contamination, separation and

cavitation of working fluids. Furthermore. once the seals perform with zero leakage. the mercury trap and the
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purge gas will no longer be necessary. Again. the reduction in auxilary equipment decreases the power loss and

the system mass; simplifies the design; and increases the efficiency.

Use of toluene bearings will result in even more advantages. The toluene bearing system ithout the

mercury trap is shown in Figure 11. Figure I I is similar to Figure 10. except that, instead of nitrogen. some of

toluene turbine exhaust is bled off through pipe 3 to the bearings and uitmately returned to the regenerator vin

pipe 4. Therefore, the nitrogen loop can be discarded altogether. Furthermore. lubrication with a working fluid

assures a ready supply of the lubricant at all times. Lastly. toluene vapor's relatively high viscosity (Tablel 

shows that the toluene bearings could be more stable than either nitrogen or air bearings.

3.4. Conclusion

It should be pointed out that this conceptual design still needs studies, especially in the following areas.

Experimental testing of foil bearing's response to the alternator magnetic imbalalnce is needed, even though the

magnetic imbalance dod not affect the tilting pad bearing performance significantly [17]. Also, the gas foil

bearings need more analysis to ensure satisfactory stability performance.
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Chapter 4

Seals

Prevention of mercury loss, particularly the diffusion of mercury in the TAP is crucial to trouble-free

operation of the mercury topping cycle. The system conditions require low leakage dynamic seals operating at

high shaft speeds and temperature. For seal's working conditions, SNAP-8's conditions were assumed. Seals

need to have a service life of 10,000 hours minimum at leakage rates of less than I lb/yr. Mercury vapor's

temperature and pressure at the turbine outlet were 70()0 F and 20 psia, respectively. The 2-in-diamleter shaft

rotated at 12,000 rpm, achieving a peripheral speed of 1256 in/s [].

4.1. Comparison of Seal Types

Seals are divided into static and dynamic groups (Figure 12): the primary sealing surfaces in the former

have little relative motion (e.g. gasket) while those of the latter have substantial relative sliding motion. The

dynamic seals can be further divided into reciprocating seals for pistons and rotating seals for rotating shafts.

The TAP seals belong to this latest category. This category is further divided into interfacial and interstitial

seals. The interfacial seals include rubbing contact seals and controlled clearance seals: soft shaft packings. lip

seals, circumferential shaft seals, and face seals belong to this group. The interstitial seals include fixed positive

clearance seals such as labyrinth seals, bushing seals, viscoseals. and ferrofluidic seals [18].

Though appropriate for sealing high pressures, the interfacial seals. when compared to interstitial seal.

have the disadvantages of lack of dependable analysis, strict geometric and surface requirements. the need for

lubrication. limited seal life, and complexity of design. Since the rubbing contact of sealing faces occur at the

microscopic level, it has been virtually impossible to accurately analyze such behavior. This problem of

unpredictability is worsened by imperfect sealing surface conditions. eccentricities. and vibrations of the salf.

all of which may cause excessive rubbing. To reduce such undesirable effects. the interfacial seals require strict

control over shaft's eccentricity, and surface conditions such as hardness and smoothness. Good lubricaltion is

necessary to l)remove heat generated from rubbing and 2)for the film to tighten the seal. However. even Kwith

good lubrication, friction and wear (adhesion, abrasion. corrosion. surface fatigue) destroy the surface
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topography of the rubbing interface areas. Thus, the seal's performance and life expectancy are limited.

Another risk of wear is contamination of the working fluid by fine wear debris. The high rotational speeds in

the 'TAP worsens the above phenomenon. As more heat is generated, the temperature is increased with the

consequent reduction in the lubricant's viscosity: the result is thinner film and more friction and wear. Lastly.

the seal systems, consisting of multiple seal faces and rings are complex relative to interstitial seals and the

increased complexity has negative effects on reliability. and maintainability.

Thus, for sealing at low to medium pressures, as in TAP conditions, interstitial seals are appropriate

because of their simplicity, durability, reliability, and lack of maintenance requirement. Interstitial seals act by

creating pressure drop in the liquid to be sealed in its clearance without affecting the rotation motion of the

shaft. The pressure drop is achieved through throttling processes or by exerting external forces. Lack of

rubbing significantly reduces the problems of friction and wear and extends the seal life indefinitely.

A labyrinth seal contains a series of chambers which incur irreversible acceleration/deceleration in the

sealant fluid and causes its entropy rise, resulting in pressure drop. A bushing seal throttles by causing

frictional losses along a small annular gap of constant cross-section. Various versions of both seals exist but

they share one disadvantage of relatively high leakage rate per unit length: finite leakage is a requirement for

effective throttling.

A viscoseal uses grooves on either housing and/or shaft to pump the sealant liquid, with zero net flow, by

creating shear stresses in the sealant fluid to pump it back toward the high pressure region (Figure 13).

Effective sealing is a function of groove parameters, viscosity of the sealant fluid, clearance, shaft speed. and

eccentricity. Since shear stresses are viscosity-dependent, removal of heat is crucial to effective sealing and

requires most of viscoseal's maintenance. Its main advantage. however. is that its pumping ability gives it

potentital for very low leakage rates (comparable to contact seals) while avoiding rubbing contact.

Furthermore, it can easily be used in tandem with other types of seals.

Ferrofluidic seal was first developed in the 1960's by NASA for zero-gravity operation and. since then.

has gained ever-increasing industrial acceptance. It is the only interstitital seal which promises zero leakage.

The clearance is hermetically sealed with film of a ferrofluid held stationary by ring magnets (Figure 14). A

ferrofluid is a collodial suspension of submicron size magnetic particles in various carrier fluids. It behaves like

any homogeneous carrier fluid except in magnetic fields (Figure 15). The ferrofluid seals' advantages are no

shaft surface requirement; no limits on rotational speeds: no need for ultra-small clearances: more tolerance of

shaft eccentricities and runout than other seals; no measurable friction or wear: indefinite life expectancy: no
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limits on shaft size; and suitability for sealing gases against vacuum conditions. The disadvantages are the

temperature limitation (< 373 K); the need for immiscibility between the ferrofluid and dithe working fluid: and

inability to seal liquids.

There are various kinds of ferrofluids. Mercury itself has been successfully made into a ferrofluid by

adding metallic sodium to mercury containing tin-coated iron particles. However. if ferrofluidic seals were to

be used, it would be more sensible to use a ferrofluid inert with mercury such as fluorocarbon since the binary

cycle uses mercury in both vapor and liquid phases at temperatures above 373 K I 19].

4.2. SNAP-8 Seal-to-Space Design

SNAP-8 was a 35-kWe nuclear, turboelectric EPS which contained four independent loops. Sodium

poptassium was heated by a nuclear reactor in the first loop, and via heat exchanger. heated mercury in the

second loop. Expansion of mercury vapor drove the TAP: after the expansion, mercury was condensed and

pumped back to the boiler. A second loop of sodium potassium transferred waste heat from the mercury loop to

the radiator. Finally, a fourth loop contained polyphenyl ether. used for bearing lubrication and cooling of the

alternator, electric motors, and controls. The decision to use oil lubrication was a conscious effort by NASA for

ruggedness, reliability, and long life. Thus, the need arose not only to contain the fluids. but also to keep them

from intermixing.

The SNAP-8 turbine was actually overhung at one end of the shaft. The turbine bearings were located

between the turbine and the alternator while the alternator bearings were placed inside the alternator. The thnist

load was balanced by a piston, driven by mercury from the turbine outlet, located at the turbine end of the shaft.

The space seal was place between the bearing closest to the turbine and the turbine itself [201.

The space seal system consisted of a cooler.a visco-pump, a slinger. and molecular pump on the mercury

side; and a slinger with a molecular pump on the alternator side (Figure 16). Each end also had a mechanical

carbon face seal, for start-up and shut-down conditions. which were lifted off at steady-state operation. The

cooler condensed mercury vapor at turbine's exit and visco-pump created an axial pressure gradient wvhich

pushed the condensate toward the slinger and prevented it from centrifuging back into the turbine wheel

housing (Figure 13). Slinger pump. consisting of a step in the shaft. created a liquid-vapor (L-V) interface hy

centrifuging the condensate away from the shaft center. thus effectively sealing mercury. The vapor which

evaporated from the L-V interface was pumped back to the L-V interface by the molecular pump. Same

principles sealed polyphenyl ether on the alternator side. The little leakage from both ends were vented out to
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space. The face seals were needed because the above three seals were effective only at steady-state rotation. or

high rpm.

The slinger's "sputtering" problem, in which liquid droplets migrate toward the shaft center at high rpm

due to the momentum force being greater than the surface tension force, was overcome by making the

molecular pump's radial clearance smaller than the droplets' average diameter - 0.005 in compared to 0.01

-0.025 in. Furthermore, the tendency of mercury film on the static wall to persist the L-V interface was

overcome by coating the surface with Teflon to improve unwettability.

A prototype was ground-tested for 10,828 hours including 37 starts and was judged to be in good

condition, capable of further operation. During the testing, the L-V interface was maintained at under 250 F

and the leakage remained under 1 lb/yr rate. The viscoseal breakdown which results in gross leakage was not

encountered during the operating conditions [21].

Upon post-test inspection, following conditions were observed. The viscoseal suffered minor cavitation

damage; however, neither the structural integrity nor the sealing capability was affected. Other minor cavitation

damage were visible at slinger/molecular pump juncture. a sign of weaker than design pumping ability of

visco-slinger pump, and on the molecular pump itself due to temporary higher than normal turbine exit pressure.

As for the alternator seals, inboard seal at the drive end and outboard seals at the anti-drive end showed

brown/black deposits (Teflon). The bearings were in good condition, consistent with 10().828 hours of wear.

The face seal on the turbine was severely worn, a result of leaked mercury liquid causing high axial load and

wear on the face.

4.3. New Sealing Options

The next four designs show potential for application to binary cycle with their simplicity in design and

low leakage rates. The first is an electromagnetic seal: the second is a ferrofluidic seal: the third is a viscoseal:

and the fourth is a combination of the latter two.

The first design is an electromagnetically spun mercury seal patented by McHugh [22]. It is a

combination slinger with an electromagnetic seal for low rpm sealing. A pair of magnets create an axial

magnetic field while electric current is applied radially through mercury in an annulus. By Ampere's and

Fleming's rules, a tangential force acts on mercury in the annulus causing it to spin around the shaft and form

an effective seal. Unfortunately, no experimental data is available on the seal's performance. One disadvantage

of this system is that its need for current and use of a slinger. which has higher power consumption than

viscoseals. and its need for electric current increases power loss while decreasing the power output.
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The second design was initially developed at Hitachi [23]. This is a combination of a slinger with a

ferrofluidic seal. It has an advantage over other ferrofluidic seals in its tolerance for large radial vibration

amplitudes which is desirable for off-design conditions. At high rpm, centrifugal forces keep the ferrofluid

stationary, comparable to L-V interface in a slinger, while at low rpm or static conditions. the magnetic field

dominates the sealing function. Despite its advantage of zero leakage. the ferrofluidic seal alone cannot yet be

used to seal mercury for the following reasons. First, current ferrofluids evaporate rapidly and chemically

breakdown at temperatures above 373 K. Second, the ferrofluidic seals can only seal gases at present because

the ferrofluid/liquid interface becomes unstable at high shaft speeds.

