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Abstract
Periodic structures which are slightly disordered undergo dramatic changes in mode shapes
such that the responses go from being spatially extended to spatially localized. This phe-
nomenon called mode localization, offers an excellent option for passive vibration isolation.

In the first part of the thesis, we provide analytical prediction of modes exhibiting
moderate localization using a newly developed Jordan Block Perturbation Method. We
estimate and compare convergence zones of our newly developed method with perturbation
techniques used to describe localized modes.

In the second part of the thesis, we provide numerical evidence that complex branch
points, which occur for complex disorder values in the mode-disorder relation, are responsi-
ble for modal sensitivity. We investigate the effects of the strength of the branch point and
their location in the complex plane.

In the third part of the thesis we perform an optimization study involving the selection
of parameters which ensure a minimum level of localization of all modes. Optimal solutions
were found to lie at maximum distances from the branch points, and the convergence basin
of each optimum was demarcated by the branch point surface. The number of local optima
were found to grow exponentially with the number of pendula. A statistical analysis showed
that sampling of 10% provided an estimate that was within 2% of the global optimum,
thereby reducing the computational effort for small to moderate systems of pendula. For
larger systems of pendula, the problem of obtaining the global optimum in reasonable time
still remains an open problem.

In the fourth part of the thesis we propose an application for mode localization in
vibration isolation. An oceanographic mooring with regularly spaced buoys is investigated
for localization of inline elastic oscillations. Localization is found to be useful for confining
the harmonics in deep water moorings of 1000 - 4000m.
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Thesis Supervisor: Dr. Mark Grosenbaugh
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Chapter 1

Introduction

Elastic, periodic structures are characterized by spatially extended mode shapes and

responses to input forcings (See Brillouin [6]). The typical periodic structure met in

engineering practice can be modeled as a system of oscillators with identical natural

frequencies. These are coupled together by some appropriate coupling element to

build up the periodic structure.

Under conditions of weak coupling, small changes in the periodicity (disorder)

result in very dramatic changes in the dynamics of the system. Disordered, periodic

structures are characterized by spatially localized mode shapes and responses to input

forcings even at resonance. Thus, small perturbations to the structure have resulted in

dramatic changes to the response and mode shapes of the system. Since the response

of the system is uniquely determined by the modes of the system, it is evident that

the key to understanding localization lies in understanding the sensitivity of the mode

shapes to perturbations.

The remarkable feature about localization is that conservative systems with a min-

imal amount of damping display confinement of vibration about the driving point.

Damping is unimportant in this phenomenon except as a means of preventing catas-

trophic failure by draining out energy during steady state excitation of the structure.

So damping can be ignored during analysis of localization.
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1.1 Motivation for Thesis

We will be examining the dynamics of disordered, periodic structures. We will, for

most of this thesis, restrict our attention to a system of identical coupled pendula

or coupled oscillators because this system is sufficiently simple to permit analytical

treatment of the system while capturing all features of the dynamics of more com-

plicated periodic structures. This has become a canonical system in the study of

localization.

The main feature of localization is the extreme sensitivity of the mode shapes of the

structure to small perturbations of the periodicity of the structure. This sensitivity

has a number of features on which we will comment.

Previous authors like Cornwell and Bendiksen [9] have pointed out that if we view

the modes as a continuous function of the disorder, the modes make the transition

from extended to localized over a very narrow range of disorder. In other words,

the localization is not a linear function of disorder. In general as disorder is input

into the structure the modes change very dramatically initially, and then as we reach

larger values of disorder the change is very little even though we increase disorder

substantially.

The structure appears to be sensitive to the precise combination of disorder input

into the structure. For example, if we increase the natural frequencies of all the

oscillators by the same amount, we still have a periodic structure and periodic mode

shapes. If we increase the natural frequencies of one of the pendula only, to be much

greater than the rest, its dynamics becomes decoupled from those of the remaining

pendula because of the large difference in natural frequencies, and intuitively we can

expect one mode to be significantly localized about that pendulum. It is thus obvious

that the modes display different levels of sensitivity and localization depending on the

combination of disorder input into the system and the actual functional dependence

of the mode shapes on the disorder can be very complex. This fact can be seen in

the results from extensive numerical experiments conducted on a system of coupled

oscillators by Hodges and Woodhouse [19]. Any theoretical attempts to understand
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localization must be able to explain all of the varied aspects of this sensitivity of the

mode shapes.

The reasons for interest in this sensitivity are twofold. The first, is the academic

reason of understanding localization. The second, is the tremendous potential that

localization offers as a passive vibration isolation device in ocean structures. It is

difficult to apply conventional vibration isolation methods (using the presence of

anti-resonances in the transfer function) to these structures because the resonances

are closely spaced and narrow banded excitation would still excite all the modes.

Localization is a viable option because even when we excite the structure at resonance,

we still have a response confined about the excitation point. During steady-state

excitation of the structure we have a buildup of energy in the structure. During

localization, damping permits the structure to reach a steady-state by draining out

excess energy in the structure.

In sum, the two main reasons which motivated this thesis were the need to under-

stand the large modal sensitivity in structures whose modes can be localized and the

need to introduce disorder to ensure passive vibration isolation while ensuring that

drag is minimum.

1.2 History Of Localization

Localization was first predicted by Anderson [1] in the context of solid state physics.

This was first described in the context of the eigenstate localization of an electron in

a three dimensional lattice. The existence of localization in one dimensional lattices

was first shown by Borland [5].

Structural applications of localization deal with the one dimensional lattice. Its

occurrence in structural dynamics was first shown by Hodges [16]. It must be pointed

out here that most of the localization seen in solid state applications is for periodic

structures where the substructures are of the order of 50 to 100 at least. The struc-

tural dynamics applications on the other hand deal with a far smaller number of

substructures, typically, less than twenty.
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Early, fundamental work on localization in engineering structures was done by

Hodges [16]. He demonstrated the existence of localization for short wavelength

waves propagating in a structure. This would correspond to acoustic waves. Hodges

and Woodhouse ([19]) examined structural applications by doing extensive numerical

studies for systems of coupled oscillators and provided penetrating physical descrip-

tions of the problem. They have provided insights into the statistical properties of the

response of a system of oscillators when subject to input forcing. In particular, they

have demonstrated how the logarithm of the response of the disordered structure,

when averaged over many realizations of the ensemble containing all possible combi-

nations of disorder that could be input into the system, yields a well defined mean.

This has been used as the basis of the definition of measures for the localization in

the system by other authors like Kissel [20] and Pierre [29].

An excellent review of localization is provided by Hodges and Woodhouse [18].

Here, they explained the equivalence of the modal and traveling wave formulation for

vibrations in structures. They also discussed the connection with other commonly

used analytical tools like Statistical Energy Analysis (SEA). They performed exper-

iments to prove the existence of localization in a system of masses on a string [17].

This was the first experimental demonstration of localization in a structure.

Since system responses are uniquely determined by the free modes of vibration

of the system, many studies of localization using perturbation techniques applied to

the eigenvalues and modeshapes of the system were carried out. Perturbation studies

were done by Pierre and Dowell [27] , and Pierre and Cha [30]. They identified the

fact that the two broad parameters affecting the problem were the coupling and the

disorder. In general, if the disorder was larger than the coupling the modes looked

strongly localized while if the coupling was larger than the disorder, the modes looked

weakly localized. Small perturbations about the periodic state were described by

the Classical Perturbation Method (CPM) which used the disorder as the expansion

parameter in the perturbation expansion. The unperturbed state would comprise

a set of spatially extended mode shapes. This method however failed to provide

effective prediction of strongly localized mode shapes. Such mode shapes violated the
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assumption that the coupling was stronger than the disorder. Pierre and Dowell ([27])

proposed an alternative scheme called the Modified Perturbation Method (MPM)

where the coupling was treated as the expansion parameter and the unperturbed state

was the localized state. This has proved to be effective in the analytical prediction

of strongly localized mode shapes. Such mode shapes have large amplitudes over one

oscillator and have a small nonzero amplitude over a few others.

