
Solving The Long Haul Crew Pairing Problem
by

Rajesh Gopalakrishna Shenoi

B.Tech., Indian Institute of Technology,
Madras (1991)

Submitted to the Department of Civil and Environmental
Engineering

in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE
in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1994

(1994 Massachusetts Institute of Technology
All rights reserved

Author
Department of Civil and Environmental Engineering

December 31,1993

Certified by.. ..r, - ./. -..
Cynthia Barnhart

Assistant Professor of Civil and Environmental Engineering

I C
Thesis Supervisor

J

Accepted by *. -. . - - -· V~~~y~v x~ ...
Joseph Sussman

hairm -n TPnq.rf. mpntfl1 (]nmmiftt.A nan Crali.tp. Stllrlpntf.`--W. . ~i, .

FRCOM

91+R~~tP~it's-:e', x,,

IV L~~V V U~ UU LV VL L~U

Solving The Long Haul Crew Pairing Problem

by

Rajesh Gopalakrishna Shenoi

Submitted to the Department of Civil and Environmental Engineering
on December 31,1993, in partial fulfillment of the

requirements for the degrees of
MASTER OF SCIENCE

in Transportation

Abstract
A crew pairing is a sequence of flights, beginning and ending at the same crew base,
that satisfies numerous Federal Aviation Administration and contractual require-
ments. The crew pairing problem, an integral part of the planning process in the
airline industry, involves the construction of a set of valid crew pairings that assign
a crew to every flight and minimize total costs. This problem is formulated as a
set covering problem, and is solved using a branch and bound framework in which
bounds are provided by solving a linear program at each node of the branch and
bound tree. The LP relaxation is solved using a column generation algorithm. We
modify the conventional column generation algorithm by embedding within it a dual
ascent heuristic that speeds up the convergence of the column generation algorithm
and provides lower bounds on the optimal solution value. The dual ascent bounds
are used together with a bounding scheme based on Farley's method (1990). The
solution method is tested in a case study using data provided by a long-haul airline.
The results show that early termination of column generation is possible using the
bounds generated by the dual ascent heuristic and Farley's bounding scheme, giving
solutions that are close to the optimal LP solution value and reducing overall solution
time.

Thesis Supervisor: Cynthia Barnhart
Title: Assistant Professor of Civil and Environmental Engineering

2

Acknowledgments

I take this opportunity to thank Prof. Cynthia Barnhart for being a wonderful advisor,

a good friend, and a constant source of inspiration in my research.

I wish to thank Prof. Ellis Johnson, Pam Vance, Ram Pandit, Steve Querido, and

Lloyd Clarke of Georgia Institute of Technology, and Daeki Kim, Ching-Ju Juan,

Rajiv Lochan, Yuting Kuo and Yusin Lee whose ideas and comments were very useful

in providing me with research directions.

I wish to thank Andras Farkas, Adriana Bernardino, Amalia Polydoropoulou, Qi

Yang, Rabi Mishalani and all other members of 5-008 whose coffee breaks were things

to remember.

I would like to thank Salal Humair, Amjad Shahbazker, Antulio Richetta, and all the

1.00 teaching assistangs who made teaching a fun thing to do.

I wish to thank Mark Hickman, Theodore Botimer, Rick Halvorsen, Scott Freedman,

Oh Kyoung Kwon, Bill Cowart, Dan Turk and Hans Klein for being very cooperative

officemates.

I wish to thank Dinesh Gopinath, Ashok Kalidas, Anil Mukundan, Nagaraja "Hash"

Harshdeep, Nageshwara Rao, Ravi Sundaram, Prodyut Dutt and all my other friends

whose friendship and support made my life in this country very pleasant and enjoy-

able.

I wish to thank my parents, my brother, my sister, and Ana Laplaza for their en-

couragement and unconditional support. Some drafts of this thesis were printed on

recycled paper.

3

Contents

Title Page 1

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Figures 4

List of Tables 4

1 Introduction 9

1.1 Motivation . 9

1.2 Overall View of the Airline Problem 10

1.3 Focus and Outline of Thesis 14

2 The Crew Pairing Problem Definition & Formulation 15

2.1 Introduction 15

2.2 Definitions 15

2.2.1 Long Haul, Medium Haul, and Short Haul Crew Pairing Problems 18

2.3 Problem Definition and Formulation 20

2.3.1 Pairing Cost Structure 21

2.3.2 Problem Formulation 22

2.3.3 Problem Formulation with Deadheading 23

4

2.3.4 Formulation Drawback 24

3 Review of Relevant Methodologies and Literature 26

3.1 Heuristics for the Crew Pairing Problem 26

3.2 Branch and Bound 27

3.2.1 Example of Branch and Bound 28

3.3 Column Generation 31

3.3.1 The Principle of Column Generation 31

3.3.2 An Example of Column Generation 33

3.3.3 Applications of Column Generation 36

3.4 Shortest Path Problems 36

3.4.1 The Column Generation Subproblem as a Shortest Path Problem 37

3.4.2 Literature Review 40

3.5 Large Scale Integer Programs and Column Generation 48

3.5.1 Challenges 49

3.5.2 Airline Crew Pairing Optimization 51

3.5.3 Other Applications 53

4 Dual Ascent Heuristics 57

4.1 Motivation 57

4.2 Dual Ascent Heuristics - Literature Review 58

4.3 The DACG Heuristic 60

4.3.1 Geometric Interpretation of DACG 63

4.4 IDACG - Interior Point DACG 64

4.5 Results on Randomly Generated Problems 66

5 Solving the Crew Pairing Problem 69

5.1 LP Solution to the CPP 69

5.1.1 IDACG for the Crew Pairing Problem 70

5.1.2 IDACG for CPP - Efficiency and Other Issues 72

5.1.3 Termination of LP solution using Farley's Bound 73

5

5.1.4 LP for CPP - Implementation Issues

5.2 IP Solution to CPP

5.2.1 The Black Box Strategy.

5.2.2 Follow-on Fix Strategy

5.2.3 IP - Efficiency Issues

6 A Case Study

6.1 Introduction

6.2 Data used in the Case Study

6.3 Solution of Small Problems

6.4 LP Solution of Large Problems

6.4.1 Solution Strategies

6.4.2 Solving to LP optimality

6.4.3 Solving with Termination Criterion

6.4.4 Conclusions

6.5 IP Solution of Large Problems

6.5.1 Preprocessing the Constraint Matrix

6.5.2 Comparison of Various IP methods

6.5.3 Conclusions

81

.......... . .81

.......... . .82

.......... . .83

.......... . .84

.......... . .85

.......... . .86

.......... . .89

. 94

.......... . .97

.......... . .97

.......... . .98

........... .101
7 Further Work

A Problem Parameters

B Typical Rest Rules for Long Haul Carriers

B.1 Definitions

B.2 Rules of Rest

102

104

105

105

106

6

76

77

79

80

80

......................

...........

...........

...........

I . .

. . .

. . .

. . .

. . .

. . .

List of Figures

1-1 Overall View of the Problem - A Schematic Diagram

2-1 Hierarchial View of Pairings, Duty Periods and Flights

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

Branch and Bound Logic

(Partial) Branch and Bound Example .

Column Generation Example Network

A Time-Line Network of Flights

A Shortest Path Subproblem

Simple Unconstrained Shortest Paths .

Bi-Criterion Shortest Paths

Constrained Shortest Paths

4-1 Geometric Interpretation of DACG

4-2 Geometric Interpretation of IDACG

5-1 Column Generation for Crew Pairing Optimization

5-2 LP Solution Procedure for CPP

7

12

16

............. . .29

......30

. 33

............. ..38

............. . .40

............. ..42

.43

............. ..46
64

66

70

78

List of Tables

1.1 US Domestic Major Airline Costs - % Breakdown 11

2.1 Number of Duties and Pairings as Functions of Flights - Short Haul . 19

2.2 Rest Required After Flying a Duty Period 21

2.3 A Typical Crew Pairing Constraint Matrix 23

2.4 An Infeasible Problem 24

3.1 The Master Problem 34

3.2 The Restricted Master Problem 34

4.1 Overall Comparison of Heuristics - Density = 100% 67

6.1 Case Study Data Characteristics 84

6.2 Performance of Small Problems. 84

6.3 Performance of DAS3 87

6.4 Overall LP results 90

6.5 Analysis of Time Consumption in Conventional CG 90

6.6 Proportion of Iterations to Reach Primal Optimality 91

6.7 Results for Termination Criterion 1 93

6.8 Results for Termination Criterion 2 95

6.9 Results of Data Preprocessing for IP 98

6.10 Percentage Integrality of Optimal LP Solutions 100

6.11 Performance of IP methods 100

8

Chapter 1

Introduction

1.1 Motivation

Edwin McDowell(1993) reports that "Delta, which lost about $540 million last year

on $1.78 billion in revenue, has trimmed its work force 7.7 percent .,. since June

1992 ... The carrier also recently offered early retirement to 3,000 of its remaining

73,400 employees." He further states that Delta will layoff as many as 600 pilots

in the next few months, with these being the first layoffs since 1957. Additionally,

American Airlines is considering laying off hundreds of employees by the end of 1993

in order to trim the 1994 budgets by about 10 percent. AMR corporation, parent

of American Airlines, has lost more than $1.4 billion in the last three years, and the

airline industry has lost $10 billion in the same period (McDowell,1993). In another

recent article, Prof. Stephen Solomon(1993) describes the problems that the AMR

corporation has been undergoing for the last few years. Robert Crandall, the CEO of

American Airlines, spent $20 billion in the 1980's to increase the market share of the

airline in the domestic market from 14.4% to 20.4%. But Crandall's growth plan failed

and the massive spending has not brought in the expected profits. In the last decade,

fare wars have driven down the prices of tickets by over 20% (adjusted for inflation).

In fact, in a recent price war (McDowell,1993b), the nation's airlines temporarily cut

fares by upto 45% on domestic flights. Moreover, new low-cost regional carriers are

entering the market each year and many of the competitors of American have made

9

serious cost cuts while still in bankruptcy.

The airline industry is facing a serious financial crisis and low revenues have forced

all airlines to review their strategies and cut costs as much as possible. To understand

how this can be done, consider the breakdown of the airline industry operating costs.

Table 1.1 gives a list of major airline operating costs for 5 different years from 1970

to 1992 (Simpson and Belobaba,1993). For the years 1970 through 1985, crew costs

(the sum of pilot and cabin crew costs) is the second highest flight operating cost

in the airline industry, next only to fuel costs. In 1992, the crew costs (14.4%) are

higher than the fuel costs(12.9%). (Some data was not available for the years of 1970

and 1975.)

Consider, for example, that the annual crew costs at American Airlines are about

$1.3 billion (Anbil, et a1.,1991). A lower bound on total crew costs can be expressed as

a function of the flying time of all flights flown by the airline. (It is not sure whether

this bound can ever be achieved.) Currently, American Airlines has achieved solutions

which are about 3% higher than this bound. Reducing this gap to 2% implies savings

of about $13 million a year for American Airlines. Thus, even minor improvements

can cause huge savings in operating costs. This provides the main motivation for this

thesis.

1.2 Overall View of the Airline Problem

The overall airline problem of operating and managing passenger transport is too

complex and large to be modeled in a single practicable formulation. Elce(1970)

states that the planning process is complicated by the large number of variables. He

suggests that it is quite difficult to suggest a single technique that can be applied to

simultaneously achieve the multiplicity of goals. Airlines usually manage this problem

by breaking it up into a multi-stage process. Many of the stages seen below are by

themselves highly intractable and would thus render a single-stage solution of the

overall problem impossible given the current state of technology. Thus, a tradeoff

10

% Operating costs (by year)

A Flight Operating Costs (FOC)
Fuel Costs
Pilots Costs
Direct Engine costs
Indirect (Burden)
Depreciation
Rentals
Insurance (hull)
Total FOC

B Ground Operating Costs (GOC)
Traffic servicing
Aircraft servicing
Service administration
Commisions
Reservations & sales
Total GOC

C System Operating Costs (SOC)
Cabin Crew Costs
Meals
Advertising
General & Administrative
Ground Equipment
Other
Total SOC

Total Operating Costs

1970 1975 1980 1985 1992

12.5 17.9 29.8 21.8 12.9
13.0 11.9 11.1 10.7 9.7
7.7 6.6 4.8 4.9 6.1
6.3 5.1 3.9 3.3 4.0
8.8 6.3 4.0 4.7 5.1
2.8 2.3 1.0 1.2 7.8
0.5 0.3 0.1 0.3 0.4

52.4 51.0 55.6 47.4 50.4

8.7 9.0 8.0 9.4 10.1
8.0 7.4 5.9 5.9 6.1
1.1 1.0 8.0 1.1 1.0

2.5 3.4 4.8 7.8 7.6
6.6 5.6 5.5 7.7 6.7

26.9 26.4 25.1 31.9 30.7

- - 5.0 3.9 4.7
- - 4.4 3.4 3.5

2.5 1.9 1.8 2.3 1.2
4.5 4.2 3.2 4.2 3.7
3.2 3.0 3.5 1.8 2.8
- - 1.2 1.8 1.2

20.7 22.6 19.3 20.7 18.9

100.0 100.0 100.0 100.0 100.0

Table 1.1: US Domestic Major Airline Costs - % Breakdown

11

-Typ e of c st

Evaluate Market Demand

Assign Fleets to Flights

Optimize Crew Schedules

Figure 1-1: Overall View of the Problem - A Schematic Diagram

is made between optimality 1 and ease of computation. Computational difficulty is

lessened by breaking down the overall problem into many phases. These phases are

shown schematically in figure 1-1 and are typically as follows.

1. Firstly, market demand must be determined. This demand should be calculated

for every two cities between which the airline wishes to fly. The methods used to

calculate this demand can be found in Ben-Akiva and Lerman(1985). Elce(1970)

states that forecasts are made by extrapolating historical trends and making

modifications according to various assumptions.

2. The market demand forecasts are then used in designing flight schedules and air-

craft routes. At this stage, the flights to be flown with their respective departure

and arrival times are determined. No decisions are made about the fleet types,

1Hara and Koyama(1973) suggest a definition for optimality. They state that optimum is achieved
when profits are maximized as a whole utilizing existing resources as much as possible under various
existing restrictions.

12

Determine Flight Schedule

Generate & Assign Bidlines

- -

i

-

l¥

sizes and assignments. Elce(1970), Hall(1989), and Balakrishnan, et al.(1990)

suggest alternate methods for designing routes and schedules. Balakrishnan, et

al., in particular, formulate the problem as a mixed-integer program and solve it

using a Lagrangian based solution technique that exploits the special structure

of the program.

3. Next, fleet sizing and assignment decisions are made. Fleet assignment involves

the decision of what type of plane flies each flight (Elce,1970;Belgray,1970 and

Abara,1988) and fleet sizing involves determining the number of aircraft of

each fleet type. Agard (1970), Rapley(1975), Konig(1976), Girard(1973), and

Subramanian, et al.(1993) suggest various methods to model and solve the fleet

assignment problem.

4. The next step is to determine optimal crew pairings, i.e., optimal assignments

of crews to scheduled flights. It is assumed that each crew can be assigned

to only one kind of aircraft, that is, to one fleet type. So each aircraft fleet

type is considered separately in determining crew assignments. A thorough

description of this problem and a review of relevant literature are presented in

later chapters.

5. Using the crew pairings generated in the previous step, the final step involves

the generation of bidlines (Jones,1989). A bidline is a set of pairings that will

be flown by one crew and represents the work to be done by the crew during

the planning horizon. The final assignment of bidlines to crews is determined

in part by seniority. A big difference between crew-pairing optimization and

bid-line generation on one hand and fleet assignment and sizing on the other

is that decisions about the fleet are often long term while decisions about crew

schedules can be made in the short run.

Before closing this section, it should be mentioned that the above list of prob-

lems provides only a narrow view of the challenges faced by airlines. There are,

in fact, many other interesting problems in the industry. For example, Vasquez-

Marquez(1991) has implemented and developed a network-optimization based system

13

to help reduce delays imposed by air traffic control, Teodorovic and Guberinic(1984)

have shown how a new routing and scheduling plan for an airline fleet can be ob-

tained in case of a delay in flight schedule, and Richetta and Odoni(1992,1993) solve

the ground holding problem in air traffic control.

1.3 Focus and Outline of Thesis

This thesis studies the optimization of crew pairing problems. The problem is an

intractible one and hence, special methods are developed for its solution. Various

implementations of the solution techniques are tested empirically in a case study.

The crew pairing problem is formally defined in chapter 2. Alternate mathematical

programming formulations for this problem and their relative merits are also discussed

in this chapter. Chapter 3 presents the methodology that is used to solve similar

large scale problems and presents relevant literature. Chapter 4 describes dual ascent

heuristics that can be used to speed up the solution process. Chapter 5 presents

our solution method for the crew pairing problem. Implementation issues are also

detailed. Chapter 6 details a case study in which typical long haul carrier problems

are solved and analyzed using the techniques presented. Chapter 7 presents further

work.

14

Chapter 2

The Crew Pairing Problem

Definition & Formulation

2.1 Introduction

This chapter introduces the crew pairing problem and provides some basic definitions.

The difference between long-haul and short-haul problems is presented; the crew pair-

ing problem is illustrated with examples; and finally, the crew pairing mathematical

program is formulated.

2.2 Definitions

Before proceeding, some of the terms commonly encountered in the crew scheduling

literature are presented(Minoux,1984;Rannou,1986).

1. Flight Segment: the smallest flight element between two successive stops, also

called a flight leg.

2. Duty Period: a set of one or more flight segments assembled according to

contractual rules, sometimes referred to as a flight service.

3. Crew Base: the city where the crew is domiciled, also called the crew domi-

cile.

15

L

D5

D3
: A flight in Duty period 3

D3 : Duty Period 3

Figure 2-1: Hierarchial View of Pairings, Duty Periods and Flights

16

D3

4. Crew Pairing (CP): a sequence of flight services with the first flight beginning

and the last flight ending at the same crew base, sometimes referred to as a crew

rotation.

5. Time-Away-From-Base (TAFB): the total duration of a pairing, that is,

the elapsed time from departure to return of the crew, also referred to as the

absence time.

6. Overnight: the time interval separating two successive duty periods in a crew

pairing, also referred to as the stop time.

7. Rest Time: the idle time at a crew base after the last duty period in the crew

pairing.

8. Deadhead: a flight segment used to position a crew from one station to an-

other, the crew is transported on that flight segment as passengers.

9. Brief Time: the time taken to brief the crew before the first flight in a duty

period.

10. Report Time: the time that the crew should report for briefing.

11. Debrief Time: the time taken by the crew for debriefing.

12. Release Time: the time the crew can leave for rest.

13. Flying Time: the total duration of a schedule spent in flying. It does not

include the brief and debrief times.

14. Minimum Connect Time: the minimum time interval between two successive

flight segments belonging to the same duty period.

15. Maximum Sit Time: the maximum time that a crew is allowed to wait on

the ground between flights at a city other than the crew domicile.

16. Maximum Pairing Length: the maximum length of a valid pairing.

17

Typical values for some of these parameters in long haul problems are given in ap-

pendix A.

Example 1 Figure 2-1 gives a diagrammatic view of the hierarchy of pairings, duty

periods and flight segments (Ball and Roberts,1985). All the arcs in the figure repre-

sent flight segments. Each flight is given a number eg. D, D2 etc. All flights with

the same number belong to a single duty period. Thus, duty periods D1 through D6

contain 4, 3, 4, 4, 2 and 2 flights respectively. A crew pairing is a set of flights that

start from the crew base (domicile) and end at the same crew base. There are two

pairings shown in the figure. Pairing contains 3 duty periods and 10 flights. Pairing

2 contains the same number of duty periods but only 8 flights.