The third design, shown in Figure 17, offers static sealing capability by allowing some axial movement of

the viscoseal ring, eliminating an auxilary system of static seals. The step in the shaft acts as a slinger,

centrifuging sealant liquid at high rpm. As rpm decreases, pressure in cavity C of the slinger decreases while

vapor pressure at A remains constant. Thus, the viscoseal ring moves axially until faces D and F form a static

gasket-like seal. An elastomeric ring, shown as dark circles. facilitates the axial movement of the viscoseal ring

relative to the shaft. Reports indicate successful shutoff-no gas leakage-at 300 psia vapor pressure and room

temperature [18].

The fourth design has not been experimentally tested but shows the most potential for zero leakage

sealing without high power loss (Figure 18). Toluene can be used to condense and cool mercury vapor at the

turbine-end; a viscoseal would form mercury liquid-vapor interface. As in SNAP-8, the herringbone grooves on

the shaft prevent axial movement of the interface. Furthermore, with sufficient toluene massflow. the

temperature of mercury liquid-vapor interface can be maintained at below 373 K. Same devices can be used on

the bearing side. The low pressure vapor which escape from either end can be sealed and kept separate by a

ferrofluidic seal. As the shaft is unlikely to experience any large amplitude radial vibrations, a regular

ferrofluidic seal without a slinger should be sufficient. Injection/eduction of nitrogen at pressure above that of

mercury at the turbine outlet can be added between the ferrofluidic and viscoseals as a redundant safety

mechanism. Thus, the ferrofluidic seal acts as a nitrogen gas seal and mercury and lubricant vapors are

prevented from direct contact with the ferrofluidic seal at all times. including startup and shuldown phases.

Figure 19 shows the bearing/seal configuration for TAP.
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4.4. Conclusion

The fourth design is recommended. The system is simple in design which improves its reliability and

serviceability. Also, it has static sealing capability. Above all. it seals with zero leakage.
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Chapter 5

Radiator

The radiator/condenser removes heat from toluene and rejects it to space. The low rejection temperature

of the binary cycle makes it one of the two most massive components in the EPS. Therefore. the radiator mass

reduction will have a significant effect on the mass of the whole EPS. This chapter contains a review of

previous work and presents a preliminary design of a rotating film radiator concept (RFR) and rotating bubble

membrane radiator (RBMR).

5.1. Concepts

The promising space radiator concepts which have been proposed are liquid droplet radiator (LDR). Curie

point radiator (CPR), moving belt radiator (MBR). heat pump radiator (HPR). rotating bubble membrane raditor

(RBMR), and rotating film radiator (RFR). The first five concepts have been evaluated by Begg [241. The last

one was mentioned by Feig [25], but no follow-up work was done. High reliability, low developmental risk.

meteorite damage resistance, and light weight are the main desirable characteristics.

In RFR, heat is rejected from toluene to the low vapor-pressure radiator fluid (e.g. silicone oil) in a

condenser heat exchanger. The fluid will be pumped to a nozzle on a disk which is rotated by a rotating

platform. Rotating vapor seals such as the ones duscussed in Chapter 4 will be used to contain the fluid in the

rotating platform. Upon ejection from a nozzle at the center on one side of the disk. some of the radiator fluid

will be bled off onto the opposite side via slanted holes. The fluid then spreads into thin films. one on each

side. As the centrifugal force accelerates the film radially outward, the film radiates heat directly to space. The

disk's rotational speed controls the film thickness and velocity. Return piping at the disk edge returns th.'

radiator fluid (Figure 20).

The HPR is the most developed of the six concepts. The heat pipe. with no moving parts. is a proven

technology: therefore, it offers high reliability and little developmental risk. Although they lack the technical

maturity of HPR, both RBMR and RFR do not require new technical development. Both rotating machinery

and shaft vapor seals-to-space, the two key technical issues, have accumulated thousands of successful test
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hours on earth. On the other hand, the LDR. CPR, and MBR require non-existent technologies. LDR requires a

droplet generator/collector combination with a high degree of aiming accuracy. CPR requires a collector with a

magnetic field generator and an effective heat exchanger to transfer heat to the solid particles from the working

fluid. MBR requires seals which would wipe off the working fluid without leakage or damage to the belt as the

belt exits the heat exchanger. All three components pose technical challenges. and. if built, would require much

testing to prove their reliability.

In meteorite resistance, the LDR and CPR are better than RFR and HPR which. in turn, are better than

MBR and RMR. Meteorites flying through the droplet sheet of LDR would cause only temporary flow

disturbance along with some fluid loss: however. the overall performace would remain the same. CPR will

have higher solid particle loss since the solid particles are more prone to be deflected upon collision with

meteorites: however, the particles can be replenished to restore design performance. Punctures in either one of

many (compartmentalized) HPR pipes or the rotating disk of RFR will cause performance degradation since the

affected part can no longer aid in heat rejection. However, the isolation of damage minimizes the risk of a

catastrophic failure. Conversely, punctures in the RBMR container or the MBR belt would cause rapid working

fluid loss and a catastrophic failure.

In mass, HPR is the heaviest of all: its specific reported specific weights are greater than 10kg/kWt [26].

Relatively, the HPR and CPR show potential for an order of magnitude mass reduction while RBMR, RFR and

MBR show potential for mass reductions greater than 50%.

After overall comparison, RBMR and RFR were chosen for preliminary design and comparison. Two

assumptions common to both designs were as follows. First. aluminum was assumed to he the material for both

components. Aluminum is attractive because it offers low cost: high strength: good corrosion resistance good

resistance against oil and many chemicals: low mass: high emissivity (0.8 for anodized aluminum): and high

thermal conductivity (237 W/m K) [27]. Second. the temperature of space environment was assumed to be 250

K.

5.2. Rotating Membrane Radiator Design

A cylindrical container with low height rotating about the center axis of each circular side was assunled(

(Figure 21). For greater than 99% reliability against meteorite puncture. the container thickness of 0.001 m ( I

mm) was also assumed [28]. The superheated toluene vapor is sprayed into the container from the center and is

cooled in the central region of the disk before being condensed in the peripheral region as shown in Figure 2 1.
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In the cooling section following equations were used to find heat transfer coefficient h. At radius r. given

half-height of the disk 1 and angular velocity o,

D = 2nr'l/(tr+) (4.2.1)

G = mtoluene/(4 rrl) (4.2.2 

Re=GD/p (4.2. 3

Nu=7.54 forRe < 10000 (4.2.4)

Nu =0.332Pr 1 1/3R for Re > 10000 (4.2.5)

For the condensing section, a film condensation with zero shear at the vapor liquid interface was

assumed. The implicit assumption in the use of this model is wetting of aluminum surface by toluene. Sparrow

and Gregg [29,30] showed that the interfacial shear has little effect on analytical heat transfer prediction.

Furthermore, either the existence of interfacial shear or the lack of wetting (drop-wise condensation) will

promote heat transfer. Therefore, film condensation model provides a conservative estimate on the RBMR

mass. For design purposes, the condensation model choice is not critical because simple calculations show that

q"o, heat flux on the radiating side, can not exceed £(T 4 sa, - T4 space), or 503 W/m 2. This means that the

radiating side will determine the RBMR size.

Sparrow and Gregg developed correlations for h and condensate film height 8 for film condensation on a

rotating disk [29]. However, the correlations assumed a constant Tw ., an unknown in RBMR. Therefore.

analysis shown in Appendix A was done, instead. In the analysis. vertical velocity Vz. shear stress at interface

Tg, and vapor density pg of toluene were ignored. For each container wall segment. either a incremental

temperature or quality drop was assumed. Integrating the rz equation for Vr and condensate film height 8 led

to the heat transfer coefficient h = k/8 on the inner surface of the container wall segment. Assuming that the

inner and outer surface temperatures are the same ( a reasonable assumption due to high thermal conductivity

and thinness of the aluminum container wall). the heat balance equation was solved for the segment's wall

temperature, T,, via Newton-Raphson method. With the q" known. the amount of heat rejected by the segment.

dQ, was calculated which then led to calculation of required area. dA. which. in turn. gave the outer ra(dius

required. The calculations were stopped when the quality, x. reached 0.

As Figure 22 shows. the RBMR's mass reaches its limiting value at relatively low rotational speed of I 00(
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rpm because the condensate layer thickness reaches its limiting value at that rotational speed. The low angular

velocity is favorable because it means low power expenditure. Figures 23 and 24 show condensate layer

thickness, and T,, as functions of r. It is clear that very thin film of about 20 micrometers can achieved at low

rpm due to the low toluene mass flow rate. Furthermore, it is interesting to note that the wall temperature and

film height remain constant. This trend is in agreement with Sparrow and Gregg's model which suggests a

constant condensate layer for an assumed constant T w. The RBNR's specific masses are 5.4 kg/kWt or 5.72

kg/m 2.

5.3. Rotating Film Radiator Design

A silicone oil such as diffusion pump oil (e.g.Dow Corning 705) was chosen as the radiator fluid for its

high emissivity (0.8) and low vapor pressure (10 Itorr) 131]. High emissivily reduces the required surface area

and low vapor pressure minimizes evaporative fluid loss. Assuming a 50 m 2 radiating area and using a

Langmuir equation for evaporation into vacuum [4],

mlossP-ap 2tT A

where MW = molecular weight
PVa = vapor pressure
k= Boltzmann's constant
T = absolute temperature of space

A = area

The cumulative evaporation loss over a ten-year period turns out to be less than 0.3 kg. This is actually

an over-estimate because the model assumes zero concentration of oil vapor in space near the radiating surface.

Thus, evaporative loss is not an issue in RFR if silicone oil is used.

In the RFR, thickness of 0.0005 m (0.5 mm) was assumed for both the disk and the heat exchanger.

Although large, the disk only needs to be thick enough to withstand the centrifugal stress due to rotation.

Simple calculation showed that 0.5 mm is sufficiently thick for structural reasons and also offers 99 %

reliability of no-puncture over a 10-year-cycle. Also the 0.5 mm thickness assures over 99 % reliability of

no-puncture for the heat exchanger which is much smaller than the disk. Furthermore. rotational speed of 1 00

rpm was assumed.

The disk sizing was done as follows. The variables were maximum and minimum oil temperatures. For a

given pair of end temperatures, the oil mass flow rate. moil. was determined. The disk size was increascd hby

adding rings of 0.01 m width (dr): this procedure is equivalent to increasing the disk area by increasing the

radius by 0.01 m increment. For each ring element. the Reynolds number. Re, and the film height, . . erc
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calculated to check for turbulence in the flow. Kirkpatrick showed that the rotating film flow remains laminar

for Re below 10 () [32].

( r)

(r) = 0.909 (4.3.3)

Then, wave on-set Reynolds number, Rewav,,, was calculated to check whether waves occur: waves would

occur if the Re falls below the Rewave. Thus, the four possible flow regimes are wavy turbulent. non-wavy

turbulent, wavy laminar, and non-wavy laminar.

Re,,,,,, = 1.62(4 p )o.l 5 (4.3.4)

Then the critical mass flow rate. mcritical was calculated to check if the mass flow rate is sufficient to

overcome the surface tension and maintain the fihn flow . For mass flow rates below the critical value. the

film would break up into rivulets.

mcritical = 0.806OD6( P)0.2 (4.3.5)
rco2

( = surface tension

Then, the energy balance equation.(Equation 4.3.6), for each segment was solved for the film temperature

Ti by the Newton-Raphson method which then determined the amount of heat rejected for each segment I 1.

m ,IC(T-T1) 21rr8(r)k(2T-T+-T_) 43).
2 dr pa

The procedure was repeated until the film temperature reached the specified minimum oil temperaturc.