The analytical prediction of moderately localized modes has still remained an

open issue as has been pointed out by Cornwell and Bendiksen [9]. Some attempts

have been made to address this problem by Happawana et al. [15] who attempted

to use singular perturbation methods to predict eigenvalues corresponding to a state

of moderate localization. This singular perturbation was applied about the uncou-

pled disordered state. Two criticisms can be levelled at the approach they took. The

method is very cumbersome for even a small system of two coupled pendula. The sec-

ond criticism is that the method obscures a lot of the physics involved in the problem.

This harks back to some of the issues raised by Pierre and Dowell ([27]) in another

context involving matrix perturbations about the uncoupled, periodic state where

physical understanding can be sacrificed for accuracy of prediction by using such a

state as the unperturbed state for performing perturbation calculations. Pierre and

Dowell ([27]) discarded matrix perturbation expansions about the uncoupled periodic

state because such a perturbation expansion did not provide any new information

about the system even though it might have provided accurate predictions of the

eigenvalues and eigenvectors. This is true in this case also. Both methods are very

unwieldy and require considerable amounts of complicated algebra. The authors have

attributed the rapid change of eigenvectors to the singular point about which the sin-

gular perturbation was performed. This may be wrong. This would imply the point

of maximum sensitivity is at the state of zero disorder and that may not be correct.

They examined cases of very weak coupling and hence the modal sensitivity plots they

show have maximum sensitivity at zero disorder. We will show in this thesis that the

singularity responsible for the sensitive behavior of the eigenvectors is a branch point

type singularity and the peak modal sensitivity does not necessarily occur at the
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state of zero disorder, especially for cases involving moderate coupling. The authors

also seem, not to have provided any predictions of mode shapes using their singular

perturbation techniques which is after all more critical given that we are studying

"mode localization".

Cornwell and Bendiksen [10], Valero and Bendiksen [40] have investigated the

existence of localization in another type of structure, the dish antenna. This is a

system where we have a periodicity of a different kind. We have a rotary structure

with the n th and first oscillators being connected to each other. In addition to dish

antenna, they are important as models while studying turbine rotors and propellers.

These authors have also done some extensive parametric studies on the problem where

they noted that the transition of modes from extended to localized state occurs rapidly

over a small range of parameters. They however could not identify the precise cause

of the transition from extended to localized state.

Additional aspects of localization have included association with the phenomenon

of curve veering. In certain systems, eigenvalue loci of the system, when plotted as a

function of a system parameter (for the system of coupled pendula, it is the disorder)

approach each other and then rapidly veer away with interchange of mode shapes.

This phenomenon is called curve veering. Pierre [28] found that the eigenvalue loci

of the system of coupled pendula, a system which displayed mode localization, also

exhibited curve-veering. He used conditions for curve-veering to occur (Perkins and

Mote [25]) and showed that the conditions for localization to occur and those for

curve-veering to occur are both linked to the existence of weak coupling.

Much of the motivation for this thesis comes from the study by Triantafyllou

and Triantafyllou [39] where localization was studied from a geometric standpoint.

Existing studies, using perturbation techniques, indicated that the main cause of the

large sensitivity of mode shapes seen during localization was due to the existence of

closely spaced eigenvalues as seen in a system of coupled pendula. Triantafyllou and

Triantafyllou pointed out it was misleading to attribute the large sensitivity seen in

such systems to closely spaced eigenvalues. The central features of localization and

associated curve veering were shown to be associated with the existence of branch
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points in the frequency-disorder relation using asymptotic expansions. The branch

points were shown to be linked to the existence of eigenvalue coalescences. In general,

for a system with n eigenvalues, we could have n th root dependence of the eigenvalue

on the system parameters, which would be linked to the existence of coalescences

of n eigenvalues occurring for complex values of the parameter. The non-analytic

nature of the branch point was held responsible for the dramatic changes in mode

shapes which occurred for small perturbations applied to the system. Triantafyllou

and Triantafyllou also showed that these branch points are responsible for the twin

phenomena of mode localization and curve veering.

This thesis does not cover all aspects of localization. However for completeness

sake, we will review other work that has been performed in localization studies.

Kissel [20] investigated the problem statistically, drawing on work performed by

Hodges and Woodhouse ([19]) and solid state physics to define a localization factor

associated with the localized transmitted wave in a disordered structure. He calcu-

lated the localization factors associated with transmitted waves in various periodic

structures averaged over many realizations from an ensemble of disorder. This decay

factor was frequency dependent and he systematically created many frequency de-

pendent plots of the localization factor for disorder drawn from uniform probability

distributions with different standard deviations, for a variety of systems which would

model engineering structures met in the real world. A big criticism levelled by Pierre

[29] was that the structures examined by Kissel [20] did not allow for the existence

of strong localization because he did not examine structures with internal coupling.

Pierre [29] utilized statistical perturbation methods to compare those predictions

with the results of Monte Carlo simulations of the type done by Kissel, but for struc-

tures with internal coupling to allow for the existence of strong localization. He found

that it was not possible to correlate the perturbation and Monte Carlo predictions for

modes in a state of moderate localization. The Monte-Carlo and perturbation predic-

tions for weakly and heavily localized modes were in excellent agreement. Seides [37]

also performed such calculations with emphasis on marine structures. The statistical

study of localization, while being a very interesting subject in itself, is not being pur-
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sued in this thesis. We will be focusing exclusively on the effects of deterministically

introduced disorder.

Balmes [2] has provided some interesting observations about systems with high

modal density i.e. systems where the modal damping is larger than the separation be-

tween natural frequencies. He performed some numerical simulations to demonstrate

cases where the mode shapes are very sensitive to small amounts of disorder, but the

frequency response of the system remains relatively unaffected by the disorder.

Experimental investigation of localization started with the fundamental work by

Hodges and Woodhouse [17]. This was followed up with work by Pierre and Cha

[30] and Levine and Salama [22]. They looked at localization seen in multispan

coupled beams and in a space reflector respectively. Rajagopal ([34]) had conducted

some experiments to satisfy ourselves about the localization process. We examined

a structure similar to that examined by Hodges and Woodhouse, although we were

examining it using steady state excitation. We did find localization achievable in this

structure.

Most of the studies reviewed so far have tended to idealize engineering structures

as discrete coupled oscillators. Very interesting work on continuous systems has

been done by Luongo [23] where he considered the longitudinal free oscillations of a

beam with small axial rigidity continuously restrained by imperfect elastic springs.

He showed that the problem can be viewed as being governed by a turning point

problem. Some asymptotic predictions using WKB methods were obtained. Another

very interesting piece of research was done by Devillard, Dunlop, and Souillard [12]

where they examined gravity waves in a one-dimensional channel. Localization was

studied for a bottom with a series of random rectangular steps. Transfer matrices for

the linear dynamics of water waves on a flat shelf were used to model the dynamics

of the system. Experimental evidence of localization for the water wave problem was

provided by Belzons et al.
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1.3 Review of Work by Triantafyllou and Tri-

antafyllou

Since this thesis was motivated in large measure by the paper by Triantafyllou and

Triantafyllou [39], we will make a detour to explain the concepts in that paper.