An interesting thing to note is that different terms are used to describe similar

activities in other crew scheduling applications. For example, in the transit crew

scheduling problem (Desrochers and Soumis,1989), a vehicle block is defined as a bus

trip starting and ending at the depot. A block is divided by relief points. A task is

that portion of a block between two consecutive relief points. A piece of work is one

or more consecutive tasks performed by a driver. A workday consists of one or more

pieces of work executed by the same driver.

2.2.1 Long Haul, Medium Haul, and Short Haul Crew Pair-

ing Problems

Airline crew pairing problems are classified as either long haul, medium haul or short

haul. Long haul problems usually deal with international flights. In long haul prob-

lems, pairings are as long as 12 to 15 days (Barnhart, et al.,1991), while short haul

problems (also called domestic problems) involve short flights, usually within the

country, and pairing lengths are usually between 2 and 4 days (Rannou,1986). For

example, in the work done by Vance(1993), the maximum pairing length for American

Airlines' domestic problem is 3 days. Most other crew pairing problems, i.e., those

classified as medium haul problems, have maximum pairing lengths between those of

long haul and short haul problems. For example, Odier, et al.(1983) solves a medium

18

Table 2.1: Number of Duties and Pairings as Functions of Flights - Short Haul

haul problem in which the pairing length is kept close to 6 days but is not allowed to

exceed 6 days.

In addition to maximum pairing length, several differences exist between short

and long haul problems. One big difference is that, unlike long haul problems, the

number of duty periods in domestic short haul problems combinatorially explodes as

a function of the number of flights. Table 2.1 (Vance,1993) shows how the number of

duty periods for short haul problems increases as a function of the number of flights.

This explosion in size may make it difficult in short haul problems to even simply

generate all possible duty periods. In long haul problems however, generation of all

the duty periods is not problematic since, as reported by Barnhart, et al.(1991), the

number of duty periods may be about twice the number of flights.

The two main reasons for this explosion in problem size in the domestic crew

pairing problem are:

1. The flight network in the domestic short haul case is a hub and spoke network,

while the long haul network is a point to point network. A hub is a central air-

port where a lot of flights land at about the same time and allow passengers to

disembark. The planes that have landed depart together taking the passengers

to their respective destinations. Due to the hub and spoke nature of the domes-

tic network, a flight coming into a hub can connect with many other flights to

form duty periods. Thus, many feasible duty periods are possible. Long haul

flight networks on the other hand are typically relatively sparse and thus, the

number of possible duty periods is relatively small.

2. The second reason is that many domestic flights are short in length. This implies

19

Number of Flights Number of Duty Periods Number of Pairings
144 1795 93,851
174 2716 467,671
202 3203 1,878,614
253 4865 5,833,004

that several flights can be linked together to form a legal duty period. Long

haul flights on the other hand are usually quite long and thus, the number of

flights allowed in a duty period is quite restricted.

Finally, short haul and long haul problems have distinguishing properties that

make long haul problems more amenable to efficient solution procedures. For example,

an assumption made about pairing cost allows the use of a simple shortest path

algorithm to generate pairings for long haul problems.

2.3 Problem Definition and Formulation

Barnhart, et al.(1991) defines the crew pairing problem as "the construction of a set

of valid crew pairings allowing an assignment of crews to pairings such that total costs

are minimized, every flight is covered by one crew, and every crew is assigned to at

most one pairing at any point in time". The pairings should be valid pairings, i.e.

they should satisfy rules governing the definition of legal duty and rest periods. As

an example, a sampling of the rules that apply to the domestic operations of one U.S.

airline are (Vance,1993):

1. A single pilot cannot fly more than eight hours in any twenty four hour period.

This is often referred to as the "8 in 24" rule.

2. The elapsed time of a duty period cannot be more than ten hours and the total

flying time of a duty period cannot be more than 8 hours.

3. A pilot can change or swap planes, within a duty period, only a limited number

of times. The maximum number of swaps is fixed at one.

4. Given the elapsed and flying time of a duty period, there is a minimum amount

of rest requried for the pilot after the duty period, where the hours of rest must

be consecutive. The rest required is given by the table 2.2.

The rules for rest in the long haul problem are similar. The required rest increases

with the length of the duty period. Single flight duty periods typically require short

20

Elapsed Time l Minimum rest needed
Less than 8 hours 9 hours
Between 8 and 9 hours 10 hours
More than 9 hours 11 hours

Table 2.2: Rest Required After Flying a Duty Period

rest times, while duty periods with international flights require longer rest times.

Long duty periods require the longest rest times. Rules for a typical long haul carrier

are described in appendix B.

2.3.1 Pairing Cost Structure

Pairing cost structure is complicated. For example, in the domestic problem solved

by Vance(1993), the cost of a crew pairing P, is a non-linear function of different

costs. Specifially, the cost of pairing P is equal to

max{Z MIN GRNTd, E FLYTIMEd, TIMEROMBASEp} (2.1)
d d

where d is the set of duty periods in a pairing, MINGRNTd is the minimum guar-

antee offered to the pilots for flying the duty period d, FLYTIMEd is the prorated

flying time of duty period d, and TIMEFROM_BASEp is the prorated time-away-

from-base of pairing p. Observe that it is impossible to allocate one cost to each flight

or duty period since multiple costs may be relevant, i.e., the cost of a flight depends

on the pairing in which the flight is included. In long haul problems, however, due

to the sparsity of the network, the length of the flights, and the fact that crews have

relatively large mandatory rest periods, the time away from base cost component is

typically dominant. Thus, an assumption that the long haul crew pairing cost is equal

to the time away from base cost is not too restrictive.

21

2.3.2 Problem Formulation

The crew pairing problem, denoted CPP, can be formulated as a set partitioning

problem (Arabeyre, et al.,1969; Barutt and Hull,1990; Marsten and Shepardson,1981

and Barnhart, et al.,1991):

(CPP) min Ecjzj (2.2)

subject to

Eaijx= 1 i =1,...,m (2.3)

:xj E {0,1} j = 1,...,n (2.4)

where m is the number of flight segments, n is the number of crew pairings, aij is

equal to 1 if the flight leg i is covered by the crew pairing j and 0 otherwise, c is

the cost of crew pairing j and xj is a 0-1 binary variable that has a value of 1 if a

crew is assigned to pairing j (i.e. pairing j is selected in the current solution) and 0

otherwise.

From the above formulation, it can be seen that there are as many constraints

as there are flights. The ith constraint, together with the binary restrictions on

the decision variables, require that flight i be covered by exactly one pairing, thus

ensuring that each flight is covered by one and only one crew. (Exactly one crew

is associated with each pairing and hence, there are no variables or constraints for

crews specifically, just pairings.) The objective function gives the cost of the current

solution, with the optimal solution having minimal cost.

Example 2 Table 2.3 shows a typical constraint matrix for the airline crew schedul-

ing problem. This table has 5 rows and 7 columns (flights and pairings respectively).

Each pairing is defined by the set of flights it covers. Pairing covers the flights 1

and 4. Similarly, the pairings from x2 through x 7 contain flights {2, 4}, {3}, {1, 2},

{4, 5}, {2, 5}, and {2, 3} respectively. This ezample is that of a set-partitioning prob-

lem and each flight has to be covered exactly once. One feasible solution is pairings

X3 , 4, and 25 . Another feasible solution is xl, 3 , and x6.

22

1

2

3
4
5

X 1 X 2 X 3 X4 X5 X6 X7

1 0 0 1 0 0 0
0 1 0 1 0 1 1 =
0 0 1 0 0 0 1
1 1 0 0 1 0 0

0 O 0 0 1 1 0

1

1

1

1

1

Table 2.3: A Typical Crew Pairing Constraint Matrix

2.3.3 Problem Formulation with Deadheading

The set-partitioning formulation can be enhanced to allow the possibility of dead-

heading. Crew deadheading means repositioning crews to increase their utilization

(Barnhart, et al.,1991). While deadheading can be expensive because deadheading

crews are paid their full wages and they remove seats from inventory, deadheading

may be advantageous. Specifically,

1. Deadheading may be cost effective: Since the long haul crew scheduling

flight networks are relatively sparse, a crew may land at a city, be forced to

depart that flight to rest, and then wait until the next flight is scheduled to de-

part that city before resuming work. In these cases, it may be more economical

for a crew to deadhead out of that city rather than wait for the next scheduled

flight.

2. Deadheading may be necessary for feasibility: Consider, for example the

problem given in figure 2.4 with no feasible integer solution. If deadheading

is allowed however, {x1,x 2,x 3}, {x1 ,x 2,X4 }, and {x1 ,x 2, 23 ,X4} are feasible

solutions.

To model deadheading, the CPP can be modified by adding surplus variables with

cost equal to those of deadheading. The modified formulation, denoted CPPD is:

(CPPD) min E cjzj + E diyi (2.5)
7 i

23

XI1 2 3 4

31

H 11 1 .

Table 2.4: An Infeasible Problem

subject to

Eaijx- i= i1,... m (2.6)

xjE {O,1} j = 1,...,n (2.7)

i > O i=l1,...,m (2.8)

where yi is a variable that indicates the number of times flight i is deadheaded, di

is the cost of deadheading flight i, and the rest of the variables are as defined in

formulation CPP (equations 2.2 - 2.4).

2.3.4 Formulation Drawback

The CPP formulation has the drawback that, while the number of rows (flights) is

usually manageable, the number of columns is extremely large. For example, (Barutt

and Hull,1990) report that the number of columns for the domestic problem can be as

large as e24'000. As another example, table 2.1 shows how the number of pairings for

the domestic operation of a U.S. airline increases with an increase in the number of

flights (Vance,1993). The number of pairings is about 6 million for a set of only 253

flights, and the total number of domestic flights is typically in the order of thousands.

The reason for this explosion is that a crew pairing corresponds to a subtour in the

flight network. From graph theory, it is known that the number of tours in a graph

is exponentially large. This implies that the number of subtours is also exponential

in size.

Hence, it is not just inefficient, but also impractical, to solve CPP directly for

24

problems of the size encountered by many airlines. This motivates the need for a

solution technique that does not require explicit consideration of all the variables.

Column generation, discussed in the next chapter, is one method that achieves this.

25

Chapter 3

Review of Relevant Methodologies

and Literature

This chapter presents exact and heuristic methodologies that are useful in solving the

crew pairing problem. In particular, discussed are the Branch and Bound algorithm

for solving integer programs (IP's), the Column Generation algorithm for solving

linear programs (LP's), Shortest Path algorithms, and a technique that combines

branch and bound and column generation and gives exact solutions to large IP's.

3.1 Heuristics for the Crew Pairing Problem

Early methods used to solve crew pairing problems were usually inexact. The main

reason was the dearth of computing time. A survey of the methods used is given

in Arabeyre, et al.(1969) and Etschmaier and Mathaisel(1985). Although many of

these methods are obsolete due to the rapid advances made in computer science and

technology, insights may be gained by studying them.

Baker and Fisher(1981) model the airline crew pairing problem as a set covering

problem. They solve this problem using a heuristic that simply attempts to cover

uncovered flights by crew pairings with the minimum cost per uncovered flight leg.

Baker(1981b) presents efficient heuristic algorithms and Baker, et al.(1979) study

efficient heuristics to the airline crew scheduling problem. Odier (1983) solves the

26

medium haul crew pairing problem as a linear program and generates all possible

1-day and 2-day pairings by brute force. Ball and Roberts (1985) present a graph

partitioning approach to the crew pairing problem, Thiriez (1969) uses a group the-

oretic approach, and Marsten and Shepardson (1981) use lagrangean relaxation and

subgradient optimization to heuristically solve the crew pairing problem.

Heuristic methods, however, have the disadvantage that there is no method of

measuring how much the solution can be improved and hence, no method of ensuring

global optimality. This motivates the need for solution techniques that are guaranteed

to achieve exact optimal solutions to the CPP. Optimal solutions can be obtained

using an IP solution framework using branch and bound, column generation, and

shortest path problems. These methods are reviewed in the following sections.

3.2 Branch and Bound

Branch and bound is a "divide and conquer" strategy (Bradley, et al.,1977) that can

find the optimal solution of an IP. The first step in the solution process is to relax the

integrality constraints and solve the resulting LP. This corresponds to solving the LP

at the root node of the branch and bound enumeration tree. If the optimal solution

of the root node LP satisfies the integer constraints, then the solution is also optimal

to the IP.

If however, at least one variable xj in the optimal root node LP solution is non-

integral, the variable xj can be used in a branching rule to partition the feasible IP

solution space. A branching rule is a pair (or set) of constraints that divide the

feasible IP solution space into mutually exclusive, collectively exhaustive regions.

Each subdivision of the feasible space corresponds to a node in the branch and bound

tree.

There are a number of ways to subdivide the feasible region, i.e., to perform

branching and thus, there are a variety of branching strategies. Figure 3-1 shows two

nodes of a branch and bound tree, both of which represent the root node LP with one

added constraint. The right node has the added constraint xj > z[xj, while the left

27

node has the added constraint xj < LxtJ. Assume that the problem is to minimize

some objective function.

An LP is solved at each node in the branch and bound tree with four possible

outcomes, namely:

1. the LP is infeasible;

2. the optimal value of the LP is worse than the best integer solution value found

so far;

3. the optimal value of the LP is better than the best integer solution value so far

and the LP solution is integral; or

4. the optimal value of the LP is better than the best integer solution so far but

the LP solution is not integral.

Outcomes 1, 2 and 3 bound the node. Outcome 1 indicates that the feasible IP

solution space at that node is empty and hence further exploration of the node is not

possible. Since an LP solution gives a lower bound (in a minimization problem) on

the best IP solution, outcome 2 indicates that further exploration of the node will

not yield better results. Outcome 3 indicates that an improved IP solution has been

determined and again further exploration of the node in unnecessary. Outcome 4

indicates non-integrality and further branching is required.

3.2.1 Example of Branch and Bound

Consider the following mazimization IP(Bradley, et al.,1977). The (partial) solution

procedure is shown systematically in the steps below and diagrammatically in figure

3-2.

max z = 5xl + 8x2 (3.1)

subject to

X1 + X2 < 6 (3.2)

28

ROOT NODE:
Optimal LP
Solution = x*

Figure 3-1: Branch and Bound Logic

5xl + 9 2 < 45 (3.3)

xl,x 2 > 0 (3.4)

X1,X2 E Z (3.5)

1. Solve the Root Node: The integrality constraints are relaxed and the optimal

solution of the LP relaxation has an objective function value of 41. This is a

upper bound on the optimal IP solution. The values of zl and 2 are 2¼ and

33 respectively.

2. Branching on Node 1: x2 is chosen (arbitrarily) for branching. Branching

creates two active nodes (nodes that have not been explored), namely nodes

1 and 2. Node 1 has the added constraint 2 < 3 and node 2 has the added

constraint 2 > 4.

3. Solving Node 1: Node 1 is chosen (again arbitrarily) for exploration. Solving

the LP associated with node 1 gives an optimal objective function value of 39

and xl and x2 have values of 3 each.

4. Bounding Node 1: The LP solution at node 1 is integral and being the

first one found, is the best IP solution so far. This provides a lower bound on

29

1

Node 0

x1 = 2.25
x2 = 3.75
z = 41

_ l

>4
Node 2

x1= 1.8
x2 = 4
z = 41

2

V, Node 4

Infeasible

Active (Bounded)

Figure 3-2: (Partial) Branch and Bound Example

integer solution value. Node 1 needs no further exploration and is

5. Solving Node 2: The LP associated with node 2 is solved and the optimal LP

solution has an objective function value of 41. The values of xz and 2 being

14 and 4 respectively.

6. Branching on Node 2: Variable xl is not integral at node 2. Node 2 is

branched into nodes 3 and 4, with the added constraints xl < 1 and x > 2

respectively.

The solution procedure continues in this manner until optimality is achieved.

This example shows that there are two decisions that are made many times in this

algorithm, namely:

1. Branching decision: This involves deciding the node on which to branch.

30

Node 1

x2= 3

z = 39

Integral
(Bounded)

the global

bounded.

X <1

2. Choice of node: This involves deciding which active node to choose for ex-

ploration.

In this example, the decisions were made arbitrarily.

3.3 Column Generation

The solution of the crew pairing problem, using the branch and bound algorithm,

involves solving at each node (of the branch and bound enumeration tree) a linear

relaxation of the crew pairing IP with some added constraints. The enormity of

the number of variables makes it difficult to solve the LP relaxation of the crew

pairing problem using traditional methods, such as the SIMPLEX algorithm. This

motivates the use of techniques, such as column generation, which do not require

explicit enumeration of the entire constraint matrix.

Dantzig and Wolfe (1960,1961) developed a technique to solve large, specially

structured LP's. Their technique solves the LP by alternately solving a coordinat-

ing restricted master problem and smaller linear sub-problems. Column generation

methods, based on the decomposition principle of Dantzig and Wolfe, recognize that

it is not necessary to have the entire constraint matrix available during the time of

computation; columns need be generated only as and when "necessary" (Ahuja, et

al., 1993). Column generation and decomposition are sometimes called generalized

linear programming(GLP) (Wolfe, in Dantzig,1963).

3.3.1 The Principle of Column Generation

Consider the following linear program, denoted as the Master Problem (MP), where

the number of variables, or columns, n, is very large (Bradley, et al. 1977).

z* = min z = clxl +c2x 2 +... +cnx

subject to

al2 x1 +ai2x2 + .. +ain, = bi (i = 1,2, ..., 1)

xj > 0 (j = 1,2,...,n)

31

An assumption can be made a priori that certain variables, Xm+1, Xm+2,... ,z

are nonbasic, thereby defining a restricted problem, now called the Restricted Master

Problem (RMP), as:

z* = min z = c1xa +C2 x 2 +... +CmXm

subject to

ai1x1 +ai 2 x2 +... +aimxm = bi (i = 1,2,... ,1)

x > O (j = 1,2,..., m)

The solution to the RMP, if feasible, may be optimal to the MP. Let 7, 7r2,... ,r

denote the optimal dual variables for the RMP. The reduced cost cj of variable j is

given by:

C = Cj- Zlraij (3.6)
i=1

From linear programming theory, if the reduced cost of each variable is non-

negative, then the RMP solution is optimal to the MP. Thus, to determine if opti-

mality of the MP is achieved, the following Subproblem (denoted as SP) is solved:

w* = min [Cj - '7riaij] (3.7)
j=l,...,n

If, in the solution, w* > 0, the RMP solution is optimal to the MP. Otherwise, if

w* < 0, column k (with ck < 0) has been identified, and it is added to the RMP. The

RMP is resolved, and the whole process is repeated until no negative reduced cost

variables are identified and optimality is reached.

Column generation (for minimization problems) can be summarized as:

* STEP 0: Find a feasible starting subset R of columns.

* STEP 1: Solve the RMP to optimality over the restricted subset R and obtain

dual prices.

* STEP 2: Use the dual prices from step 1 and solve the SP (equation 3.7) to

find a new column with minimum reduced cost.

32

3,5 6,1

Figure 3-3: Column Generation Example Network

* STEP 3: If the minimum reduced cost column has a positive reduced cost,

then STOP since global optimality is reached. Otherwise, add the minimum

reduced cost column to the restricted subset R and go to step 1.

3.3.2 An Example of Column Generation

Column generation can be demonstrated by a contrived but simple example. Consider

the network shown in figure 3-3. Each network arc has two numbers associated with it.

