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SIMULATING LIGHT-WATER-REACTOR START-UP TRANSIENTS USING A

POINT-KINETICS MODEL WITH A PRECALCULATED REACTIVITY-TABLE

by

S. A. PARRA

Submitted to the Department of Nuclear Engineering on
December 31, 1990 in partial fulfillment of the requirements
for the Degree of Master of Science in Nuclear Engineering

ABSTRACT

The objective of this research is to add a precalculated "reactivity-
worth table" into the QUANDRY code so that during any transient involving
control-rod motion, the correct reactivity can be inferred from this
reactivity table and used in the point-kinetics calculations, thereby.
reducing errors due to flux-shape changes.

Static criticality calculations corresponding to different control-rods
position expected during the transient are performed. A table of
reactivity versus control-rod positions is created and used during the
transient. However, the thermal-hydraulic feedback effects are still
calculated by the QUANDRY code. Therefore, the total reactivity at any
time during the transient is, according to the point-kinetics model, the
sum of the reactivity due to control-rod motion (read from the reactivity
table) and the reactivity due to the thermal-hydraulic feedback effects
computed by the code according to Perturbation Theory.

This new option in the point-kinetics model is then applied to a large
Pressurized Water Reactor start-up transient involving an external source
and thermal-hydraulic feedback effects. The results are compared with
the full space- and time-dependent results for the same transient.

This modified point-kinetics model is shown to be more accurate in
modeling a start-up transient than the unmodified perturbation theory
point-kinetics model. The modified model, however, predicts either a
lower or a higher final power depending on whether the initial or final
flux-shape is employed in defining the point-kinetics parameters.
Furthermore, it was found that the results depend on the weight functions
used to define the point-kinetics parameters. The results show that
using the final configuration of the reactor to define the weight
functions give very inaccurate results no matter which flux-shape is
used.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Accurate predictions of the spatial power distribution in large

nuclear reactor cores under transient conditions are essential to the

design, analysis, and safe operation of nuclear power plants. These

predictions require detailed knowledge of the neutron density (or flux)

as a function of space, energy, and time. This information can be

obtained by solving the time-dependent, multi-dimensional, few-group,

neutron diffusion equations. However, because of the complexity of

analyzing Light-Water Reactors (LWRs) and because of the high computing-

cost associated with the detailed numerical solution of these equations,

the nuclear industry still makes extensive use of the simplest model of

all, called the "point-kinetics model". This point-kinetics model

consists of a set of seven first-order differential equations which

depend only on time. Although formally exact in form, these equations

can be solved in practice only when certain simplifying assumptions

relative to the detailed neutron flux-shape and thermal-hydraulic

conditions of the reactor are made. In addition, they give only a global

picture of the reactor response to perturbations.

In the past ten years, "nodal methods" have emerged as an accurate

and efficient technique for predicting criticality as well as the

kinetics behavior of LWRs. Computer codes based on these coarse-mesh

methods and on diffusion theory have been written and validated by
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comparisons with fine-mesh finite-difference codes. One such nodal code

is the QUANDRY (QOuadratic Analytic Nodal Diffusion Theory) code which has

been developed at the Massachusetts Institute of Technology (MIT) [1].

The QUANDRY code solves the two-group, multi-dimensional, static and

transient diffusion equations as derived from the Analytical Nodal

Method. The availability of these nodal codes and of more efficient

digital computers make it possible today to compute at a reasonable cost

detailed space- and energy-dependent neutron distributions in a reactor

following predetermined perturbations from equilibrium conditions. This

detailed information can then be "averaged out" and compared with the

results of the point-kinetics calculations.

One reason for the continuing success of the point-kinetics model

is its simplicity. The model also has the attractive feature that all

the kinetic behavior is determined by a single variable: "reactivity".

The other integral quantities, namely the effc tive delayed-neutron

fractions and the neutron-prompt lifetime do not vary significantly with

time for most transients of interest. Therefore, for a given perturba-

tion, if the time-dependence of the reactivity is known exactly, solving

the point-kinetics equations will yield essentially the exact total power

versus time response of the reactor. This would be an "exact" point-

kinetics calculation. However, in practice, this is never the case since

the reactivity is never known exactly and must be approximated somehow.

Various procedures and methods are used to precompute values of the

reactivity corresponding to different reactor conditions. One of the

most common procedures used today is "Perturbation Theory". It consists

of computing the reactivity by using a single, constant flux-shape. The
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resultant "approximate" point-kinetics calculation is valid only in a

limited neighborhood around the initial equilibrium point.

An earlier study performed at MIT [2] has shown that the point-

kinetics calculations can lead to completely erroneous predictions when

applied to severe transients such as a reactor start-up. The main source

of error was identified as the poor estimation of the reactivity away

from equilibrium conditions where large flux-shape changes had occurred.

1.2 OBJECTIVE

The objective of the present investigation is to determine whether

simple point-kinetics calculations based on improved reactivity estimates

can reasonably approximate a Light-Water Reactor start-up transient. The

essential idea consists of using as input to the point-kinetics model a

precomputed table of 'reactivity versus control-rod position' to approxi-

mate the reactivity contribution of the moving control-rods. This

procedure is aimed at reducing the large errors which would inevitably

result if the reactivity were computed using a single, fixed flux-shape

[2]. First, a table of 'reactivity versus control-rod position' is

constructed from a series of steady-state, critical calculations using

the static module of the QUANDRY code. Then, the transient module of the

QUANDRY code is used to obtain: (i) reference solutions, (ii) "exact"

point-kinetics results, and (iii) "approximate" point-kinetics results

by the use of the precomputed reactivity table. In all cases, thermal-

hydraulic feedback effects on cross-sections are computed by the QUANDRY

code from three-dimensional temperature distribution calculations. In

the "approximate" point-kinetics case, however, the net reactivity at any
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time during the transient is formed by adding the reactivity due to the

thermal-hydraulic feedback and the reactivity inferred from the

'reactivity versus control-rod position' table.

1.3 SUMMARY

A simple procedure for approximating the time-dependence of the

total power of a LWR based on the point-kinetics model and on a

precomputed reactivity table has been outlined. This procedure is aimed

at improving the results of more-approximate point-kinetics calculations

without resorting to expensive computations. Comparisons will be made

with the full space- and time-dependent reference results from the

QUANDRY code.

In Chapter Two of this report, the main theoretical results which

form the basis of the computer code QUANDRY are presented. In particu-

lar, the point-kinetics parameters are defined. Chapter Three describes

how the table of 'reactivity versus control-rod position' is calculated

and how the QUANDRY code has been modified to incorporate such a table.

In Chapter Four, an application of this new code to a three-dimensional

LWR mode. and to a start-up transient is presented. Finally, a summary

of the investigation, conclusions about the modifications, and recommen-

dations for future research are given in Chapter Five.
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Chapter 2

QUANDRY THEORETICAL FRAMEWORK

2.1 INTRODUCTION

The QUANDRY code is a three-dimensional, two-group, Cartesian-

geometry, nodal diffusion code which was developed at the Massachusetts

Institute of Technology for the analysis of Light-Water Reactors [1].

The program is written in FORTRAN and contains two distinct modules: a

"static module" for steady-state calculations and a "transient module"

for time-dependent problems. The unknowns in the QUANDRY code are the

node-averaged, group fluxes and the directional group net-leakages in the

three-coordinate directions. In the case of steady-state, homogeneous

problems, the eigenvalue (keff) is an additional unknown. The geometry

and values for the homogeneous, nodal, group cross-sections, diffusion

constants, discontinuity factors [3], and external source are assumed

known. When feedback is considered, all thermal-hydraulic parameters and

feedback coefficients must also be provided.

The group fluxes and directional net-leakages are found by

simultaneously solving a "nodal balance equation" and three "coupling

equations". The nodal balance equation is obtained without approximation

by integrating the group diffusion equations over the volume of a given

node. It relates the group fluxes in that particular node to all three

directional, group net-leakages for that node. The coupling equations

are only approximate. Each one of them relates the u-directed (u = x,

y, z) group net-leakages for a given node to: (i) group fluxes for that
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node and its two nearest neighbors in the u-direction, and (ii) group

net-leakages for the node and its four nearest neighbors in the two

directions perpendicular to u. These coupling equations are derived from

one-dimensional, two-group, analytical calculations in which the trans-

verse-leakage term is approximated by a quadratic function [1].

For transient calculations, in addition to the node-averaged group

fluxes and directional group net-leakages, the node-averaged precursor

concentrations must also be calculated. Transients in the QUANDRY code

are initiated by either

- simulating a control rod motion,

- changing the inlet coolant temperature,

- changing the coolant flow-rate,

- or varying the magnitude of the external source,

from an initial steady-state condition.