1.3.1 Localization: The problem and the need for a more

mature understanding of the subject

Consider a system of identical coupled pendula. We now permit disorder to be intro-

duced into this periodic system. Each pendula can have a perturbation i from the

unperturbed state. For the sake of standardization of the problem, we will always

examine a set of pendula with length 1. The coupling between the pendula are also

all identical and could be "weak" or "strong". The periodic system is characterized

by a set of extended mode shapes. This is a result of Floquet theory and is explained

in great detail in Brillouin [6]. Small alterations to the system (disorder) can re-

sult in dramatic changes in the mode shapes from a spatially extended state to a

spatially localized state. It is found that the tendency for modes to be localized is

more prevalent when the coupling is weak. Obviously, such rapid transition of mode

shapes from extended to localized state implies extreme sensitivity of the modes. The

cause of the extreme sensitivity has been understood to be caused by the "small de-

nominator" effect. Classical perturbation studies have shown that large changes to

the mode shapes resulting in change from extended to localized state are caused by

the denominator of the coefficients of the perturbation series being very small (hence

the name). The geometric theory however advances the cause of the large modal

sensitivity seen during localization as due to something more fundamental, which we

will explore in this section. Another intriguing aspect of localization is the fact that

different combinations of disorder result in very different levels of localization of mode

shapes in the system. We will see in this section that the geometric theory helps us

understand the division of different regions of the parameter space into regions with
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more and less localization.

1.3.2 Main Points of Geometric Theory

There are three main stages in the development of the theory of Triantafyllou and

Triantafyllou ([39]).

We start by examining the mapping defined by the characteristic polynomial of

the eigenvalue problem associated with a system which exhibits localization like a

system of coupled pendula. This is a mapping from the disorder parameter space to

the eigenvalues. There are n distinct eigenvalues which are obtained by solving the

eigenvalue problem. For any given value of disorder, the eigenvalues may be distinct,

or coalescent (See figure 1-1). The conditions for n coalescent eigenvalues in a general

n parameter system ar

A (A~(l, . .. c--l, =9 o (1.1)

(,1E i 'en-l A) = (1.2)

where 1 < i < (n - 1). Here A is the eigenvalue and ei is the disorder parameter.

These are conditions for a saddle point to exist. We have so far made the assumption

that since we are studying a real system of coupled pendula, the disorder can only

assume real values. The solution to the above system of equations, however may be

complex. Triantafyllou and Triantafyllou [39] made the bold but perfectly admissible

contention that we should permit the disorder parameters to become complex. We

would thus be permitting the parameters by analytic continuity to assume complex

values. We would be making the assumption that the real and imaginary parts

of the mapping defined by the characteristic polynomial obey the Cauchy-Riemann

equations. We are allowing for the existence of branch points, branch cuts and other

such features in the complex plane.

The second stage of the analysis followed. Triantafyllou and by Triantafyllou ([39])

showed that these saddle points are associated with branch points in the frequency-

disorder relation. The analysis used a Taylor expansion about a point at which the
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(a) Distinct Eigenvalues

2

(b) Coalescent Eigenvalues

Figure 1-1: Eigenvalues as a function of disorder. Case (a) : Independent eigenvalues.
Case (b) : Coalescent Eigenvalues.
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saddle point conditions for eigenvalue coalescence are satisfied. Consider a one disor-

der parameter system with disorder e. If we consider a saddle point and that point is

denoted by the coordinates (A0, Eo), the expansion for the characteristic polynomial

is given by

i (, ( A) = A(o,(A -Ao) + -(, -E) + 0 (A - o)2... (1.3)
At the point of eigenvalue coalescence,

A(Ao, Eo) = 0 (1.4)

aA (Ao, o) = 0 (1.5)

Using these two equations in the previous expansion for the characteristic poly-

nomial, we collect the lowest order terms to get the following asymptotic relation

A = A0 + B (E-Eo) (1.6)

At such a point, the eigenvalues cannot be expanded in a Taylor series and a series

in fractional powers of the disorder (a Pusieux series) only, can be used.

In general for an n parameter system we could have any from two through n root

coalescences. Obviously an nth root coalescence is more desirable than a two root

coalescence since the modes would be more sensitive (an nth root dependence) to

small changes in disorder.

The third stage of the analysis was to point out that these complex coordinates of

eigenvalue coalescence were also points where there was infinite eigenvalue sensitivity

since we have branch points at these points. The stiffness matrix at those values

of the complex coordinate were associated with Jordan Blocks of size greater than

one. This implied that the associated eigenvectors would also be associated with
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infinite modal sensitivity. If the complex coordinate had a sufficiently small imaginary

part, they would lie very close to the axis of real disorder. Evidently the eigenvalue

sensitivity would increase if the imaginary part tended to zero. Hence Triantafyllou

and Triantafyllou pointed out that any attempts to search for localization in structures

should focus on looking for structures where the imaginary part of the complex branch

point coordinate was as small as possible and the order of the coalescence was as large

as possible.

They also pointed out that the failure of Pierre's perturbation schemes was di-

rectly related to the presence of these branch points. Triantafyllou and Triantafyllou

however focused mainly on the eigenvalues of localizable systems and did not focus

at all on the eigenvectors. They did not dwell at length on the modal sensitivity(as

opposed to eigenvalue sensitivity) associated with these branch points. This is the

starting point of this thesis. Modal sensitivity is the prerequisite for localization. It

is important to link modal sensitivity with localization wherever possible. This was

not done in Triantafyllou and Triantafyllou's paper. This is accomplished here. A

complete investigation of the effects of the strength and location of branch points on

localization is also performed.

1.4 Goals and Contributions of Thesis

The first contribution of this thesis is the development of Jordan Block perturba-

tion methods to analytically describe modes in an intermediate state of localization.

These modes are modes which display very high modal sensitivity and that makes for

interesting study.

The second contribution is the outlining of a systematic procedure to determine

the convergence zones of the various perturbation techniques.

The third contribution is providing numerical confirmation of the fact that branch

points are directly responsible for the large modal sensitivity seen in systems which

exhibit localization. This was done by numerical solution of the bifurcation equations

provided by Triantafyllou and Triantayllou [39].
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The fourth contribution is explaining the reason for the fact that different combi-

nations of disorder with the same statistical characteristics result in different levels of

localization (noted by Hodges and Woodhouse [19]). This was done by noting three

facts which are obtained from the geometric theory. The first is that both the order of

coalescence and magnitude of imaginary part of the complex branch point coordinate

are responsible for modal sensitivity. The second is that the number of oscillators

having significant modal amplitude is equal to the order of coalescence of the closest

branch point. The third, is the number of modes having large modal sensitivity is

directly related to the order of the coalescence of the closest branch point. These

three facts can be used to explain the reason for Hodges and Woodhouse's results.

Various conflicting effects of different order branch points and their implications on

localization were explored. Specifically, the nth root sensitivity of modes implied that

n modes would display an n th root dependence on the disorder. Depending on the

disorder combination we input, we could be close to branch points of different orders.

A higher order branch point would cause more modes to have increased modal sen-

sitivity as opposed to a lower order branch point if both were equally distant in the

complex plane from real axis. The highest order branch point (n for an n pendula

system) was found to be fixed whereas the lower order branch points were found to

form a surface with the imaginary part varying across the surface. Conflicts arose

when the imaginary part of the lower order branch point was sufficiently small to

cause the associated sensitivity to approach that of the higher order branch point.

The mode shapes close to different order branch points were also found to be very

different resulting in modes which were localized while appearing very different from

each other. We also find a trend that for larger values of disorder, the lower order

branch point is more important in affecting localization while for smaller values of

disorder, the higher order branch points affect localization. The existence of optimal

directions in the parameter space where localization is a maximum is also noted. The

existence of a form of curve veering associated with the branch point loci is also noted.

The fifth contribution is the introduction of an algorithm using nonlinear opti-

mization techniques to design a structure to ensure that all modes have a certain
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minimum level of localization while ensuring that the sum of the squares of the dis-

order is the minimum. The first result was that the optimal solution lay at the point

of maximum distance from the two root coalescence branch point surfaces. The sec-

ond result was the development of an algorithm to ensure that all the optima could

be sequentially tracked down. The third result was that the number of optima and

the computational effort increased exponentially with the number of pendula. The

fourth result was a statistical analysis of these optima with relevance for smaller sys-

tems ranging from approximately two to ten pendula which indicated that sampling

of a few of the optima, gave a good estimate of the global optimum. This vastly

reduced the computer time taken given the implications of the third result. However

the exponential growth of the optima with the number of pendula implied that ob-

taining a global optimum for a large system of coupled pendula in reasonable time

still remained an open problem.