The first number corresponds to the arc number and the second number corresponds

to the arc cost. There are 9 possible paths from node a to node c. Suppose the

problem is to find a minimum cost set of paths from node a to node c that cover arcs

1,2 and 3 at least once. By simple inspection, the optimal solution is a set of three

(a - c) paths, namely {1,6}, {2,6}, and {3,6}, with a cost of 13. For the sake of

exposition, consider the mathematical programming formulation for this problem.

If all columns are generated, the constraint matrix for the MP, shown in table 3.1,

has 6 rows (one for each arc) and 9 columns (one for each a - c path). Each column

j contains a '1' in the row corresponding to arc i, if the a - c path covers arc i, and

a '0' otherwise. The cost of each column is next to the variable name in the first row

of the matrix. Assume that it is not possible to enumerate all columns explicitly and

that the RMP is given in table 3.2. There are 6 columns in the initial RMP, namely,

paths {1,4}, {1,5}, {2,4}, {2,5}, {3,4}, and {3,5}.

The algorithm proceeds as follows:

33

Table 3.1: The Master Problem

1

1

1

O

O

O

Table 3.2: The Restricted Master Problem

34

1

2

3

4
5

6

7z1 102 2 6 3 9 4 9X5 12x 6 4 7 3x8 6x 9

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

0

0

0
O

1

2

3

4
5

6

7x1 10z2 6x 3 9 4 9X5 12X6

1 1

1 1

1 1

1 1 1

1 1 1

1. Step 0 A feasible starting set of columns, denoted R, is chosen as in table 3.2.

2. Step 1 The RMP is solved over R and the optimal solution has a cost of 22.

Variables zl, x 3 , and X5 are equal to 1 and the rest are equal to zero. The vector

of optimal dual prices is {7, 6, 9, 0, 0, 0}.

3. Step 2 The costs on all the arcs are modified by deducting from the actual cost

the dual price associated with the arc. The vector giving the reduced costs on

all the arcs is {-4,-4,-4, 4, 7, 1}. SP is solved and the solution is path {1, 6},

with a reduced cost of -3.

4. Step 3 Since the reduced cost of {1,6} is negative, optimality is not yet

achieved. The column corresponding to path {1, 6} is added to R and step

1 is repeated.

5. Step 1 The RMP (now with 7 columns) has an optimal solution with value 19

(an improvement). Variables X 3 , x5, and x7 are equal to 1 each, and all other

variables are zero. The optimal vector of dual prices is {-4, -6, -9, 0, 0, 0}.

6. Step 2 The vector of reduced costs on the network arcs is {-1, -4, -4, 4, 7, 1}.

The SP solution is path {2, 6}, with a reduced cost of -3.

7. Step 3 Since the reduced cost of path {2, 6} is negative, a column corresponding

to path {2, 6} is added to R and the new RMP is solved.

8. Step 1 The RMP (with 8 columns) has an optimal objective function value

of 16(another improvement). Variables X 5 , 7, and xz are equal to 1 each,

and all the other variables are zero. The optimal vector of dual prices is

{-4, -3, -9, 0, 0, 0}.

9. Step 2 The vector of reduced costs on the network arcs is {-1, -1, -4, 4, 7,1}).

The SP solution is path {3, 6}, which has a reduced cost of -3.

10. Step 3 Since path {3, 6} has a negative reduced cost, it is added as a column

to R, and RMP is resolved.

35

11. Step 1 The RMP (with 9 columns) has an optimal objective function value

of 13 (another improvement). Variables X7 , z8, and x9 are equal to 1 each,

and all the other variables are zero. The optimal vector of dual prices is

{-4, -3, -6, 0,0, 0}.

12. Step 2 The vector of reduced costs on the network arcs is {-1, -1, -1,4, 7, 1}.

The SP solution is path {1, 6}, with a reduced cost of zero.

13. Step 3 Since the SP solution has a non-negative reduced cost, global optimality

is achieved, and the procedure stops.

The fact that integral solutions are always obtained is purely coincidental.

3.3.3 Applications of Column Generation

Column generation is a widely applied technique. For example, column generation

has been applied to crew scheduling by Desrosiers, et al. (1991), Rubin (1973), Anbil,

et al. (1991), Rannou (1986), Minoux (1984), Crainic and Rousseau (1987), Lavoie,

et al. (1988), Barnhart, et al. (1991), Barutt and Hull (1990), and Vance (1993).

Desrochers, et al. (1992) apply column generation to the vehicle routing problem with

time windows, while Desrosiers, et al.(1984,1986) use column generation in routing

problems with time windows. Desrochers and Soumis (1989) solve the urban transit

crew scheduling problem with column generation and Ribeiro, et al.(1989), Parker

and Ryan(1993) and Barnhart, et al. (1991c) use the column generation method to

solve problems arising in communication systems optimization. Gilmore and Gomory

(1961) and Vance(1993) use column generation to solve the cutting stock problem.

3.4 Shortest Path Problems

Column generation relies on the fact that all columns need not be considered explic-

itly to solve an LP. Implicit evaluation of the columns can be done with the use of

the column generation subproblem as given in equation 3.7. The following sections

show how the subproblem encountered in the column generation solution of the CPP,

36

denoted CPSP, can be solved as a shortest path problem. An implementation scheme

for the solution of the CPSP is presented with an example. This is followed by a

literature review of relevant shortest path procedures.

3.4.1 The Column Generation Subproblem as a Shortest

Path Problem

This section shows how the CPSP, can be solved implicitly, i.e., without explicitly

evaluating the reduced cost of every variable. In solving the CPSP, if the minimum re-

duced cost among all possible columns is non-negative, then MP is solved. CPSP can

be solved using a shortest path procedure on a time-line network. This is illustrated

with an example.

The Time-Line Network

The following implementation of the CPSP is called a time-line network (Barnhart,

et al.,1991). A typical example of a time line network is given in figure 3-4 (Barnhart,

et al.,1991). In a time-line network each duty period is represented by an arc. The

start node of the arc represents the starting place (city) and starting time of the first

flight in the duty period. The end node of the arc represents the ending place of the

last flight in the duty period. The time of the end node is the sum of the ending time

of the last flight and the minimum rest required after the duty period. The advantage

of adding the rest time to the duty period arc is that while running the shortest path

algorithm, once a duty period arc is traversed, a minimum rest is guaranteed for the

crew that has flown the duty period. This considerably simplifies modeling the rules

of rest for the crew. Once all the arcs are created for the duty periods, all the nodes

at any given city are sorted in increasing order of time. Chronologically successive

pairs of nodes are connected by arcs (called ground arcs since they represent a period

of time in which the crew is not flying and is on the ground).

For long haul problems, it is often the case that pairing cost is determined by

the time-away-from-base cost component. Hence, the costs on all duty period arcs

37

2,140ROS 1, 0800

,0500

2, 0100 4, 0100

Figure 3-4: A Time-Line Network of Flights

are set equal to the time-away-from-base cost associated with that duty period. The

reduced cost of each arc is then easily quantified by subtracting the appropriate dual

variables from the arc cost. For example, a duty period d (with cost Cd) consisting of

three flights a, b, and c (with dual variables Iar, rb, and rc respectively) will have a

reduced cost cd given by

Cd = Cd - 7ra - 7rb - rc (3.8)

By running the shortest path procedure between each crew base node pair using arc

costs equal to the reduced costs, the minimum reduced cost pairing can be generated.

If w* (the minimum reduced cost from equation 3.7) is non-negative, then all pairings

have non-negative reduced costs and hence the column generation algorithm can be

terminated. Otherwise, negative reduced cost pairings are identified and added as

columns to the restricted master problem, and the next iteration of the algorithm

can be executed.

38

_ - s -

An Example of the CPSP

Consider a CPP containing three cities, namely A, B, and C; two crew bases, namely

A and C; and seven duty periods, numbered 1 through 7. Let the reduced costs of

duty periods 1 through 7 equal -3, -8, 4, 6, -7, -4, and 9 respectively. A time line

network is used to solve the CPSP by implicitly finding the minimum negative reduced

cost pairings. The time-line network for this problem is illustrated in figure 3-5. The

duty period number (reduced cost of each duty period) is depicted to the left (right)

of each duty period arc. Assume that the reduced cost of each ground arc is zero.

Then, the possible crew pairings are

1. 2 -- 4 (reduced cost = -2)

2. 2 -- 7 (reduced cost = 1)

3. 2 3 -+ 5 --+ 7 (reduced cost = -2)

4. 1 ~ 3 (reduced cost = 1)

5. 1 - 4 -+ 6 (reduced cost = -1)

Of these, pairings 1,2 and 3 begin and end at crewbase A and pairings 4 and 5 begin

and end at crewbase C. Observe that

1. each of the pairings correspond to a path in the time line network, and

2. the minimum reduced cost pairing (i.e., the CPSP solution) is a shortest path

in the time line network with arc lengths equal to the reduced costs.

This implies that CPSP can be solved by solving a series of shortest path problems,

one for each pair of nodes belonging to the same crew base.

Handling Special Constraints

The CPSP is usually a constrained shortest path problem. One typical constraint

restricts the time-away-from-base of each pairing to be less than some maximum

allowable time, denoted by MAXELAPSE. This constraint can be handled easily

39

A-

B

0I

79

- - - - - - -

Figure 3-5: A Shortest Path Subproblem

using the time-line representation by the following procedure. For a given source

node, any node whose associated time is greater than the sum of the time associated

with the source node and MAX-ELAPSE is eliminated. The shortest path procedure

is run on the remaining nodes.

However, various other additional constraints cannot be handled efficiently. For

example, if the pairing cost structure is given by equation 2.1, the reduced cost of

a duty period may be one of several values. Then, a multiple label shortest path

procedure must be employed to solve CPSP. As an other example, there may be an

excessive number of duty periods and it may not be efficient to include all of them in

the time-line network for the solution of the CPSP. The next sections detail simple,

constrained, and multi-label shortest path procedures that may have to be used in

solving CPSP.

3.4.2 Literature Review

Shortest path problems, fundamental problems in operations research, are frequently

encountered in numerous transportation and communication applications. Deo and

Pang (1984) develop a thorough classification scheme and provide a comprehensive

and updated bibliography for these problems. One of the main reasons for the im-

40

---- - - - - - -

portance given to shortest path problems is that they are repeatedly solved in larger

problems. Hence even a small improvement in the performance of the shortest path

procedure can result in big improvements in overall performance.

Very often, in real world applications, shortest path subroutines may be quite com-

plicated due to additional constraints or multiple optimality criterion. Such problems

are computationally much more difficult than simple shortest path problems. Simple

(or unconstrained) shortest path problems involve only the determination of shortest

(least cost) paths with no additional considerations and can be solved in polynomial

time, while constrained shortest path problems or multiple-criterion shortest path

problems may take exponential time.

To illustrate, consider an ordinary shortest path problem, where the label at a

node gives the length of the current shortest path from the source node to the given

node. Since each label contains only one cost, it can without ambiguity, dominate

or be dominated by another label. Specifically, in determining a cheapest path, a

cheaper label dominates a costlier one.

In the case of constrained shortest path problems, at a single node there may be a

set of labels, each of which corresponds to a different path and none of which is dom-

inant. Such a set of labels is said to be efficient (Desrochers and Soumis,1988,1988b).

An efficient path is one that consists only of efficient labels. So one label can dominate

another one only if all the costs on the label are respectively better than the costs

on the other label. Suppose neither of the labels can dominate each other, then both

the labels have to be stored at the node. Hence, it is possible that all the paths into

a node result in efficient labels. Since theoretically there are an exponential number

of paths in a network, an exponential number of labels may exist and hence, the

algorithm can take exponential time.

The following sections discuss simple, multi-criterion and constrained shortest

path problems. Constrained and multi-criterion shortest path problems can be solved

using methods such as the ones described in Desrochers and Soumis(1988,1988b).

41

s t
6 4 2 5,

Dominated

Shortest path from s->t: 1 -> 2 -> 3 -> 4

Figure 3-6: Simple Unconstrained Shortest Paths

Simple Shortest Path Problems

Figure 3-6 provides an example of a simple unconstrained shortest path problem.

There are four nodes and four arcs in this network. The number on each node

indicates the node number and the number on each arc indicates the cost on the arc.

The problem here is to find the shortest path between the source node (1) and the sink

node (4). As can be seen from the figure, there are two labels at node 3. One label has

a cost of 4 and the other one has a cost of 3. A cost of 3 is better in a cheapest path

problem and hence the label which contains a cost of 4 is dominated and discarded.

Thus each node is associated with only one label and that label indicates the cost of

the current shortest path from the source node to that label.

Denardo and Fox(1979) study the general shortest path problem and describe

solution techniques called reaching and pulling. The algorithms (in pseudocode) are

as follows:

42

Pulling

1. Set v(1) = O,v(k) = +oo for k 1.

2. DO for j = 2,..., N

3. DO for i = 1,...,j -1

v(j) - min{v(j), v(i) + tij}

S

BEST!

Shortest path from s->t: 1 -> 3 -> 4

Figure 3-7: Bi-Criterion Shortest Paths

Reaching

1. Set v(1)= O,v(k) = +oo for k 1.

2. DO for i = 1,..., N- 1

3. DO for j = i + 1,...,N

v(j) - min{v(j), v(i) + tij}

Pulling is also referred to as dynamic programming. Dynamic programming is

used to solve a lot of shortest path problems (as in Houck, et al.,1980). Reaching is

a label setting scheme. Dijkstra's algorithm(1959) is one of the first implementations

of reaching. Shepardson and Marsten(1980), using Forward-Backward reaching, solve

the shortest path problem first using a forward reaching algorithm (Denardo and

Fox,1979) and then using a backward reaching algorithm. This results in each node

having a forward label indicating the cost of the cheapest path to that node from the

source node and a backward label indicating the cost of the cheapest path from that

node to the sink node. Given an arc cost, a forward label at the start node of the arc

and a backward label at the end node of the arc, it becomes easy to test if the arc

can improve the the current best solution of the shortest path subroutine.

Multi-criterion Shortest Path Problems

Multi-criterion shortest path problems arise in crew pairing optimization as follows.

Example 3 Consider the domestic crew pairing problem (Vance, 993) in which min-

imum cost pairings are to be determined. The cost of a pairing is the maximum of

43

three costs, namely, a prorated time-away-from-base cost, a cost corresponding to the

prorated flying time in the pairing, and the sum of minimum guarantees for each

duty period in the pairing. This problem can be solved by constructing an appropriate

network and using a tri-criterion shortest path solution procedure.

A bi-criterion shortest path problem is a multi-criterion shortest path problem

with two criteria. Its solution procedure is demonstrated using an example given

below. Figure 3-7 depicts a network containing two costs per arc. At each network

node, there are labels, each label with two costs; the first (second) representing the

sum of the first (second) costs on each arc leading from the source node to the node

holding the label.

As the algorithm reaches out on an arc from a label, the costs on the arc are added

to the respective costs on the label. In this problem, the cost of a path between two

points is the maximum of the two cost sums. The progress of the algorithm will be

given step by step.

1. Initiate: The source node (1) is given a label of [0, 0] and all other nodes are

given large labels ([oo, oo]).

2. Reach: Reaching out from node 1 to nodes 2 and 3 generates labels [1, 2] and

[4, 3] at the respective nodes.

3. Dominance check: Label [1,2] dominates label [oo, oo] at node 2, and label

[4, 3] dominates label [oo, oo] at node 3.

4. Reach: Reaching out from node 2 to node 3 generates a label [3,4] at node 3.

5. Dominance check: Neither label [4, 3] nor label [3,4] can dominate the other

(since the first cost on [4, 3] is greater than the first cost on [3, 4], but the second

cost on [4,3] is less than the second cost on [3,4]) and hence both are efficient.

Both labels are stored at node 3.

6. Reach: Reaching out from node 3 to node 4 generates 2 labels at node 4,

namely [5, 5 and [4,6].

44

7. Dominance check: Both [5,5] and [4,6] are efficient at node 4 and both

dominate label [oo, oo].

8. Reach: No more reaching can be done. STOP.

When the algorithm terminates, all the labels at the sink node are scanned and

the cost corresponding to each label is evaluated. Since, in this example the cost of

a label is the maximum of the costs in the label, label [5, 5] will have a cost of 5 and

label [4,6] will have a cost of 6. Thus label [5,5] corresponds to the shortest path

label. The shortest path is 1 -- 3 - 4.

Constrained Shortest Path Problems

A constrained shortest path problem is one which involves the determination of the

shortest path that satisfies some additional constraints. What makes this problem

difficult is the fact that the shortest path between two nodes may not satisfy the extra

constraints. All possible paths between the two nodes must be implicity evaluated

and the shortest feasible path must be obtained.

Example 4 While solving the long haul crew pairing problem Barnhart, et al. (1991)

solve a constrained shortest path problem that requires that

1. the mazimum time-away-from-base must not ezceed 15 days;

2. a mazimum of 8 flying hours must occur in every 24 hours;

3. 24 hours of consecutive rest must occur in a week.

Example 5 The shortest path problem with time windows (SPPTW) is a commonly

encountered problem that is solved using constrained shortest path procedures. The

objective is to find the shortest path between two or more nodes in a network, while

satisfying constraints that some or all of the nodes have to be serviced within their

respective time windows (Desrochers and Soumis,1988).

Figure 3-8 can be used to demonstrate the solution procedure of a constrained

shortest path problem. Assume that the cost of a path is the sum of the second costs

45

(i3/ 4, 5 '-- 1,2 ,

0,0r 2 E[I<-Dom Ei

@ <-Eff 4,6 <-Best
12

Shortest Path from s->t: 1->2->3->4

Figure 3-8: Constrained Shortest Paths

on all the arcs that make up the path, and that the first cost is a resource that is

being consumed by using that arc. Suppose the problem is defined as follows.

Example 6 Find the least cost path (the cost being the sum of the second costs on all

the arcs that constitute the path) between nodes and 4 which satisfies the constraint

that the sum of the utilized resources (i.e., the first costs on the arcs) on the path is

less than or equal to 4.

The progress of the algorithm is shown below.

1. Initiate: The source node (1) is given a label of [0, 0] and all other nodes are

given large labels ([oo, oo]).

2. Reach: Reaching out from node 1 to nodes 2, 3 and 5 generates labels [1,2],

[4, 5], and [1, 4] at the respective nodes.

3. Dominance check: Label [1,2] dominates label [oo, oo] at node 2, label [4,3]

dominates label [o, oo] at node 3, and label [1,4] dominates label [o, oo] at

node 5.

4. Reach: Reaching out from node 2 to node 3 generates a label [3,4] at node 3.

46

5. Dominance check: Label [4,5] is dominated by label [3,4] since the second

cost on the second label ([3,4]) is smaller than the second cost on the first label

([4,5]) and the second label consumes less resources (3 units) as compared to

the first label (which consumes 4 units). Label [4,5] is eliminated.

6. Reach: Reaching out from node 3 to node 4 generates a label [4,6] at node 4.

7. Dominance check: Label [4,6] dominates label [oo, oo] at node 4.

8. Reach: Reaching out from node 5 to node 4 generates a label [3, 7] at node 4.

9. Dominance check: Both [3, 7] and [4, 6] are efficient at node 4 since [3, 7] uses

less resources but [4, 6] is less expensive.

10. Reach: No more reaching can be done. STOP.

Two feasible efficient paths exist between nodes 1 and 4. Of the two labels at

node 4, [4,6] is less expensive and hence corresponds to the least cost path among all

feasible paths.