The overall transient is divided into time intervals, each being

characterized by a fixed time-step size. Instantaneous values of the

point-kinetics parameters can be computed at every time-step assuming

that the weight functions appearing in the definition of the point-

kinetics parameters have been specified. These point-kinetics parameters

can be used in a quasi-static option in which shape calculations are

performed infrequently.

2.2 STATIC PROBLEMS

In the static module of the QUANDRY code, a three-level iterative

procedure is used to solve either a critical regular eigenvalue-problem,

an adjoint eigenvalue-problem, or a non-homogeneous external-source
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problem. In all three cases, thermal-hydraulic feedback can be included.

The iterative procedure used in the QUANDRY code consists of [2]:

- outer or "fission source term" iterations,

- at each outer iteration, inner iterations

based on a modified block Gauss-Seidel

Method,

- at each inner iteration, flux iterations

based on a block Successive Overrelaxation

Method (Cyclic Chebyshev Semi-Iterative

Method).

2.2.1 REGULAR EIGENVALUE-PROBLEM

Application of the Analytical Nodal Method to the three-dimension-

al, two-group, static diffusion equations leads to the following set of

nodal equations [1]:

[z ] ] + hh,[Lx] + hh,zL] + hyz] - [M [

- [F.] [1] + .] [Zy] - 1 [G] [L2] - []

- [Fy] G] - c-Gy] [x] + [] - [GX] [Z] - [01
hx z

- [F,] [I] - [G,] [,X] - - [G,] [L,] + [] - [0]

(1)

where the unknowns are: (i) the most positive value for the eigenvalue

(-ykeff), (ii) the corresponding everywhere positive node-averaged fluxes,

and (iii) the node-averaged, directional net-leakages. If the node-

averaged flux and directional net-leakage vectors,



E[] - [::.. ]

and

are combined into a supervector,

[] - col (] , [1.], [1], [y], ])

then Equation 1 can be rewritten in a condensed, supermatrix form as:

[HY] [P] - [] [(,

or

[HY] [f] - [0] (I

where

[HY] - [P] - [H,]

and with the following definitions:

[HY] 

[ t ] h h [I hxh[I] hhy[I]

- [Fx] [] - [G] - [Gx]X h ,
- [F] -- [G,] [I] - h[Gy]

- [F,] - [G] - 1 G] [I
hx hy,

4)

5)

6)

(7)

(8)

[M' [O] [O] [o]

p] - [o] [0] [0] [0]
[0] [0] [0] [0]
[0] [0] [0] [0]

(9)

18

[zU] - I. ; uxYZ

(2)

(3)
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CM] - (vi'J.kCX] vii'k]T}

where Vij 'k is the volume of node i,j,k;

[x] - I']

(v 2 @J~k - rvIEj'k]

[Z c] - {V'J'~[2 t 'k - s?.'] )

[;', k] _ [Sik o

Because the matrices [Fua] and [Gu]; u x, y, z, depend slightly on

the eigenvalue, the subscript 7 is included in [H7] and [H1]. In

addition, [Fu] and [Gu] are complicated functions of the cross-sections

and diffusion constants; therefore, they must be updated whenever

feedback effects are taken into consideration.

2.2.2 ADJOINT EIGENVALUE-PROBLEM

The static module of the original QUANDRY code has been modified

to calculate the node-averaged, adjoint fluxes and adjoint, directional

net-leakages for any reactor configuration. These adjoint fluxes and

net-leakages can be used as weight functions in the definition of the

point-kinetics parameters [4].

The adjoint form of the static, analytical, nodal diffusion



20

equations is readily obtained from Equation 5:

[H] T [?.] _ I [p]?[y] (10)

in which the most-positive eigenvalue is the same as in Equation 5.

Equation 10 can be rewritten in a form similar to Equation 6:

[H] T[(I] - 0] (11)

where

[]H T [p] T [H.]T (12)

The unknown adjoint supervector [*] is a column vector made up of node-

averaged, adjoint, group fluxes and adjoint, directional, group net-

leakages:

(F'] - col ( [*], [Z], ] , ]) (13)

The matrices [H7]T and [p]T are the transposes of [H.] and [P] as given

by Equations 8 and 9, respectively.

2.2.3 EXTERNAL-SOURCE PROBLEM

Another modification recently added to the static and transient

module of the QUANDRY code is the possibility of representing external

sources anywhere within the reactor core. This external source option

can be used to model local sources in a reactor for a start-up condition

or the (,n) reactions for a shut-down condition [5].

When external sources are taken into consideration, the analytical

nodal diffusion equations take on a form similar to Equation 1:

[Z ] [] + hh,[Z,] + hh,[Zy] + hy[z,] - [ [ ] + [D,]
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-F [tF] 3t, (G.]+ [H.] [D

- ([FY [] + [Y] ]- + - y [GY] [Z,] - [H,] []

- [F x] t+] 1 [G,] [] 1 [G] - [I [] ] - [H,] []

(14)

The external source terms can be grouped into a single supervector:

(Q] - col ([Dj , [ I ] [(HY , C H] [] , [H,] ) (15)
where

[· V- _ i [-, 0kl 

and where Q j,k is the external source at node i,j,k. The [Hu]; u = x,

y, z, matrices are complicated functions of the cross-sections and

diffusion constant similar to the [Fu] and [Gu] matrices. Using these

definitions, Equation 14 can be rewritten as:

[H1] [V] - [P] [?] + CQ] (16)

or equivalently,

(17)
(H1][7] + [Q] - [0] (17)

with

[H,] - [P] - [H,] (18)



22

The matrix [H1] is the same as the matrix [H7] in Equation 8 with

y set to 1.

2.3 TRANSIENT CASE

In the transient module of the QUANDRY code, a set of discretized,

time-dependent, nodal diffusion equations is solved. The details of the

temporal-discretization scheme is given in Reference [1]. At each time-

step, a spatial (flux-shape) calculation is performed using the same

iterative procedure as in the static case. Any transient calculation is

preceded by a static calculation, the results of which determine the

initial equilibrium conditions. As in the static case, thermal-hydraulic

feedback effects can be included in the calculations.

2.3.1 TIME-DEPENDENT PROBLEM

The time-dependent analytical nodal diffusion equations embodied

in the QUANDRY code are [1]:

( [M(t) ] - [I ( t)]) [ (t) ] - h [ZLx(t) ] - h.h [Ly (t) ]

- hhy[L,(t)] - p[M(t)] [(t)] + ,lXd[?d(t)]
d-1

+ [V(]t)] - [v]_- d [~ (t) 
dt

[Fx(t)I t) ] [( + )] [L+(t)] + 

+ [Gx(t)] [Z,(t)] + [H.(t)] [(t)] - [o]

[Fy(t)] [( t)] + 1-[Gy(t) [LX(t - [Ly()]

+ [y(t)] [,(t)] + [Hy(t)] [(t)] -[o]
hz
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[F,(t)] [ t)])l [G(t)] [() [(t)]hr hy

-[Z,(t)] + [H,(t)] [D(t)] -IO]
(19)

and

d [Md (t)] [( t) ] - d Zd (t) ] - d [d (t)] ;

d - 1, 2, 3...D

(20)

where several quantities are simply the time-dependent generalizations

of static quantities defined in the previous section. When no external

source is present, the matrices [Qv(t)] and [Q(t)] are zero. Moreover,

the matrix [M(t)] includes the eigenvalue which makes the source-free

reactor initially critical.

By defining the time-dependent supervector:

[(t)] - col([(c t I, [ [i(t)I [Zy(t)] [(t)]) (21)

Equations 19 and 20 can be rewritten in a supermatrix form as:

D
[H(t) [(t)] - [P(t)] [(t)] + d l[Cd )]

+ [Q(t)] - [V]- [(t)] (22)

and

P d[d(t)] [(t)] - Ad [d(t)] ' dt [d (t)] ;
d -1,2, 3, .. D

(23)

with the following definitions:

[Cd(t)] - col ([d(t)], [0], [0], [0]) (24)
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, j, k ( t)
[~(t)] - Vi t,k [ (= ; d - 1,2,3, ...

[V]- - diag(V, j ,k Iv] -'1)

[V] - ok viJ,

where vgij.k is the grouF-g neutron velocity for the composition inside

node i,j,k.