The sixth contribution was a real-life application of this method to an oceano-

graphic mooring. The mooring was a taut cable with submerged buoys at regular

intervals. The studies showed mode localization to be excellent especially for deep

water moorings ranging from 1000 - 4000m.

1.5 Outline of Thesis

Chapter 2 covers the Jordan Block Perturbation and examines applications to the

analytical prediction of moderately localized modes. It also provides convergence

zones for the perturbation techniques being used in this thesis.

Chapter 3 offers numerical proof of the fact that modal sensitivity is directly linked

to the branch points in the frequency-disorder relation. We investigate the conflicting

effects of the order of the branch point and the location in the complex plane.

Chapter 4 outlines the nonlinear optimization methods used for larger systems

to determine optimum parameter combinations to ensure some minimum level of

localization in the system. Applications of the method and a systematic study of

the dependence of the optimum disorder on the minimum localization factor is done.
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We also examine the inverse problem of maximizing localization for some given mean

disorder in the system. Studies of the distribution of optima and a statistical analysis

to show that the sampling of only a few optima can provide an excellent estimate

of the global optimum is also provided. We also use this optimization scheme to

search for special configurations which are close to multiple eigenvalue coalescences

and satisfy the optimality conditions.

Chapter 5 examines a real world application of mode localization in passive vibra-

tion isolation. The structure that is studied is an oceanographic mooring with regu-

larly spaced subsurface buoys. The main source of excitation was the wave induced

excitation and the waves were inline elastic waves. The need to reduce vibrations

arose because of the presence of instrumentation on the mooring which needed mini-

mum motion for accuracy of measurement. Localization was induced by randomizing

the positions of the buoys. It was found to be useful for passive vibration isolation

for structures which were in deep waters (1000-4000 m).

Chapter 6 covers conclusions and provides recommendations for future research.
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Chapter 2

Analytical Prediction of Localized

Modes using Perturbation

Techniques

2.1 Introduction

We use analytical perturbation techniques to study the modes of oscillation of a sys-

tem of disordered, coupled pendula as seen in figure 2-1. Pierre and Dowell[27] pre-

sented two perturbation methods, called the Classical Perturbation Method (CPM)

and Modified Perturbation Method (MPM). The CPM used a set of identical coupled

pendula as the unperturbed state. The CPM made the assumption that the disorder

was much smaller than the coupling and used the disorder as the parameter in which

the perturbation series was expanded. They were however only able to accurately

describe modes which appeared almost periodic or "lightly localized". The second

expansion (MPM) was about the uncoupled, disordered state. The MPM expansion

was written out with the coupling being used as the small parameter for the pertur-

bation series. The assumption here was that the coupling was much smaller than the

disorder. The MPM was successful in describing "heavily localized" modes where the

modes have significant amplitude on one pendulum with small non-zero amplitude
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Disordered system of n coupled pendula

Figure 2-1: A System of Coupled Pendula
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on the other pendula.

Neither of the perturbation expansions work for modes where the coupling is of

the same order as the disorder. Triantafyllou and Triantafyllou [39] showed that the

CPM and MPM are limited in their zone of convergence because of the existence of

branch points in the eigenvalue-disorder relation. We have noted in Chapter 1 that

the localization seen in modes varies nonlinearly with the disorder. As disorder is

introduced into the system of pendula, the modes abruptly change from periodic to

localized passing through the state of moderate localization. Once localized, they

show very little change of modes with disorder. The MPM works well over this large

zone of disorder over which there is almost no change in the modes.

Moderately localized modes are associated with the intermediate range of param-

eters where there is large sensitivity of modes in their transition from extended to

localized state. In this chapter, we introduce a new perturbation method to describe

modes in this intermediate state of localization. The perturbation expansion is per-

formed about branch points in the eigenvalue-disorder relation. It fills in the gap left

by the CPM and MPM and allows us to obtain an analytical description of modes in

various states of moderate localization.

It must be emphasized that the numerical methods for evaluation of eigenvalues

and eigenvectors of matrices are sufficiently evolved to make redundant the usage of

perturbation techniques for numerical calculations (especially for the size of matrices

we consider for structural dynamics applications which range from two to twenty

elements). However, while numerical calculations are important, we require analytical

perturbation techniques to provide more physical insights into the problem, such

as which parameters affect localization more, what are the parameters influencing

the large modal sensitivity and what range of parameters are we more likely to see

localization.
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2.2 Two pendula problem

We will use the simple case of two pendula as shown in figure 2-2 to demonstrate the

differences between the various perturbation expansions. The nominal pendula are of

length 1 and have mass m which are taken equal to unity. The pendula are coupled

by a spring with constant k. The variation in length of one of the pendula from

the nominal length is denoted by Al. If we define a nondimensional spring constant

R2 = kl , and disorder e = T, the eigenvalues are

1 1 4R 4 + )22+ + f~ (2.1)
2 2(1+ ) 2

The first perturbation expansion that Pierre and Dowell ([27]) advocated was

the CPM. Since small perturbations about the disordered state result in dramatic

changes to mode shapes, Pierre and Dowell suggested that expansions be performed

about the state of zero disorder with the disorder being used as the small parameter

for the perturbation expansion. The CPM uses the periodic state as the unperturbed

state corresponding to = 0. The two unperturbed eigenvalues are A = 1, 1 + 2R2 .

The CPM expansion for the eigenvalues as a series in the small parameter e (where

e << R2 ) would be

~2 ~ e2
A1,2 = 1+ R 2 - + 2 R2(1+ 8) + ... (2.2)

During the expansion, Pierre and Dowell [27] made the assumption that the pa-

rameter e was small in relation to R2 and this assumption is violated as becomes

larger. Pierre and Dowell found (as we will confirm later in this chapter) that there

was very little change in the modes in the range considered and they appeared al-

most periodic in appearance. He concluded that localization of modes would be

seen more in the parameter range where the coupling was much smaller than the

disorder(R2 << e). Obviously in this range of parameters, the assumption that

e << R2 was violated.

They put forward the MPM as a perturbation method to be used to describe
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modes which were heavily localized. The MPM uses the state where R2 = 0 and

e]i > 0. The unperturbed eigenvalues are A = 1 and A = 1 - E. The MPM expansion

for the eigenvalues about the disorder as a series in the small parameter R2 would

be

E E 2n 2 C2 R 4 (1 + E)2

A1,2 = 1 - + R2 + T T + (2.3)2 2 2 2 E2

This works well for heavily localized modes. However the second order perturba-

tion fails as - 0 because the assumption that R2 is very small compared to is

violated. A very interesting feature of this breakdown is that the method does not

break down for small if the expansion is terminated at linear order but it breaks

down if the expansion is terminated at quadratic order. This breakdown is related to

the asymptotic nature of the MPM expansion. When asymptotic series break down,

additional terms do not improve the predictive capabilities of the asymptotic series

but actually reduce the quality of the prediction and in this case the MPM displays

precisely this form of behavior.