As stated earlier, a common example of constrained shortest path is the shortest

path problem with time windows (SPPTW). Solomon and Desrosiers (1988) discuss a

method to solve the SPPTW. Desrochers and Soumis (1988) solve the SPPTW using

a generalized permanent labelling algorithm. Their implementation uses generalized

buckets, and extends the work of Denardo and Fox(1979). Desrochers and Soumis

(1988b) extend the work of Desrochers and Soumis (1988) and present a reoptimiza-

tion algorithm for the SPPTW. Their work is motivated by the fact that the SPPTW

is solved repeatedly as a subproblem in many larger problems such as vehicle routing

problems, pickup and delivery problems, travelling salesman problems, m-travelling

salesmen problems, minimum spanning tree problems, multi-period vehicle routing

problems and the shoreline problem. For example, Houck, et al.(1980) solve the

travelling salesman problem as a constrained shortest path problem.

47

3.5 Large Scale Integer Programs and Column

Generation

Large integer programs can be solved exactly by combining branch and bound and

column generation. This section presents the technique, focusing on large scale 0 - 1

minimization problems, such as the CPP. The method, however, is general and its

steps are as follows (Barnhart, et al.,1993b):

* Step 0: Choose the root node of the branch and bound enumeration tree as

the current node for exploration.

* Step 1: Using column generation, solve the LP associated with the current

node. If the current node is the root node, then the optimal LP objective

function value is a lower bound on the best integer solution value that can be

found.

* Step 2: Step 1 has 4 possible outcomes - specifically,

1. the LP at the current active node is infeasible;

2. the optimal LP objective function value is higher than the best IP solution

objective function value;

3. the objective function value of the optimal LP solution is integral and

better than that of the best IP solution so far; or

4. the objective function of the optimal LP solution is better than the best

IP solution objective function value but the optimal LP solution is not

integral.

As described in section 3.2, the first three outcomes cause the node to be pruned,

i.e., further exploration is prevented at that node. In case of the fourth outcome,

one of the non-integral variables, xz, is selected and two new nodes are created

from the current node, with the additional constraints x > [xfl and xj < L[x2

respectively.

48

* Step 3: If no more active nodes remain or if the gap between the best IP

objective function value and the lower bound (LP solution at the root node)

is "small" enough, the algorithm is terminated. Otherwise, an active node is

chosen for exploration. Go to step 1.

An important point to be noted here is that it is not necessary to solve the LP's

to optimality in step 1. By using termination criteria based on time, number of

iterations or closeness of bounds, the LP's can be terminated to give solutions that

are not optimal. The tradeoff, however, is that the tree may not be pruned as much

and more nodes may have to be explored.

3.5.1 Challenges

The following points need to be stressed in order to bring out the inherent challenges

of this IP solution procedure using column generation (Barnhart, et al.,1993b).

1. In this solution approach, the LP associated with each node in the branch and

bound tree is solved using column generation. This is because an LP relax-

ation solved by column generation is not necessarily integral and applying a

traditional branch-and-bound technique to the RMP with its existing columns

will not guarantee an optimal, or even feasible solution. After branching, there

may exist a variable with negative reduced cost that is not present in the RMP.

Therefore, to find an optimal solution, it may be necessary to generate addi-

tional columns after branching.

2. If a non-integral optimal solution is generated at a node of the branch and bound

tree, then a non-integral variable is chosen and new branches and corresponding

active nodes are created. Since the LP associated with each new active node

is also solved using column generation, compatibility of the branching decision

and the subproblem solution procedure must be ensured. By compatibility, it

is meant that the additional constraints introduced during branching must not

destroy the tractability of the subproblem.

49

Consider, for example, the CPP. Each variable in the crew pairing problem

represents a path. If its LP gives a non-integral solution, then a non-integral

pairing is chosen and the node that is currently being explored is branched to

give two new active nodes - one in which the pairing is set to 0 and the other in

which it is set to 1. Since the LP associated with each new active node is also

solved using column generation, the compatibility of this branching decision for

CPSP must be examined. Consider, for example, the situation when the CPSP

is solved using a time-line network and a shortest path procedure (as described

in section 3.4.1). If a branching decision sets a pairing p to 1, then

(a) each pairing in RMP is deleted if it covers any flight in p,

(b) each row in RMP is deleted if it represents a flight in p,

(c) each arc in the time-line network is deleted if it contains any flight con-

tained in p, and

(d) the RMP objective function is increased by the cost of P.

With these changes, every subsequent subproblem solution satisfies the require-

ment that the flights in p be covered only by pairing p. Now consider the

alternate branch in which pairing p is set to zero. In this case, p is deleted from

the RMP. It is not possible, however, to delete p from the time-line network.

Instead, the subproblem solution procedure is constrained by the requirement

that it not generate pairing p. For nodes in which the corresponding LP is

constrained by the requirements that greater than one pairing has been set to

zero, it is necessary to adjust the CPSP solution process to ensure that none of

the disallowed pairings is generated.

The following section reviews the literature in solving large scale integer programs,

particularly crew pairing problems. Section 3.5.2 discusses applications of column

generation in crew pairing optimization and section 3.5.3 presents applications of

combined branch and bound and column generation solution procedures.

50

3.5.2 Airline Crew Pairing Optimization

Column generation techniques that are used to solve crew pairing problems can be

classified as either ezplicit or implicit. Explicit methods rely on brute-force enumera-

tion of pairings. Since the total number of pairings is large, subsets of flights or duty

periods are taken and pairings are enumerated using only these subsets. Implicit

methods on the other hand, usually solve an optimization subproblem to generate

minimum reduced cost pairings and hence "implicitly" price out all pairings.

Explicit Column Generation

An example of explicit column generation is the work of Rubin (1973), who solves the

airline crew pairing problem as a large set covering problem. Set covering solutions

are obtained for much smaller matrices extracted from the overall problem. A similar

approach is taken by TRIP, a program written at American Airlines(Anbil, et al.,

1991) , to determine heuristically a schedule for the domestic crew scheduling problem.

Crainic and Rousseau (1987) also use an explicit column generation method to solve

heuristically the crew scheduling problem. A simple chaining routine is used that

puts duty periods together to form legal crew pairings, and then integer solutions are

obtained with the use of Salkin's heuristic (Lemke, et al,1971).

Gershkoff (1989) models the American Airlines crew scheduling problem as an

integer program. The heuristic solution approach starts from a feasible solution and

at every iteration, a subset of the flights are taken and all possible pairings are

generated from those flights. Then, the lowest cost set of pairings that cover all the

flights are found. If the lowest cost set is the same in two successive iterations, then

the algorithm is terminated.

Anbil, et al.(1993) solve the domestic crew pairing problem for American Air-

lines using an explicit column generation method. Anbil, et al.(1991b) describe a

branch-and-bound procedure to determine solutions to the crew pairing problems

encountered at American Airlines. Columns are generated using American Airlines

crew-pairing optimization system TRIP and solutions are obtained using IBM's Op-

timization Subroutine Library (Druckerman, et al.,1991). Their branching strategy,

51

based on the work of Ryan and Foster(1981), requires that a particular flight im-

mediately follow another flight in a pairing. The solution procedure, however, does

not actually involve branching since, based on the LP solution, a flight is selected to

follow another flight and this decision is never altered.

Implicit Column Generation

Implicit column generation methods solve a subproblem which evaluates the reduced

cost of all columns without explicitly enumerating all the columns. The subproblems

are usually shortest path problems or dynamic programming problems.

Barnhart, et al.(1991,1993) solve the crew pairing problem for long haul carriers.

The LP relaxation of the set covering formulation is solved using a column generation

technique which repeatedly solves a constrained shortest path problem over a long-

haul network. Various branching strategies are discussed, one of them being the

strategy to branch on follow-ons as in Anbil, et al. (1991b) and another being a

method of branching on day vs. night connects.

Desrosiers, et al. (1991) solve the crew pairing problem exactly using a branch-

and-bound procedure in which columns are generated by solving resource constrained

shortest path problems(Derochers and Soumis,1988).

Vance(1993) and Vance, et al.(1993b) solve the daily domestic crew pairing prob-

lem using an alternate two-phase formulation that partitions flights into duty periods

and duty periods into pairings. The LP relaxation is solved using column generation,

with two types of columns being generated, one corresponding to duty period sets and

the other corresponding to pairings. An integer solution is obtained by embedding

the column generation procedure within a branch-and-bound tree, where branching

rules based on duty period sets are considered first and later branching is done on

the pairing variables.

Minoux(1984) models the long haul crew pairing problem as an integer program

and solves the LP relaxation using column generation. However, Minoux does not

describe how integer solutions are obtained. Similarly, focussing on the LP solution,

Rannou (1986) and Lavoie, et al.(1988) build upon this work with Lavoie, et al.(1988)

52

solving problems with 329 flights and 1113 duty periods.

Barutt and Hu11(1990) solve the domestic problem for Northwest Airlines by for-

mulating it as a set partitioning problem, and solving it using column generation.

Methods of designing parallel algorithms are suggested.

3.5.3 Other Applications

The following sections describe applications of combined column generation and

branch and bound solution approaches.

Time Window Constrained Routing

A survey of the use of column generation methods in time constrained routing and

scheduling is given in Desrosiers, et al. (1993). Desrosiers, et al.(1984) develop

algorithms to solve the school bus routing problem with time windows. The problem

is formulated as a set covering problem and is solved using a branch and bound

algorithm. Columns are generated using a shortest path procedure constrained by

time windows on the nodes. Branching is performed on the arc flow variables and

not on the routes so as to preserve the shortest path structure of the subproblem.

Haouari, et al. (1990) provide a general framework for modelling and solving com-

plex routing problems. They model the vehicle routing problem as a set partitioning

problem and solve it using a column generation approach embedded within a branch-

and-bound algorithm. Desrosiers, et al.(1986) solve the problem of determining the

number of vehicles to cover a certain set of trips and to determine their routes and

schedules, so that each trip begins within its given time interval and that costs are

minimized. This problem has been shown to be a generalisation of the m-travelling

salesman problem. One of the algorithms used is a column generation algorithm on

a set partitioning problem which is solved using branch and bound. Columns are

generated by solving a dynamic programming subproblem.

Kolen, et al. (1987) solve a vehicle routing problem with time windows in which

a fixed number of vehicles of given capactiy are available at a depot and have to

serve a set of clients with given demands such that each client is visited within a

53

time window. A branch and bound algorithm is designed to minimize the total route

length. Shortest paths are computed by a labelling method, similar to Dijkstra's

method (1959).

Desrochers, et al.(1992) present a new optimization algorithm for the vehicle rout-

ing problem with time windows. The problem is formulated as a set partitioning

problem and is solved using a branch and bound procedure, generating columns us-

ing dynamic programming. A heuristic branching strategy is developed in which

branching is performed on arc flow variables with the largest weight. Dumas, et al.

(1991) solve the pickup and delivery problem with time windows using an exact al-

gorithm. Column generation is used within a branch and bound scheme and columns

are generated using a constrained shortest path procedure.

Urban Transit Crew Scheduling

The urban transit crew scheduling problenminvolves the determination of bus driver

work schedules that minimize total costs and satisfy all labor agreements. This

problem is described in detail by Ryan and Foster(1981) and Wren, et al.(1985).

Desrochers and Soumis(1989) model this problem as a set covering problem and solve

it using a branch and bound procedure. The LP relaxation is solved using column

generation and new columns are generated by solving a shortest path problem with

resource constraints using dynamic programming. The branching rule, is based on a

method suggested by Ryan and Foster(1981), and requires that branching be made

on a pair of tasks to be performed in a single workday.

Ship Scheduling

Appelgren(1969) solves a ship scheduling problem by formulating it as a multi-

commodity flow model, relaxing integrality constraints, decomposing it using the

principle of Dantzig-Wolfe(1960), and solving the LP using column generation. For-

tunately, most of the optimal LP solutions were integral.

54

Communication Systems and Multi-Commodity Flow Problems

Ribeiro, et al.(1989) solve the problem of finding optimal schedules in satellite switch-

ing systems. A set partitioning formulation is used and column generation is used in

the branch and bound tree search to ensure global integer optimality. A conventional

branching rule is employed fixing a variable in the set partitioning formulation to

either 0 or 1. If the variable is fixed at 1, then all rows with a coefficient of one in

the corresponding column can be deleted and all other variables containing ones in

these rows can be set to zero. Alternately, the column is fixed at 0 and is deleted.

Parker and Ryan(1993) solve the bandwidth problem of allocating bandwidth in

a telecommunications network to maximize total revenue. The problem is formulated

as a multi-commodity network flow problem with a requirement that the flows be

integral. The problem is solved using a branch and bound procedure with linear

programming providing the bounds. The linear relaxations are solved using column

generation. Columns are generated using shortest path problems. A mixed branching

strategy is used which fixes at one variables in the path based column generation

formulation and fixes at zero the values of one of several variables in the arc-based

formulation.

Barnhart, et al.(1991c) solve multi-commodity network flow problems in which

a commodity is defined by a single origin and a single destination. The linear pro-

gramming relaxation is solved using column generation and columns are generated

by solving shortest path problems. The branching strategy involves branching on

arc-flow variables. One branch requires that commodity k be assigned to arc ij while

the other forbids commodity k from being assigned to arc ij. The second branch is

easy to implement by just removing the arc from the subproblem network.

Cutting Stock Problems

Vance(1993) and Vance, et al.(1993b) present algorithms for the binary cutting stock

problem employing both column generation and branch and bound. The Ryan and

Foster(1981) branching heuristic is used to obtain optimal integer solutions.

55

Generalized Assignment

The generalized assignment problem is to find the maximum profit assignment of jobs

to agents such that each job is assigned to precisely one agent and each agent has a

capacity restriction. Savelsbergh(1993) formulates this problem as a set partitioning

problem. Column generation and branch-and-bound are used to obtain optimal inte-

ger solutions. Branching is performed using a heuristic that a job is either forbidden

or required to be assigned to an agent.

56

Chapter 4

Dual Ascent Heuristics

This chapter presents a dual ascent heuristic to speed up the performance of column

generation. This is a general heuristic that can be applied to any column generation

process. The need for the speed up is discussed and a dual ascent heuristic for column

generation (DACG) is presented. An interior point modification of the heuristic is

made and the modified heuristic (IDACG) is detailed. Computational experience on

randomly generated problems is provided. This chapter also includes a literature

review of various dual ascent heuristics. The next chapter shows how the heuristic

can be incorporated into the column generation solution procedure for the CPP.

4.1 Motivation

Reduction in computation time for the column generation procedure is an important

goal in algorithm refinement for the following reasons:

1. Despite being a very powerful tool, the column generation algorithm has been

shown to possess very poor convergence properties. Very often, the algorithm

makes rapid advances in the early iterations but then slows down and begins to

"tail off" towards optimality (Bradley, et al., 1977).

2. The solution of CPP involves the solution of many LP relaxations of CPP.

Specifically, one LP relaxation of the CPP is solved at each node of the branch

57

and bound enumeration tree. This implies that even small improvements in the

performance of the column generation algorithm will lead to substantial savings

in time.

3. A faster column generation algorithm allows more nodes in the branch and

bound enumeration tree to be explored given a fixed solution time. Hence, a

faster column generation procedure is more likely to achieve an optimal (or

feasible) IP solution, given time limitations.

The poor performance of column generation could be due to a variety of reasons.

* While the column generation algorithm guarantees monotonic primal improve-

ment, there is no such guarantee for the dual.

* The bouncing about of the dual implies the generation of many columns that

may not be a part of the optimal solution. These additional columns, merely

by their presence, slow down the column generation algorithm in the long run.

This leads to the hypothesis that if the dual could be controlled in some way, i.e.,

if an improved dual solution could be generated at each iteration, fewer columns and

hence faster solution of the RMP would result. A dual ascent procedure can provide

this control, and additionally, it can provide a computationally inexpensive way to

compute a lower bound on the optimal RMP solution value (Hearn and Lawphong-

panich,1989; Houck, et al., 1980).

4.2 Dual Ascent Heuristics - Literature Review

Subgradient optimization is one of the most popular and generic dual ascent tech-

niques. It is a simple, approximately ascending algorithm for unconstrained or con-

strained non-differentiable concave programming problems. If certain assumptions

are satisfied, the algorithm converges to an optimal solution. The algorithm and its

convergence proofs have been covered in great detail in a number of works such as

Held, et al.(1974) and Shapiro(1979). Subgradient optimization has been applied to

58

a variety of problems. It has been used by Houck, et al.(1980) to solve the travelling

salesman problem, by Shepardson and Marsten (1980) to solve the two duty period

bus driver scheduling problem, by Marsten and Shepardson (1981) to solve airline

crew scheduling problems and by Carraresi, et al. (1982) to solve large scale bus

driver scheduling problems.

Fisher (1981) shows how subgradient optimization can be used in combination

with lagrangian relaxation methods to solve integer programs. Sherali and Myers

(1988) have conducted extensive tests on various dual formulations and subgradient

optimization strategies for linear programming relaxations of mixed-integer programs.

Hearn and Lawphongpanich (1989) have used the method to compare and test the

performance of a lagrangian dual ascent heuristic.

Subgradient optimization however, has the following drawbacks (Marsten and

Shepardson,1981; Sherali and Myers,1988;Hearn and Lawphongpanich,1989):

1. Subgradient optimization works very well for low requirements of accuracy.

However, for high accuracy needs, it either fails or takes a large number of

iterations to converge to optimality.

2. Subgradient optimization is still a very poorly understood algorithm. It is not

very robust and is sensitive to the choice of its parameters like the step size and

hence, may need to be fine tuned for each new class of problems.

3. Marsten and Shepardson(1981) report that for the set partitioning problems

they solved, LP solutions were almost always integer, while solutions obtained

using subgradient optimization were fractional.

Multiplier adjustment methods have also been used to obtain dual ascent. A

well known example is the heuristic (DUALOC) for the facility location problem

by Erlenkotter(1978). The heuristic is very simple and has been shown to be ex-

tremely successful. Wong (1984) has given a dual ascent approach that solves steiner

tree problems on a directed graph and generalizes DUALOC. Multiplier adjustment

methods have also been used by Guignard and Kim (1987) for lagrangean decompo-

sition, by Guignard (1988) to achieve a dual ascent method for simple plant location

59

problems in combination with Bender's cuts, by Guignard and Opaswongkarn (1990)

to compute bounds in capacitated plant location problems, and by Guignard and

Rosenwein (1989) to solve the generalized assignment problem. Barnhart (1992) uses

dual ascent methods for large-scale multi-commodity flow problems and reports that

the dual ascent solutions not only provide good lower bounds, but also provide good

starting solutions for primal-based heuristics. Magnanti and Wong (1984) provide

an overview and application of dual ascent and multiplier adjustment methods in

network design problems.

4.3 The DACG Heuristic

The dual ascent heuristic for column generation (DACG) is based on LP duality

theory. Any primal feasible vector has an objective function value greater than or

equal to that of any dual feasible vector (in a minimization problem), a shift from a

dual feasible vector in the direction of a primal feasible vector will ascend the dual

objective function. In order to maintain feasibility of the dual vector, the shift from

the dual vector to the primal vector should not be complete, since the primal feasible

vector is not likely to be dual feasible. Thus, by performing a line search between the

primal and dual solutions, a step size can be found that

* makes the largest ascent in the dual objective function, and

* maintains dual feasibility.

Incorporating these observations into the LP solution process for RMP, gives the

DACG heuristic. In every iteration of column generation, after the generation of

columns by SP, a line search is carried out between the dual feasible vector and the

RMP dual vector (which is the primal feasible vector). This line search yields a step

size and altering the dual in the direction of the step size provides

* an improved lower bound for the optimal value of MP, and

* a new dual feasible vector that will be used to generate columns (in addition to

the ones generated by SP) and a new dual feasible vector that will be used in the

60

line search in the next iteration of the column generation solution procedure.