D

- Pd

(25)

[H(t) ] -

[Z (t)]

- [F{,(t)]

hh _[I]

[I]1 [Gx(t)]hy

hxhy [I]

-- [G (t)hz

[I] - 1 [Gy(t)]
h[ 

- [Fy(t)] - [G(t)]

- [Fz (t)] - [G,(t)]
hx

1- (G,(t) 
hy

[2 t( t) ] - {Vi j k [.i k( t) - i'k(t) ] }

[M(t) 

[0]
[P (t) ] 0

[0]
[o]

[M(t)] - Vi,, k [Xp ]

[0] [0] [0]]

[0] [0] [0]

[0] [0] [0]

[O] [01 [O]

1 [vZiJ,k(t) ]T)

Y

hhy [ I]

[I]

(26)

[H(t)] - P(t) - H(t)]
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[vz?.ifk(t)] - [vZit( t)
Lf £VF '(t) T}

[Md( t) ] - { V . j. k [X d] [ ,(t) T

In the QUANDRY code, the prompt- and delayed-neutron spectra are such

that:

Therefore,

[M(t)] - [Md(t)]

The eigenvalue () is absent whenever external sources are present.

In the transient case, the matrices [Fu(t)], [Gu(t)]; u - x, y, z,

and [H1(t)] have terms involving the "prompt and delayed frequencies"

defined as:

pg ~ At~~ [ ~J,kt) jCO'i,*(t ) _ t ln[. .(t,,t)n (28)

and

Ad ) k( t1 ) n i(t ) J|; d 1,2,3,...,D (29)

Because of these time-dependent frequencies, the [Fu(t)] and [Gu(t)]

matrices must be updated during any transient even if no thermal-

hydraulic feedback is considered.

Finally, the total neutronic power of the reactor is definea as:

P (t) - E .vi Fik ( t) ..k t) + zI (t) .k(t) .. ( t)] (30)i -- k rf
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where E is a conversion factor- approximately equal to 3.204 10-11

J/fission.

2.3.2 POINT-KINETICS PARAMETERS

The point-kinetics equations can be derived exactly without any

assumptions from the time-dependent nodal equations of the previous

section, Equations 22 and 23 [4]. The results are:

d D (31)
d ne ( t) nPf (t) + ; dCd(,,(t) + qeff(t) (31)
dt A (t)

and

dt Cd ( t) d n,,(t) - AdCd.,, (t) (32)

d -1,2,3,...,D

with the following definitions for the point-kinetics parameters:

- amplitude function

nff (t) [']T[V]-1[(t)] [1 (I T[ v] -1[(t)] (33)
K K

- reactivity

p(t) - [']T[H(t)l [(t)] (34)
[j]T[M(t)] [ (t)]

- prompt-neutron lifetime

A(t) - [i]T[ -1 [i( t)] (35)
[']TCM(t)] C((t)]

- effective delayed-neutron precursor concentrations

1 [(.]T[Cd(t)] . []TR[d(t)] ;
cd.- KK

d - 1,2,3, ... D
(36)
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- effective external source

q. f(t) - [y]T[Q(t)] (37)

and where K is a normalization constant taken to be equal to:

K - I% Vik i i k + 7J
k

Notice that the definition of the point-kinetics parameters depends

on the weight functions making up the supervector [*]. When weight

functions have been defined, the QUANDRY code computes all the point-

kinetics quantities from their defining equations (Equations 33 through

37) at every time-step. The weight functions are usually chosen as

either unity, the regular fluxes and net-leakages themselves, or the

adjoint quantities corresponding to a fixed particular configuration of

the reactor.

However, it can be shown that the expression for reactivity in

Equation 34 reduces to,

p 1- i (38)

where keff is the eigenvalue of the perturbed reactor, for any weight

function chosen [6]. This is an "Adiabatic Approximation" result which

is valid for any perturbation when Equation 25 is used to define the

perturbated reactor condition with the eigenvalue factored out of the

[M(t)] matrix.

2.3.3 QUASI-STATIC OPTION

The basis of the "quasi-static approximation" is the formal

separation of the flux into an amplitude function and a shape function.

The amplitude function is a function of time only, while the shape
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function is normalized in such a way that most of the time-dependence of

the flux is reflected in the amplitude function. In numerical calcula-

tions, such a splitting permits important computing time savings because

(expensive) shape updates can be performed much more infrequently than

(inexpensive) amplitude updates without introducing much error. This

option is the most recent addition to the transient module of the QUANDRY

code [2].

In addition to leading to significant computing-time reductions,

this option can also makes it possible to perform "point-kinetics-type"

calculations by suppressing all shape-updates. In such calculations, the

initial or final shape function is used throughout the entire transient.

In an earlier study [4], it was shown that the use of fairly large

time-steps resulted in erroneous values for the node-averaged fluxes and

power densities. It was confirmed that the error was due largely to the

amplitude part of the node-averaged fluxes which was poorly estimated.

On the contrary, despite the large time-steps, the shape part of the

fluxes displayed very little error for most transients of interest. To

correct for these errors in the amplitude function, an amplitude

correction scheme was incorporated into the QUANDRY code, which resulted

in a new quasi-static option [2].

The time-dependent node-averaged fluxes and directional net-

leakages can be expressed as the product of the amplitude function, as

defined in Equation 33, and a shape function such that [6]:

[(t) ] - nr,(t) [S(t) (39)
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Substituting Equation 33 into Equation 39 shows that the shape function

must satisfy the following normalization condition:

K- [] rT [ V] -1 S(t) ]

Therefore, even though the shape function, [S(t)], is time-dependent, the

integral quantity K is a constant, independent of time.

With the exception of very rapid transients, the variations in the

shape part of the flux are limited and occur on a much slower timle-scale

than the variations in the amplitude part. The quasi-static approxima-

tion takes advantage of this situation by utilizing different time-steps

for updating these two functions. Small time-steps are used to update

the amplitude function since this function is very sensitive to time.

On the other hand, large time-steps are used to update the shape

function. In the case of a point-kinetics type calculation, the shape

function is not updated at all and the initial or final shape function

is used throughout the transient.

In practice, the QUANDRY code does not deal explicitly with the

shape and amplitude functions, but instead (and equivalently) with the

total flux, net-leakages, and amplitude function. At every amplitude

time-step, all node-averaged fluxes and directional net-leakages are

multiplied by an amplitude correction-factor defined as:

((p)

°l*f (40)
n40)nfr
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where

nef (t) - Amplitude function computed by solving the point-

kinetics Equation 31.

nf (t) - Amplitude function computed by the QUANDRY code

using Equation 33.

"Corrected" fluxes and directional net-leakages are defined as:

[ °co (t)) -'"(! ( t) ] (41)

nf (t)

and

[Zcor(t) n] - ()[L(t) ; u -x, y, z
n¢S2 (9) M (42)

Because the prompt frequencies (Equation 28) depend on the node-averaged

group fluxes, they must also be corrected:

kcor(t) 1 [i J. k cor ( tn ,) (43)

Equations 41, 42, and 43 make it possible to advance the transient

calculation without recomputing the flux and net-leakage shapes at every

time-step Atn. In the limit where no shape update at all are performed,

the QUANDRY code operates in a "point-kinetics" mode.

2.4 SUMMARY

The main theoretical results of the QUANDRY code were presented in

this chapter. The important features of the code are the computation of

the point-kinetics parameters and the quasi-static option. These

features are used in Chapter Four in combination with a "precalculated

reactivity table" option presented in the next chapter.
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Chapter 3

THE NEW REACTIVITY TABLE OPTION IN THE QUANDRY CODE

3.1 INTRODUCTION

In an earlier study [2], the quasi-static option of the QUANDRY

code was used in a "point-kinetics" mode (no shape update) to assess the

validity of point-kinetics in describing a start-up transient. This

study showed, by comparisons with full space- and time-dependent

calculations, that point-kinetics can lead to completely erroneous

predictions for reactivity and total power. To improve these results

(without resorting to expensive space-kinetics calculations), it was

suggest [7] that the calculations be done by a hybrid "adiabatic" method

which attempts to account for the large flux-shape changes that occur

during such severe transients. In this hybrid method, the reactivity due

to the moving control-rods is read from a precalculated table of

'control-rod-worth versus control-rod position', whereas the reactivity

associated with thermal-hydraulic feedback effects is calculated by

"Perturbation Theory", i.e. by using a fixed flux-shape corresponding to

some reference control-rod position.

The idea behind this hybrid method is that if the reactivity

changes caused by the control-rods can be well approximated, then the

computed amplitude function should be very close to its true value.

However, evaluation of this method required modifications in the QUANDRY

code.
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3.2 THE NEW ALGORITHM OF THE QUANDRY TRANSIENT MODULE

The algorithm of the QUANDRY transient module is shown in Figure

1.