However, a gap in the accurate prediction of localized modes still existed. There

existed an inability to describe modes in a state of intermediate localization which

also corresponded to parameter values where ~ R2. This manifested itself mathe-

matically by the presence of branch points in the eigenvalue-disorder relation whose

existence we next show. By analytic continuation, we permit the disorder parameter

to become complex. The complex length has no physical significance and is mainly

an outcome of the application of complex variable theory. Branch points occur in the

frequency-disorder relation if

oi = 2R 2i (2.4)
1 T 2R2 i

This is obtained by setting the expression under the square-root in equation 2-1

equal to zero and solving for the disorder e. The new perturbation expansion which

we introduce in this chapter is written about the branch point e0. At this point, the

eigenvalues are equal and given by
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Ao = 1 + R 2 - iR 2 (2.5)

An expansion about the branch point can be obtained by setting

= - o (2.6)

We can expand the solution to eq. 2-1 in a series in the complex variable (2. We get

A1,2 = 1+R2-iR1-2iR2) 2 -iR 2iR)i(2 ... (2.7)
2 8i(1- 2iR2)

There is an obvious difference in the expansions seen for the MPM and CPM as

opposed to expansion about the branch point. There are additional fractional powers

of the the small parameter appearing in the expansion. The square-root behavior

exhibited by the eigenvalue is exhibited by the eigenvectors also. The eigenvectors of

the two pendulum system can be expanded about the branch point to lowest order

as

{ 1 2R+i+ ... (2.8)
1-2R2i

At the branch point, we have only one distinct eigenvalue and eigenvector for this

matrix. The matrix is said to be associated with a Jordan block of size two and the

matrix perturbation expansion about the branch point will henceforth be referred

to as a Jordan Block perturbation. These branch points occur in complex conjugate

pairs. Matrix perturbation techniques have their radii of convergence bounded by the

distance to the closest singularity, in this case, the branch point. The CPM and MPM

are restricted in their radius of convergence due to the branch point (Triantafyllou and

Triantafyllou [39]). The Jordan Block expansion too is restricted in its convergence

by the branch points however its convergence zone spans precisely those parameter

values where the MPM and CPM breakdown which also corresponds to moderate
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localization. We can see this by comparing the predictions of the eigenvalues for the

three perturbation methods as a function of disorder (Fig 2-3). We consider the range

-. 08 < < .08. The Jordan block prediction for the eigenvalues is seen to perform

well in a significant portion of the range of parameters we consider i.e. -. 04 < e < .04,

while the CPM is seen to work well in the range -. 02 < e < .02. The MPM works well

in the range e > .04 and e < -. 04. We will later see that the eigenvector predictions

are far poorer than those for the eigenvalues. However this range .02 < IE < .04

where the CPM and MP Mperform poorly, is in fact the range where the Jordan

block expansion outperforms the CPM and MPM. We will also show in this chapter

that this zone is also a zone of maximum change of the eigenvectors.

Expansion about a branch point would imply that we cannot utilize a standard

Taylor series like we saw for the CPM and MPM. We have to use what is called

a Pusieux series where rather than having the eigenvalues and eigenvectors vary as

integer powers of the disorder, we have the eigenvalues and eigenvectors vary as frac-

tional powers of the disorder parameter (Gohberg et al. [14]). In matrix perturbation

theory, a Pusieux series is associated with perturbations about a Jordan block. In

general for an nth root branch point, we could have an expansion in the nth root of

the complex parameter ( and an association with a Jordan block of size n. The Jordan

Block of size n would only have one distinct eigenvector and n repeating eigenvalues.

2.3 Procedure for n-order Jordan block expan-

sion

The general system of n pendula has the following stiffness matrix

[K] = Tridiag [-R 2 (+1 + -2) + (2- 6j,n- 3j,1)R 2 ; -R 2 (1 + ) ]
(1 + Tjil)d ( +-) (1 + Ej-)

(2.9)

where 1 < j < n. The notation Tridiag(aj, pj, j) designates a tridiagonal matrix

with aj being the element of the lower diagonal (jth row, (j - 1)th column), j is

the element on the main diagonal (jth row, jth column), and j is the element on the
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upper diagonal (jth row, (j + 1)th column). By definition 1 = n, = 0. Also 6i,j is

the Kronecker Delta function and is defined as

i,j = 1 if i=j{0 otherwise

(2.10)

The variables in the above equation are

ej: Disorder of j th pendulum. The pendula are numbered from left to right in figure

2-1 with 0 < j < (n- 1).

R2 = l : Nondimensional coupling parametermg

k: Coupling spring stiffness.

g: Acceleration due to gravity.

m: Mass of pendulum.

1: Length.

We write out the perturbation expansion about the branch point in the complex

disorder space.

[Ko + K + 2K + ...]{xo + 6x + ...} = (Ao + 6A + .. (2.11)

The stiffness matrix at the complex branch is K. We write out the ordered

problem

0(i)

O( n)

[Ko - AoI]xol = 0

[Ko - A0 ] {61x} = 6A{x}

[Ko - AoI]{6x} = -[6K - Al]{Xol} + (A)61x
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O( 2+n- )O

[Ko - AoI]{{6 {}} =-[3K - 6][61+ -] x] - [62K - 62II[x] + (2.15)

(3~An)[62+ ' x] + ... + (2+ n )ol

All the quantities in the superscripts attached to 6 indicate the order of magnitude

associated with those quantities. Thus 3¼ A indicates an nth root perturbation in A

and [6 nx] represents the nth root perturbation in the eigenvectors and so on. These

equations govern the perturbations to the eigenvalue and eigenvectors at each order

of the perturbation. We write out the expansions to order e2+ n because (as we

will show later) in order that we solve the complete perturbation to order O(e2) we

have to utilize the perturbation equations to order e2 +().

The first order and second order perturbed stiffness matrices about the periodic

state are given by

AK = Tridiag [-R2(j_ 2 - j-1) ; -(j-1 ; -R 2(Cj - j-1)] (2.16)

and

62K = Tridiag [R2(Cj_- C-l); 2_1 ; -R 2(J- - j-)] (2.17)

The first step in the method is to determine the complex coordinates associated

with the branch point, and the eigenvalues and eigenvectors associated with the un-

perturbed state. This unperturbed state is the zero-order problem. The eigenvector

associated with the Jordan block obeys the standard eigenvector relation at the branch

point,
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[Ko - AoI]x0o = 0 (2.18)

The Jordan Block perturbation method used the branch points in the mode-

disorder relation as the unperturbed state. This is determined easily for a system of

two coupled pendula. However for larger systems, we require mathematical equations

to determine the complex disorder parameters which define the branch point. The

characteristic polynomial of the eigenvalue problem is given by

a()x, 61, .n-') = IK - AII = 0 (2.19)

where the vertical bar denotes the determinant. The mathematical conditions for

eigenvalue coalescence to occur can be derived by considering the form of the char-

acteristic polynomial at the point of eigenvalue coalescence(Triantafyllou and Tri-

antafyllou [39]). The form of the polynomial at the point of m root coalescence

would be

A (A- A) m (2.20)

where A0 is the coalescent eigenvalue. The condition for the coalescence of m eigen-

values would be

in
(9i = 0 (2.21)dAi

and i = 1, ..., m- 1 with m < n. This is in fact a condition for a saddle point to

occur. Along with the equation for the characteristic polynomial, we have a system

of m equations. We require m unknown variables to be guaranteed a solution to this

system of m equations.

If m = n which would then correspond to an n th root branch point, we would have

to solve for the complex unknowns (A, , ...,n-1). The n root coalescence is a "fixed"

singularity. We get a set of isolated discrete points as the solution to the equations

for eigenvalue coalescence. According to Bender and Orzsag [3], for a problem where
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the dependence on the disorder parameter is linear, the number of n root coalescences

would be n! if the characteristic polynomial is of order n.

Having determined the complex coordinates of n root coalescence, the next step is

to calculate the eigenvectors associated with the Jordan block. We can only determine

one eigenvector associated with the Jordan Block since the Jordan block of size greater

than one is associated with a matrix of reduced rank. We however need a set of n

eigenvectors to span the n dimensional space. This is done by constructing a special

set of vectors called generalized eigenvectors which along with the single eigenvector

span the n dimensional space. The generalized eigenvectors satisfy the following

relation (Gohberg et. al. [14] and Wilkinson [41]),

[Ko - AoI]xoi = o0(i-l) (2.22)

where, 2 < i < n.