Consider the following optimization problem.

min c.x

subject to A.x e

x>O

(4.1)

(4.2)

(4.3)

where A is a matrix, e is a vector, x is the primal vector and r is the dual vector.

The dual to this problem is given by

max ir.e

subject to r.A = c

(4.4)

(4.5)

(4.6)r > O

The following notation will be used to describe the DACG heuristic.

7rk:

Pk:

The dual vector optimal to RMP in iteration k.

The initial dual feasible vector.

an optimal dual vector, referred to as the dual iterate,

to the RMP in iteration k.

In the case of the LP relaxation of the CPP, a dual vector is feasible if the reduced

cost of all columns in the CPP have a non-negative reduced cost with respect to

the dual vector. Using this definition, DACG performs the following steps at each

iteration of the column generation algorithm:

. Step 1 Find * given by

O* = arg max feas[rkl + O(pk - 7rk-l)]
o< 8 <1

(4.7)

where feas[x] is a function whose value is x if x is dual feasible, and 0 otherwise.

61

· Step 2 Set

7rk = rk_-1 + e*(Pk - Irk-1) (4.8)

* Step 3 If * > 0, find the minimum reduced cost column with dual variables

7rk and add that column to the current LP.

Step 1 finds the maximum step size that can be taken to maintain dual feasibility

while ascending the dual.

Proposition 1 Whenever a line search is carried out (Step 1) and the dual feasible

vector is moved i.e., * > 0 (Step 2), dual ascent is achieved.

From equation 4.8 above,

rk.e = Ark.l.e + 0*(pk - 7rk_-).e (4.9)

Note that rk.e is the value of the objective function of the dual vector rk (equation

4.4). Therefore the change in the dual objective function value Az between iteration

k and iteration k - 1 is given by

Az = (rk - rk_-).e = O*(pk - 7rk-1).e (4.10)

Since * > 0 and pk.e > rk_l.e (from LP duality), we see that Az > 0.

The maximum step size * can be found by performing a line search between

dual feasible vector rk, and RMP dual iterate pk and solving a SP for each in the

line search, using the dual vector re = 7rk- + O(pk -- r.k-1). If the dual vector r'

yields negative reduced costs columns in SP, rk is not dual feasible; otherwise rk is

feasible. If * > 0, rk (equation 4.8) is an improved dual solution. In Step 2, a

new (improved) dual solution irk is constructed and in Step 3, rk is used to generate

columns to be added to RMP.

Proposition 2 Optimality of MP is obtained if O* = 1.

If 6* has a value of 1, the dual feasible vector rk is equal to the RMP dual iterate pk

(from equation 4.8). So rk.e = pk.e and the lower bound on the optimal MP solution

62

value (rk.e) equals the upper bound on the optimal MP solution value (pk.e). The

equality of the bounds indicates optimality.

Proposition 3 DACG is finite and exact.

The proof follows from the proof of convergence and optimality of the column

generation algorithm, since DACG only modifies the column generation algorithm by

generating additional columns.

4.3.1 Geometric Interpretation of DACG

Figure 4-1 provides a geometric interpretation of the DACG heuristic. DACG adds

columns to the primal problem at each iteration. This corresponds to adding con-

straints to the dual problem and descreasing the size of the dual feasible region. If

all the dual constraints (primal columns) could be enumerated, the feasible region in

dual space would be specified completely.

Assume that the rectangle Oabc corresponds to the dual feasible region. Let the

point 0 correspond to the initial feasible dual vector qo. Let the restricted master

problem in the first iteration correspond to the columns (or constraints in the dual)

cl - cl and c2 - c2. Let c3 - c3 and c4 - c4 correspond to the columns (constraints

in the dual) added in subsequent iterations. For the sake of simplicity, assume that

only one column (constraint) is generated per iteration. Let pi denote the DACG

dual iterate in iteration k, and let q denote the feasible dual vector in iteration k.

The first three steps are given below.

The following description uses the dual version of the restricted master problem.

The columns in the primal problem correspond to constraints in the dual and hence

primal column generation corresponds to dual constraint generation.

* Iteration 1 The master problem is given by constraints cl- cl and c2 - c2 and

the optimal dual iterate is pi. A line search is performed between the feasible

dual vector of the earlier iteration, qo, and pi. This line search will find the

maximum step size that can be taken while keeping the feasible dual vector

63

c4

cl

cl c3

Figure 4-1: Geometric Interpretation of DACG

within the dual feasible region. DACG then moves to the new dual feasible

vector, ql.

* Iteration 2 Constraint c3 - c3 is generated by DACG and the new optimal

dual iterate is P2. DACG performs a line search between ql and P2 and moves

to a new point q2.

* Iteration 3 DACG generates column c4 -c4 and the optimal dual iterate is p3.

DACG performs a line search which converges back to q2, since the direction of

the line search points out of the dual feasible region.

DACG has not been carried out to optimality for the sake of brevity.

4.4 IDACG - Interior Point DACG

Iteration 3 in the above example shows a situation in which the feasible dual vector

gets "stuck" at the dual feasible region boundary, and is therefore unable to ascend

64

t2

the dual objective function. To overcome this, DACG is modified by changing step 2

as follows

* Step 2: Set

7k = Trk-1 + a 0*(p - rk-1) (4.11)

where 0 < a < 1. Thus, the modification is simply that the maximum step size

e* is multiplied by a step factor a to keep the dual feasible vector in the interior

of the feasible region. The modified heuristic is denoted by IDACG (interior point

version of DACG). This computationally simple modification is made based on the

two following assumptions:

1. Initializing the dual feasible point to be an interior point, and multiplying the

maximum step size by a step factor (< 1) will most likely keep the dual feasible

vector in the interior.

2. Keeping the dual vector in the interior of the dual feasible region provides more

flexibility in movement and many more line searches produce non-zero step

sizes, resulting in faster overall convergence to the optimal dual solution.

Although the dual feasible region is not explicitly known, it is easy to find (by

solving an appropriate subproblem) if a given dual solution is feasible. The lack

of knowledge of the dual feasible region makes it difficult to find a feasible interior

direction in a manner other than that employed in IDACG.

Using the example to describe DACG, Figure 4-2 depicts the behavior of IDACG.

The first three steps of IDACG shown in figure 4-2 are as follows:

* Iteration 1 The dual of the master problem corresponds to constraints cl - cl

and c2 - c2 and the optimal dual iterate is pi. A line search is performed

between qo and pl and the maximum possible step size e* is determined. A new

feasible dual vector, ql, is constructed using equation 4.11.

* Iteration 2 IDACG adds constraint c3 - c3 and the new optimal dual iterate

is p2- A line search is carried out between ql and P2 and the maximum step size

is determined. Once again, a dual vector, q2, is constructed.

65

ul

c4

cl
2

12

cl c3

Figure 4-2: Geometric Interpretation of IDACG

* Iteration 3 IDACG adds constraint c4 - c4 giving an optimal dual iterate p3.

The line search between q2 and p3 yields another feasible step size and a new

feasible dual vector, q3.

This example of IDACG shows how the dual vector is retained within the interior

of the feasible dual region.

Proposition 4 IDA CG is ezact and finite.

This follows from proposition 3.

4.5 Results on Randomly Generated Problems

IDACG was tested on randomly generated problems. The randomly generated prob-

lems, constructed using a method proposed by Hearn and Lawphongpanich(1989),

are of the form

min c (4.12)

66

Table 4.1: Overall Comparison of Heuristics - Density = 100%

subject to Ax < b (4.13)

x E X = {x2: 0 < x < d} (4.14)

where c,b and d are constant vectors and A is an m x n constraint matrix.

A comparison was made between ordinary (i.e., without dual ascent) column gen-

eration (CG) and IDACG on 30 random LP's, the specifications of which are given

in table 4.1. The data were randomly generated from uniform integers with the fol-

lowing ranges: cj E [-100,100], Aij E [-25,25], dj E [0,50] and b E [0,25n]. The

LP's were solved using IBM's Optimization Subroutine Library (Druckerman, et al.,

1991). The results obtained are tabulated in table 4.1 in which "time" stands for the

run time in seconds on an IBM RS 6000/320 workstation, "ite." refers to the number

of iterations of the algorithm, "col." stands for the number of columns generated and

"piv." stands for the total number of pivots made by the simplex subroutine in each

algorithm. The last column shows the percentage improvement in runtime of IDACG

over CG and is calculated using the formula

(Time by CG - Time by IDACG)Percentage Improvement = 100 x Time by IDACG) (4.15)
Time by CG

67

Size J CG IDACG IMP.(%)
25x50 time --

ite. 55 28 50
col. 55 55 neg.
piv. 149 109 27

50x100 time 9 6 30
ite. 124 54 57
col. 124 106 14

piv. 545 377 45
75x150 time 40 26 35

ite. 233 91 61

col. 233 181 22
piv. 1618 920 43

The results are summarized as:

1. IDACG was faster than CG on all the random problems tested. For the smallest

problems (25 rows by 50 columns), the run times were negligible and hence not

reported. For the medium problems (50 rows by 100 columns), the percentage

improvement in time (given by equation 4.15) is 30%. For the largest problems

(75 rows by 150 columns), the percentage improvement is 35%

2. For all problem sizes, IDACG required fewer iterations and fewer pivots in the

simplex subroutine to reach optimality.

3. IDACG used fewer columns than CG to reach optimality for the medium and

large problem sizes. However, the differences in the number of columns gener-

ated for the smallest problems were negligible.

4. IDACG always took fewer pivots in the simplex subroutine to reach optimality.

5. IDACG can potentially generate two columns per iteration in these problems -

one based on the RMP dual iterate and one based on the dual feasible vector.

However, a column based on the dual feasible vector is generated only if a non-

zero step size is obtained in the dual line search. The results show that the

number of columns generated is almost equal to twice the number of iterations

for all the problem classes. This shows that the line search rarely results in

a step size of zero and that the dual feasible vector remains in the interior as

IDACG progresses.

Empirical experience indicates that the performance of IDACG is best for step

factor values between 0.25 and 0.4. Thus, a step factor of 0.3 is chosen for the

remaining computations.

68

Chapter 5

Solving the Crew Pairing Problem

This chapter presents

1. a column generation algorithm to solve the LP relaxation of CPP;

2. an application of IDACG to the CPP;

3. an efficient procedure to generate lower bounds on the optimal CPP objective

function value; and

4. methods of obtaining integer solutions to the CPP.

5.1 LP Solution to the CPP

The first step in solving the CPP is to relax the integrality constraints and solve

the LP associated with the root node of the branch-and-bound enumeration tree.

The LP is very difficult to solve due to the enormity of the number of columns and

hence column generation is used to solve it. The following column generation scheme,

consisting of two parts that are executed alternately, can be used to solve the CPP

(Minoux,1984;Lavoie, et al,1988; Barnhart, et al.,1991). An iteration of the column

generation algorithm involves the solution of each of the following two parts:

1. The restricted master problem (RMP) which requires the optimal selection

of pairings to cover flights, where the set of pairings is restricted to a subset of

69

MASTER PRO
Solves Res
Generates

-4

SUBPROBLE
pairings
reduced c

IBLEM:
er a-A T.D Add pairing

dual values YesYes

No / Is minimum
reduced cost

MH: Finds

of minimum I
:ost

Figure 5-1: Column Generation for Crew Pairing Optimization

the total pairings, and integrality of the solution is not required.

2. The subproblem (CPSP) which generates one or more pairings with minimum

reduced cost, i.e., pairings that can potentially reduce the cost of the current

crew pairing solution generated by RMP. New pairings can be generated for

some CPP problems using a shortest path procedure as discussed in section

3.4.1.

The column generation algorithm for the crew pairing problem is shown schemat-

ically in figure 5-1 (Minoux,1984;Lavoie, et al.,1988).

5.1.1 IDACG for the Crew Pairing Problem

The dual to the LP relaxation of the CPP is

m

(CPP - Dual) max E i
i=l

subject to
m

ci-E 7riaij > j = 1,...,n
i=1

7ri O i= l,...,m

(5.1)

(5.2)

(5.3)

70

IDACG can be incorporated into the CPP solution process. Each iteration of IDACG

involves performing the following steps:

* Step 1. Initialization: Choose an initial set of pairings, denoted by R, that

cover all the flights. The starting dual vector r0o, that is feasible to CPP-Dual,

is chosen to be a vector of zero's.

* Step 2. Restricted Master Problem: Solve RMP to optimality over R.

Denote the optimal RMP dual solution for iteration k by pk, referred to as the

dual iterate at iteration k.

* Step 3. Column Generation/Pricing Subproblem: Solve CPSP and add

to RMP any negative reduced cost pairings that are generated.

* Step 4. Dual Ascent Heuristic: Perform the following steps and then return

to step 2.

1. Line Search: Perform a line search between the dual feasible vector 7rk- 1

and dual iterate pk, to obtain the maximum feasible step size, *. At each

point in the line search, the feasibility of the point is checked. This is

accomplished by defining vector W7r as

7k = 7rk-1 + O(pk - 7'k-1) (5.4)

and modifying the time-line network costs to equal the reduced costs with

respect to vector i7r. Then, as in step 3, the existence of a negative re-

duced cost pairing can be determined using a (specialized) shortest path

procedure. The existence of such pairings indicate dual infeasibility. If

9* = 0, the dual ascent step has failed in this iteration and the procedure

returns to Step 2.

2. Dual Ascent: The dual feasible vector is moved to a new point rk =

7rk-l + aO*(pk- 7rk-), with a = 0.3 (empirically set).

71

3. Auxilliary Column Generation: The network costs are modified to

equal the reduced costs with respect to rk. SP is solved again but only

those pairings that have a negative reduced cost with respect to 7rk-1 are

extracted and added to RMP.

5.1.2 IDACG for CPP - Efficiency and Other Issues

The following points can be used to improve the efficiency of IDACG.

1. Because the maximum step size * is multiplied by a step factor a, it is not

necessary to determine 0* precisely. Consider the following proposition.

Proposition 5 By using a tolerance of 0.1 in the line search, the search can

be restricted to 4 feasibility checks.

This follows from the fact that

(1)4 = 0.0625 < 0.1 (5.5)

This results in a significant speed up of IDACG.

2. During the feasibility checks made in step 4a of IDACG, it is not necessary

to determine the minimum reduced cost pairing between every pair of nodes

representing the same crew base. If the shortest path algorithm for a node

pair yields a negative reduced cost pairing, it indicates infeasibility and the

feasibility check for this point in the line search can be stopped immediately.

3. Using equation (5.1), 7rk can be used to construct a lower bound for MP. How-

ever, a better bound can be obtained by using vector Sbnd given by

S6bd = 7rk- + 0 (Pk - 7k-1) (5.6)

m

8 bd is feasible to CPP-Dual, and hence E 1bnd a lower bound on the optimal
objective function value of MP (using equation 5.1).=

objective function value of MP (using equation 5.1).

72

5.1.3 Termination of LP solution using Farley's Bound

The branch and bound algorithm is basically an enumeration scheme that is enhanced

by fathoming based on bound comparisons. The size of the branch and bound tree

can be controlled by using strong bounds. However, there is a tradeoff between the

computational efforts involved in computing strong bounds and evaluating small trees

as compared to computing weaker bounds and evaluating larger trees (Barnhart, et

al., 1993b). This trade off can be explored in branch and bound algorithms in which

column generation is used to solve the resulting LP's, by terminating the column

generation before LP optimality is achieved and working with non-optimal solutions.

In some cases, this may not affect the branch and bound tree size. As an example,

when the optimal CPP objective function value is known to be integral and the value

of the objective function of the RMP is less than the round up of the lower bound

provided by the root node RMP, column generation can be terminated since nothing

can be gained by solving the RMP to optimality. This method has been used by

Vance (1993) in solving binary cutting stock problems.

A lower bound on the optimal CPP objective function value can be obtained by

determining the optimal value of the root node LP. However, this may be very painful

to achieve since column generation often has a tailing effect and may take a very long

time to achieve optimality. This motivates the need for a scheme to generate bounds

that will permit the early termination of the column generation algorithm. One such

bound, obtained by a method proposed by Farley(1990), is based on (non-optimal)

LP solutions associated with the root node of the branch and bound tree.

Farley's Bounding Procedure

Since it is very difficult to achieve optimality for MP, researchers have used several

rules of thumb to terminate the column generation algorithm. Gilmore and Gomory

(1963) suggest that the column generation algorithm be terminated when the change

in the objective function does not exceed a certain tolerance over a specified number

of iterations. Farley(1990) points out however, that this rule has the disadvantage of

stopping at what he terms a stall point. He suggests a better bounding rule defined

73

on the following linear programming model and its dual.

Using column generation, let (,~i) be the current solutions to P and D, and define

Aj = ATU for each column j. If Aj < 0 for all j, then fi is a feasible dual solution

and x is optimal; Otherwise, let

mlmin - (5.7)
Ak j:Xi>o Aj

Note that c/Ak > 0, given that Ck > 0.

Farley proves that for P, CTkCk/Ak is a lower bound on the optimal objective

function value Z. Various forms of cutting stock algorithms have been terminated

using this procedure. The following section shows how this bounding procedure can

be efficiently applied to the CPP.

Application of Farley's Bound to CPP

Note that the number of columns is exponential in the crew pairing problem and

hence, finding Ck/Ak requires an exponential number of evaluations. The determi-

nation of this ratio can be performed efficiently however, for long haul crew pair-

ing problems in which pairing cost is assumed proportional to time-away-from-base.

Hence, given any node pair (a, b) in a time-line network, the costs of all valid pairings

between nodes a and b are equal. Let Cab denote this cost, and let Pb denote the set

of all valid pairings between the nodes a and b. Then,

min - = min min - (5.8)
j:Aj>O Aj (a,b) j:Aij>OEPb Aj

Cab
= min (59)

(a,b) i:max Aj
j:Aj>OjEPc,

74

Primal P Dual D

Minimize Z = cTx Maximize U = bTu

subject to Ax > b subject to ATu < c

x,c>O u,c> 0

Crb= min (5.10)
(a,b) {- min A

j:A1>OjEP.b

= min (5.11)
(a,b) Aab

where A*b = {- min -Aj}. Recall that the CPSP finds a pairing with minimum
j:Xi >o,jeP,,

reduced cost (denoted by labab), i.e.,

labab = min (cj - Aj) (5.12)
j E Pb

Since,

min (cj - Aj) = Cab + min (-Aj) (5.13)jE Pb jEP ,

it follows that

Aab = Cab - labab (5.14)

Thus, the values A* are a by-product of the CPSP solution procedure. Hence, the

above implementation of Farley's bounding procedure for long haul crew pairing prob-

lems is computationally no more complex than the CPSP solution procedure.

Generality of the Bounding Procedure

Consider now the effect on the generation of Farley's lower bound for CPP's where

pairing cost is not proportional to the time-away-from-base cost. For example, as

described in section 2.3.1, Vance(1993) studies a typical U.S. domestic crew pairing

problem in which crew pairing cost is a non-linear function of several different costs.

Even for these complex cost structures, a lower bound on pairing cost is provided by

the time-away-from-base component, i.e.,

Cj > Cb Vj E Pab (5.15)

and hence, Farley's lower bound is finally computed as:

min = min min m (5.16)
j:j>o Aj (a,b) ij:j>,jEPb Aj

75

min cj
> min jEPab (5.17)

-(a,b) max Aj
j:j>O,jEP.b

- min Cab(5.18)
(a,b) {- min - j}

j:j>OjEPub

C.b
- minCab (5.19)

(ab) Ab

5.1.4 LP for CPP - Implementation Issues

Several implementation issues must be considered in solving CPP. These are discussed

in the following sections.