This algorithm has been modified to include an option to read a

precalculated 'reactivity versus time' table. The 'reactivity versus

control-rod position' table is converted into a 'reactivity versus time'

table by setting the rate of control-rods withdrawal from the reactor

core constant. The only modification performed to the transient module

was to add an interpolating routine (RODTAB) after step #5 in Figure 1.

This subroutine returns at every time-step the reactivity due to the

control-rods from the precalculated table. All cross-section changes

reflecting moving control-rods are suppressed. Cross-sections now vary

only because of thermal-hydraulic feedback effects. Figure 2 shows the

new algorithm.
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1. g(tn), L(tn), Cd(tn), Tfuet(tn), Tcoolant(tn), Pcoolant(tn), and p(tn),

A(tn) e(n, nf(ttn), Cd (tn) are known at time t n.

2. Take time-step Atn and advance to time tl. Modify:

a) cross-sections CE(t.) because of input perturbation and

feedback.

b) external source Q(t), if time-dependent.

3. Update the matrices (if required).

4. Use 9 (tn), L (tn), Eg(tn+l), Q(tl+ 1), and the matrices to compute

the new fluxes 9g(t+l) and net-leakages Lg (tnl).
U

5. Use g(t+l), Lg (t+x), Eg(t.+l), Q(t.n+), and the matrices to

calculate the point-kinetics parameters p(tl+), A(tn.),
(Q)

qeff(tn+l), and neff(tn+z) from their definitions.

6. Use p(tn), A(tn), qeff(t), neff(tn), cd ff(tn), and p(tn+l),

(PK)
A(tn+), qeff(tn+l) to compute neff (tn+l) by solving the point-

kinetics equations.

7. Compute the amplitude correction factor,

n,, (tn. 1)

and multiply all fluxes g(tn+l) and net-leakages L (tn+l) by this
U

factor.

Figure 1. The Original Algorithm of the QUANDRY Transient Module [1].
(continued on the next page)
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(PK)8. Set neff(tn+,l) - neff (tn+l).

9. Compute Cd(tn+l) from Cd(tn), -g(tn), and the corrected fluxes

a(tn+l )
10. Calculate the Cd (tn+l)'s from their definitions.

11. Compute TueL(tn+l) and TcooLant(tn+l) from -g(t+l), and infer

Pcooant(tn+l)

12. Compute AEs(t+l) to account for temperature and density effects,

and return to step #1.

Figure 1. The Original Algorithm of the QUANDRY Transient Module [1].
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1. Og(tn), Lo (tn), Cd(tn), Tfu(tn) Tj(nt(t), pcotant(t), and P(tn),

A(tn) qeff(tn), neff(tn)I Cd (tn) are known at time t n.

2. Take time-step Atn and advance to time tl. Modify:

a) cross-sections _g(tn) because of feedback.

b) external source Q(tn), if time-dependent.

3. Update the matrices (if required).

4. Use g(tn), L (tn), CE(tnl), Q(tnl), and the matrices to compute

the new fluxes g(tnrl) and net-leakages L9 (ti).

5. Use 9g(tn+l), Lg (tn+,), Eg(tn+,), Q(n+), and the matrices to

calculate the point-kinetics parameters PFe(tn+l), A(tn+1),

(Q)
qeff(tn+l), and neff(tn+l) from their definitions. PFB(tn+l) is due to

thermal-hydraulic feedback only, hence, the subscript 'FB'.

6. Use the precalculated reactivity table to find pCR(tnl) by interpo-

lation. pCR(tn+l) is the reactivity due to the moving control-rods

only, hence, the subscript 'CR'. Compute p(tn+l) - FB(tn+l) +

PCR(tn+l) 

7. Use p(tn), A(t), qeff(t), neff(tn), cd ff(tn), and p(tn+l),

(PK)
A(tn+), qeff(t+l) to compute neff (t,+l) by solving the point-

kinetics equations.

Figure 2. The Modified Algorithm of the QUANDRY Transient Module.
(continued on the next page).
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8. Compute the amplitude correction factor,

n (rtl
nf (ta1)

and multiply all fluxes g(t+l) and net-leakages L9 (t+l) by this
u

factor.

(PK)
9. Set neff(tn+l) - nff (tg.+).

10. Compute Cd(tn+l) from Cd(t,), g(tn), and the corrected fluxes

b,(t+l).

11. Calculate the Cd eff(tl)'s from their definitions.

12. Compute Tfue(t+l) and Tcooant(tn+l) from g (tn+l), and infer

Pcootant(tn+l) ·

13. Compute A(t+ 1 ) to account for temperature and density effects,

and return to step #1.

Figure 2. The Modified Algorithm of the QUANDRY Transient Module.
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3.3 MODIFICATIONS IN THE QUANDRY CODE

The new algorithm described in the previous section was implemented

in the QUANDRY code in the form of two subroutines: INPUTR and RODTAB.

3.3.1 SUBROUTINE INPUTR

Subroutine INPUTR contains the precalculated 'reactivity versus

time' table in the form of a one-dimensional array. An example of such

a routine is given in Appendix A.

This subroutine is called only once at the first time-step (tno)

in the transient module.

3.3.2 SUBROUTINE RODTAB

Subroutine RODTAB calculates the reactivity by interpolation in the

array returned by subroutine INPUTR. This interpolation program is based

on Neville's Algorithm [8]. Neville's Algorithm uses a Lagrange's

polynomial interpolation-type scheme; however, it has the advantage of

computing an error estimate of the interpolation. A listing of the

subroutine RODTAB is given in Appendix B.

This subroutine is called immediately after subroutine PKPAR which

computes values for all point-kinetics quantities. However, subroutine

RODTAB is called only at specific time-steps which correspond to actual

motion of the control-rods during a transient.

3.4 TESTING OF TH2 REACTIVITY TABLE OPTION

The new reactivity table option in the QUANDRY code has been tested

by applying it to a simulated start-up transient in a three-dimensional

LWR model. This transient displays external-source effects, rapid power
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rise, flux-shape changes, and thermal-hydraulic feedback effects. This

transient is described below and will be used again in the applications

of Chapter Four.

3.4.1 DESCRIPTION OF THE REACTOR-CORE MODEL

The Light Water Reactor used is a representation of the Salem-1

Pressurized Water Reactor core. The core is a three-dimensional model

of the Salem-1 reactor core with an approximate height of 3.60 meters and

3.20 meters in diameter. This core is reflected on all sides, axially

and radially. The quarter-core, nominal, thermal power is P - 834.5 106

W, the coolant inlet-temperature is TinLet cooLant - 555 K - 282 'C, and the

mass flow-rate is 3.868 106 g -1l. Because of symmetry in the core, only

one quadrant of the core is modeled. This quarter core is subdivided

into 18 horizontal planes for a total of 1458 nodes of equal size: 21.6

cm x 21.6 cm x 20.0 cm. A more complete description of the core model

is given in Appendix C.

3.4.2 DESCRIPTION OF THE START-UP TRANSIENT

The initial configuration of the reactor core corresponds to a sub-

critical core containing soluble poison with all control-rods fully

inserted in the "hot standby" condition (where the temperature and

pressure correspond to full power operating condition of the reactor).

An external start-up source is introduced in the bottom plane, central

axis, (node #1 of the model). The magnitude of this external source is

Q - 5.502236 108 neutrons cm -3 s-l, which gives an initial equilibrium

power of Po - 83.45 W or 10-7 Pminl.

The transient consists in simulating a fast power rise to full
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power, critical conditions from t - 0 s to t - 400 s, see Table 1. The

first part of the transient is the simulation of a fast (non-realistic)

boron dilution by reduction of the group-two absorption cross-sections

in all nodes (except those representing control assemblies because of

technical restrictions within the QUANDRY code). This occurs during the

first 120 s of the transient.

The second part of the transient represents control-rods withdrawal

at a constant rate of 2 cm s-1 from t - 120 s to t - 200 s and is

simulated by decreasing the group-two absorption cross-sections in

compositions #16 through 23 successively (see Appendix C). When the new

reactivity table option is used, the QUANDRY code skips this second part

of the transient. Instead, the group-two absorption cross-sections

corresponding to the rodded nodes remain unaltered and the reactivity

representing control-rods withdrawal is added to the system using the

'reactivity versus control-rod position' table.

In the third part of the transient, control-rod motion stops

temporarily, from t - 200 s to t - 300 s. When the reactor power reaches

a high enough value, thermal-hydraulic feedback become significant and

limit further power increase.