Above routine was combined with an LMTD-method heat exchanger design routine which calculated the

heat exchanger length and mass [33]. Due to the poor heat transfer properties and low flow rates of both

toluene and the oil, a plate-fin structure, which has high Nusselt number, Nu. for small hydraulic diameters. wxas

assumed (Figure 25). The input variables were the width of each oil flow section (dx). the fin length (lfin . and

number of oil flow sections (NOT). The height of oil flow sections was assumed to he twice the fin length. The

toluene side resistance was neglected because the radiating side controls the overall heat transfer rate which

means that the oil side controls the heat transfer rate in the heat exchanger.
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Initiallly, the two routines were combined to determine the optimum operating temperature range where

the overall mass, including those of the heat exchanger, the disk, and the oil, is minimized. For a given

maximum oil temperature, the minimum oil temperatures were swept down from the maximum temperature

until either the minimum temperature reached 250 K or the oil mass flow rate fell below the critical mass

flowrate; then, the minimum oil temperature where the overall mass is minimized was chosen for each

maximum oil temperature . As expected, the optimum temperature was not dependent on the type of heat

exchanger chosen; for any set of heat exchanger parameters, the overall mass is minimized at maximum

temperature of 348 K and minimum temperature of 301 K. For dx = 0.001 m. fin = 0.0()7 m. and NOT = 500,

the mass breakdown is as follows.

Tmax Tmin Heat Exchanger Oil Disk Total

349 K 311 K 11.143 kg 142.508 kg 79.576 kg 233.227 kg
348 K 301 K 7.866 kg 131.329 kg 89.420 kg 228.615 kg*
347 K 301 K 7.018 kg 131.759 kg 90.201 kg 228.978 kg

After the operating temperature range determination, a segment-by-segment heat exchanger design was

done to check the LMTD design value and to optimize the heat exchanger mass. Input parameters included the

ones used in the LMTD routine plus the height of toluene condensing section, 1. The toluene condensing

section width was determined by NOT, dx, and the assumed fin thickness of 0.0005 m. The homogeneous

condensation model [34] was used for the toluene condensation in the energy design for three reasons. First. the

choice of toluene condensation model is not a factor in the heat exchanger design because the oil side resistance

is 0(-2) while condensation model applied to toluene yields resistance of O(-3) or smaller. Second. there is lack

of experimental data of toluene in forced convective condensation. Third, the homogeneous model has been

known to give reasonable heat transfer and pressure drop predictions for forced convective condensers [2]. The

toluene heat transfer coefficient was limited to a maximum value of 50000W/m2K and the minimum toluene

exit pressure requirement was 34000 Pa. For each dx. 1. and NOT. Ifin values were varied until an optimum fin

which met exit pressure requirement was found. The optimum for each NOT. along with overall heat

exchanger dimensions, are as shown below. For dx = 0.001 m and I = 0.001 m.

NOT lfin height width length mass
500 0.004 m 0.012 m .75 m .90 m 8.528 kg
400 0.0()4 m 0.012 m 0.60} m 1.12 m 8.463 kg*
300 0.0055 m 0.015 m 0.45 m 1.25 m 8.65 kg

Thus, for the assumed reference conditions, the heat exchanger mass is optimized at NOT of 400. The

exit toluene pressure requirement was not a constraint in mass optimization for NOT of either 500. or 400:

however, the exit pressure requirement did constrain the optimization for NOT of 300.
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Figures 26 - 28 show respectively the height. temperature. and Re of film as functions of radius for the

reference RFR. Figure 26 shows that. even for low rotational velocity, the film becomes thin ( < 0.001 m) at

short radius of 0.45 m.This is advantageous because a thin film can be established with low power expenditure.

Figure 27 shows that most of heat rejection occurs in the outer region of the disk as shown by the increasing

temperature profile steepness. Figure 28 shows that the film flow remains laminar. Furthermore. as Table 2

shows, the film is wavy in the region inside the radius of 0.63 m. but non-wavy at radii greater than 0.6 n.

This is encouraging because film is absolutely steady throughout most of its flow. However. one point needs

experimental validation. That the program checked for mcritical at each radius and found the moi to be sufficicnt

to overcome surface tension suggests that rivulets are unlikely to develop. However, Espig's results show that

rotating film flow splits into rivulets for Re below 10 [35]. One credible method of validation would be to run

rotating film flow and heat transfer experiments on one of the Shuttle missions.

RFR's mass is insensitive to rotational speed for two reasons. First, for each ring element of film, the low

thermal conductivity and the low height of oil film make the amount of conductive heat transfer to and from

each ring element negligible compared to the amount of radiative heat transfer from the ring element to space.

Second, the film height does not decrease significantly at rotational speeds above 100 rpm.

Combining the optimized heat exchanger mass with that of oil and disk. the RFR yields specific masses

of 5.59 kg/kWt or 3.52 kg/m2.

5.4. Conclusion

In specific mass, both RBMR and RFR compare favorably to PR whose most recent specific mass is

about 10 kg/kWt. To verify the correlations used in the design. rotating disk flow and toluene condensation

experiments should be carried out in space environment.
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Chapter 6

Receiver

The receiver's high mass and weak technological base makes it a weak link in the whole system.

Therefore, the design and development of an efficient and reliable receiver deserves the utmost attention. This

chapter compares eight receiver concepts and recommends a receiver concept utilizing liquid lithium as TES:

the recommendation is based on the concept's light weight and simplicity.

6.1. Concepts

Following is a brief description of each concept. The schematic of each concept is shown in Figure 29

and the energy flow diagrams for each orbit is shown in Figure 30. The first is a heat pipe design pursued by

Sundstrand. During insolation, both mercury vaporizing and the lithium fluoride (LiF) TES charging are done

in the axial heat pipes in the receiver. During the eclipse, the axial heat pipes transfer energy from the freezing

LiF to the vaporizing mercury. The circumferential heat pipes even out any non-uniform heat flux distribution.

which could occur due to tracking error, by transferring energy away from the hot spots 36].

The second concept divides the receiver into two regions of relatively high and low heat flux regions.

During insolation, the LiF TES charging and mercury superheating are done in the low flux region while

mercury preheating and low-quality vaporization are done in the high flux region. During the eclipse, the

valves will direct the mercury flow to only the part of the receiver where the LiF TES is located. The

preliminary design of this receiver was done by Fox [36].

The third concept has the LiF TES separated from the receiver. During the insolation. only the mercury

vaporization with excess superheat is done in the receiver. and the LiF TES is charged by the excess superheat

of the mercury [37]. During the eclipse, the valves will direct the mercury only to the LiF container, bypassing

the the receiver altogether.

The fourth concept has mercury vaporization and LiF TES charging done together in the receiver: the

TES is contained in bellows wrapped around the mercury vaporizer pipes. This concept is similar to the first
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concept in that the mercury flow remains constant during both insolation and eclipse: however. the heat pipes

are not used. This concept was pursued by NASA Lewis and MIT [38, 39].

Next three concepts use 'slush', which consists of immiscible LiF/Li melts, as the TES. The slush is

liquefied during the insolation and thickened during the eclipse as the LiF freezes. Fifth concept has both

mercury vaporization and slush melting done in the receiver during the insolation. During the eclipse, the

valves direct both fluids away from the receiver to a heat exchanger (e.g. concetric counterflow type) where the

thickening slush vaporizes mercury. A little but constant slush flow through the receiver is necessary during the

eclipse to prevent freezing of lithium (melting point at 452 K) or LiF (1121 K). either of which could plug up

the plumbing.

The sixth concept is similar to the fifth except that mercury will be vaporized in the heat exchanger

during both insolation and eclipse. Therefore, only the slush is liquefied in the receiver during insolation.

Seventh concept has only the lithium of the slush pumped: only the lithium is heated in the receiver

during insolation. The heated lithium, by entering the cylindrical TES container at the outermost radius melts

the frozen LiF on the wall and causes the slush to rotate in the container. The rotation centrifuges out the frozen

LiF, whose density is about three times that of lithium, and minimizes the concentration of frozen LiF in the

center of the cylindrical container where the charged slush is kept. Simultaneously, the melted slush is pumped

from the center of the cylindrical container to the heat exchanger where mercury is vaporized. The thickened

slush, upon exiting heat exchanger, also enters the container at the outermost radius of the cylindrical container.

centrifuging out the frozen LiF. During the insolation, the LiF flow through the receiver is greater than the

lithium flow through the heat exchanger by a factor of (1+(35/59)) so that. at the end of eclipse. during which

the lithium flow through the receiver is close to nil, all of the LiF is solidified onto the container wall.

The eighth concept utilizes only lithium as the TES. During the insolation. lithium is heated in the

receiver. Some of the heated lithium is stored in a cylindrical container with a movable thermal barrier

separating the relatively cold lithium from the hot lithium. The rest of the heated lithium is used to vaporize

mercury in the heat exchanger. During the eclipse, lithium flow to the receiver decreases to a minimum

(sufficient to prevent freezing) and the stored hot lithium will vaporize mercury: at the end of the eclipse. the

accumulated cold lithium will occupy most of the cyldrical storage tank at which time the insolation will begin

and the lithium flow through the receiver resumes.



35

6.2. Thermal Energy Storage Selection

Many forms of TES exist, including chemical batteries, and phase chagne materials (PCM) such as LiF.

PCM's are particularly attractive for the high energy storage density due to the high heat of fusion and the

availability of this heat at a constant temperature. The properties desired in the PCM are as follows 4()1.

property desired influence
melting temperature > peak cycle temperature cycle efficiency

heat of fusion high storage mass
thermal conductivity high charging/discharging rate

heat capacity high reserve capacity
density high storage volume

thermal expansion low container volume change
volume change on fusion low container volume change

viscosity low heat transfer
vapor pressure low chemical stability

corrosion none/low performance. reliability
long-term stability high performance, reliability

The PCM's can be divided into salt and metallic groups. The heats of fusion for the two groups are

comparable. However, the higher thermal conductivities and densitites of the metallic PCM's make them more

attractive for heat transfer purposes. Nevertheless, the metallic PCM's react with metals at high temperatures.

and, therefore, containment of metallic PCM's is an unresolved technical issue. Ceramic is a possible

containment material, but experimental data is lacking in that area [41]. Therefore. the salt PCM's, most of

which can be contained by Ni or Nb based alloys, were selected for this design. Table 3 lists some of the salt

PCM's with melting points above 1033 K: LiF surpasses the other candidates as the most effective PCM

(Figure 31) with its high heat of fusion.

Since the LiF was chosen as the PCM, LiF/Li was the logical choice for slush. The assumption that all of

the enregy storage would still occur in the form of LiF phase transition with the conductive lithium acting as the

energy transfer agent led to the conclusion that the LiF/Li slush system would be the most mass-efficient one.

Lithium was chosen over other liquid/transition metals for three reasons: the specific heat, the melting

temperature, and the boiling temperature. The two temperatures have to have a range greater than that between

654 K and 1033 K (the low and high temperatures in the mercurv cycle of the binary cycle} to ensure that the

metal stays liquid at all times. High specific heat is desirable to reduce mass for storing a certain amount of

energy for a given AT. As a secondary factor, high density is desirable to reduce volume of storage for a given

mass, thus decreasing the container mass. Of a the metals only lithium and sodium have the appropriate

melting/boiling points. Of the two, despite its lower density, Li was chosen because of its specific heat almost

three times that Na (Table 4) [42].