Deadheading and Coverage

Crew deadheading refers to repositioning of crews to increase their utilization (Barn-

hart, et al., 1991). Sometimes it is essential to add deadheads to ensure coverage of

flights. For example, in dated problems (ones in which the times and dates of flight

departures are given), early (late) flights in the schedule which do not start (end) at

a crew base do not get covered. This is because there are no earlier (later) flights in

the schedule that can get them to or from a crew base. Deadhead flights are therefore

added so as to allow crews to depart (return) from (to) their crewbases and fly the

first (last) flights in a schedule. These deadheads can be selected by hand or by using

an analytical tool such as that of Barnhart, et al(1991b)

Starting the Algorithm

The big-M method is used to obtain the initial solution for the column generation

algorithm. In the big-M method, a starting solution consisting of high cost artificial

columns is used. Each column represents an artificial pairing that covers exactly one

flight and has a cost equal to the sum of the cost of the flight, the cost of deadheading

a crew from its crewbase to the flight's origin, and the cost of deadheading the crew

from the flight's destination to the crewbase. There are as many such columns as

there are flights. Since these columns are expensive and cover only one flight each,

76

they are unattractive and will be driven out of the basis if a feasible solution exists.

Column Management

Column management refers to the rules of thumb used to restrict the number of RMP

columns to a reasonable number. It may be advantageous to delete RMP columns

since, an increase in the number of columns increases not just the number of pivots,

but also the time taken for each pivot. It is important to note that deleting columns

will not affect the optimality of the column generation procedure. Two sample column

management techniques are:

1. After each RMP solution, all columns that have reduced costs greater than some

small positive threshold value are discarded.

2. After each RMP solution, all non-basic columns are discarded.

Managing round off errors

In order to handle round off errors, only pairings with reduced costs less than some

small (negative) threshold are added to RMP.

The Overall Algorithm

Incorporating the above implementation issues, Figure 5-2 gives a schematic sketch

of the solution method for the linear relaxation of the CPP.

5.2 IP Solution to CPP

One method of solving big integer programs like CPP is with the use of column

generation embedded within a branch-and-bound framework, as described in section

3.5. However, this approach has several practical difficulties, such as:

1. Branch and bound is a computationally difficult and memory intensive approach

even without the added requirements of a sophisticated solution technique like

column generation.

77

START

Dual Ascent Heuristic
...............

Figure 5-2: LP Solution Procedure for CPP

78

--

2. Column generation complicates the approach further since the solution of each

node involves solving an LP with additional constraints using column genera-

tion.

A simplified solution approach, one which is not guaranteed to produce an optimal

CPP solution, is to solve only the root node LP with column generation and to solve

all subsequent LP's with a fixed set of columns. This set may be (a subset of) the

columns generated in solving the root node. Practical experiences of Anbil, et al.

(1991b) and Barnhart, et al. (1993) show that this simplified method yields near

optimal solutions for CPP's. Two strategies to solve are discussed below. One uses

the strategy provided by OSL directly and is referred to as the black box strategy; the

other uses a specialized branching rule tailored after that of Ryan and Foster (1981)

and is referred to as the follow-on fix strategy.

5.2.1 The Black Box Strategy

This method uses the OSL subroutines EKKMPRE and EKKIMDL. EKKMPRE is

a pre-processing subroutine that analyzes the 0-1 structure of the constraint matrix

in order to reduce the size of the branch and bound enumeration tree. Some of the

steps carried out by EKKMPRE are as follows.

1. A heuristic approach is used to set all 0-1 variables to 0 or 1 and hence determine

if a valid solution can be obtained.

2.. Fix each 0-1 variable in turn, first to 0 and then to 1, and determine the effect

on all other variables. This analysis helps in pruning the branch and bound

tree.

3. Add constraint rows called cuts to make the solution to the LP closer to the IP

solution.

The branching rule used by EKKIMDL sets a variable to 0 or 1. The variable is

chosen from among those with the highest priority where the variable priorities are

79

provided by the user (all the priorities are set equal to 1 in this study). Among those

variables with equal priority, the variable with the least degradation is chosen. The

degradation of a variable is a measure of how much the objective function will worsen

before an integer solution is reached if the variable is used in branching. More details

of the above subroutines and related terms can be obtained from the OSL User's

Guide.

5.2.2 Follow-on Fix Strategy

This branching strategy is based on the branching rule developed by Ryan and Fos-

ter(1981) and applied by Anbil, et al. (1991b) to CPP's. If the optimal LP solution

at the current active node is non-integral, one of two branching rules is chosen - flight

a should be followed by flight b, or flight a should not be followed by flight b. The

choice of flights a and b can be made by computing from the basic RMP solution for

the current branch and bound node, which pair of flights appear sequentially most

often. In the method adopted by Anbil, et al. (1991b), a branching decision that is

made is never changed (i.e., backtracking is not done). However, good solutions to

the CPP were obtained.

5.2.3 IP - Efficiency Issues

Branch and bound algorithms consume a lot of memory. Hence, it is desirable to

reduce the problem size whenever possible. The heuristic used to achieve this is:

* Step 1 Elimination of Columns: Discard all columns in the root node LP

which have reduced costs greater than some tolerance.

* Step 2 Elimination of Rows: Each column in the root node LP solution

with a value of 1 is discarded along with each row it covers.

After the root MP is either solved to optimality or terminated before optimality is

reached, the heuristic is run on the constraint matrix to reduce its size to manageable

proportions. This procedure will not affect the feasibility of the CPP solution.

80

Chapter 6

A Case Study

6.1 Introduction

This chapter presents computational experience in solving crew pairing problems of

a typical long haul carrier. The model was coded using the IBM's OSL and the

C programming language. All computational tests were run on an RS 6000/370

workstation. The following definitions will be used in the analysis of the results.

1. Bound Gap refers to the gap between the upper and lower bounds on the

optimal MP objective function value, during the solution of RMP using column

generation, and is defined as

(Current RMP Solution - Current Lower Bound)
Bound Gap (Current RMP Solution + Current Lower Bound)/2

(6.1)

2. Optimality Gap is used to measure the difference between the optimal solution

of the current RMP and the optimal MP solution, and is defined as

Optimality Gap = (Optimal RMP Solution - Optimal MP Solution)
Optimal MP Solution

(6.2)

81

3. Duality Gap is used to measure the gap between the best CPP (IP) solution

and the optimal MP solution, and is defined as

(Best CPP Solution - Optimal MP Solution)Duality Gap (%o) = 100 x Optimal MP SolutionOptimal MP Solution
(6.3)

4. Line Search Failures refers to the number of line searches that end with a

maximum feasible step size (*) of zero.

5. Column Generation Failures refers to the number of column generation iter-

ations which do not produce any negative reduced cost columns using reduced

costs computed with the current dual feasible solution. This includes those

iterations in which the line search has failed.

6. Average Step Size refers to the average of the dual ascent feasibility step

sizes. Therefore, if 0* is the maximum step size in iteration i, the average step

size over N iterations is given by

2i=l i (6.4)

N

7. Iterations to Optimality refers to the number of iterations that the column

generation procedure takes to reach primal optimality.

8. Percent Integrality refers to the percentage of the non-zero variables in an

optimal LP solution for CPP that are equal to one.

6.2 Data used in the Case Study

The following definitions are used to characterize the datasets.

1. No_Seg refers to the number of flights that should be covered.

2. No_Dhd refers to the number of deadheads used in solving the problem.

82

3. NoDps refers to the total number of duty periods generated from the flights

and deadheads.

4. NoArcs refers to the number of arcs in the time-line network (section 3.4.1).

5. NoNds refers to the number of nodes in the time-line network.

6. NoCbs refers to the number of crew bases in each dataset.

7. NoCbNds refers to the number of crew base nodes in the time-line network.

8. No_FI_Pr refers to the average number of flights per pairing.

Five full datasets, numbered P1 through P5, were used in the computational

study. Each dataset represents a six to seven week schedule of flights to be flown

by a typical long haul carrier. Three smaller datasets, numbered S1, S2, and S3,

were created by extracting small portions from the full dataset P1. These smaller

datasets were created to test the effect of problem size on algorithmic performance.

S1 and S2 represent a flight schedule of one week each, while S3 represents a two

week flight schedule. The problems were solved using the integer programming and

column generation techniques described in chapters 3 and 5. The column generation

subproblem is a simple shortest path problem and it is implemented using a time line

network as described in section 3.4.1. The characteristics of all the problems and the

corresponding subproblems are given in table 6.1.

6.3 Solution of Small Problems

The performance of problems S1, S2 and S3 using conventional column generation

(CG) is tabulated in table 6.2, i.e., no special dual ascent or column management

strategies were tested on these problems. Similar performance of CG is achieved for

problems S1 and S2. For example, table 6.2 compares the number of iterations, the

amount of time, and the number of flights per pairing for S1, S2, and S3. Observe

that both S1 and S2 have integral LP optimal solutions.

83

Table 6.1: Case Study Data Characteristics

Table 6.2: Performance of Small Problems

The optimal solution to problem S3 has only 48% integrality. It is solved to IP

optimality by using the constraint matrix of the optimal MP solution as input to the

"black box" IP solver in IBM-OSL (section 5.2.1). A feasible integer solution with a

duality gap (equation 6.3) of 0.08% was achieved in 426 seconds.

6.4 LP Solution of Large Problems

The following solution strategies have been used to find optimal LP solutions for

problems P1, P2, P3, P4, and P5.

84

Problem Problem Characteristics Subproblem Characteristics
No. NoSeg NoDhd NoDps NoCbs NoNds NoArcs NoCbNds
P1 1138 2368 4551 2 9102 13616 2318
P2 1128 1025 3221 2 6442 9629 1078
P3 943 724 2478 2 4956 7402 898
P4 1012 1628 4226 2 8452 12645 2194
P5 1023 1862 4703 1 9406 14074 2884
S1 163 1342 2007 2 4014 5988 1032
S2 160 1570 2318 2 4636 6917 1211
S3 325 1767 2799 2 5598 8360 1442

Problem NoFlPr Performance Percentage Duality
Criterion Integrality Gap

S1 4.47 20 ite. 100% 0
349 sec.

S2 4.43 17 ite. 100% 0
358 sec.

S3 4.20 25 ite. 48% 0.08%
976 sec.

6.4.1 Solution Strategies

In addition to conventional CG, three dual ascent variants of IDACG were used to

solve problems P1 through P5. These were used in combination with two column

management schemes.

Column Management Strategies

The three column management strategies that were tested are:

1. After each iteration of CG (or IDACG), all columns are retained. However, each

time the number of columns exceeds a threshold (chosen as 50,000), only the

basic columns are retained and all other columns are eliminated. This strategy

is denoted by CMS1.

2. All columns are retained after each iteration of CG (or IDACG). However, each

time the number of columns exceeds a threshold (chosen as 35,000), all columns

with reduced costs greater than a specified value (chosen to be a quarter of the

maximum pairing cost) are eliminated. This strategy is denoted by CMS2.

3. All columns are retained after each iteration of CG (or IDACG). However, each

time the number of columns exceeds a threshold (chosen as 35,000), all columns

with reduced costs above the median reduced cost are eliminated. This strategy

is denoted by CMS3. The median reduced cost is calculated approximately by

first determining the maximum and minimum reduced costs among all columns

in the constraint matrix and then using an interval reduction method with a

large tolerance.

Dual Ascent Variants

Conventional column generation, that is column generation not using dual ascent, is

denoted as DASO. The three dual ascent variants of IDACG tested are

1. Columns are generated (in step 3 of IDACG) using the interior point dual

feasible vector given by equation 4.11. This strategy is denoted DAS1.

85

2. Columns are generated using the boundary point dual feasible vector, instead

of the interior dual feasible vector. This strategy is denoted DAS2.

DAS1 and DAS2 carry out four evaluations for every line search in step 1 of

IDACG. Since each evaluation in the line search is time consuming, an attempt is

made to reduce the time taken by the line search by reducing the number of evalua-

tions to three. This strategy is denoted by DAS3.

A comparison of the performance of dual ascent heuristics DAS2 and DAS3, using

column management strategy CMS1, is given in table 6.3. The performance of DAS3

is, in general, worse than the performance of DAS2. The reason for the poor perfor-

mance of DAS3 is the fact that, compared to DAS2, a greater percentage of the line

searches end in failure, i.e. yield a maximum step size of zero. Since DAS3 performs

3 evaluations in every line search as compared to 4 evaluations per line search by

DAS2, the accuracy of the line search in DAS3 is poorer and hence, small step sizes

will not be captured by DAS3, resulting in many more line search failures by DAS3.

A zero step size (i.e., a failed line search) means that the dual cannot be ascended and

no dual ascent columns can be generated and hence, a line search is wasted. Failed

line searches slow down the algorithm. Owing to its poor performance, DAS3 has not

been investigated further.

6.4.2 Solving to LP optimality

Table 6.4 compares the performance of DAS1 and DAS2 for the five datasets, P1

through P5.

"I." refers to the number of iterations,

"T." refers to the time taken in seconds, and

"B." refers to the bound gap (equation 6.1).
If an inordinate amount of time was required to achieve an optimal LP solution,

the procedure was terminated prematurely. The bound gap is reported for such

instances. Only 13 of 15 problem/column management strategy combinations were

considered because problems P1 and P4 did not converge for column management

strategy CMS3. This yields 13 conventional CG cases and 26 IDACG cases.

86

Problem Performance DAS2 DAS3
No. Criterion
P1 Iterations 44 41

Time (seconds) 17129 17854
Fail. Line Searches(%) 4.6 12.2

P2 Iterations 35 40
Time (seconds) 7316 7995

Fail. Line Searches(%) 11.4 22.5
P3 Iterations 22 27

Time (seconds) 2393 2697
Fail. Line Searches(%) 4.6 11.1

P4 Iterations 41 47
Time (seconds) 14213 15403

Fail. Line Searches(%) 9.8 21.3
P5 Iterations 25 30

Time (seconds) 6472 6942
Fail. Line Searches(%) 8.0 16.7

Table 6.3: Performance of DAS3

1. Comparison of CG and IDACG: In 16 of the 26 cases, IDACG took fewer

iterations than CG. However, only 8 cases of IDACG proved to be faster in

terms of time than CG. This is because even though IDACG requires fewer

iterations, each IDACG iteration takes longer due to the dual ascent step.

2. Comparison of DAS1 and DAS2: Neither DAS1 nor DAS2 outperforms the

other, in terms of time or number of iterations.

3. Comparison of Column Management Strategies: A comparison of column

management strategies shows that CMS3 is clearly the worst since 5 problems

had to be terminated due to poor convergence when it was used. In general,

CMS1 seems to perform better than CMS2.

4. Effect of Subproblem Complexity: IDACG solves the subproblem many

times - it solves a subproblem to generate columns as in CG; it then carries out

a line search in which it runs the subproblem 4 times (in DAS1 and DAS2);

and provided the maximum step size * is non-zero, it runs the subproblem

87

once more to generate additional columns. This implies that if the subproblem

is computationally expensive to solve, the performance of IDACG will be poor

when compared to that of CG. Table 6.5 shows that the proportion of time

spent by the subproblem is the largest in P5. This is one of the reasons for the

poor performance of IDACG on problem P5.

Table 6.1 shows that the P5 subproblem has the largest number of nodes, the

largest number of arcs and the largest number of crew base nodes. Moreover,

P5 has only one crew base, implying greater subproblem solution time. This

can be explained with an example.

Example 7 Consider two subproblems A and B, both of which have 200 crew

base nodes. Suppose that subproblem A has only one crew base while subproblem

B has two crew bases, named JFK and BOS respectively, each with 100 nodes.

Suppose also that every node pair belonging to the same crew base can be con-

nected by one valid pairing, going from the node with earlier time to the node

with later time.

Although the shortest path algorithm used is a one-to-many algorithm (i.e., from

a single origin to multiple destinations), the number of shortest path pairings

that one can eztract from a set of n nodes is given by the formula

n x (n- 1)
2 (6.5)

From equation 6.5, subproblem A has 19900 node pairs and subproblem B has

4950 node pairs for each crew base and hence a total of 9900 node pairs. This

implies that subproblem A would possibly have twice as many pairings as sub-

problem B and hence would possibly take twice as long.

This may explain why the P5 subproblem is the most difficult to solve compu-

tationally.

5. Better Bounds by IDACG: IDACG produces better bounds than CG. This

is evident from the problems which are terminated before achieving an optimal

88

LP solution. The bound gaps are smaller for the problems when IDACG is

used.

6. Early Primal Optimality: In solving problems P1 through P5, the optimal

primal objective function value is reached relatively early in the solution process,

but a feasible (optimal) dual solution is not achieved for several additional

iterations. This results because the right hand side in the primal problem is

a vector of l's which causes degeneracy in the dual, i.e., it may take the dual

a substantial number of iterations to stabilize and reach optimality. Table 6.6

gives the percentage of the number of iterations in which the optimal primal

objective function value is attained. As an example, consider the solution of P4

using DASO and CMS2. An optimal primal solution value is achieved in just

51.4% of the iterations needed to prove LP optimality. This justifies the strategy

of terminating the solution procedure when the primal-dual gap (bound gap)

is small. Although the lower bound will not be as tight, the run time will be

reduced.

6.4.3 Solving with Termination Criterion

The criteria that are used to terminate the column generation algorithm is based on

the bound gap (equation 6.1). The results for two values of the bound gap - 0.05 and

0.01, are given in tables 6.7 and 6.8 respectively. The two termination criteria will be

referred to as TC1 and TC2 respectively. Some entries in the two tables are empty

since they were terminated before reaching the termination criterion. In tables 6.7

and 6.8,

"I." refers to the number of iterations,

"T." refers to the time in seconds,

"O." refers to the optimality gap at termination,

"L." refers to the fraction of the failed line searches,

"C." is the number of failed dual ascent column generation iterations,

"S." refers to the average step sizes upto termination.

89

No. CMS1 CMS2 CMS3
DASO DAS1 DAS2 DASO DAS1 DAS2 DASO DAS1 DAS2

P1 I. 48 51 44 48 49 58 313 163 134
T. 18479 19237 17129 20569 24732 24475 52566 53036 45114
B. 0.204 0.009

P2 I. 51 36 35 100 54 165 72 59 39
T. 12040 12539 7316 15524 12401 19145 12201 11589 7086
B.

P3 I. 32 24 22 33 35 38 44 26 27
T. 2122 2095 2393 2138 2822 3653 2436 2075 2412
B.

P4 I. 26 38 41 37 47 27 369 383 225
T. 7778 13090 14213 14575 24356 19745 57450 74106 38556
B. 0.138 0.004 0.007

P5 I. 38 39 25 31 23 24 29 24 27
T. 4518 8269 6472 3673 5826 6391 3152 5314 6403
B.

Table 6.4: Overall LP results

Problem % time spent on CMS1 CSM2 CSM3
P1 Master problem 93.27 94.16 88.47

Shortest paths 5.68 4.90 11.55
P2 Master problem 96.12 95.30 95.29

Shortest paths 3.07 4.00 3.89
P3 Master problem 90.10 90.01 89.61

Shortest paths 7.02 7.06 7.88
P4 Master problem 82.87 89.59 74.27

Shortest paths 14.90 9.22 25.72
P5 Master problem 44.25 48.79 39.47

Shortest paths 51.15 45.69 54.09

Table 6.5: Analysis of Time Consumption in Conventional CG

90

No. CMS1 CMS2 CMS3
DASO DAS1 DAS2 DASO DAS1 DAS2 DASO DAS1 DAS2

P1 0.646 0.4901 0.682 1 0.469 0.466 0.411 0.388
P2 0.941 0.556 0.686 0.58 0.519 0.176 0.986 0.441 0.795
P3 0.938 0.792 0.864 0.909 0.543 0.526 0.682 0.731 0.741
P4 0.923 0.5 0.596 0.514 0.277 0.593 0.068 0.218
P5 0.79 0.87 1 0.839 0.913 0.833 0.931 0.958 0.889

Table 6.6: Proportion of Iterations to Reach Primal Optimality

Termination Criterion 1 (TC1)

The following results are observed for TC1 (refer table 6.7).