Finally, in the fourth step, control-rods withdrawal resumes at a

constant rate of 2 cm s- 1 until all control rods have been fully withdrawn

from the reactor core, t - 300 s to t - 400 s. If the reactivity table

option is used, this last part is also skipped. Fission cross-sections

are divided beforehand by a factor of 1.058371 so that the final

configuration of the reactor at t - 400 s corresponds to a reactor that

is exactly critical at the specified total power level of 834.5 106 W.
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Table 1. A Time Description of the Light-Water Reactor Start-Up
Transient.

TIME SCALE (s) TYPE OF TRANSIENT

Beginning of Transient
Power - 83.45 W
Reactivity* - -1.04756 10-1

0 "Hot" standby condition
Boron present, all control-
rods fully inserted

Boron Dilution
0 TO 120 In all nodes except the

rodded nodes #16 through 33

Control Rods Withdrawal
120 TO 200 Rate: 2 cm s - 1

In nodes #16 through 23

No Action
200 TO 300 Thermal-hydraulic feedback

becomes significant

Control Rods Withdrawal
300 TO 400 Rate: 2 cm s-1

in nodes #24 through 33

End of Transient
Power - 834.5 106 W

400 Reactivity - 0
No Boron, all control-rods
fully withdrawn

* Depends on the weight function used to define it.

3.4.3 COMPUTED INITIAL POINT-KINETICS PARAMETERS

The weight functions used to compute the point-kinetics parameters

are adjoint fluxes and net-leakages corresponding to the (artificially-

critical) configuration of the core at t - 120 s (all control-rods fully

inserted and no boron present). The reactor is made exactly critical by
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dividing all fission cross-sections by the eigenvalue, keff, obtained from

a source-free static calculation.

The initial values of the point-kin:etics parameters computed by

using these weight functions are:

Po - -1.04756 10-1

AO - 2.61910 10- 5 s

neff - 4.28201 100 cm-3

0

qeff - 1.71267 104 cm-3 s-l
0

Cdeff - 3.44261 103 , d-l
eff 0

7.73087 103 , d-2

1.88091 103 , d-3

1.50571 103 , d-4

1.05194 102 d-5

7.72985 100 , d-6

with

p - 0.0065

for this reactor.

3.4.4 TEST RESULTS

The numerical parameters selected for the tests are:

Of - 1.0

8 - 0.5

Error reduction in fluxes: e - 0.001

Three inner iterations per time-iteration

Matrix-updating at every time-iteration

Diagonal-symmetry option selected [1]
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and for the point-kinetics calculations:

8n - 1.0

-c - 0.5

eq - 1.0 [4]

A simple test is performed to validate the new reactivity table

option in the QUANDRY code. The test consists in using for the

reactivity table the "exact" values from the reference space- and time-

dependent calculation. In addition to validating the new option in the

code, this test will give a precise idea of how closely the power

trajectory can be predicted if one is able to precompute a "perfect"

reactivity table.

Figure 3 shows the reactivity as a function of time from the

reference QUANDRY calculation and from the interpolating routine. Since

the reference reactivity itself is used in the table, the curves are

identical (to within small interpolation-errors), as expected.

Figure 4 shows the normalized amplitude function as computed from

this reactivity table using Equations 31 and 32. Also shown is the

reference curve for comparisons. Since the prompt-neutron lifetime, A,

in Equations 31 and 32 does not vary significantly during the transient,

it is not surprising that the point-kinetics result agree very closely

with the reference result.

Figure 5 compares the point-kinetics and reference normalized power

as a function of time (Equation 30). A sizeable discrepancy appears

between the two curves. This difference can be explained by flux-shape

changes which are not accounted for in the point-kinetics case (constant

shape). No matter how accurately the reactivity is known, the reactor
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power (as computed by Equation 30) will generally be in error if a

constant flux-shape is used throughout a transient involving flux-shape

variations.

3.5 SUMMARY

A new reactivity table option has been incorporated into the

transient module of the QUANDRY code. It is to be used whenever QUANDRY

is run in a "point-kinetics" mode. The table is normally constructed

from static calculations corresponding to reactor conditions expected at

certain times during the transient under study. However, to validate

this new option, the "exact" reactivity profile from a reference

calculation was used for this table. Consistent results were obtained.

In Chapter Four, applications of this new option to a Light-Water

Reactor are presented. The results are compared with a reference space-

and time-dependent solution.
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Chapter 4

APPLICATION: POINT-KINETICS VERSUS SPACE-KINETICS

4.1 INTRODUCTION

Today, the nuclear power industry still relies extensively on the

point-kinetics calculations to predict a Light-Water Reactor transient

response. Therefore, it is of interest to compare the point-kinetics

results with the results of more accurate space- and time-dependent

calculations to see whether large discrepancies exist between them.

An earlier study demonstrated that in the case of a LWR start-up

transient, the point-kinetics calculations compare rather poorly with the

space- and time-dependent calculations [2]. In particular, the

reactivity as computed from Equation 34 was seriously in error. The main

cause of error was found to be the inability of the point-kinetics to

deal with the severe flux-shape changes that occurred during a start-up

transient.

On the other hand, if the correct reactivity versus time profile

were known, the results of the point-kinetics calculations could be

improved significantly as demonstrated by the test of the previous

chapter. This motivates the idea of using a precomputed reactivity table

rather than calculating the reactivity using Equation 34. This procedure

is often used in practice.
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4.2 GENERATING THE REACTIVITY TABLE

In this research, the precalculated reactivity table is produced

from the "Adiabatic Approximation Theory" [6]. However, no thermal-

hydraulic feedback effects are included so that the reactivity table

accounts only for control-rod effects. The reactor model used is the

same as in Chapter Three Section Four, the Salem-l Pressurized Water

Reactor. The procedure employed to generate the reactivity table is

given below.

First, an eigenvalue-problem is solved to determine the value of

7 in Equation 1 that will make the reactor exactly critical at the end

of the transient (no boron, control rods fully withdrawn, full power).

This eigenvalue for the Salem-1 model reactor was computed to be

--kff - 1.058371

and is used to divide all the homogeneous, node-averaged fission cross-

sections.

Next, a number of static eigenvalue-calculations are performed with

the control-rods in different positions within the reactor core. The

reactor conditions correspond to full power, "hot standby" (operating

temperature and pressure) conditions. Thermal-hydraulic feedback effects

are excluded from these calculations. From the computed eigenvalues, a

table of 'reactivity versus control-rod position' is constructed using

Equation 38 (see Table 2). These calculations were performed at full

power and found to be (to five significant figures) power independent.

Finally, the final position corresponding to all control rods out (360

cm) gives a reactivity of 1.37264 10-2. When thermal-hydraulic feedback

effects are considered, they add -1.37264 10-2 of feedback reactivity to
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Reactivity Worth of the Control-Rods versus Control-Rod
Position.

CONTROL-ROD POSITION (cm) REACTIVITY

0 - ALL RODS INSERTED - 1.86878 10-2

20 - 1.86276 10-2

40 - 1.82104 10-2

60 - 1.62666 10-2

80 - 1.12207 10-2

100 - 5.52142 10-3

120 - 9.12547 10-4

140 2.57379 10-3

160 5.20343 10-3

180 7.21282 10-3

200 8.77339 10-3

220 1.00054 10-2

240 1.09917 10-2

260 1.17899 10-2

280 1.24387 10-2

300 1.29603 10-2

320 1.33600 10-2

340 1.36210 10-2

360 - ALL RODS WITHDRAWN 1.37264 10-2

Table 2.
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give a net reactivity equal to zero at the end of the transient.

A plot of reactivity versus control-rod position is shown in Figure

6, displaying the familiar S-shape curve.

Furthermore, from the knowledge of the control-rod positions and

rate of removal from the reactor core (see Section 3.4.2), the 'reacti-

vity versus position' table can be converted into a 'reactivity versus

time' table. For this particular start-up transient, the control-rods

are withdrawn at a constant rate of 2 cm s-l. Table 3 shows the

corresponding converted 'reactivity versus time' table. This table is

inserted into subroutine INPUTR in the transient module of the QUANDRY

code.



0.

0

R 0.
E
A
C
T 0.
I

V
I

T
y -0.

W

0
R -0.
T
H

--0.

-0.

-0.

CONTROL-ROD POSITION FROM THE BOTTOM OF THE CORE (cm)

Figure 6. Control-Rod Reactivity-Worth versus Control-Rod Position.

51



52

Table 3. Reactivity Worth of the Control-Rods versus Time during the
Start-Up Transient.