These eigenvectors of the unperturbed state are the set of basis functions we use

for expanding the eigenvector perturbations at each order of the perturbation. The

eigenvectors at each order of the perturbation are expanded as linear combinations

of the unperturbed eigenvectors

j=n
n = cM,jxoj (2.23)

j=1

Note m denotes the perturbation order and m = 1, 2,.... During the perturbation

expansion, we have (n + 1) unknowns. These are the unknown eigenvalue pertur-

bation(one unknown) and the n coefficients (n unknowns c,j) which are used to

linearly combine the n eigenvectors when we compute the eigenvector perturbation.

However, we can only generate n equations by systematically multiplying the pertur-

bation equation by the n left eigenvectors. We need one more equation to ensure that

we have n + 1 equations to solve for n + 1 unknowns. This is obtained as follows. The

eigenvectors which are perturbed must satisfy the orthogonality conditions between

the right and left eigenvectors at all orders of the perturbation. The left generalized

eigenvector Yol is the reciprocal of the right eigenvector. As we perturb the vector
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away from the Jordan Block, we get n splits in the solution. A split implies that

as we perturb the solution away from the Jordan block vectors, we get n solutions

emerging from a single vector corresponding to the Jordan block. Thus,

y0(o 1 + x + 6x + ...) = 1 (2.24)

Ordering terms, at all orders, we get

y1Hx01 (2.25)

and

yH X= 0 (2.26)

During the perturbation expansion, we require the left eigenvectors as a set of or-

thogonal vectors to determine the coefficients multiplying the generalized right eigen-

vectors. Hence we next calculate the left eigenvectors.

Although at the branch point, we have one left and one right eigenvector, they

are orthogonal to each other. The reciprocal of each eigenvector is a generalized

eigenvector.

At the branch point, we only have one left eigenvector which obeys the following

relation

y0 [Ko - Aol] = 0 (2.27)

where the superscript H denotes the hermitian operation of transpose and conjugate.

The left generalized vectors satisfy the following relations.

Yoi[Ko - AoI] = Yoni+) (2.28)

with 1 < i < n - 1. The left and right eigenvectors if chosen correctly, will obey

orthogonality relations
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YoHioj = Eij (2.29)

Here, is a normalizing constant which is taken as one and 6i,j is the Kronecker delta

function.

We briefly outline the solution procedure. The perturbation problem to or-

der is said to be solved if we obtain solutions for all of the (n + 1) unknowns

n A, cm,l,..., CmL,. In perturbation methods for matrices with distinct eigenvalues,

we are able to obtain the entire solution to order m by solely utilizing the equations

from that order of the perturbation. This is not true for the Jordan block expansion.

cr, 1 can easily be determined using the orthogonality condition applied to the

perturbed eigenvector(equation 2-24). We introduce the expansion in equation (2-23)

into equation (2-24) to get

cm,= 0 (2.30)

Thus the eigenvector associated with the Jordan Block is only perturbed in the di-

rection of the generalized eigenvectors.

We still have n unknowns to determine. We use the perturbation equations at

different orders to determine these coefficients. Each of these equations are matrix

equations. Each of them are reduced to n scalar equations by multiplying successively

by the left eigenvectors yoj, j =1, ... , n.

At the order m, we can obtain only two useful equations, the first is the orthogo-

nality condition for the perturbed eigenvector at that order and the second equation

is that obtained by multiplying the order m perturbation with yO. We obtain the re-

maining (n - 1) equations by multiplying each of the successive (n-1) order equations

by the eigenvectors y, ys, ... and ,yn respectively. These equations are constructed

so that even though they are obtained from utilizing perturbations equation whose

order is greater than m, they still couple the unknowns of the order m problem only.

Thus, in order to solve for the unknowns at order m, we have to utilize equations to

order + n 
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The solutions for the two lowest orders are as follow:

O(Cn)

nA = e2 i (YOH ffl XO1-)-' (2.31)

Note the n th roots of unity imply the presence of n splits in the solution and

i = vT in equation 2-31.

1, = ()(yo 01) (2.32)
(Y02X 2 )

C,3 = ... = n = 0 (2.33)

We note that most of the coefficients multiplying the various generalized eigen-

vectors are zero until we reach integral or higher powers of the perturbation. The nth

root dependence of the eigenvalue on disorder is transmitted to the eigenvectors also

since the eigenvector coefficients depend on the eigenvalue perturbation.

O(E )

The trivial solutions to the O(En) problem are written below

C2 4 = " * = C2 = 0 (2.34)

There is no simple closed form solution to the remaining non-trivial unknowns. They

are obtained as solutions to the system of simultaneous, linear equations obtained by

multiplying equations of O(E) through O(2+dn) by the generalized eigenvectors

yo, Y, ', Yo(n1) YHH n successively. The equations which were generated are written

below.

c 2 (y0xo2 ) - A(yxol) = 0 (2.35)n2(Y\'XO2) 02- J 2(\onYcIX01--
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65'Acl,n(yXon) + _ Ac 1_ ,n(YHXon) - y6Kxo 2 ,2 = 0 (2.36)

Higher order terms can be systematically obtained in this manner.

We have so far consider cases where a stiffness matrix of size n * n is associated

with a Jordan block of size n. We could also have situations where the Jordan block

of size is of size m where m < n. Thus we can have m coincident eigenvalues and

m root branch point between the eigenvalue and disorder. The remaining (n - m)

eigenvalues are distinct and are associated with (n - m) distinct eigenvectors. At this

mth order branch point we have one Jordan block of size m and (n - m) blocks of

size one. We apply a hybrid of the Jordan block expansion and the expansion for

matrices wit distinct eigenvalues.

The unperturbed state is slightly different from the m = n case. Consider the case

where m < n in equation 2-21. Along with the coalescent frequency, we can select

m - 1 parameters, say e, ..., Em-l to be unknowns. This would imply that we have to

provide arbitrary values to the remaining (n - m + 1) parameters Em, .. , En-l1. In this

sense, the lower order coalescences are "movable" singularities. Depending on the

value we fix for Em, -., En-l, we can get different values for the complex branch point

coordinates. Thus rather than having a branch point we would have a branch point

surface by allowing these arbitrarily fixed parameters to vary in a continuous fashion

over the entire field of complex numbers. Next, we should realize that we could

have taken another set of disorder parameter say En-m, ... , en-l as our unknowns. We

could in fact select m - 1 of these parameters in ( -+)! ways. Hence we have(m-l)!(n-m+)! ways. Hence we have

an infinite number of points about which we could perform an m th root expansion

where m < n. For an m root coalescence, with linear dependence of the characteristic

polynomial on disorder (Bender and Orzsag [3]), we could have a maximum of n!(n-m)!

possible m root coalescences given a fixed set of values for the (n - m + 1) complex

parameters. Since we could select these parameters in (m-1)!(n-m+l)! ways, we would

have a total of -_ (n!)2 mth root branch point surfaces for an m th root
(n-mbranch (m-point!(n-m!

branch point.
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2.3.1 Application of Jordan Block Expansion to Two Pen-

dula

We next work out the perturbation expansion for a two pendula problem as an ex-

ample. The perturbation expansion is as follows:

[Ko+6K+6 K+...]{xol + JX +...] = (o + 62A + 6A +...){xoi + 6 x+6x+ ...}

(2.37)

The first order perturbed stiffness matrix about the branch point is given by

A = -(2.38)
(1+CO)2 ( )2

and the second order perturbed stiffness matrix is

62 K )I (2.39)
(l+eo)3 (1+eo)3

Note, the subscripts indicate the order of magnitude of the associated quantities.