1. Comparison of IDACG and CG: IDACG (DAS1 and DAS2) always took

fewer (or equal) iterations than CG (DASO). The performance of DAS1 was

generally better than DASO in terms of time. The same however, cannot be

said of DAS2. This shows that DAS1 is generally the best strategy. One of the

reasons for this could be that the average step size is generally larger in DAS1.

A greater step size in the IDACG dual ascent step implies that the dual is kept

further in the interior and this allows a greater flexibility in the movement of

the feasible dual and hence better performance.

2. Comparison of Bounds: The reason for the better performance of dual ascent

is the better quality of the bounds generated by IDACG. The relatively tighter

bounds generated by IDACG allow faster termination of the algorithm and

hence savings in both the time and number of iterations. A point to be noted is

that IDACG (DAS1 and DAS2) always satisfy the termination criterion while

CG (DASO) fails to do so in some cases.

3. Small Optimality Gaps: Despite using a large bound gap of 5% (0.05), the

primal objective function value is quite close to the optimal LP solution value.

This can be seen from the optimality gaps (equation 6.2 reported in table 6.7).

91

4. Column Management Strategies: A comparison of the column management

strategies shows that CMS3 is the least desirable since two problems do not

reach the termination criterion TC1. In general, CMS1 performs better than

CMS2.

5. Interior Point Performance: The number of line search failures and dual

ascent column generation failures is identical in almost all cases for DAS1 and

DAS2. This shows that both the methods keep the dual in the interior.

It is interesting to see that P5 defies any trend. For example, dual ascent in

general improves the performace of CG except for P5 where CG is far superior to

IDACG.

Termination Criterion 2(TC2)

The following results are observed in table 6.8.

1. Comparison of IDACG and CG: Although the performance of DAS1 and

DAS2 is generally better than DASO in terms of number of iterations, their

performance is poor relative to CG, in terms of time. One of the reasons could

be the fact that a bound gap of 0.01 is relatively small and due to the tailing

effect of column generation, more iterations are taken to reach that gap. Since

IDACG takes more time than CG per iteration, it will perform badly when the

number of iterations are increased.

2. Comparison of DAS1 and DAS2: The performance of DAS1 is generally

better than that of DAS2. One reason could be the fact that the average step

size is generally larger in DAS1 than in DAS2. Moreover, the number of line

search failures and dual ascent column generation failures is usually larger in

DAS2, contributing to its poor performance.

3. Optimality Gaps at termination: The optimality gap at termination using

TC2 is always very small. Table 6.8 shows that for a bound gap of 0.01, the

problems are very close to the optimal LP solution.

92

No. CMS1 CMS2 CMS3
DASO DAS1 DAS2 DASO DAS1 DAS2 DASO DAS1 DAS2

P1 I. 26 16 16 44 21 26 36 41

T. 6622 5285 5795 20043 9582 14242 9488 11294
0. 2e-4 4e-4 2e-4 2e-06 4e-05 9e-06 3e-05 2e-05
L. 1 1 1 1 2 2

C. 1 i 1 1 2 2

S. 0.36 0.32 0.34 0.31 0.21 0.19
P2 I. 23 14 21 77 25 28 27 19 18

T. 4332 3280 5249 13495 5163 6614 4231 3582 3428
0. le-4 5e-05 le-05 0 5e-05 2e-06 4e-05 5e-05 5e-05
L. 2 4 1 2 2 2

C. 2 4 4 2 2 2

S. 0.39 0.34 0.293 0.3 0.37 0.36
P3 I. 20 14 15 20 14 16 20 14 18

T. 1429 1304 1791 1419 1307 1875 1420 1308 1854
0. 2e-4 2e-4 9e-05 2e-4 2e-4 0 2e-4 2e-4 3e-05
L. 1 1 1 1 1 1

C. 1 1 1 1 1 1

S. 0.41 0.4 0.41 0.39 0.41 0.34
P4 I. 24 17 23 30 20 21 40 43

T. 7186 6360 8171 11868 11048 14005 13146 12349
0. 0 le-4 2e-05 0 0 0 0 le-06

L. 2 2 2 2 3 3

C. 2 2 5 2 3 3

S. 0.38 0.32 0.36 0.36 0.2 0.19
P5 I. 24 18 24 21 16 15 23 17 21

T. 3235 4420 6055 2679 4063 4085 2572 3885 5268
O. 3e-4 2e-4 2e-06 le-4 3e-4 2e-4 6e-05 4e-4 le-06
L. 2 2 2 2 2 1

C. 2 2 2 2 2 1

S. 0.33 0.292 0.36 0.35 0.346 0.27

Table 6.7: Results for Termination Criterion 1

93

4. Dual Ascent Failures: As compared to TC1, the number of failed iterations

increases dramatically when TC2 is used to terminate the algorithm. As an

example, P4 using DAS2 and CMS3 has 80 iterations (out of 173) in which the

line search converges to zero. This is one of the reasons for the relatively poor

performace of IDACG using TC2.

6.4.4 Conclusions

1. Effect of Subproblem Complexity: The success of IDACG (in any variant

form) depends on the proportion of time spent in the master problem and

subproblem. IDACG uses the subproblem much more often than does CG.

Thus, the greater the proportion of time spent in the suproblem or the more

intractable the subproblem is, the less likely will it be for IDACG to improve

the performance of CG.

2. Early Primal Optimality: In the column generation solution of the CPP

LP, primal optimality is reached well before dual optimality. This motivates

the need for termination criteria other than the dual feasibility requirement of

the LP optimality termination criterion.

3. Comparison of IDACG strategies: A comparison of dual ascent strategies

shows that DAS1 (IDACG with generation of columns using the interior point

dual feasible vector given by equation 4.11) is superior to DAS2 (IDACG with

generation of columns using the boundary point dual feasible vector) more often

than not. Moreover, DAS1 frequently performs better than DASO (conventional

CG).

4. Column Management Strategies: It is not necessary to retain all the

columns that are generated. By deleting some or all of the non-basic columns

after each run of the restricted master problem, the optimality of the final so-

lution will not be affected. Moreover, by keeping the problem size down, the

solution of each restricted master problem can be achieved faster.

94

No. CMS1 CMS2 CMS3
DASO DAS1 DAS2 DASO DAS1 DAS2 DASO DAS1 DAS2

P1 I. 32 24 34 44 32 35 106 110
T. 9735 8363 11076 20043 18785 17330 32818 35772
0. 0 5e-06 0 2e-06 0 0 0 0

L. 1 2 1 1 22 27
C. 1 2 6 1 23 27
S. 0.43 0.34 0.36 0.34 0.12 0.11

P2 I. 43 23 25 77 41 44 62 25 32
T. 10689 6878 5810 13495 9500 8975 10789 4763 5202
0. 2e-06 0 0 0 0 0 2e-06 0 2e-06
L. 2 4 1 2 2 2
C. 4 4 15 3 2 2
S. 0.467 0.38 0.29 0.29 0.41 0.34

P3 I. 27 20 18 27 22 21 27 26 23
T. 1802 1754 2025 1795 1859 2234 1789 2075 2127
0. 2e-06 0 9e-06 3e-06 0.0002 0 3e-06 0 0
L. 1 1 1 1 1 1

C. 1 1 1 1 1

S. 0.5 0.46 0.48 0.41 0.42 0.4
P4 I. 24 32 35 30 28 27 140 173

T. 7186 10670 11467 11868 16503 19745 40199 31497
0. 0 0 0 0 0 le-06 0 0
L. 3 4 1 2 51 80
C. 3 4 9 2 51 80
S. 0.37 0.328 0.4 0.38 0.09 0.07

P5 I. 30 22 25 28 21 22 24 22 24
T. 3684 5241 6268 3239 5209 5683 2636 4739 5632
0. 0 2e-06 0 0 0 0 3e-05 le-06 0
L. 2 2 2 2 2 1
C. 2 2 2 2 2 1
S. 0.39 0.318 0.45 0.48 0.41 0.34

Table 6.8: Results for Termination Criterion 2

95

Three column management strategies are tested. CMS1 is the column manage-

ment strategy in which all non-basic columns are eliminated each time the total

number of columns exceeds a threshold. In CMS2, each time the number of col-

umn exceeds a threshold, all columns with a reduced cost above some threshold

value are eliminated. CMS3 is similar to CMS2 except that the threshold re-

duced cost used to eliminate columns is an approximately evaluated median

reduced cost. A comparison of column management strategies puts CMS3 last

since some problems could not be terminated using it. From the results, CMS1 is

preferred to CMS2. Moreover, CMS1 is attractive because it is non-parametric,

i.e., it does not have any threshold values that have to be arbitrarily fixed. One

of the reasons for the relatively poor performance of CMS2 is that the thresh-

old value chosen to eliminate columns is very important in its performance. A

high threshold value will cause the retention of a large number of columns and

slow down the RMP solution time, while a low threshold value might cause

the elimination of a large number of columns that later have to be regener-

ated. This results in a large number of iterations with small improvements per

iteration. The reason for the poor performance of CMS3 is that the median

reduced cost cannot be calculated easily by an approximate method, and the

exact calculation is computationally expensive.

5. Termination Criterion: Since the tailing effect is very common in column

generation, it is often not useful to run the algorithm to optimality. Premature

termination of the algorithm using a good bounding technique gives close to LP

optimal solutions. This is mainly due to the fact that during the LP solution

process of CPP, primal optimality is reached much faster than dual optimality

and hence early termination yields solutions that are close to the LP optimal

solution. Dual ascent methods give tighter bounds when applied to column

generation for CPP as compared to conventional column generation methods.

This allows early termination of the algorithm when dual ascent is applied.

96

Two termination criterion - TC1 and TC2, are used. A comparison of the

results using TC1 (termination at a bound gap of 0.05) and TC2 (termination

at a bound gap of 0.01) shows that although the problem reaches very close

to optimality using TC2 (optimality gaps are lower than 10-5), the optimality

gap is not too big using TC1 (optimality gaps are lower than 10-3). Moreover,

by using TC1, the algorithm can be terminated very quickly compared to TC2.

As an example, consider the soluton of P1 using DAS1 and CMS1. Under the

termination criterion TC1, the algorithm is terminated in 16 iterations, taking

5285 seconds. Using TC2 instead, the algorithm terminates in 24 (50% more)

iterations, taking 8363 seconds (58.2% more). The smaller optimality gaps using

TC2 do not warrant the extra effort required to achieve them. This favours the

use of TC1 in solving such problems.

6. Effect of Number of Flights per Pairing: The degree of integrality of

the optimal LP solution seems to depend on the average number of flights per

pairing in the constraint matrix. The lesser this average number, the greater is

the degree of integrality.

6.5 IP Solution of Large Problems

After solving the problems to LP optimality (or using a termination criterion), the

constraint matrix is preprocessed before it can be used to find integer solutions.

6.5.1 Preprocessing the Constraint Matrix

The constraint matrix is processed in three stages, namely

1. Duplicate Column Elimination in which identical columns are eliminated,

and

2. Fixing the One's in which all columns which are at one in the optimal LP

solution are fixed at one and are eliminated. The rows which they cover are

also eliminated.

97

Table 6.9: Results of Data Preprocessing

3. Reduced Cost based Elimination in which an LP is solved over the new

compressed matrix and all columns with reduced cost greater than a threshold

valte are eliminated. The threshold value is chosen to be 10.

This preprocessing helps to reduce the size of the constraint matrix and makes

it easier to solve the IP. Table 6.9 shows the results of this preprocessing for the

constraint matrices obtained by solving to optimality problems P1 through P5 using

DASI and CMS1. Note that the greater the percentage integrality of the starting

solution (given in the second column of table 6.9), the greater is the compression.

6.5.2 Comparison of Various IP methods

Three versions of the Black Box Strategy (refer to section 5.2.1) are used to solve the

IP's.

1. In the first strategey (denoted BB1), the matrix is passed only through the first

two stages of compression. One pass of EKKMPRE is made, and then the IP

solver is called with a search limit of a 1000 nodes in the branch and bound

enumeration tree.

2. In the second strategy (denoted BB2), the matrix is once again passed through

stages 1 and 2 of compression. One pass of EKKMPRE is made before it is

98

No. Percentage Criterion Starting Duplicate Fixing Red. Cost
Integrality Matrix Elimination 1's Reduction

P1 46.9% rows 1138 1138 536 536
columns 42085 37224 32998 1937

P2 22.4% rows 1128 1128 744 744
columns 23988 21509 20887 3301

P3 12.7% rows 943 943 771 771
columns 47272 29994 29626 4505

P4 14.9% rows 1012 1012 834 834
columns 36016 33813 33490 5432

P5 36.9% rows 1023 1023 613 613
columns 41802 32602 31493 1425

for IP

input into the IP solver with a search limit of 10000 nodes.

3. The third strategy (denoted BB3) processes the matrix through all three stages

of the compression strategy. After passing through two stages of EKKMPRE,

it is input into the IP solver with a search limit of 10000 nodes.

Table 6.11 compares the performance of the three methods. Clearly, BB3 is the

best method. One of the reasons for the better performance of BB3 as compared to

BB1 and BB2 is that the IP is run on a smaller matrix in case of BB3. There is a

tradeoff in reduction of matrix size. By reducing the size of the matrix used by the

IP solver, there are fewer solutions to choose from and hence the cost of the best IP

solution may not be very good. Larger matrices allow a relatively larger number of

solutions. However, smaller matrices have the advantage of having smaller run times

using an IP solver as compared to larger problems. This decrease in run time is due

to two reasons:

1. The smaller the constraint matrix, the lesser time taken per pivot.

2. The smaller the matrix, the fewer the number of variables and the smaller the

branch and bound tree. Thus, given a limitation on the number of nodes that

one can search, one can cover a larger portion of the branch and bound tree if

the problem is smaller.

In this case the run time factor seems to be more dominant and hence the smaller

matrices proved to have better results. An important observation is that as the

number of flights per pairing increases, it becomes increasingly difficult to obtain

good IP solutions. This is due to two effects.

1. From the results, it has been seen that the fewer the number of flights per

column, the greater is the percentage integrality of the optimal solution. The

percentage integrality of the optimal LP solutions are given in table 6.10.

2. A larger percentage integrality results in greater compression in the data and

increased tractibility of the IP.

99

Problem Percentage Integrality
P1 47
P2 22
P3 11
P4 14
P5 36

Table 6.10: Percentage Integrality of Optimal LP Solutions

Problem Flight per BB1 BB2 BB3
Pairing

P1 6.00 1.64% 1.64% 0.69%
48 minutes 276 minutes 89 minutes

P2 7.09 3.49% 3.11% 0.30%
58 minutes 277 minutes 169 minutes

P3 7.83 3.86% 3.69% 1.24%
138 minutes 578 minutes 510 minutes

P4 9.60 17.53% 15.08% 7.66%
241 minutes 692 minutes 851 minutes

P5 5.54 6.4% 5.79% 4.13%
52 minutes 237 minutes 168 minutes

Table 6.11: Performance of IP methods

100

6.5.3 Conclusions

Problems P3 and P4 were terminated after 3000 and 6750 nodes respectively when

BB3 was used due to excessive run times. Tests on the IP's yield the following

conclusions:

1. The branch and bound approach is more effective when the problem size is

controlled and kept small.

2. Methods BB1 and BB2 are identical except for the number of nodes searched in

the branch and bound tree. Table 6.11 shows that good solutions are obtained

relatively quickly and there is a diminishing rate of return as the number of

nodes searched is increased.

3. The smaller the average number of flights per pairing, the greater is the degree

of integrality of the optimal LP solution, the better the compression of the data,

and the better the IP solutions that are obtained.

It should be mentioned that the above method may not yield optimal IP solutions.

The achievement of optimal IP solutions will require the generation of new columns

at each node as discussed in section 3.5. This has however, not been attempted in

this thesis and will be a topic of future research.

101

Chapter 7

Further Work

This thesis concentrates on speeding up the column generation algorithm since it

is used many times during the solution of large integer programs using branch and

bound. Although computational experience is provided on obtaining IP solutions,

further work has to be done in the area of combining column generation and branch

and bound into a single framework. Barnhart, et al.(1993b) address the issues asso-

ciated with combining the two procedures. Additionally, there are several other ideas

that should be tested, namely

1. While running the shortest path subroutine, all the valid pairings that have a

negative reduced cost are picked from the shortest path spanning tree. In the

early stages of the algorithm, the dual variables are tar away from optimality and

hence the columns generated may not be used in the optimal LP solution. This

might justify the generation of fewer columns in the early iterations using rules

of thumb such as picking out only those columns with reduced costs less than

a certain (negative threshold) and changing the threshold with each iteration.

2. The initial feasible dual solution for IDACG has been chosen to be a vector

of zero's. There are however, several ways of choosing the initial solution. For

example, an initial dual vector could set the dual variable corresponding to each

flight equal to the flying time of the flight.

102

3. The step factor in the dual ascent heuristic is fixed at 0.3 based on early com-

putational results. The effect of this step factor on the performance of IDACG

could be tested.

4. In the dual ascent step, after a new dual feasible vector is found and the shortest

path problem is run with respect to this vector, the shortest path spanning tree

is examined and only negative reduced cost pairings (with respect to the current

dual iterate) are extracted. Instead, all valid pairings could be extracted from

the spanning tree or less extreme, pairings with positive reduced costs but less

than some threshold could be extracted.

5. In the present implementation, artificial columns are used to initiate the algo-

rithm. The algorithm could be modified to begin with an initial feasible solution

obtained using deadheads, if necessary. Work on deadhead selection has been

completed (Barnhart, et al., 1991b) and this research could be incorporated.

103

Appendix A

Problem Parameters

Relevant problem parameters are given below:

1. Brief Time: 60 minutes

2. Debrief Time: 30 minutes

3. Minimum Connect Time: 30 minutes

4. Maximum Sit Time: 420 minutes

5. Maximum Pairing Length: 21600 minutes (15 days)

6. Time-Away-From-Base Proration Factor: 1

An assumption is made that the time-away-from-base cost is the dominant cost

component. Thus the other costs can be ignored and this component can be given a

weight of one.

104

Appendix B

Typical Rest Rules for Long Haul

Carriers

Before discussing the rules for the rest times, some definitions are in order.

B.1 Definitions

1. Short Overnight: This is the shortest period of rest. This has a value of 480

minutes.

2. Long Overnight: This is the longest period of rest. It has a value of 960

minutes.

3. International Overnight: This has a value of 720 minutes.

4. Duration of a Duty Period: This is equal to the total elapsed time including

the brief and debrief times.

5. Real Flying Time: This is equal to the total flying time of the duty period

excluding deadhead flying times.

6. Short Duty Period: A duty period whose duration is less than a speci-

fied number SHORTDP and a real flying time of less than a specified number

SHORTFLY.

105

A deadhead has zero real flying time. SHORTDP has a value of 720 minutes and

SHORTFLY has a value of 480 minutes.

B.2 Rules of Rest

The rules for the rest times for duty periods are discussed below.