36

6.3. Receiver Material Selection

The need to contain corrosive liquid metals such as lithium and mercury at elevated temperatures (1I 100 ()-

2000 K) under high pressure (0.1 - 5.0 MPa) require following properties in the candidate receiver material

140].

parameter desired influence
melting point high structural rigidity

thermal conductivity high receiver size
density low receiver maLss

modulus of elasticity high stiffness
ultimate tensile strength high structural rigidity

yield strength high structural rigidity
creep strength high structural rigidity

fatigue strength high structural rigidity
fracture toughness high meteorite dalmage

oxidation/corrosion resistance high structural rigidity
fabricability high manufacturing ease

Due to the high temperatures involved, refractory metals. including tungsten (Tu). molybdenum (Mo).

tantalum (Ta), niobium (Nb), thorium (Th), and titanium (Ti) were considered. In the following comparisons. a

reference temperature of 1 10() K was assumed. The relatively low melting points of Ti (1953 K) and Th (2023

K) excluded them from further consideration. Furthermore. despite its high melting point (3660 K) and high

thermal conductivity (137 W/m K), Tu was rejected for its high density (19300 kg/m3 ). Property comparisons

of remaining Mo, Nb, and Ta can be seen in Table 5.

Ta was rejected because of its combination of high density and low thermal conductivity which would

result in a heavier and bigger receiver than one made of either Mo or Nb. However. its outstanding heat and

structural properties would make it a good alternate material.

Nb is the second best choice, if the hoop stress in plumbing could be kept below 20 MPa. Its low creep

strength is its biggest weakness. However. its low density and high thermal conductivity combined with very

good resistance against liquid metals make Nb an attractive choice. A particularly good Nb alloy for handling

liquid metals is Nb-lZr which combines good strength with excellent fahricability: the Zr additions results in

resistance against lithium, sodium, and potassium corrosion upto 1283 K.

Mo was chosen as the receiver material for its good strength. especially at elevated temperatures (Figurc

32): high thermal conductivitiy; high stiffness: good retention of mechanical properties after thermal cycling:

low coefficient of expansion: and, above all, good resistance against Li and Hg - less than I mil/vr corrosion

against Li at 1173 K. A Mo alloy with TZM has shown outstanding high temperature properties wvith higher

creep and tensile strength than pure Mo. Also Mo-30()W is especially resistant against liquid metals 127].
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6.4. Comparison of Concepts

Thermal stress minimization is important for material's prolonged service. Concepts one, four and five

will be practically isothermal receivers around either the melting point of heat pipe fluid ( concept one ) or 1 12 1

K, the melting temperature of LiF ( concepts four and five ). Such constant temperature makes thermal stress

along the receiver depth negligible. On the other hand, concepts two. three. six. seven, and eight would have

thermal stresses along the depth of receiver as the coolant (mercury or lithium) temperature increases along the

receiver length. As for radial thermal stress across the heat transfer surface, the combination of Mo's high

thermal conductivity and the thinness ( < 0.001 m ) of heat transfer surfaces would make them negligible.

The non-uniform heat flux distribution tolerance is crucial to creep prevention and reliable performance

of the receiver throughout its service life. Mirror imperfections (slope errors and shadowing factors). tracking

errors, and void formation (between LiF and container ) can cause non-uniform heat flux distribution. The

non-uniformity, if not evened out, will not only cause uneven mercury vaporization/TES charging but also

cause hot spots, which, in turn, will increase thermal stresses, fatigue, corrosion. and creep. Concept one has

the most tolerance due to its use of heat pipes. Concept eight could be just as tolerant: lithium's high themial

conductivity and heat transfer coefficient can effectively transfer energy from the high energy region. Concepts

three, five, six, and seven will be less tolerant than eight due to the relatively low thermal conductivity of the

LiF/Li slush. However, that the above concepts use combined convective/conductive heat transfer (avoiding

void formation) and that the slush and lithium are more conductive than LiF alone make them more tolerant

than concepts two and four whose stationary LiF TES leaves them vulnerable to void formation and unable to

handle any non-uniformity.

The TES containment is important to prevent TES container rupture. One major problem of LiF TES is

the 35% volume change of LiF upon phase transition. Such contraction can create voids between LiF and the

container, creating hot spots. The low thermal conductivity of LiF was mentioned above. Another problem is

that of thermal ratcheting, in which cyclic freezing/thawing causes trapped expansion of LiF which leads t(

container rupture. Bellows which could be used in concepts one through five have been tested on earth a:s a

means to compartmentalize LiF and minimize void formation but their performance in zero-gravity

environment is unknown at best. The lithium TES of concept eight offers many advantages when compared to

both the LiF and slush TES. First, the volume change of Li upon phase transition is a mere 1.5 %. Also the

density change of lithium between 668 K and 1125 K is 11%. The volume change can be addressed by

attaching an accumulator. Advantages of lithium TES to the slush TES include elimination of the risk of

unexpected plugging of plumbing by the freezing LiF. and the better stability of homogeneous lithium over that
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of heterogeneous slush. Nevertheless, concepts five through seven are advantageous over the first four concepts

because, even though LiF is a part of the TES, the slush form of the TES allows pumping and the use of an

accumulator.

The mode of heat transfer is important in determining the effectiveness and the speed of TES

charging/discharging. Concepts one through four depend on conduction through liquid and solid LiF. both of

which are relatively non-conductive (kliquid LiF = 2.5 W/m K. koid LiF = 7.5 W/m K). Concepts five through

seven depend on convection through the liquid melts and conduction through solid LiF. Concepts eight

depends solely on convection through lithium. Concept five through seven are more effective than the first four

because the slush would prevent formation of solid LiF layers on heat transfer surfaces during TES discharge:

the solid formation degrades heat transfer performance due to low thermal conductivity of solid LiF.

Furthermore, convection through LiF/Li slush, which is more conductive than the liquid LiF, has less resistance

than conduction through liquid LiF. Concept eight is advantageous over concepts five through seven. First, it

eliminates conduction through LiF which is the slower part of the two part process. Second, lithium's themial

conductivity, higher than that of LiF/Li slush, allows faster charging and discharging of the TES.

Simplicity is another important criterion, and the eighth concept is the simplest and probably the most

reliable of all the concepts considered. Centrifuging out the liquid LiF front the LiF/Li liquid mix (concept

seven), controlling the LiF volume change (concepts one through five), preventing the slush from freezing

(concpet six) all require extra but necessary equipment such as a centrifuge motor. valves. and bellows. The

eighth concept circumvents above problems by using simple reliable components such as a container. a pump.

and a heat exchanger.

Above all, however, mass is the single most important criterion for both concept evaluation and

optimization because it has the strongest effect on the initial launch and the on-orbit maintenance cost [21. Fox

and Lurio [36, 38] showed that the TES and the collector mirror are the most massive components in the

collector-receiver assembly. The receiver itself and insulation accounted for 14 kg compared to 1()00 kg of TES

in Fox's design. Calculations show that very light TES mass is possible for the eighth concept: for example. for

a AT of 500 K, 70.5 kg of lithium is needed for TES compared to 141 kg of LiF needed for the first seven

concepts. Assuming that the combined mass of heat exchagner. container. and puinp is less than the 70.5 kg

difference, eighth concept will be lightest system. The second lightest group of receivers include those of

concept three and four. Concept three's extra mass is due to the need for valves and concept four's extra mass

is due to the need for aperture door which would prevent aperture loss during the eclipse: it is assumed that the

masses of valves and the aperture door are comparable. Concept two would be heavier than either one of
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concepts three and four because concept two requires both the valves and the aperture door. Concepts five

through seven would be heavier than concepts two through four because of the need for a sufficient amount of

lithium to form slush with the 141 kg of LiF. Among the three, concept five will he heavier than either six or

seven due to its need for an aperture door. The weakest candidate in mass criterion is concept one: the heat

pipes would increase the receiver mass to at least twice that of concept four [37].

Thus, for simplicity and light mass, the eighth concept is chosen for preliminary design.

6.5. Preliminary Design Proceduire

A. Reference Cycle and Top Li Temperature Determination

First, the dependence of the collector-receiver assembly mass on the two variables, the binary cyle

efficiency and the lithium AT was determined. The assembly mass refers to the sum of masses of the collector

mirror, the lithium TES, the receiver, the heat exchanger, the lithium container. and the meteorite shielding

The mirror mass is inversely proportional to the cycle efficiency and the fourth power of average receiver

temperature which is assumed to be equivalent to the average lithium temperature.

a'erage lithium temperature=4 arimEm i temperature4 + minimum Li temperaturea

The average receiver temperaure determines the optimum collector efficiency which is the quotient of

energy absorbed by the Li TES and the Hg divided by the energy incident on the collector mirror 14)1. Since

the mirror is the single most massive component in the whole assembly, mirror-mass minimization is crucial to

a light-weight design.

The Li TES, as discussed before, is inversely proportional to the LiAT. However, due to the need fir :i

positive pinch temperature difference between the temperatures of Li and Hg in the heat exchanger (Figure 33).

the minimum Li temperature is actually a function of the maximum Li temperature. For this design. mercury

and lithium temperatures at 3 were assumed to be 963 K and 968 K. respectively. For a given mercury cycle

and mHg, amount of heat needed in the vaporizer/superheater between 3 and 5 is the product of mng and the

mercury enthalpy change between 3 and 5 (AhHg). Thus, given the amount of heat needed by mercury between

3 and 5, the lithium mass flow rate, mLi, can be determined as a function of maximum Li temperature which

determines the lithium temperature difference between 3 and 5. Once the mLi is known. the minimum lithium

temperature can be calculated from the heat needed by mercury in the section between 2 and 3. The mass of

lithium TES is the product of lithium mass flow rate and the eclipse duration time.
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The receiver mass is directly proportional to the amount of energy required by the lithium TES and

mercury, and, therefore, is inversely proportional to the cycle efficiency.

The heat exchanger mass is inversely proportional to the maximum lithium temperature. Using the NTIU

design method, a higher maximum lithium temperature will lower the effectiveness which will decrease the

NTU which, in turn, will decrease the necessary area, and consequently the mass.

The lithium container mass is also inversely proportional to the maximum lithium temperature: a higher

maximum lithium temperaure means a lower mass of lithium for TES which leads to a lower volume container.

The meteorite shielding mass is inversely proportional to both the cycle efficiency and the maximum

lithium temperature. Since the shielding mass is proportional to the exposed area [44]J lowering the exposed

receiver area (with a higher cycle efficiency) and the lithium container area (with a higher maximum lithium

temperature) will decrease the shielding mass.

Initially for a given maximum lithium temperature and the reference binary cycle, the overall binary cycle

efficiency was varied by varying the mHg. The equations for the calculations of the cycle efficiency and the

masses fo the components are listed in Appendix B. One constraint was continuous power output of 25 kWe.

The results of analysis are shown in Figure 34. Figure 34a shows that the maximum cycle efficiency occurs at

the mHg at which the heat out of the Hg cycle matches exactly the heat needed by the toluene cycle.

Consequently, it can be seen that assembly mass is minimized at the same mllg for concept two (Figure 34h).

concept eight with maximum lithium temperature of 1255 K (Figure 34c) and 140(} ()K (Figure 34d).