TIME (s) REACTIVITY

120 - 1.86878 10-2

130 - 1.86276 10-2

140 - 1.82104 10-2

150 - 1.62666 10-2

160 - 1.12207 10-2

170 - 5.52142 10-3

180 - 9.12547 10-4

190 2.57379 10-3

200 and 300 5.20343 10 - 3

310 7.21282 10-3

320 8.77339 10-3

330 1.00054 10-2

340 1.09917 10-2

350 1.17899 10-2

360 1.24387 10-2

370 1.29603 10-2

380 1.33600 10-2

390 1.36210 10-2

400 1.37264 10-2
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4.3 INITIAL FLUX-SHAPE RESULTS

Two different sets of weight functions are employed in the

computation of the point-kinetics parameters. The first set are the

adjoint fluxes and net-leakages corresponding to the initial reactor

configuration (at t - 0 s, with boron and all control-rods fully

inserted). The second set are made up of adjoint quantities correspond-

ing to be the final reactor configuration (at t - 400 s, no boron present

and all control rods fully withdrawn). In the point-kinetics runs,

either the initial flux-shape (t - 0 s) or the final flux-shape (t - 400

s) are used.

When the point-kinetics models are ran with the initial flux-shape

option, they will first do a QUANDRY (t - 0 s condition) calculation to

find the initial flux-shape and use this initial flux-shape throughout

a transient [2]. Therefore, the reference (QUANDRY) and the point-

kinetics models initial reactivity value, when using the initial flux-

shape, are the same. Furthermore since the point-kinetics models use the

initial flux-shape from QUANDRY, the reactivity values for the initial

and final adjoint weighting will not be equal. This is due to the

dependency of the initial QUANDRY flux-shape on the weight functions.

For each set of adjoint weight functions, the QUANDRY (full space-

and time-dependent reference) results are plotted together in the same

figure with two different types of point-kinetics models. The first

point-kinetics model utilizes an amplitude correction scheme with the

reactivity computed by Equation 34 throughout the transient. The second

type of point-kinetics model utilizes the same amplitude correction

scheme but now uses a precalculated reactivity table to infer the
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reactivity due to control-rod motion. The initial shape of the flux is

used in the point-kinetics calculations. For easy reference to the

graphs, the figure numbers for each graph are summarized in Table 4.

Table 4. Figure Reference for the Results of the Point-Kinetics Calcula-
tions using the Initial Flux-Shape.

Notice that all of the reference plots have a cusp-like behavior.

This non-physical cusping phenomenon is due to technical restrictions

within the QUANDRY code. QUANDRY simulates control-rod motion by

homogeneously varying the nodal cross-sections when control-rods are

withdrawn or inserted in the nodes. Spatial variations of the cross-

sections within a node can not be simulated.

Figures 7 and 8 reveal that the reactivity results for the point-

kinetics calculations are different from the reference results. The

amount of the difference depends on which adjoint weighting functions are

used. This adjoint weighting dependency can be observed immediately in

Initial Adjoint Final Adjoint
Weighting Weighting

Reactivity
vs Figure 7. Figure 8.
Time

Normalized
Normalized Figure 9. Figure 10.Amplitude

vs
Time

Normalized
Power Figure 11. Figure 12.
vs
Time
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the first part of the transient corresponding to the boron dilution.

When the initial adJoint is used, the perturbation expression or

reactivity is accurate and both point-kinetics models are close to the

reference (Figure 7). With the final adjoint weighting (Figure 8), this

is no longer the case.

Most important, Figure 7 shows that the point-kinetics model

predicts criticality much earlier than the reference results while the

point-kinetics model utilizing the reactivity table predicts criticality

much later. On the other hand, the point-kinetics model utilizing the

reactivity table simulates the control-rod withdrawal at t - 300 s much

better than the regular point-kinetics model.

On the contrary, Figure 8 shows that the point-kinetics model

utilizing the reactivity table does not even go critical when the final

configuration of the reactor core is used to generate the adjoint weight

functions needed to compute the reactivity. This is because the final

weight functions give an initial reactivity at time t - 120 s ( no boron,

but all control-rods fully inserted) of -7.5686 10-1. However, the total

reactivity worth of the control-rods was found to be 3.24142 10-2.

Therefore, the control-rods do not have enough reactivity worth to bring

the reactor to a critical condition.

Furthermore, the normalized amplitude and power versus time plots

are also in error. Since the reactivity is wrong, there is no reason

to expect that the amplitude or the power will be correct. However, when

the initial adjoint weighting functions are employed, the point-kinetics

model utilizing the reactivity table simulates the amplitude and power

much better than the regular point-kinetics (See Figures 9 and 11). On
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the contrary, when the final adjoint weight functions are used, the

amplitude and power are wrong throughout the transient (See Figures 10

and 12).

Notice that the amplitude and the power plots (Figure 9 with 11,

and Figure 10 with 12) are similar to each other. This similarity is due

to the power being proportional to the amplitude function according to

the following relationship,

P(t) ['.lrkI(t)]t [ (t) ] - [Zi'*J(t)] [s] n.,(t)

Since the shape function is constant for the point-kinetics model and

since the variation is small, they both behave the same.

4.4 FINAL FLUX-SHAPE RESULTS

In order to achieve the same results as the reference case at the

end of the transient, the shape of the fluxes and net-leakages corre-

sponding to the final critical configuration of the reactor are now used

in the point-kinetics calculations. By using this final shape, the

point-kinetics calculations will be forced toward the correct final

conditions of the transient. As before, the initial and final adjoint

weight functions are used for comparison.

Since the QUANDRY code does not deal with flux-shapes explicitly,

the final node-averaged fluxes and directional net-leakages are recorded

in a binary file by running an eigenvalue-problem corresponding to the

static case of the final critical configuration of the reactor core.

These fluxes and net-leakages must be rescaled because the amplitude

function corresponds to the final critical condition (full power, end of

transient) of the reactor. Therefore, it must be rescaled to confirm
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with the initial critical condition (initial power, beginning of

transient) of the reactor.

The amplitude function within these final fluxes and net-leakages

are rescaled in two parts at the beginning of the transient. First,

these fluxes and net-leakages are multiplying by a factor of

0.993891 10-7. This lowers the magnitude of the amplitude function from

the final critical condition to the initial critical condition of the

reactor to give an initial power level of P - 83.45 W or 10- 7 Pminat

This scaling factor is not exactly equal to 10 - 7 because of thermal-

hydraulic feedback effects on the fission cross-sections caused by going

from cold to hot reactor conditions and vice versa. Secondly, they are

multiplied by a factor of,

(pR)
eo

n ()

to attain the initial condition. This scaling factor will start the

point-kinetics models using the correct amplitude function corresponding

to the point-kinetics calculations instead of the amplitude function

computed by QUANDRY. These initial amplitude functions are found by,

n(pO) o qOf
- Po from UANDRY using Equation 33

nlpo- Calculated from QUANDRY using Equation 33
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Since the point-kinetics parameters depend on the adjoint weight

functions, the initial point-kinetics amplitude function, thus the

scaling factors, will be different for each weight function employed.

As a result, the scaling factors are:

- Initial Adjoint Weighting

Scaling Factor - 0.2632907 * 0.9938916 10
- 7

- Final Adjoint Weighting

Scaling Factor - 0.4661142 * 0.9938916 10- 7

Since the final flux-shape is being used and the initial amplitude

function is corrected, the initial power level will not be equal to

83.45 W- 10-7 Pnminat. Thus, the corresponding values for the initial

equilibrium thermal power of the reactor are:

- Initial Adjoint Weighting

Po - 0.2632907 * 83.45 - 21.97 W

- Final Adjoint Weighting

Po - 0.4661142 * 83.45 - 38.90 W

The figure numbers for each graph corresponding to the final flux-shapes

are summarized in Table 5.

Even with the final shape being employed, the results are still

inaccurate compared to the reference solutions. Nevertheless, these

results revel some interesting information.

For example, the point-kinetics model utilizing the reactivity

table simulates the reference reactivity much better than the regular

point-kinetics model when the initial adjoint weight function is used,

(See Figure 13). However, Figure 14 demonstrates that using the final

adjoint weight function is not acceptable for the same reason given
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Table 5. Figure Reference for the Results of the Point-Kinetics Calcula-
tions using the Final Flux-Shape.

before: the reactivity worth of the control-rods provided by the table

is not sufficient to make the reactor go critical.

Figure 13 also displays the error associated with using the final

flux-shape at the beginning of the transient. The reactivity for the

point-kinetics models and the reference during the boron dilution

transient are not the same because the final flux-shape does not

correspond to the actual flux-shape of the reactor initially.

With initial adjoint weighting, the point-kinetics model utilizing

the reactivity table gives the better representation of the total power

and amplitude of the reactor, although there are still significant

errors. This can be seen in Figures 15 and 17.