1. Duties with two or more flights: If such a duty period has an international

segment, then the duty requires an international overnight. If not, if the du-

ration of the duty is less than SHORTDP and the real flying time is less than

SHORTFLY, then a short overnight will suffice. If not, a long overnight has to

be provided.

2. Single flight duties: Deadhead segments normally need only short overnights,

unless it is flown to an international city in which case it needs an interna-

tional overnight. If however, the deadhead segment has a duration larger than

SHORTDP, it requires a long overnight. If the single flight is not a deadhead,

the same rules apply as for duties with more than 1 flight.

106

References

[1] ABARA, J. Applying integer linear programming to the fleet assignment prob-

lem. Interfaces 19, 4 (July-August 1988), 20-28.

[2] AGARD, J. Optimal selection of aircraft. In 10th A GIFORS Symposium (Syd-

ney, Austrailia, November 1970). J. Agard worked for Air France.

[3] AHUJA, R. K., MAGNANTI, T. L., AND ORLIN, J. B. Network Flows: The-

ory, Algorithms and Applications. Prentice Hall Inc., Englewood Cliffs, New

Jersey, 1993.

[4] ANBIL, R., BARNHART, C., HATAY, L., JOHNSON, E. L., AND RAMAKRISH-

NAN, V. Crew-pairing optimization at american airlines decision technologies.

In Optimization in Industry (1993), T. Ciriani and R. Leachman, Eds., John

Wiley & Sons Ltd., pp. 31-36.

[5] ANBIL, R., GELMAN, E., PATTY, B., AND TANGA, R. Recent advances

in crew-pairing optimization at american airlines. Interfaces 21, 1 (January-

February 1991), 62-74.

[6] ANBIL, R., TANGA, R., AND JOHNSON, E. L. A global optimization approach

to crew scheduling. Tech. Rep. COC-9105, Georgia Institute of Technology,

1991b.

[7] APPELGREN, L. H. A column generation algorithm for a ship scheduling

problem. Transportation Science 3 (1969), 53-68.

107

[8] ARABEYRE, J., FEARNLEY, J., STEIGER, F., AND TEATHER, W. The airline

crew scheduling problem: A survey. Transportation Science 3 (1969), 140-163.

[9] BAKER, E., AND FISHER, M. Computational results for very large air crew

scheduling problems. OMEGA, The International Journal of Management Sci-

ence 9, 6 (1981), 613-618.

[10] BAKER, E. K. Efficient heuristic algorithms for the weighted set covering

problem. Computers and Operations Research 8, 4 (1981b), 303-310.

[11] BAKER, E. K., BODIN, L. D., FINNEGAN, W. F., AND PONDER, R. J.

Efficient heuristic solutions to an airline crew scheduling problem. AIIE Trans-

actions 11, 2 (June 1979), 79-85.

[12] BALAKRISHNAN, A., CHIEN, W. T., AND WONG, R. T. Selecting aircraft

routes for long-haul operations: A formulation and solution method. Trans-

portation Research-B 24B, 1 (1990), 57-72.

[13] BALL, M., AND ROBERTS, A. A graph partitioning approach to airline crew

scheduling. Transportation Science 19, 2 (May 1985), 107-126.

[14] BARNHART, C. Dual-ascent methods for large-scale multi-commodity flow

problems. Tech. Rep. COC-91-14b, Georgia Institute of Technology, 1992.

[15] BARNHART, C., HATAY, L., AND JOHNSON, E. L. Deadhead selection for

the long haul crew pairng problem. Tech. Rep. COC-91-02, Georgia Institute

of Technology, 1991b.

[16] BARNHART, C., AND JOHNSON, E., March-May 1993. Personal communica-

tion.

[17] BARNHART, C., JOHNSON, E. L., ANBIL, R., AND HATAY, L. A column

generation technique for the long haul crew assignment problem. Tech. Rep.

COC-91-01, Georgia Institute of Technology, 1991.

108

[18] BARNHART, C., JOHNSON, E. L., ANBIL, R., AND HATAY, L. A column

generation technique for the long-haul crew assignment problem. In Optimiza-

tion in Industry, Volume II (1993), T. Ciriano and R. Leachman, Eds., John

Wiley and Son.

[19] BARNHART, C., JOHNSON, E. L., HANE, C. A., AND SIGISMONDI, G. An

alternate formulation and solution strategy for multi-commodity network flow

problems. Tech. Rep. COC-9102, Georgia Institute of Technology, 1991c.

[20] BARNHART, C., JOHNSON, E. L., NEMHAUSER, G. L., SAVELSBERGH,

M. W., AND VANCE, P. H. Branch-and-price: Column generation for solving

huge integer programs, 1993b. In progress.

[21] BARUTT, J., AND HULL, T. Airline crew scheduling: Supercomputers and

algorithms. SIAM NEWS (November 1990).

[22] BAUM, S., AND TROTTER JR., L. Integer rounding for polymatroid and

branching optimization problems. SIAM Journal of Algebra and Discrete Meth-

ods 2, 4 (December 1981), 416-425.

[23] BELGRAY, D. C. Discussion of: Optimal selection of aircraft by j. agard. In

10th AGIFORS Symposium (Sydney, Austrailia, November 1970). David C.

Belgray worked for Eastern Airlines.

[24] BEN-AKIVA, M., AND LERMAN, S. R. Discrete Choice Analysis:Theory and

application to travel demand. MIT press, Cambridge, Massachusetts, 1985.

[25] BRADLEY, S. P., HAX, A., AND MAGNANTI, T. L. Applied Mathematical

Programming. Addison-Wesley Publishing Company, Reading, Massachusetts,

1977.

[26] CARRARESI, P., GALLO, G., AND ROUSSEAU, J. Relaxation approaches to

large scale bus driver scheduling problems. Transportation Research-B 16B, 5

(1982), 383-397.

109

[27] CHANDRASEKARAN, R., AND TAMIR, A. On the integrality of an extreme

solution to pluperfect graph and balanced systems. Operations Research Letters

3, 4 (October 1984), 215-218.

[28] CHRISTOFIDES, N., MINGOZZI, A., AND TOTH, P. State-space relaxation

procedures for the computation of bounds to routing problems. Networks 11

(1981), 145-164.

[29] CRAINIC, G. T., AND ROUSSEAU, J.-M. The column generation and airline

crew scheduling problem. INFOR 25, 2 (1987), 136-151.

[30] DANTZIG, G. B. Linear Programming and Extensions. Princeton University

Press, Princeton, New Jersey, 1963, ch. 22.

[31] DANTZIG, G. B., AND WOLFE, P. Decomposition principles for linear pro-

grams. Operations Research 8 (1960), 101-111.

[32] DANTZIG, G. B., AND WOLFE, P. The decomposition algorithm for linear

programs. Econometrica 29, 4 (October 1961), 767-778.

[33] DENARDO, E. V., AND FOX, B. L. Shortest-route methods: 1. reaching,

pruning and buckets. Operations Research 27 (1979), 161-196.

[34] DEO, N., AND PANG, C.-Y. Shortest-path algorithms:taxonomy and annota-

tion. Networks 14 (1984), 275-323.

[35] DESROCHERS, M., DESROSIERS, J., AND SOLOMON, M. A new optimiza-

tion algorithm for the vehicle routing problem with time windows. Operations

Research 40, 2 (March-April 1992), 342-354.

[36] DESROCHERS, M., AND SOUMIS, F. A generalised permanent labelling algo-

rithm for the shortest path problem with time windows. INFOR 26, 1 (1988),

191-212.

110

[37] DESROCHERS, M., AND SOUMIS, F. A reoptimization algorithm for the short-

est path problem with time windows. European Journal of Operations Research

35 (1988b), 242-254.

[38] DESROCHERS, M., AND SOUMIS, F. A column generation approach to the

urban transit crew scheduling problem. Transportation Science 23, 1 (Feb 1989),

1-13.

[39] DESROSIERS, J., DUMAS, Y., DESROCHERS, M., SOUMIS, F., SANSO, B.,

AND TRUDEAU, P. A breakthrough in airline crew scheduling. Working Paper

6 (March 1991).

[40] DESROSIERS, J., DUMAS, Y., SOLOMON, M. M., AND SOUMIS, F. Time

constrained routing and scheduling, June 1993. Draft.

[41] DESROSIERS, J., SOUMIS, F., AND DESROCHERS, M. Routing with time

windows by column generation. Networks 14 (1984), 545-565.

[42] DESROSIERS, J., SOUMIS, F., DESROCHERS, M., AND SAUVE, M. Methods

for routing with time windows. European Journal of Operational Research 23

(1986), 236-245.

[43] DIJKSTRA, E. A note on two problems in connexioon with graphs. Numerische

Mathematik 1 (1959), 269-271.

[44] DRUCKERMAN, J., SILVERMAN, D., AND VIARAPULOS, K. Optimization

Subroutine Library, Guide and Reference, Release 2, July 1991. Document

Number SC23-0519-2, IBM, Kingston, NY.

[45] DUMAS, Y., DESROSIERS, J., AND SOUMIS, F. The pickup and delivery

problem with time windows. European Journal of Operational Research 54

(1991), 7-22.

[46] ELCE, I. The development and implementation of air canada's long range

planning model. In 10th A GIFORS Symposium (Sydney, Austrailia, November

1970). Ivan Elce worked for Air Canada.

111

[47] ERLENKOTTER, D. A dual-based procedure for uncapacitated facility location.

Operations Research 26, 6 (November-December 1978), 992-1009.

[48] ETSCHMAIER, M. M., AND MATHAISEL, D. F. X. Airline scheduling: An

overview. Transportation Science 19, 2 (1985), 127-138.

[49] FARLEY, A. A note on bounding a class of linear programming problems,

including cutting stock problems. Operations Research 38, 5 (1990), 922-924.

[50] FISHER, M. L. The lagrangian relaxation method for solving integer program-

ming problems. Management Science 27, 1 (January 1981), 1-18.

[51] GARFINKEL, R., AND NEMHAUSER, G. The set-partitioning problem:set cov-

ering with equality constraints. Operations Research 17 (1969), 848-856.

[52] GERSHKOFF, I. Optimizing flight crew schedules. Interfaces 19, 4 (July-August

1989), 29-43.

[53] GILMORE, P., AND GOMORY, R. A linear programming approach to the

cutting stock problem. Operations Research 9 (1961), 849-869.

[54] GILMORE, P., AND GOMORY, R. A linear programming approach to the

cutting stock problem, part ii. Operations Research 11 (1963), 863-888.

[55] GIRARD, D. The airlines operations model: A schedule development and evalu-

ation tool. In 13th A GIFORS Symposium (Acapulco, Mexico, September 1973),

pp. 195-209. Denis Girard worked for Air Canada.

[56] GUIGNARD, M. A lagrangean dual ascent algorithm for simple plant location

problems. European Journal of Operational Research 35 (1988), 193-200.

[57] GUIGNARD, M., AND KIM, S. Lagrangean decomposition: A model yielding

stronger lagrangean bounds. Mathematical Programming 39 (1987), 215-228.

[58] GUIGNARD, M., AND OPASWONGKARN, K. Lagrangean dual ascent algo-

rithms for computing bounds in capacitated plant location problems. European

Journal of Operational Research 46 (1990), 73-83.

112

[59] GUIGNARD, M., AND ROSENWEIN, M. B. An improved dual based algorithm

for the generalized assignment problem. Operations Research 37, 4 (1989), 658-

663.

[60] HALL, R. W. Configuration of an overnight package air network. Transporta-

tion Research-A 2A, 2 (1989), 139-149.

[61] HAOUARI, M., DEJAX, P., AND DESROCHERS, M. Modelling and solving

complex vehicle routing problems using column generation. Tech. Rep. G-90-

22, Les cahiers du GERAD, May 1990.

[62] HARA, M., AND KOYAMA, R. Short term planning model for domestic op-

eration. In 13th A GIFORS Symposium (Acapulco, Mexico, October 1973),

pp. 183-194. The authors worked for Japan Air Lines.

[63] HEARN, D. W., AND LAWPHONGPANICH, S. Lagrangian dual ascent by gen-

eralised linear programming. Operations Research Letters 8, 4 (August 1989),

189-196.

[64] HELD, M., WOLFE, P., AND CROWDER, H. P. Validation of subgradient

optimization. Mathematical Programming 6 (1974), 62-88.

[65] HOUCK JR., D. J., PICARD, J. C., QUEYRANNE, M., AND VEMUGANTI,

R. The travelling salesman problem as a constrained shortest path problem:

Theory and computational experience. Opsearch 17, 2&3 (1980), 93-109.

[66] JONES, R. D. Development of an automated airline crew bid generation system.

Interfaces 19, 4 (July-August 1989), 44-51.

[67] KELLEY, A., AND POHL, I. A Book on C. The Benjamin/Cummings Publish-

ing Company, 1990.

[68] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language.

Prentice Hall, 1988.

113

[69] KOLEN, A. W. J., KAN, A. H. G. R., AND TRIENEKENS, A. W. J. M.

Vehicle routing with time windows. Operations Research 35, 2 (March-April

1987), 266-273.

[70] KONIG, P. Short term aircraft assignment. In 16th AGIFORS Symposium

(July 1976), pp. 169-188. Peter Konig worked for Swiss Air.

[71] LAMPORT, L. ILTEX, A Document Preparation System: User's Guide and

Reference Manual. Addison-Wesley Publishing Company, 1986.

[72] LASDON, L. S. Optimization Theory for Large Systems. Macmillan Publishing

Co., Inc., New York, 1970.

[73] LAVOIE, S., MINOUX, M., AND ODIER, E. A new approach for crew pair-

ing problems by column generation with an application to air transportation.

European Journal of Operational Research 35 (1988), 45-58.

[74] LEMKE, C., SALKIN, H., AND SPIELBERG, K. Set covering by single branch

enumeration with linear-programming subproblems. Operations Research 19

(1971), 998-1022.

[75] MAGNANTI, T. L., SHAPIRO, J. F., AND WAGNER, M. Generalized linear

programming solves the dual. Management Science 22, 11 (July 1976), 1195-

1203.

[76] MAGNANTI, T. L., AND WONG, R. T. Network design and transporta-

tion planning: Models and algorithms. Transportation Science 18, 1 (February

1984), 1-55.

[77] MARCOTTE, O. The cutting stock problem and integer rounding. Mathematical

Programming 33, 1 (1985), 82-92.

[78] MARCOTTE, O. An instance of the cutting stock problem for which the round-

ing property does not hold. Operations Research Letters 4, 5 (February 1986),

239-243.

114

[79] MARSTEN, R. E., AND SHEPARDSON, F. Exact solution of crew schedul-

ing problems using the set partitioning model: Recent successful applications.

Networks 11 (1981), 165-177.

[80] McDOWELL, E. 2 airlines struggle to revive their glory days, Thursday,

Septermber 2 1993. Business Day - New York Times.

[81] McDOWELL, E. U.s. rivals join northwest air in steep discounts, Tuesday,

Septermber 14 1993b. Business Day - New York Times.

[82] MINOUX, M. Column generation techniques in combinatorial optimization -

a new application to crew pairing. XXIV A GIFORS Symposium (Sept. 1984),

15-29.

[83] ODIER, E., LASCAUX, F., AND HIE, H. Medium haul trip pairing optimiza-

tion. XXIII A GIFORS symposium (October 1983), 81-109.

[84] PARKER, M., AND RYAN, J. A column generation algorithm for bandwidth

packing. Telecommunications Systems (1993). To appear.

[85] RANNOU, B. A new approach to crew pairing optimization. XXVI AGIFORS

Symposium (Oct. 1986), 153-167.

[86] RAPLEY, K. Short haul fleet planning models. In 15th A GIFORS Symposium

(Rotorua, New Zealand, October 1975), pp. 307-338. Keith Rapley worked for

British Airways.

[87] RIBIERO, C. C., MINOUX, M., AND PENNA, M. C. An optimal column-

generation-with-ranking algorithm for very large set partitioning problems in

traffic assignment. European Journal of Operational Research 41 (1989), 232-

239.

[88] RICHETTA, O., AND ODONI, A. Dynamic solution to the ground holding

problem in air-traffic control. Transportation Research (1992). Working paper

accepted for publication.

115

[89] RICHETTA, O., AND ODONI, A. Solving optimally the static ground holding

policy problem in air-traffic control. Transportation Science 27 (1993). Forth-

coming.

[90] RUBIN, J. A technique for the solution of massive set covering problems, with

applications to airline crew scheduling. Transportation Science 7, 1 (Feb 1973),

31-48.

[91] RYAN, D., AND FOSTER, B. An integer programming approach to scheduling.

In Computer Scheduling of Public Transport: Urban Passenger Vehicle and

Crew Scheduling (1981), A. Wren, Ed., North Holland Publishing Company,

pp. 269-280.

[92] RYAN, D. M., AND FALKNER, J. C. On the integer properties of scheduling

set partitioning models. European Journal of Operational Research 35 (1988),

442-456.

[93] SAVELSBERGH, M. A branch-and-price algorithm for the generalized assign-

ment problem. Tech. Rep. COC-9302, Georgia Institute of Technology, 1993.

[94] SHAPIRO, J. F. Mathematical Programming: Structures and Algorithms.

Wiley-Interscience, John Wiley and Sons, 1979.

[95] SHENOI, R. G. Another dual ascent method for generalized linear program-

ming, 3rd May 1993. Term paper submitted for 1.966 - Large Scale Optimization

in Transportaion.

[96] SHEPARDSON, F., AND MARSTEN, R. E. A lagrangean relaxation algorithm

for the two duty period scheduling problem. Management Science 26, 3 (March

1980), 274-281.

[97] SHERALI, H. D., AND MYERS, D. C. Dual formulations and subgradient op-

timization strategies for linear programming relaxations of mixed-integer pro-

grams. Discrete Applied Mathematics 20 (1988), 51-68.

116

[98] SIMPSON, R. W., AND BELOBABA, P. 16.74, air transportation economics,

Fall 1993. Class notes.

[99] SOLOMON, M., AND DESROSIERS, J. Time window constrained routing and

scheduling problems. Transportation Science 22, 1 (February 1988), 1-13.

[100] SOLOMON, S. D. American airlines: Going, going ..., Sunday, Septermber 5

1993. The New York Times Magazine.

[101] SUBRAMANIAN, R., SCHEFF, R. P., QUILLINAN, J. D., WIPER, S. D., AND

MARSTEN, R. E. Coldstart: Fleet assignment at delta airlines. Interfaces

(1993). To appear.

[102] TEODOROVIC, D., AND GUBERINIC, S. Optimal dispatching strategy on an

airline network after a schedule perturbation. European Journal of Operational

Research 15 (1984), 178-182.

[103] THIRIEZ, H. Airline crew scheduling:a group theoretic approach. Working

Paper R69-1 (October 1969).

[104] VANCE, P. Crew Scheduling, Cutting Stock, and Column Generation:Solving

Huge Integer Programs. PhD thesis, Georgia Institute of Technology, August

1993.

[105] VANCE, P., BARNHART, C., JOHNSON, E. L., AND NEMHAUSER, G. L.

Solving binary cutting stock problems by column generation and branch-and-

bound. Computational Optimization and Applications (1993b). To appear.

[106] VASQUEZ-MARQUEZ, A. American airlines arrival slot allocation system (asas).

Interfaces 21, 1 (January-February 1991), 42-61.

[107] WONG, R. T. A dual ascent approach for steiner tree problems on a directed

graph. Mathematical Programming 28 (1984), 271-287.

117

[108] WREN, A., SMITH, M., AND MILLER, A. Complementary approaches to

crew scheduling. In Computer Scheduling of Public Transport 2 (1985), J.-M.

Rousseau, Ed., North Holland Publishing Company, pp. 263-278.

118