Once the relationship for the optimum milg for a given binary cycle was determined. the second analysis

varied the cycle efficiency by varying the superheat temperature of mercury (T5 in Figure 33) while letting the

rest of the parameters remain constant. Thus the input variables were the maximum Li temperature and the

mercury cycle parameters - the maximum mercury temperature , maximum mercury enthalpy (enthalpy at T5),

P/mI, and Qout/mtg. The toluene cycle parameters were assumed to remain constant at reference values. The

equations for this analysis are listed in Appendix C. Figure 35 shows the overall cycle efficiency as a function

of maximum mercury temperature, and Figure 36 shows the total assembly mass as a function of maximum

mercury temperature at varying maximum lithium temperatures. Figure 39 also shows the total assembly mass

estimates for concepts two and three for comparison. The mass difference between concepts two and three are

due to the shielding mass difference. Concept two, which has the LiF TES integrated into the receiver. requires

shielding just for the receiver while concept three. whose LiF TES is outside the receiver. requires shielding for
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both the receiver and the container. The receiver mass alone for concept one (9.7 kg/kWt) is 76(). k.

Addition of mirror mass and shielding mass would put the combined mass over 1(000 kg. From the two graphs.

it can be seen that the overall cycle efficiency and the total assembly mass are not very sensitive to maximlum

mercury temperature. However, the assembly mass is strongly influenced by the maximum lithium

temperature. For example, the lithium TES is not competitive with concept two unless the maximum lithium

temperature exceeds 1255 K. Therefore. it was decided to assume the same reference cycle used by Fox and

Cotton, and design receivers for the maximum lithium temperatures of 1255 K and 1400 K. Variables are listed

in Table 5.

B. Receiver Design

The codes, CAV2 and CVT2, initially written at Ford Aerospace and modified at Sandia. were used t(

calculate the flux distribution and the Li temperature distribution in a given receiver geometry. respectively.

The receiver material assumed in the design was Mo and it was also assumed that a coating would be

used in the receiver cavity to increase the surface's emissivity to 0.9 from that of uncoated Mo of 0. 1. The

reflectivity assumed for the coating was 0.3.

Below is a table of ther relevant input variables for the two cases (the quantities in parentheses are the

actual quantities/units used in the codes).

Maximum Li T 1255 K (982 C) 1400 K (1127 C)
Minimum Li T 922 K (649 C) 899 K (626 C)

mLi (639.488 Ibm/hr) (424.845 Ibn/lir)

To determine the most mass-effective receiver. various receiver geometries shown in Figure 37 were tried

for a constant mirror size and aperture size. The results showed that the shape C was the most nass-efteclive

shape (highest LiAT/kg receiver). For the chosen shape C. the lithium flow area assumed is an annrltlus a

shown in Figure 38. Easiest way to visualize the geometry is to imagine one shell lying inside another shell of

exactly the same shape but of a slightly larger size. The size difference will determine the Reynolds number

and pressure drop of the lithium flow, and. consequently the heat transfer coefficient from the receiver to

lithium. Lithium is introduced into the receiver at the beginning section of the cone section and removed at the

middle of the spherical section.

Annulus flow area means increased risk of single point failure. This increased risk is compensalted by

having receiver wall thickness of 0.001 m (greater than twice the 90 % no-penetration thickness of 0.000473 n a)

and multiple-layer foil insulation/shielding of combined thickness 0.000473 m. A compromise design could
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include four fins connecting the inner and outer area into four equal sections, reducing the single-point-failure

risk and improving the struictural rigidity of the receiver at the expense of a slightly higher mass.

The optimum aperture sizes were determined for C-type receivers of different sizes. The procedure was

similar; for a constant mirror size and a receiver size, the aperture size was varied to find the optimum aperture

size. Figure 39 shows the dimensions of four trial receivers with optimized apertures.

The next step was to find the minimum collector-receiver mass combination. In the initial mass

sensitivity analysis, the collector efficiency calculated was an optimum collector efficiency based solely on the

aperture size. The use of CAV2/CVT2 codes, however. enabled us to take the receiver's shape and mass into

consideration. The underlying assumption is that. although their values might differ slightly, the optimized total

collector-receiver assembly mass based on aperture size alone (as was done in the initial analysis) has a similar

dependence on the maximum lithium temperature and the maximum mercury temperaure as does the optimum

collector-receiver based on aperture size and receiver shape/mass (using CAV2/CVT2). Thus. for the trial

receivers, the collector sizes were varied until the desired lithium temperature rises were achieved. The results

are shown below.

Maximum Lithium Temperature = 1400 K

Type Collector rI Receiver Mass Mirror Mass Total Mass
Cl 0.8185 5.5493 3()7.6885 313.2378
C2 0.8314 9.7153 302.94 312.6553
C3 0.8382 14.5537 300.4762 315.0299
C4 0.8413 19.0381 299.3569 318.305

*Qreceiver/Qmirror reflected = 0.982

QLi/Qreceiver = 0.937

Maximum Li Temperature = 1255 K

Type Collector 1 Receiver Mass Mirror Mass Total Mass
C1 0.8217 5.5493 306.5106 312.06
C2 0.8371 9.7153 3(00.8794 310.5c5
C3 0.8464 14.5537 297.5643 312.11 I
C4 0.8506 19.0381 296.1078 315.146

**Qreceiver/Qmirror reflected = 0.983

QrcecevQeceiver = 0.944

The CAV2/CVT2 output for the two chosen receivers (with *'s) are shown in Tables 6 and 7.
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C. Heat Exchanger Design

For the heat exchanger design, a counter-flow type with the mercury flowing in the inner tube with a

swirl-flow inducer was assumed. The design was split into four regions: the preheater. the vaporizer for x <

0.88, the vaporizer for x > 0.88, and the superheater. The preheater heat transfer and pressure drop were

determined from [42]

Laminar Turbulent
Nu 3.66 6.7 + 0.0041(RePr)( 7 9 3e4 .aPr

ff 16/Re 0.0791/Re(02 5 for Re < 35000(
0.046/Re(0 20 for Re >35000

fiaP -2ffpl 1eng}
final=Pinitial - D

The superheat section's pressure drop was determined by the same method as above: its heal transfer was

determined from

Nu 3.66 0.023Re 0' 8Pr0 4

To determine the pressure drop in the vaporizer, Martinelli-Lockhart's separated two phase model was

used for x less than 0.88, and homogeneous flow model was used for x greater than 0.88 [34] (Appendix D).

The heat transfer correlations used for x greater than 0.88 is the same as the one used for the superheater

section. The heat transfer coefficient (h) correlation used for x less than 0.88 is [34]

h = 35 o ()0.5fo(

Xt t = (X). 9( R)0.5(P)0.1
-X f Plf

hfo= heat transfer coefficient from preheater section at T,at

g=vapor

f=liquid

Given the input variables of minimum and maximum lithium temperatures, the program initially assumed

one tube and counter-flow heat exchanger with the mercury hydraulic diameter of 0.001 m and the lithium

hydraulic diameter of 0.001 m. The program calculated the length and pressure drop for each incremental

temperature rise ( the preheater and superheater) and for each quality rise (vaporizer). The required conditions
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at the exit were i)vapor velocity under Mach I: ii) mercury pressure drop of less than 2%: and iii) lithium

pressure drop of less than 0.01 %. The mercury and lithium hydraulic diameters were accordingly swept up

from 0.001 if any of the conditions were not met. Then the whole process was repeated for a new number of

tubes upto 20. The thickness of pipes was assumed to be 0.0005 m for mass calculation. Of the acceptable

models, the following were chosen.

Maximum Li T 1255 K 1400 K
Mass 2.381 kg 1.292 kg

Number of Tubes 7 10
Length 1.322 m 0.669 m

Hg Hydraulic Diameter 0.004 m 0.003 m
Li Hydraulic Diameter 0.006 m (0.004 mi

Exit Hg Pressure 4.9126 MPa 4.9113 MPa
Exit Li Pressure 0.0999 MPa 0.0999 MPa

initial Hg pressure 5.0 MPa

initial Li pressure 0.1 MPa

D. Container Design

Figure 40 shows one possible container configuration. During the insolation valves A and B are open,

pump B is off and pump A is on. The pressure difference between the hot and the cold lithium, due to pressure

drop in the heat exchanger and plumbing, will push the piston to the left, filling the container with hot lithium.

During the eclipse, valves A and B are closed. pump A is off and pump B is on. Pump B's action raises the

cold lithium's pressure above that of the hot lithium: thus, piston is pushed to the right, filling the container with

cold lithium. Once the insolation resumes, opening of valves A and B and the action of pump A decreases the

pressure of cold lithium in the container to that of cold lithium at the heat exchanger exit and the cycle repeal;

itself.

To accomodate the volume change of lithium (-10%) over the temperature range, the container can be

designed for the higher volume (at the maximum temperature) with the lithium accumulator attached to the cold

end. The hot lithium will completely fill the container volume: 10% volume void, which forms with the cold

lithium, can be filled by injecting more lithium into the container from the accumulator. Thus, the lithium loop

can be controlled.
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6.6. Results

The complete data on the optimized collector-receiver assembly is as follows.

Maximum Li T

Mirror
required mirror area

outer radius of mirror
inner radius of mirror

rim angle

Receiver

aperture radius
axial length of conical section
final radius of conical section

axial length of cylindrical section
radius of cylindrical section

radius of the spherical section
gap between the shells
thickness of each shell

Heat Exchanger

number of tubes
heat exchanger length

Hg diameter
Li diameter

thickness of pipe

7
1.322 m
0.004 m
0.006 m
0.0005 m

*tested case: results in neligigible Li pressure drops in both receivers of
less than 0.2 Pa which is less than 2.0 x 10-4 % of the initial 0.1 MPa.

Shield Thickness

Receiver
Li Container

Heat Exchanger

0.4734 x 1(n- m
0.6888 x 1() 3 ni
0.3533 x 10 -3 m

0.4734 x 10 3 n m

0.6391 x I() - m
0.2740 x 10-3 m

Insulation layers

Recever
Li Container

Heat Exchanger

Radiation Loss (% of Qreceiver cavitv)

Receiver
Li Container

Heat Exchanger

1255 K 1400 K

100.9315 m 2

5.6736 mi
0.25 m

45 degrees

101.7165 m-
5.6956 ii

0.25 in
45 degrees

0.11 m
0.10 m
0.20 m
0.10 m
0.20 m
0.20 m

0.002 m*
0.001 m

0. I m
0. 10 m
0.2() m
0.10 m
0.20 m
0.20 m

0.(00 m*
0.001 m

10
0.699 m
0.003 m
0.004 m
0.0005 m

19
27
14

19

25
11

0.1048 %
(0.456 %

0.079 %

0. 1503 %
0.523 %
0.056 %
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Mass breakdown is as follows.

Maximum Li T
Mass of Li TES
Mass of Mirror

Mass of Receiver
Mass of Li Container

Mass of Heat Exchanger
Mass of Shield
Assembly Mass

Assembly Mass Predicted
from Initial Sensitivity Analysis

1255 K
106.7525 kg
302.7945 kg
9.7928 kg
19.3119 kg
2.381 kg

16.2395 kg
457.2722 kg
459.2103 kg

1400 K
70.9518 kg

305.1495 kg
9.7928 kg
14.7()36 kg

1.292 kg
11.7991 kg
41 3.688 kg
418.9645 kg

The probability of protection against damage by meteorites was set at 0.90 to calculate the required mass.