Initial Adjoint Final Adjoint
Weighting Weighting

Reactivity
vs Figure 13. Figure 14.
Time

Normalized
Normalized Figure 15. Figure 16.
Amplitude

vs
Time

Normalized
Power Figure 17. Figure 18.
vs
Time
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4.5 COMPUTING-TIME REQUIREMENTS

It was found in an earlier study [2], that the reference space- and

time-dependent calculations could represent a start-up transient very

closely by using large time-steps without introducing any major errors.

Large time-steps (At - 1 sec) compared to the dynamics of the transient.

Therefore, all QUANDRY (reference) results were obtained using these

large time-steps. For the point-kinetics models, since the goal is to

achieve accurate results in the least amount of time, large time-steps

where also used (At - 1 sec).

All calculations are performed on a DIGITAL/MicroVAX III computer.

The total computing-time required for each type of calculation are given

in Table 6.

Table 6. Total CPU-Time Requirements.

Both point-kinetics models required less computing-time than the

QUANDRY (reference) calculation when using the same time-steps. The

reason being that reference calculation performed full flux-shape update

calculations at every time-step while the point-kinetics models used a

constant flux-shape throughout the transient. Unfortunately, the point-

kinetics models took over an hour to run because they both utilized

CPU-TIME

QUANDRY (reference) 1 hr 56 min 21 sec

Point-Kinetics Model 1 hr 08 min 19 sec

Point-Kinetics with a 1 hr 07 min 20 sec

Reactivity Table Option
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QUANDRY's thermal-hydraulic feedback subroutines.

Furthermore, the point-kinetics model using a reactivity table

required less computing-time than the regular point-kinetics model. This

small savings in computing-time is expected because the reactivity is

read from a table instead of being computed from Equation 34 during a

control-rod transient.

4.6 SUMMARY

The results obtain from these calculations show that the point-

kinetics results are in error compared to the reference results, even

when a precalculated reactivity table is used. Various attempts to

improve the point-kinetics results by using different adjoint weighting

and flux-shapes were unsuccessful. This leads to one conclusion, the use

of a single flux-shape throughout a start-up transient is not sufficient

to describe the transient.

The recommendations for future research and the main summaries of

this research are given in Chapter Five.
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Chapter 5

CONCLUSION

5.1 SUMMARY OF THE MODIFICATIONS

A new reactivity table option has been created for the QUANDRY

code. This option requires that a table of 'reactivity versus control-

rod position' be produced either by static calculations or by some other

method before running a transient calculation. This table makes it

possible to use the QUANDRY code in a point-kinetics mode where, at any

time-step, the net reactivity is formed by combining the tabulated value

with a feedback value computed from a fixed flux-shape. This net

reactivity is then used in the point-kinetics equations to infer a new

value for the amplitude function. As a result, a combination of this

amplitude function with the fixed shape function give the updated fluxes

and net-leakages.

This new option was incorporated into the QUANDRY transient module

with minimum modifications. These simple modifications were made to

preserve the computing efficiency of the program as much as possible.

5.2 SUMMARY OF THE INVESTIGATIONS

The results of an application of this new option to a start-up

transient are significantly better than if the net reactivity had been

calculated directly by the perturbation formula during the transient.

However, the results still compared poorly with the reference (space- and

time-dependent) calculations which take into account external source
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effects, flux-shape variations, and thermal-hydraulic feedback effects.

Therefore, further modifications of the point-kinetics model are needed

to predict accurately a LWR start-up transient.

The results of the point-kinetics model also showed that using the

final configuration of the reactor core as the adjoint weight functions

gave very inaccurate results. Therefore, the use of the final adjoint

weight functions to define the point-kinetics parameters during a start-

up transient should be avoided.

For transients consisting of a small change in the flux-shape, the

point-kinetics results appear to be correct. On the contrary, as the

flux-shape starts to change considerably, the point-kinetics results are

no longer valid. However, it is very difficult to determine exactly were

the point-kinetics model fails with respect to flux-shape changes.

Therefore, further research in this area is needed to determine exactly

were the point-kinetics utilizing a constant flux-shape are valid.

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH

One of the assumptions used in generating the precalculated

reactivity table was that the reactor is initially in a "hot standby"

condition. As a result, the reactivity table was calculated using the

operating temperature and pressure of the reactor. However, in most

start-up transients the reactor is in a "cold condition" corresponding

to ambient temperature and pressure. Therefore, the temperature

dependence on the reactivity table should be investigated.

Another area of research that should be investigated is the idea

of precalculating the total reactivity of the reactor at certain times



76

during the transient. This total reactivity would include contributions

due to boron dilution, control-rods motion, and thermal-hydraulic

feedback effects instead of using a hybrid "adiabatic" method employed

in this research. The precalculated total reactivity table would now

consist of a two-dimensional table were the point-kinetics model would

interpolate the reactivity table to find the correct reactivity

corresponding to a given time and power level.

This method would minimize any errors due to flux-shape variations

in the net reactivity of the reactor. Furthermore, since the reactivity

would be the correct reactivity corresponding to a particular time and

(steady-state) power level during a transient, the point-kinetics results

should be more accurate.

Finally, the results clearly demonstrated that the start-up

transient can not be correctly simulated by the use of a single constant

flux-shape throughout the transient. Therefore, research should be

performed to add an option in the point-kinetics model where the shape

function is recalculated whenever there is a large power change in the

reactor. For example, a simple method would be to start using the

initial shape function at the beginning of the transient and switch over

to the final shape function somewhere during the transient. This change

in the shape function can be triggered by the rise in the power level.
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APPENDIX A.

SUBROUTINE INPUTR

This subroutine contains the input variables used in the subroutine
RODTAB. The input variables are reactivity as a function of time in the
form of a one-dimensional array. This was accomplished by assuming that
the control rods are being withdrawn at a constant rate of 2 cm/sec from
the reactor core.

Definition of Variables:

XA - Independent tabulated time variable
YA - Dependent tabulated reactivity variable such

that YA(J) - Function(XA(j))

Subroutine INPUTR(XA,YA)

Real XA, YA

Dimension XA(20), YA(20)

C Time - 120 seconds
XA(1) - 120
YA(1) - -1.86878 E-02

C Time - 130 seconds
XA(2) - 130
YA(2) - -1.86276 E-02

C Time - 140 seconds
XA(3) - 140
YA(3) - -1.82104 E-02

C Time - 150 seconds
XA(4) - 150
YA(4) - -1.62666 E-02

C Time - 160 seconds
XA(5) - 160
YA(5) - -1.12207 E-02

C Time - 170 seconds
XA(6) - 170
YA(6) - -5.52142 E-03

C Time - 180 seconds
XA(7) - 180
YA(7) - -9.12547 E-04

C Time - 190 seconds
XA(8) - 190
YA(8) - 2.57379 E-03
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C Time - 200 seconds
XA(9) - 200
YA(9) - 5.20343 E-03

C Time - 300 seconds
XA(10) - 300
YA(10) - 5.20343 E-03

C Time - 310 seconds
XA(11) - 310
YA(11) - 7.21282 E-03

C Time - 320 seconds
XA(12) - 320
YA(12) - 8.77339 E-03

C Time - 330 seconds
XA(13) - 330
YA(13) - 1.00054 E-02

C Time - 340 seconds
XA(14) - 340
YA(14) - 1.09917 E-02

C Time - 350 seconds
XA(15) - 350
YA(15) - 1.17899 E-02

C Time - 360 seconds
XA(16) - 360
YA(16) - 1.24387 E-02

C Time - 370 seconds
XA(17) - 370
YA(17) - 1.29603 E-02

C Time - 380 seconds
XA(18) - 380
YA(18) - 1.33600 E-02

C Time - 390 seconds
XA(19) - 390
YA(19) - 1.36210 E-02

C Time - 400 seconds
XA(20) - 400
YA(20) - 1.37264 E-02

Return

End
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APPENDIX B.

SUBROUTINE RODTAB

Given arrays XA and YA, each of length N, and given a value X, this
subroutine returns a value Y. If P(x) is a polynomial of degree N - 1
such that P(XA i) - YAi, where i-l,...,N, then the returned value is Y -
P(X). This polynomial interpolation is based on Neville's Algorithm [8].