Thus all quantities with subscript are associated with e and so on. The appearance

of fractional powers in the expansion is a direct outcome of the properties of the Jordan

block. We write out the ordered problem:

0(i)
[Ko - AoI]xol = 0 (2.40)

[Ko - AoI]{6½x} = 65A{x} (2.41)

0(e)

[Ko- AoI]{6x} = -[6K- SI]{x} + (61A)62x (2.42)
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[Ko - Ao[]{62}x = -[6K- 6'AI]{6xz} + (6½A){6x} + (63A){x} (2.43)

0(e2)

[Ko-oI]{6 2x} - [2K-62A] fx-[ K-(6A)I] 6x}+(A6)(6x)+(62 ) (62 )+(6 2 A) (62X)

(2.44)

0(Es)

[Ko - oI{6x} = -[K - [6K - 6AI] 1{6} + (6A) (62X)} + (6 3A) (6 X)

(2.45)

Unlike the CPM and MPM, we have complex perturbation matrices. The right

and left eigenvectors and generalized eigenvectors for the unperturbed state are as

follow:

[X]= [x01 02 ]= [ (2.46)

01(1-2iR2) (1-2iR2)1 2[y]H = [YH =H R2 (1-2iR) (2.47)
i 2

(1-2iR 2)

If we apply the orthogonality conditions, we get

[y]H[X] = [I] (2.48)

and

yH[K][X]= [O 1 (2.49)

where the coalescence frequency is A0 = 1 + R2 - iR2.

We shall solve the complete perturbation problem to O(e2 ) only. As in classical

matrix perturbation, we will expand the eigenvector perturbation at each order as a
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linear combination of the basis vectors. If m is the order of the perturbation,

a X = cm ,X0 1 + cm,2X02 (2.50)

The problem is said to be completely solved to any order m if we have solved

for cm,1,Cm,2 and mA. As we noted in the general n pendula problem, if we wish to

solve the unknowns at order m, we will only get one useful equation at order m. The

first equation is that obtained by using the orthogonality condition for the perturbed

vector at order rn. We get

Yo[62x] = 0 (2.51)

Applying equation (2-50) to (2-51), we get

c2 = (2.52)

The unknowns c,2 and 62A are obtained by solving two simultaneous linear

equations. The first equation is obtained by multiplying the order m equation by

yH . This is the second useful equation at order m. As we noted in the general size n

Jordan block expansion problem, we can obtain (n - 1)(in this case one) more useful

equation(s) by using the order m + through m + (n) order perturbation equations.

The second equation is obtained by multiplying the order ( + 2) equation by yo2.

The solutions to order 0(e 2) is given below.

Cj,1 = 0 (2.53)

c1,2 =61A (2.54)

1 y 2(6K) oi62A = ± (2.55)

0(e')
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- Yo2zo2 YolzolC1 ,2 -

y y (6K)Xo2 + yH(6K)xo2
H H0

YolXol + Yo2 Xo2

C3,1 = 0
2'I

+ (Y2(SK)O2)c1,1 - AC1,1

Yo ~½~63 3X2

__ YH (6K)xo26A
yol 1ol

(2.60)
(1+ yxOH2)1Yolxo1

YH (6K)x 2c1 ,2 _ A(yHxO2)Cl,2
+ 02 (X2

JfA 65(A)

YolX01 + yoH202

C2 ,1 = 0

+ (6 2A)y(6K)Xo 2
(2.61)

(2.62)

H( - y(6K) 2c2 + (yx 01)(y H(62K)xo2)
-Y0H1 I:')X01 - yo1 ((6K)x2C1, 2 . y-xo~) -

.___ _yo___ + (y 2xo2

YolXol + YoH22

(Yo2(sK)xo 2 c4, 2 )(y xo1O)

(6 A)(y xo 2 )

( ( A) ,2 (yoH1O1 )

J6 \

(2.63)
6AC 2(Y H X01)~,(ygio )

( ~½~)~--

Yo xol + Yo2zo2
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(2.56)

O(El)

(2.57)

(2.58)

yH (2 K)x01

YOH1 01 2 A

(2.59)

Y/ 2 )xo 2

5½A62A =

O(c2)

C2 ,2 -



y(g2,H(6fK)Xo2 (6A)cj,2(Y02XO2) _6a (yH0 2 )Cl 2 + (y(6 2 K)xo)
Y02 K)x°2 + X 62X _U"YO1 K1xO

652 H = +
Yo xol + YoX20 2

(2.64)

yo (6K)xo 2cI,2
yOlxol + YH202

The above represents the solution for the Jordan Block size two perturbation

expansion to second order.

We confirm our results with the closed form solution derived earlier in equation

(2-7) and (2-8) by applying the order 0(e2) solution.

2 = +n ii2(1 - 2iR2) (2.65)

c, 2 = Vi2 (1 - 2iR2) (2.66)

The predictions of the expansion match the closed form expansion derived ear-

lier(equations (2-7) and (2-8)).

It should be noted that the perturbation technique laid out here for the Jordan

form and nondegenerate coalescences is different from that for matrices with degener-

ate coalescences. There are n eigenvectors associated with the size n matrix unlike the

Jordan form where we have fewer eigenvectors than the size of the matrix. The eigen-

values and eigenvectors associated with a degenerate coalescence can be expanded in

a Taylor series (Courant and Hilbert [11]) about the point of eigenvalue coalescence.

We next compare the predictions of the three perturbation techniques in figure

2-4. We retain terms to O(e2 ) in our calculations. We define an error norm as follows

e = max(lyj - -?i1) (2.67)

Here -y? is the localization factor of the ith actual eigenvector and y is the lo-

calization factor of the ith predicted eigenvector. The localization factor definition

is provided in Appendix A. The procedure to calculate the localization factor is as
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follows:

* Compute the logarithm of the absolute modal coordinate for each mode. De-

termine the peak.

* If the peak is at the end oscillator, fit a straight line through the logarithm

of the modal coordinates. The slope of this line is the localization factor. If

the peak is at a middle oscillator, compute the two localization factors for the

decay in the mode on either side of the peak. Average the two values to obtain

a single localization factor value for the mode.

We use the maximum of these values since the prediction is as good as the poorest

prediction. When the actual and predicted eigenvector are close, the error norm is

small and the error is a continuous function of the eigenvector. However when they

become poor in their fit, we start getting very poor and discontinuous variation of

the function with the disorder.

In figure 2-4, we provide a plot of the variation of the error norm e associated

with the eigenvector. The MPM and CPM are less effective than the Jordan Block

Expansion in the range of parameters eI .02 except right at the origin. The

MPM appears to be accurate over a large range of parameters(lel > .04). But, the

modes change very little over that range. The Jordan Block method is valid over a

smaller range (el < .04 . But the modes have maximum sensitivity in that range

(.02 < lel < .04) as they change from a periodic to a localized state.

2.4 Higher Order Systems

The two pendula problem was simple in that we had only one branch point (and its

complex conjugate) to perform perturbation expansions about. There is increasing

complexity in higher order branch points owing to the presence of branch points of

different orders. We examine a system of three pendula (figure 2-5) to illustrate these

ideas. The eigenvalue problem associated with the three pendula system is
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Figure 2-5: System of three pendula
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Table 2.1: Three Root Coalescences

A(A, Elt, 2) = 0 (2.68)

where e1, E2 are complex disorder parameters. We can have a variety of eigenvalue

coalescences. We could have two root coalescences. They are obtained as the solution

to equation 2-68 and

a = 0 (2.69)
We can either assign an arbitrary value to el and solve for complex 62 or vice versa.

There are an infinite number of two root coalescence points. We could have a three

root coalescence by adding the condition

9 = 0 (2.70)
0A2

We would then have to solve a set of complex nonlinear algebraic equations for

the unknowns (A, El, E2). The three root coalescence implies that three eigenvectors

have large sensitivity on the nearby real axis while the two root coalescence implies

that we have only two modes with significant sensitivity on the nearby axis providing

the branch points are sufficiently close to the real axis. We plot projections of the

complex lines of two root coalescences and three root coalescences on the real axes

in figure 2-6. The three root coalescences lie close to where the two root coalescence

lines approach each other.

We now consider two lines along which we provide eigenvector predictions using
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(a) .0145 .0268i .0101
(b) .0043 i .0262i -. 0099

(c) .0099 ± .0144i -. 0008 + .0283i
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(a) Good Jordan prediction,
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the Jordan block expansion and MPM at various points. The first line is el = -2.