The mass data shows a good agreement between the initial assumed values and the actual design values. It

seems reasonalble to believe that optimization of each component would reduce the total assembly mass.

6.7. Conclusion

This section discussed a receiver concept using liquid lithium as the TES. The concept's advantages are

the lack of TES containment problem, the ability to handle uneven heat flux and the reduction in specific mass.

The collector-receiver specific masses for concept two, concept eight with Tmax = 1255 K, and concept eight

with Tmax = 1400 K are, respectively, 6.57 kg/kWt (18.43 kg/kWe), 6.52 kg/kWt (18.30 kg/kWe). 5.90 kg/kWt

(16.5 kg/kWe). The last case provides a 10% specific mass reduction over the first two cases. Creep. which

occurs at high temperaure and pressure (over 200 MPa) is avoided by using lithium at one atm. or ().1 MPa.

Furthermore, dividing TES/receiver/boiler (concepts one through five) into separate components achieves

simplicity, easier maintenance, and higher reliability.
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Chapter 7

Conclusions anl Future Work

A study was done to improve the performance of a binary Rankine cycle solar dynamic space power

system. Three key technical issues were examined: effective sealing and containment of the system's fluids:

radiator mass reduction; receiver TES material containment and mass reduction. The attention was focused on

the radiator and the receiver because their specific masses account for over 80% of the system's total specific

mass; therefore, their mass reduction would significantly affect the system's performance.

The main results of this study suggests the following. First. fluid control system which shows potential

for zero leakage can be designed, using gas-lubricated bearings and ferrofluidic seals. Gas lubrication reduces

bearing power consumption and eliminates cavitation risk. Ferrofluidic seals show zero-leakage potential and

static sealing capability. Second, a rotating film radiator in which a film flowing on a rotating disk rejects heat

directly into space can reduce the heat pipe radiator specific mass by half to 5.59 kg/kWt or 3.52 kg/m2 . Third.

a receiver using liquid lithium TES can circumvent the problems of TES containment and hot spot formation

while simultaneously reducing the collector-receiver's specific mass to 5.90 kg/kWt. From the above results, it

seems possible to reduce the mass of current solar dynamic power system's mass without much new research

and development.

Using the RFR and the lithium TES receiver would lead to a combined collector-receiver assembly and

radiator mass of 642.2 kg which is less than the 888 kg assumed by Fox. Assuming the same masses for ihc

other components, the new specific mass is 28.29 kg/kWe. This result shows that the specific mass of 38. 12

kg/kWe assumed by Fox is reasonble and that it can be achieved with reliable methods.

To validate the assumptions and correlations used in this study, following set of work, to be done before

full-fledged development of each component, is recommended. For bearing and seals. better analytical metholds

for gas foil bearing stability prediction need to be developed. Furthermore. experimental data is nee(ledl on

suitability of toluene as a lubricant: foil bearing's response in magnetic imbalance in zero-gravity: and

ferrofluidic seal's performance under simulated EPS conditons. For the RFR. experiments on bolth tluene
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condensation and rotating film flow/heat transfer need to be carried out in space environment. For receiver the

compatiblity between lithium and molybdenum need to be experimentally determined. Furthermore.

experimental data on lithium TES's charging/discharging time and of its ability to maintain maximum mercury

temperature are needed.

The applicability of lithium TES and RFR to other systems need further exploration, especially to the

Brayton cycle. Brayton cycle's heat addition and rejection over a range of temperatures makes it more

appropriate for the lithium TES and RFR than the Rankine cycle. One key issue will be minimization of'

gas-liquid heat exchanger mass. Also development of a low-density radiator fluid would reduce the RFR's

mass even further. Thus, the concepts discussed in this study not only shows potential for improving the

performance of binary Rankine EPS but also looks applicable to other solar dynamic EPS.
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Tables

Table I - Properties of Lubricant Candidates

Property Air Nitrogen Toluene Mercury
k (W/m K) 0.0388 0.0327 0.0242 0.011

Cp (kJ/kg K) 1.014 1.045 1.550 0.106

p (kg/m 0.8711 0.8425 22.4 3.70
p (N s/m ) 230 x 10-7 220 x 10-7 570 x 10 -7 622 x 10 -7

all properties are at 400 K, except those of mercury which are at 633 K
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Table 2: Rotating Film Radiator Output

radius Re Re T 6
wave

0.100 8.6375 1.7299 348.000 8.002626
0.1500 5.7583 1.6445 347.9604 0.002004
0.2000 4.3187 1.5864 347.8946 0.001655
0.2500 3.4550 1.5427 347.8200 0.001426
0.3000 2.8792 1.5080 347.7193 0.001263
0.3500 2.4679 1.4792 347.6100 0.01139
0.4000 2.1594 1.4547 347.4747 O.0e0142
0.4500 1.9194 1.4334 347.3311 0.000964
0.5000 1.7275 1.4147 347.1616 0.000898
0.5500 1.5705 1.3979 346.9842 8.888000843
0.6000 1.4396 1.3828 346.7810 0.000795
0.6500 1.3288 1.3690 346.5703 0.000754
0.7000 1.2339 1.3564 346.3342 0.000718
0.7500 1.1517 1.3448 346.0909 0.000685
e.8000 1.0797 1.3340 345.8225 0.000657
0.8500 1.0162 1.3239 345.5474 0.000631
0.900e 0.9597 1.3145 345.2476 0.000607
0.9500 0.9092 1.3056 344.9416 0.00586
1.0000 0.8637 1.2973 344.6112 0.000566
1.0500 0.8226 1.2894 344.2753 0.000548
1.1000 0.7852 1.2819 343.9154 0.000531
1.1500 0.7511 1.2748 343.5505 0.000516
1.2000 0.7198 1.2680 343.1621 0.000501
1.2500 0.6910 1.2616 342.7694 0.000488
1.300e 0.6644 1.2554 342.3536 0.0080475
1.3500 0.6398 1.2495 341.9343 8.000463
1.4000 0.6170 1.2438 341.4923 0.900452
1.4500 0.5957 1.2384 341.0475 0.000442
1.5000 0.5758 1.2332 340.5806 0.000432
1.5500 0.5573 1.2281 340.1116 0.000422
1.6000 0.5398 1.2233 339.6210 0.000414
1.6500 0.5235 1.2186 339.1291 0.000405
1.7000 0.5081 1.2140 338.6161 0.000397
1.7500 0.4936 1.2096 338.1025 0.00390
1.8000 0.4799 1.2054 337.5685 0.000382
1.8500 0.4669 1.2013 337.0347 0.00880375
1.900e 0.4546 1.1973 336.4809 0.800369
1.9500 0.4429 1.1934 335.9282 0.000363
2.eeee0000 0.4319 1.1896 335.3560 0.000356
2.0500 0.4213 1.1859 334.7857 6.000351
2.1000 0.4113 1.1824 334.1965 0.000345
2.1500 0.4017 1.1789 333.6100 0.000340
2.2000 0.3926 1.1755 333.0058 0.000335
2.2500 0.3839 1.1722 332.4037 0.00330
2.3000 0.3755 1.1690 331.7844 0.000325
2.3500 0.3676 1.1659 331.1696 0.000320
2.400 0.3599 1.1628 330.5372 0.000316
2.4500 0.3526 1.1598 329.9102 0.000311
2.5000 0.3455 1.1569 329.2660 6.600307
2.5500 0.3387 1.1540 328.6282 0.000303
2.6000 0.3322 1.1512 327.9734 0.000299
2.6500 0.3259 1.1485 327.3260 0.000295
2.7000 0.3199 1.1458 326.6620 0.000292
2.7500 0.3141 1.1432 326.0063 08.00288
2.800e 0.3085 1.1406 325.3341 0.000285
2.8500 0.3031 1.1381 324.6713 0.000281
2.9000 0.2978 1.1356 323.9923 0.00278
2.9500 0.2928 1.1332 323.3234 0.000275
3.0000 0.2879 1.1308 322.6387 0.000272
3.0500 0.2832 1.1285 321.9650 e .00269



321.2755
320.5981
319.9051
319.2249
318.5292
317.8474
317.1501
316.4676
315.7694
315.0871
314.3891
313.7078
313.0108
312.3314
311.6361
310.9593
310.2666
309.5932
308.9936
308.2343
307.5485
306.8839
306.2026
305.5433
304.8679
304.2136
303.5428
302.8958
302.2319
301.5919

0.000266
0.00263
0.000261
0.000258
e.000255
0.000253
0.000250

.e000248
0.006245
0.000243
90.00241
0.000239
0.000237
0.000234
0.000232
0.900239
0.000228
0.000226
0.000225
9.000223
0.000221
0.900219
0.000217
0.e00216
0.000214
0.900212
0.000211
0.000ee209
0.000208
0.000206
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3.1000
3.1500
3.2000
3.2500
3.3000
3.3500
3.4000
3.4500
3.5000
3.5500
3.6009
3.6500
3.7900
3.7500
3.8009
3.8500
3.9000
3.9500
4. 0000
4.0590
4.1000
4.1500
4.2900
4.2500
4.3000
4.3500
4.4000
4.4500
4.5009
4.5500

0.2786
0.2742
0.2699
0.2658
0.2617
0.2578
0.2540
0.2504
0.2468
0.2433
0.2399
0.2366
0.2334
0.2303
0.2273
0.2244
0.2215
0.2187
0.2159
0.2133
0.2107
0.2081
e.2057
0.2032
0.2009
0.1986
0.1963
0.1941
e. 1919
0.1898

1.1262
1.1239
1.1217
1.1196
1.1174
1.1153
1.1133
1.1112
1.1092
1.1073
1.1053
1.1034
1.1016
1.0997
1.0979
1.0961
1.0943
1.0926
1. 989
1.0892
1.0875
1.0859
1.0842
1.0826
1.0811
1.0795
1.0780
1.0764
1.0749
1.0734
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Table 3: Properties of various PCMs

heat of fusion

236 kJ/kg

454

279

221

1,044

698

649

density

kg/m3

2480

2530

1540

2640

1400

2680

607 2630

484

142

372

442

2180

3490

1990

534

Tmelting

1170 K

1125

1125

1123

1121

1108

1105

PCM

K CO3K2C03

KF

Na2CO3

Ca

LIF

Li B02

75 NaF+

25 MgF

62.5 NaF+
22.5 MgF+
15 KF

NaCl

CaI

KC1

LI

1082

1074

1057

1043

453
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Table 4 :Properties of TES Materials

Metal Melting T Boiling T Specific Heat D)ensitv
Li 452 K 1590 K 4161 J/kg K 534 kg/en
Na 371 K 1156 K 1268 J/kg K 780( kg/ml
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Table 5 : Mo, N, Ta Properties

parameter

melting point (K)

k (W/m K)

E (GPa)

UTS (MPa)

YS (MPa)

creep strength (MPa)

fatigue strength

fracture toughness

oxidation onset
temp (K)

resistant
against

Mo

2883

126

230

260

100

110

*

*

773

liquid metals
mineral acids
molten gases
halogen vapor
refractory oxides

weak against

fabricability okay

Nb

2741

58

90

100

20*

*

*

673

liquid metals

strong alkali
mineral acids
HF acid

gases at high T

good

Ta

3269

59

150

135

50

60***

573

liquid metals
acids
organic chem.
salt solution
gases

strong alkali
halogen gases

good

* no available data

** 0.2 % at 973 K

*** 0.5 % at 1093 K
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Table 6

A.1 REFERENCE CYCLE

ELECTRICITY OUTPUT 25 kWe
PMAD EFFICIENCY*ALTERNATOR EFFICIENCY = 0.8309
CYCLE EFFICIENCY = 0.4293
Q INTO TES DURING INSOLATION = 41.5744 kW

Q INTO MERCURY DURING CYCLE = 70.0825 kW
TOTAL Q NEEDED IN THE CAVITY 111.6569 kW
ORBIT = 35 MIN ECLIPSE AND 59 MIN INSOLATION = 94 MIN

MERCURY FLOWRATE = 0.2127 kg/s
TOLUENE FLOWRATE = 0.0978 kg/s
POWER FROM MERCURY CYCLE 15.9033 kW
POWER FROM TOLUENE CYCLE - 14.1831 kW
Q FROM MERCURY CYCLE 54.193 kW
Q INTO TOLUENE CYCLE = 54.193 kW

MAXIMUM LI T

1400 K
1255 K

A.2 MERCURY PROPERTIES USED

LITHIUM FLOWRATE

0.0366 kg/s
0.0506 kg/s

LIQUID

THERMAL CONDUCTIVITY
SPECIFIC HEAT
VISCOSITY

13.56 W/m K
0.142 kJ/kg K2
0.787E-3 Ns/m

17.16E-3 W/m K
0.106 kJ/kg K2
984.4E-7 Ns/m

A.3 LITHIUM PROPERTIES USED

THERMAL CONDUCTIVITY
SPECIFIC HEAT
VISCOSITY

53.5 W/m K

4161.2 J/kg K 2

0.4316e-03 Ns/m

VAPOR
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Lable 7: CVT2 output for T

FOP LI ST.{ TE ' 1 ELSE
Kf. F- ! V'-C0 S

W

. 3 072.