Definition of Variables:

XA - Independent tabulated time variable
YA - Dependent tabulated reactivity variable such

that YA(j) - Function(XA(j))
X - Given time value
Y - Reactivity value found from array time

interpolation
DY - Error estimate based on interpolation

Subroutine RODTAB(XA,YA,N,X,Y)

Real XA, YA, X, Y, DY, DIF, DIFT, HO, HP, W, DEN, C, D

Integer NS, N, M, I

Parameter (NMAX - 20)

Dimension XA(N), YA(N), C(NMAX), D(NMAX)

C N - Array length

NS -

DIF - ABS(X - XA(1))

C Find the index NS of the closest table value

DO 10 I - 1, N
DIFT - ABS(X - XA(I))
IF (DIFT .LT. DIF) THEN

NS - I
DIF - DIFT

END IF

C Initialize the table of C's and D's, the C's and D's
C are the corrections which make the Neville's Algorithm
C one order higher
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C(I) - YA(I)
D(I) - YA(I)

10 CONTINUE

C Initial approximation for Y

Y - YA(NS)
NS - NS - 1

C Find the correct value for Y

DO 30 M - 1, N - 1

DO 20 I - 1, N - M
HO - XA(I) - X

8 HP - XA(I + M) -X
W - C(I + 1) - D(I)
DEN - HO - HP

C Update the C's and D's

DEN - W / DEN
D(I) - HP * DEN
C(I) - HO * DEN

20 CONTINUE

C Decide which correction factor, C or D, to add to
C the value of Y

IF (2 * NS .LT. N - M) THEN
DY - C(NS + 1)

ELSE
DY - D(NS)

NS - NS - 1
END IF

Y - Y + DY

30 CONTINUE

RETURN

END
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APPENDIX C.

DESCRIPTION OF THE SALET-1 MODEL REACTOR CORE

I. GEOMETRY
This is

of the core.
contains 1458

a three-dimensional representation of the first quadrant
There is quarter-core symmetry. The quarter-core model
nodes of equal sizes: 21.6 cm x 21.6 cm x 20.0 cm, with

18 nodes in the vertical direction.

1. X-Y CROSS SECTION IN THE BOTTOM (Z-O) PLANE (1/4 CORE)

183.5 cm
y

ax

8x

F. [u]

10 10 10 10 12 13 13 13 13

7 7 5 5 11 10 12 13 13

16 9 1 8 5 6 11 15 13

3 1 4 1 4 1 6 14 13

16 4 1 3 16 4 5 11 15

4 1 4 2 3 1 8 5 14

1 4 16 4 1 4 1 5 14

4 1 4 1 4 1 9 7 14

16 4 1 4 16 3 16 7 14

0 183.5

I[Jul

2

cm
0 "/

ay

- fauj,
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2. X-Z CROSS-SECTION IN THE BOTTOM (Y-O) PLANE.

360. 0' cm
z

.o. [~u]

33 4 1 4 33 3 33 7 10

32 4 1 4 32 5 32 7 10

31 4 1 4 31 3 31 7 10

30 4 1 4 30 3 30 7 10

19 4 1 4 19 3 19 7 10

18 4 1 4 18 3 18 7 10

17 4 1 4 17 3 17 7 10

16 4 1 4 16 3 16 7 10

- [auJ] [Ju

/

183.5 cm

et I[ -[ [au I (Jul -,
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II. HATERIAL PROPERTIES

Comp. Group - D E Vf E 9

g (cm) (cm-l) (cm-) (cm-l)

1 1.3648 0.008887 0.005550 0.01724
1 2 0.4826 0.130772 0.185823 0.0

1 1.3603 0.009661 0.006267_ 0.015942
2 2 0.4776 0.169403 0.229T195 0.0

1 1.3596 0.009957 0.006267 5.015398
3 2 0.4798 -0.181915 0.230W258 0.0

1 . 1.3592 0.010104 0.006269 T--.015128
4 2 0.4810 0.1878426 0.230923 .0

1 1.3594 0.009509 0.006890 0.016386
5 2 0.4673 0.169073 0.264760 0.0 

1 1.35898 0.009692 0.006890 0.016049
6 2 0.46853 0.176288 0.265397 0.0

1 1.35890 0.009730 0.006890 O.015981
7 2 0.46875 0.177654 0.26552 0.0

1 1.3576 0.010252 0.006892 0.015022
8 2 0.4728 0.200287 0.2677778 0.0

1 1.3572 0.010399 0.006894 0.014752
9 2 0.4740 0.206951 0.268552 0.0

1 1.4957 0.002683 ' 0.0 0.022923
10, 14 2 0.3637 0.051595 0.0 0.0

1 1.3933 0.003541 0.0 0 .017943
11 2 0 .3659 0.068149 0.0 0.0

1 1.6701 0.001220 - 0.0 0.031408
12, 15 2 ' .3621 0.039330 0.0 0.0

1 1.7446 0.005960 0.0 0.03502
13 2 0.3614 0.034208 0.0 0.0

Comp. # Group D a vf Eg.g
g (cm) (cm-1) (cM-1) (cm-1)

16 to 33 1 1.321964 0.013482 0.005567 0.015178
(rodded

case) 2 0.486196 0.211003 0.194976 0.0

16 to 33 1 1.321964 0.013482 0.005567 0.015178
(unrodded

case) 2 0.486196 0.101003 0.194976 0.0



v - 2.5

Xp - 1.0
1

Xp - 0o.o0

fl - f2 - 1.0
v- 1.25 

v, - 1.25 107 cm s-1

vz - 2.50 lOs cm s - 1

u - x, y, z

for all compositions

III. ALBEDO-TYPE BOUNDARY CONDITIONS

[@ 11 ia2[J1
1,1*2 [a21 a2JJ2

IV. DELAYED-NEUTRON DATA

Xd 1.0

Xd -0.0
2

P - 0.00650
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Boundary l 11 l2 a21 a22

Axial 4.011 0.0 2.805 8.993

Radial 2.0 0.0 0.0 2.0

Family Pd Ad
d (S

- 1 )

1 0.000247 0.0127

2 0.0013845 0.0317

3 0.001222 0.115

4 0.0026455 0.311

5 0.000832 1.40

6 0.000169 3.87
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V. THERMAL-HYDRAULIC DATA AND FEEDBACK COEFFICIENTS

1. THERMAL-HYDRAULIC DATA

Specific beat of the
fuel

Specific heat of the
coolant

Density of the fuel

Initial mass flow rate

Film coefficient at the
initial flow rate

Conductivity/conduction
length of the fuel
clad

Surface area of clad/
volume of coolant

Volume fraction of the
coolant

Fuel reference
temperature

Coolant density
temperature

Coolant reference
temperature

Inlet temperature of
the coolant

Fraction of fission
energy released
in the coolant

Coolant pressure

Partial of density times
enthalpy with
respect to the

coolant temperature

Energy conversion factor

- 2.460 106 erg g-1 K-1

- 5.430

- 1.030

- 3.868

107

106

erg g-1 K-1

g cm-3

g s-1

- 3.293 107 erg cm-2 s-' K -1

- 2.200 106 erg cm -2 s- 1 K-1

- 3.097 10° cm-1

- 5.420 10-1

- 5.330 102 K

- 7.975 10-1 g cm-3

- 5.330 102 K

- 5.550 102 K

- 2.600

- 1.551

- 1.600

- 3.204

10-2

107 Pa

107 erg cm-3 K -1

10-11 J/fission
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2. FEEDBACK COEFFICIENTS

A. For compositions # 1 through 9 and 16 through 33

- fuel temperature

a i -- 6.6 10'4 cm-1K'-

a -- 2.6 10- cm-lK-1

a2 D%

a EC - 33 1 c' 1 K 1

a1T,'

o --3.8 10-' cm'lK-'

a 21 - -8.5 10- e cm'lK l

a
aT S,

aTVt ,
82" ' f

- -1.0 10'6 cm'K-

--2.5 10-' cm"K 1

- coolant temperature

a 1
aTd D

1
aTc D2

-- 8.0 10-' cm-'K

- 1.3 10-3 CM-1K-1
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a IA - 3.0 10-l cm-XK - '

a Z - -8.2 10' cm-lK-
aT "i

a T21 - -1.5 10-' cm-'K'-

a Ef - -8.3 10'- cm-'K'
'ST a

a vI -2.075 10-5 cm-'K-l

B. For node compositions # 10 through 15

- fuel temperature

8 1 -- 6.6 10-6 cm'-K'-
aT' D1

a8 --2.6 10-6 cm'lK '1

aT' D,

aC , - 3.3 10-7 cm-lK '

i, E - -3.8 10-7 cm'lK-'

a z21 - -8.5 10-8 cm'2K ' l

cIT 1
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- coolant temperature

a 1 -- 8.0 10-' cm-lK'1
aTC D

a 1 -- 1.3 10 -3 cm-'K -'
OTC D2

aC, 3.0 10 - c-'K-'

da - -8.2 10' cm'-K'
aTc ie

a 21 -1.5 10'6 cm-'K '1
aTC