W
--[I ( I- - T 'T 1W TF
W W,"'2 DU--C D--C D--C iD-C

0. 359 .. 1 ,152. ( 1_(.CS THROIJUGH APERIURE)

1 2'703,
2 2676.
5 962.
4 1 1 .

. 1.27 3.
6 1448.
7 1 1 1.
8 'i' 11 .
9 124,.

!I:c 1:5:7, .
i J. 1.446.

12 1 .80.
13 2629.
14 :30?29.
15 .J343.
1.6 '7h6=5.
17 3952.
1 R 5 '9 IP'.
19 38 45.
2):; 3551.
21 3113.1
22 2551.
23 1 1 93.
25 1 175.
25 93 7.

0;. 747.
0. 83':'.
¢0X. 5 79.
. 660.
0. 7S6.
0. - 797.
i,. 615.
:i. 804.

'5. I 047.
i0. 1345.
0.;. 1679.
0. 2018.

. 36S 61 :2.
0. I4417.

0. 48'586.
0. 4819.
0;.: 4.376.0 . 3846.
0. 3313.
. 278'7.

(0. 2270.
0. 1759.
0 . 1263.
0. 883.
u. 795.

163297.
1453329.
46311.
48'475.
5::0893.

53145.
55 14.
59360.
63682.
69043.
75449.
86942.

101636.
1 69 7.
136274.
152455.
166917.
1794'9.
190069.
196638.
205217.1 '?7.

21 240.
539498.

10159.
998.
63?.
651.
664.
678.
689.
701.
71.5.

754.
778.

909.
956.
9938.
I (33.
1 (062.
1085.
1104.
1118.

11:'?8.

1521.

638.

663!.
677.

700.
714.
732.
753.

811.

90Q7.
955.
997.

1 032.
1061.
1034.
1103.
1117.
1128.
1138.

( 626.
638. 6: t1.
650. 644.
663. 657.
677. 671.
6613. 683.
699. 693.
714. 706.
731. 7 22.
752. 74 1.
776. 763.
81 0. 795.
856. 839.
906. 887.
953. 933.
995. 978.
1031. I1 015.
1. ('160. 1 046.
1083. 1070.
1102. 1090.
1116. 1105.
1127. 1116.
1137. 1123.

(112.7.)

SOLAR ENERGY INPUT: 119092. W.; ENERGY OUT: 119091. W
RSS OF (Q2--Q ) 0.45 NO. F ITERATION - 21

ALPHA--E EPSILON -E
0.969788 (. 967181

(T, CAV,') EAN, C
894.26

----- … --- --' T'L

1< CO--CUIll PC''T
W

2 0.
3 2600.
4 5396.
5 3450.
6 1 1662.
'7 13796.
8 1640'.
9 19574.

1is .23429.
It 2025.
12 33- 2' .
13- 4 2351.
114 5278 3.
15 63718.
16 740i70.
17 8:302. 2 
13 90496.
1; 9 9660 ·.
2r,1 1 504.
21 105:.320. 
22 108169.
2 1 0166.
24 111622.
25 11 1622.

2. 3
4.8
7.6

12.4
14.7
17.5
21 . 0
25. 1
29.8

47. 3

66.4
'74. 4

86.5 
90.9
94.4
96. 9
98. 7

1 0 . 0I

CO FC' QOS-IN oC--OU'r
W W/M1'" 2 W/r1"2

26:00.
2796.
055 .

3174.

5855.
4596.
52 71 .
90)55..9 ..

10.432.
15934

8952.
7473.
611. 2.
4896.
3816.
2649.
1996.
1456.

.

i. i
2.3 -
.5
2.7
2.9
1.9
.. ..

2.8
3.5
4.1
4.7

. 1
9.3
9.8
9.3
8. 7
5. 5

4.4
3.4

1.8
1.3
0. 0

121 8.
1114.

967.
914.

25738.
51570.
85724.
12838'7.
176731.
22565 0.
300267.

,4 6 :' : rt .462221.*43611.
465059.
44(p046.
41'7841 .
399576.
385125.
373838.
369443.
4411 1.
772483.

.3
125123
122 2,7.
122152.
118415.
1 0 19 13.
1243' I .
I _1 5 5 i. .
184052.
219459.
251667.
299447.

370 , 55.
37476i0.
345319.
313370.
25331.
262078.
243488.
229144.
221517.
26659.1

0 ·

RECEIVER EFFICIENCY = 111622./119092. - 0.93727

INLET TEPF'. (10) = 626. DEG-C: Htl'TO) -: -65670. W FOR 424.814 M/ttHRF:

nax .
= 1400 K

LI.
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Table8 ' CVT2 output for T = 1255 K
max -Li------

.' ELSE ' O'
J-O ';--3 OR- [ s 'TW1
W W W, '1M '"2 D-C I)--C

FOR L.S I IIG ' TY E ' 1
f. R-- ,

W
T W2 '1 F
D--C D--C

0 2?90. 0O. 7.574. 78645. (LOSS T'4HRCI(UIG.. FtAFERIUlJE)

I 2294.
2 2260i:.
3 9..
4 10 r' 7 ·
5 t 123 .
6 17'175.
7 1i055.

83 1090'.
' 1 154.

1I I Jf 8?,
1 1 1 '', "',

I1 11 ' 21 :.: :5
1 4 2355.
15 2562.
1 6 27 1.
17 277-.
1a 2756.
1 9 2 66.
2i0, 2383.
2 1 2C075.
22 1 63r:- 

2 1
24 77 - 6.
25 93.

0. 742.
O. 824.
i. 575.
0. 655.
. 731.
CO. 7 92.

. 10.
0. 797.

.:. I 04.
O. 1,66 .

0;:} . >=,35 1 .

4393.
. 4830.

. 4789.
O , 54,

v, 5819.
i0. 3290.
C. 2769.
:0. 2254.
O . 1746.
0. 1254.
(. 871.
. 7839.

121069.
46669.
4i7902
49252 .
50,620,-1
5039 1 .
5,2066.
54160,)
56-784,
600t 1.
6':828.
7 ;8.23 7-.7i5.7.
7 9 :C 1 9.
88597,
98217.

10 i-6952.
114749.
121637.
127556.
13239 :).
136178.
138975.
142197.
51.151J.

988.
948.
65.
664.
671.
679.
6~li5.
6i2.701B .

7-6..5 i .
7-12.

9'7.
'-, 7.f t7t .

F864.14-.7 7.

9 1'7.93.

956.
97CD.
98!:1.

9897.8h4~ .
998.
1499.

(649.)
657. 652.
663. 659.,
670, 665,
678. 675.
684 680 ,.
6 1I, 6!6.
700. 6t94.
711. . 70.
725. 715.
74.|. .728.

7. 74 '7.
794. 777.
828. 8 ',09.
86 1. 842.
890. 872.
914. 898.
95 . 9 .,%:,.
955. 939.
96'7. ' 953.
973. 965.
98l7. 974.
99 . 913i.

( 982.)

,657,
t!5 / ^

h,64.
6'71,
678
684,
692

.7.1 2.
'726, 
741.
71,6
796.
8710.
862.
8931.b 9, .
916.
937.
954.
96.
979.
988.
996.

SIlLARF ENERGFfiY INPLIT: 113 17. W.; EI4ERGY OUTl ': 1183 . W
RS OF (2-Q1) = 0.42 NO. F IERATION 19

ALPHA-E EPS I L.CIN-E C T, CAV') MEAN, C
0. 969790 0. 955054 -24. h6

Q--'t--T El .-------
CQ PCT PS--I N QC- U T'CQ:: -CLJM PCT

W W i 1''l-2 W/M"2W

2 O,
.3 20 59.
4 4:1 '7.
5 680:0.

1 1 zb6f 

3 13546.
9t 16590.1 C 3~r
10 1 19916.
11 24195.

2 . 1 i:9().

I13.,~ 3-7?27.
1 43 .:3, .
1 5. .592;72.
16 6 0'7940.
1 '7 7'i9:396.

t1 07'.1475.
1' 94258.
.,2i 9983(..
21 10 4269.
22 1 7 .4
23 1100f44
2 - I 1746
2 I- 111746

. 0
1.89

3.9 1

8·4R1 .

12. 1
14.7
17. 8
21.7.1 · ,I
2 d . .t
33 . 9
43.2
5:3. 
62. 6
71 .1
78.3
81. 4
89.5
93. 

eI;. 

98.5
.t (li. ;
1 (0. (

O!.

.25 7.2 .c ._! . .

248:$,
2658,
21830.

.. ~..1., ',1 8c .- i 
2 2 7 9. 
2844,

4279.
4 9-5.

c?45,6.
s;_J)t! .

80, 7 9.4 ?'7'- .678 3.
6785j .)

55':72.

2: 397.
1 7 D.'

7):.

O. 

., . 81.8
2,. ('1)-.0

2:.21.62. ,
.2.5

3.2
4.51 , 5
7.8
9.2
9.9

8.5*_ . C

7.2
6.1
5. ,0
4. 0
5. 

2.1
1.5
( 1. )

1194.

949.

25:r27.
1.' (:' '',2j ... ' .'27 .

84765.
127221.
175415.
22 4 23 6.
2 98 17.
39431i.

f459675.
4808i:6.
4 16: -7. 
47,6816.
414957.
597017.

, 97 1 2 582456.
37122.4.
366705.
4:' ,6 77.
7 655 2.

0 ,

985?! .

19 9 .2 i-) 9 .
I ." .,rti · 79725.~

7:i}:,.

1:5772.
1 8: .' 1 .
i `.i4 1 5.

2.- ::.8508.
28C5908.') .
3 4 i .

f381 4·84j.
3.E: 1 .
36456.
3:.8 'i3 9 .
51661 .
298245.

2'716 2.
265'?1 1.

C.

RECEIVER EFFICIENCiY 111746./11817. = .94446

I 11.F 1Fl!' .Ii.;) - 4.'7. 1)FG--] i-11', (TIJ - -?t 1 2. W FOR 63-7.49 1_Pt/.tR
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Figure 1 - Rankkie and Carnot Cycles on

Temperalure-Entropy Diagram
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Figure 2 - Binary Cycle Schematic
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IEMP

EN1ROPY

Figure 3 - Organic Rankine Cycle

IHEP

ENIROPY

Figure 4 - Mercury Rankine
Cycle with Superheat

T

Mercury
Superheated

Toluene
Regenerated
Supercr Itical

S

Figure 5: The reference cycle from Fox and Cotton

T(K)
654

655

963

963

1033
654

P(MPa)
0.156
5.0

5.0

5.0

5.0

0.156

1

2

3

4

5

6

1

2

3

4

5

6

7

350

354

359

489
644

538.5
375

0.034

5.17

5.03

4.62

4.14

0. 042
0.038
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Bearings

Rolling Element Fluid Film

Gas Lubrication

Hydrodynamic Hydrostatic Hybrid

Liquid Lubrication

Hydrostatic Hydrostatic Hybrid

Figure 6: Classification of Bearings
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CLAMP

FOIL HOUSING-- --

ASSEMBLED
FOIL SEGMENTS--

I

FOIL SEGMENT 
REMOVED---

"WEDGE" REGION--,

FOIL-'

GI

,-JOURNAL
I

)IL

CANTILEVERED FOIL BEARING TENSION FOIL BEARING

Figure 8: Cantilevered and Tensioned Foil Bearing

L7

Pump-in
design

(inward
pumping)

b) Grooves on the bearing disc (Ref. 11)

Figure 9: Bidirectional Spiral Groove Thrust Bearing



62

5

1

FigurelO: System Schematic with Nitrogen Bearings and Mercury Trap
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Figurell:System Schematic with Toluene Bearings w/o Mercury Trap
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Figure 12:
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a) Diagram of Crosssection of a Viscoseal

b) Axial Pressure Distribution Diagram
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Toluene n

Mercury Visco Seal

- Ring Pole

- Magnet

Foil Journal Bearing

Nitrogen injected from the shaft

Nitrogen eductor

Ferromagnetic Fluid

Toluene out

Figure 18 : Visco Seal - Ferrofluidic Seal Combination

Visco Seals

Thr

Ferrofluidic Seals

Figurel9: Turbine-Alternator-Pump Assembly
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Figure 20: Rotating Film Radiator Schematic
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Figure 25: Heat Exchanger for Rotating Film Radiator
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Appendices

Appendix A

The shear stress in rz direction (Figure 20) is expressed by (A. I).

SVr 81zAce TV

'r- = ({-+-. )+ rg )(. I

Neglecting V z, tg, and pg, equation (A.1) was simplified to equation (A.2) where the gravity teml g is a

function of the rotational speed.

/1'( r)= pg( z) (A.2)

g = ro 2 (A.3)

Vr expression was derived by integrating equation (A.2)

Vr = o g(-z)dz (A .4

Since the condensate mass flow rate can be expressed by (A.5).

mtolperside( r ) = f 27 PVrdz (. )

the film height for a given condensate mass flow rate was determined by substituting for V r an(d

integrating equation (A.5)

( m~) = 3 mt°olper si de (A.6)

2rr -p2o

Then

kh(r)= (A.7
z

Next the energy balance equation
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It(Tsat-7,)- 5 E(Tw 4 -Tspca 4 ) = q i-q = 0 (A )

was solved for Tw by Newton-Raphson method for each segment. Then dQ, the amount of heat

transferred, was determined for each segment.

dQ = mtol Cp dT in vapor cooler (A.9)

dQ = dntol Ifg in condenser (A. I ()

dT was 5 K and dmto, was 2% of toluene mass flow rate per side. Since the inner radius ri of the segment

is known from the previous segment analysis, outer radius rO was determined by equation (A. I ).

ro, = ,/2 + dQ (A. I
qon

The rotational speed and the number of container were varied to determine their effect on RBMR's total

mass.
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Appendix B: Mass Analysis for Varying mg

Input: TmaxLi

Assign: TpinchLi = T2 in Figure 5 = 968 K

For each ing from 0.03 to 0.38

B.1. ncycle calculation

kW
Powerlg = 74.7831 Tk979- mHg

Powertoluene = 30.08642 kW - PowerHg

mtoluene Powertoluene / 144.99 kW/(kg/s).

Qinto toluene = 55(kg/s) toluene

Q = 254.834 kW
out of Hg (kg/s) Hg

f Qinto toluene Qout of Hg

30.08642
cycle imHg (h5 - h2) + (Qinto toluene

else
30.08642

Tcycle mHg (h5 - h2)

Qout of Hg )

** h5 = Hg enthalpy @ 5 in Figure 4.

It was assumed that for Qtoluene > QHg' Li will be used to provide the

extra heat for toluene and that for Qtoluene < QHg' an extra radiator

would reject heat for the mercury cycle.

B.2. Li mass calculation

mHg (h - h2)

PLi TaLi - Tpinch)
CpLi (TmaxLi Tpinch)

iHg (h5 - 79.2555)

4.1612 (TmaxLi - Tpinch)Llpinch)
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Li mass = 2100s mLi

Qtoluene > QHg

n mH (h3 - h2 ) + toluene -QHg )

T min =(968 - mi (I - Hg
Tn Li 968- Li CPLi 

else

T min = 968 -
Li (

Hg (h3 - h2)

Li PLi

B.3. Mirror Mass

/ 2 sf2 5.67x10 -8

= 1 -

CR = 1(2 sf 1
CR = 1/(2 sf2 n('))

collector
= pG -

(T
reciever

I p G

-_ T 4 \
Tsink )

44

5.67x10 - 8 (T 4 T 4)
receiver sink

I CR

sf = 4.308x10 5 for rim angle = 450

pointing error = 0 mrad
slope error = 2 mrad
specularity error = 0.5 mrad
angular spread of sum = 0.0023 mrad

T = Average Receiver Temperature =
receiver

4 025

TmaxLi + Tmin

2

)
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p = reflectivity = 0.95

G = shadow factor = 0.95

I = insolation density = 1330 W/m
= intercept factor

CR = concentration ratio

Mirror Mass = Area of Mirror * Mirror Mass Density

30.08642) (

n cycle

+35)
59

3 kg

m

B.4. Heat Exchanger Mass

kg
Heat Exchanger Mass = 0.017285 kj- (h5 - h2 )

B.5. Receiver Mass and Area

kg (30.08642
Receiver Mass = 0.237014 - t l

kWt cycle 

Receiver Area = - Receiver Mass
(Mo density)(Receiver thickness)

Receiver Mass

(10240)(0.002)

B.6. Li container mass and area

Li container volume = Li mass / Li density = Li mass / 534

Optimum container radius =

Minimum container area =

Container volume\ 0.33333

2n /

( 2 volume ) + (2n radius2 )

radius

Container mass = Container area (Mo density)(Container thickness)

Container area (10240)(0.001).

(1.33) (q collector)
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B.7. Shielding mass equations 431

(Receiver and Li. container areas were input separately to calculate
the shielding mass required for each)

Probability of no damage = 1 - NAT = 0.9

N = flux of meteorites

A = exposed area = receiver area, container area, or heat exchanger
area

T = exposed time in seconds = 10 yr = 31536000 seconds

0.1
31536000 (Area)

-14.37 - log1 0(N)

1.213
mass of meteorite = [10

shield thickness = 4.25 (

]10-3 kg

Pmeteorite /3 ( massmeteorte /3 meteorit 2/3

PMo PMo t

P eteorite 4.4x10-3 kg/m3meteorite

V = 22 m/s
t

total shielding mass = (Mo density) [(Receiver Shield
Thickness)(Receiver Area) + (Container Shield Thickness)(Container
Area) + (Heat Exchnger Thickness)(Heat Exchanger Area)]

Total Mass = Li Mass
Mirror Mass
Receiver Mass
Li Container Mass
Shielding Mass

B.8. Concept 2 Mass calculation

Total Mass = LIF Mass
Mirror Mass (@ T

receiverReceiver Mass
= 1121 K)
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B.9. Concept 3 Mass calculation

Total Mass = LIF Mass

Mirror Mass (@ Treceiver = 1121 K)
Receiver Mass
Insulation Mass
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Appendix C: Mass Analysis for Varying T max,,

Input: T max Li

T max Hg (T5 )

out Qout
C.1. mHg ' mH calculation

interpolate h5 from Table in [44

(s5 - sf)

x6 (sg- Sf)
g f

Sf, sg

h6s = hf + X6s (h - hf) hfP h

h6 =5 + turbine (h6s - h5)

x6 = (h6 - hf) /, (h - h f)

s6 = sf + (s - sf)

P
out

mHg

QOU tout

= (h5 - h6 ) - (h2

= 654 (S6 - Sf)6Sf)

found from Table in[441

found from Table in[441

nt = 0.75
turbine

- h I )

T = T = 654 K.

C.2. Maximum cycl calculation
cycle

m
fig

30.08642

( out +

mHg

out of Hg

P
p out

Fg inmHg

144.99 Qout /mgout 54g
554

P
out

mjtg
Hg

mHg

Ptoluene = 30.08642 kW - Pg
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mtoluene = Ptouene / 144.99 kW/(kg/s)

Qinto toluene = 554 kW/(kg/s) 'ntoluene = Qout of Hg

Ptlg + toluene

Tcycle 

iHg (h- h2)

The rest of mass analysis C.3 - C.8 is the same as B.2 - B.7.
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Appendix D

D.1 Separated Flow Model for x < 0.88

Total Mass Flow = G Area = m
gas

+ mfluid GAx + GA (l-x)
fluid

G = Gx + G(1-x)

gas fluid

GxD
Re =

g jl
g

if Re g > 2000

Re 0.2
g

X =

0.2
Reff

&

GA(l-x) )2

GAx

Re cG(1-x)D
f , lf
Ref > 2000

Re f > 2000

PfPf

2 20 +1

f x 27x

if Re
g

> 2000

Re 0.2
g

2
X =

0.2
Re f

= 12

If Re < 2000

Re 1.0

2 =

R 0.2
Ref

& Ref < 2000

16

0.046
GA(I-x)/2

CGAx

Pg

Pf

1

x

& Ref > 2000

0.046 GA(l-x) 2

16 GAx

Pg

Pf
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f2 = 10 1

f x T

if Re <
g

2
x =

2000 &

Re 1.0
g

Ref

Ref < 2000
f

16 (GA(1-x) 2

16 GAx

2 = 5 1
f + + 

x 2

d
d p

2 phase

2 f G Vf
fo f

D

P

Pf

I)fo 2

f = frictional factor of all if the massflow were in fluid phasefo

2 2 2 .75= 2 ( - x)fo f

D.2. Homogeneous Flow Model for x > 0.88

1 x (l-x)
Assume -= + -

Pg 

2ff G2 vf 

fo 

-0.25
(Pfg)

+_ 2

~ 2

phase

It
fo

dp
dx

2
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D.3. f and g values of Jlg @ 963 K

Fluid (f) Vapor (g)

16.61 xlUO14.53

147.2 100.9

951. xlU(-70.7416 x10 3

1 1891 131 .509

0.07 513

Property

P g3)
m

0.5777Pr
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