We provide plots at the points P1 ( = -. 01, 2 = .01), P2 ( = .01, E2 = -.01),P3

(el = .06, 62 = -.06). The three points on this line are represented as triangles in

figure 2-6. Point P1 and P2 are in the zone where the cube-root branch point effect

is important while P3 is in a zone where all the modes are localized and is also far

away from all branch points. P1 is on one side of the branch point (b) while P2

is on the other side of the branch point while being sufficiently far away from the

branch point to ensure the modes appear reasonably heavily localized. Two themes

are developed using these three points. The first is that the Jordan block expansion

performed well in a zone where all three modes are varying rapidly in response to

disorder. The second point is that the edge of the predictive capabilities of the Jordan

block expansion is such that modes in the entire range of intermediate localization

are covered. In figure 2-7, we provide Jordan block expansion and MPM predictions

at each point. The Jordan block expansions are performed about branch point (a) at

point P1 and branch point (b) at point P2. In figure 2-7a, we provide Jordan block

and MPM predictions at P1. In figure 2-7b, we provide Jordan block expansion

and MPM predictions at P2. Finally, in 2-7c, we provide Jordan block and MPM

predictions at P3. These points start on one side of the origin, move to the other side

and gradually enter a zone of large disorder. Points P1 and P2 are in a zone where

the highest order Jordan block expansion performs well and the modes are moderately

localized while point P3 is in a zone where only the MPM performs well and all the

modes are heavily localized. There is a gradual increase in localization in the modes

when we pass from P1 to P2. The third point is associated with localization of all

the modes. The Jordan block method which performs well at points P1 and P2

performs poorly at point P3 while the MPM performs poorly at points P1 and P2

but performs well at point P3.

The second line is along the coordinate el = .06 and predictions at two points

PI' and P2' are plotted in figure 2-8. The two points on this line are represented by

squares in figure 2-6. The theme developed in this figure is that there are lower or-

der branch points (in this case, square-root branch points) in addition to the highest
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(a) Good Jordan prediction, poor MIPM prediction.
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Figure 2-8: (a): Jordan block and MPM predictions at (P1') el = 0.06,62 =
.001. Expansion about square-root branch point at (e1 = 0.06, 2 = 0.0001828 +
.004099i). (b): Jordan block and MPM predictions at (P2') e1 = .06. e2 = .03
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branch points and expansions about these branch points aid in providing analytical

descriptions for modes in an intermediate state of localization. The modes are quali-

tatively different in appearance from the kind of modes we saw close to at cube-root

branch point. Here one mode is localized and two have intermediate localization

unlike near a cube-root branch point where all three modes displayed moderate local-

ization. The points along this line which we consider are P1' (el = 0.06, E2 = .001,)

and P2' (el = .06, e2 = .03). The Jordan block expansion which we use is a two

root coalescence expansion performed about the point 2 = 0.0001828 + .004099i, and

el = 0.06. In sum, we have a wide variety of modes in various states of moderate

localization which can be described well using Jordan block expansions about various

order branch points.

We now construct some rules for questions like do we use the MPM or Jordan block

expansion to determine the modes associated with a given point in the parameter

space. If we use the Jordan block expansion, which order coalescence do we use and

how do we select the correct branch point from the ones we have ? We will discuss

these questions here with emphasis on the three pendula problem and then the ten

pendula problem.

We construct convergence zone diagrams for the MPM and Jordan block expansion

for the three pendula system. We have two and three root coalescence branch points

associated with this system. However the MPM which is an expansion about the

uncoupled disordered state has a convergence zone only to the outermost branch

points. The convergence zone for the MPM and Jordan Block Perturbation Method

for a three pendula system are shown in figure 2-9. Since the complex conjugate

square-root branch points straddle the real axis and are placed at a distance Im(ei)

on either side of the real axis, the MPM convergence zone is essentially the envelope

formed by the lines Re(i)±Im(ei) where Re(ei) and Im(ei) are the real and imaginary

coordinates of the two root coalescence branch point associated with the three pendula

system. The convergence zone for the MPM is exclusively determined by the geometry

of the branch points. Determining the zone of convergence for the Jordan block

expansion is complicated because we have different Jordan block expansions. We have
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six possible three root coalescence Jordan block expansions and an infinite number

of two root coalescence Jordan Block expansions. We can only talk in terms of a

convergence envelope where either one or the other Jordan block expansion can be

used. Hence, we provide an envelope convergence zone in which one or the other

Jordan Block expansions would be valid. This is the region interior to the MPM

convergence zone.

Let us assume we are in a zone of parameters where the Jordan block expansion

is valid. There are altogether six cube-root branch points given in table 2-1. How

do we choose the correct branch point to perform the expansion ? Let us say we are

considering a combination of parameters (E1 , E2). If all three modes display appreciable

modal sensitivity close to this region of the parameter space, we can conclude we have

to use a third order branch point expansion. The next question, is which of the three

branch point do we use as our expansion point ? The branch point which is the

closest to the point in question is used as the branch point for expansion. It is very

interesting that if we take a sample of points ranging from J1 I < .02 and e2 < .02,

and compute the closest branch point to each point in the disorder space, only branch

points (a) or (b) contribute to the solution set. Branch points (c) are slightly deeper

in the complex plane but are situated so that they are further away (relative to (a)

and (b)) from the point considered in the disorder parameter space. When we have

larger values of disorder e1, 2 - O(R2 ) or greater, we find two situations: the first

is that where all three modes are localized and the second is where only one mode

is localized. The case where two modes are extended is typically a case where two

modes display appreciable sensitivity. In the first case, we use an MPM expansion

while in the second case we use a square-root branch point expansion. We determine

the point of expansion by determining the closest two root coalescence line. These

ideas are applicable to larger problems. We would then examine m modes for their

sensitivity and extended nature. We would subsequently use a Jordan block size m

expansion. For this three pendula system that we are studying, we would thus use a

Jordan block size three or size two expansion. The details of the Jordan block size

three expansion are shown in appendix C. The perturbation expansion for a size three
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Jordan block expansion is of the form

(Ao+6A3 6)+ 6 + + 6X+ + 6X +... )
where x0l is the eigenvector associated with a Jordan block of size three.

Different branch point expansions are valid in different zones of the parameter

space. In figure 2-10, we show eigenvector predictions at two points (B1) and (B2)

using two different Jordan block size three expansions. Point (B1) is at El = .005 and

62 = .01. Point (B1) is closer to branch point (a) but further away from branch point

(b). Point (B2) is closer to branch point (b) but further away from branch point

(a). We provide predictions close to branch point (a) in figure 2-10 a and predictions

close to branch point (b) in figures 2-10 b. Clearly the branch point (b) expansion

fares poorly in comparison with the branch point (a) expansion in 2-10 a. It is clear

that this point is very close to branch point (a) and far away from branch point

(b) and hence the reason for one expansion performing better than the other. Point

(B2) is El = .005, E2 = -. 01. The branch point (a) expansion in figure 2-10 b fares

poorly compared to the branch point (b) expansion in figure 2-10 b in this zone of

the parameter space. It is obvious that in moving from point (B1) to point (B2), we

have gone from a point where a branch point (a) expansion performed better to a

point where a branch point (b) expansion performed better.

In sum, if we examine the MPM convergence zone from figure 2-9, it is clear that

in the zone where the disorder i - O(R 2), we can use the Jordan block expansion.

In the zone where jeil >> R2 , we can use the MPM if we are clear of the square-root

branch points. It is also clear that the modes change very dramatically in this small

zone of parameters where Jordan block expansions are applied as seen in figure 2-7,

2-8 and 2-10. Hence the Jordan block expansion is useful in zones where there is

dramatic variation of the mode shapes.
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(a) Good Jordan block (a) and bad Jordan block (b) prediction.

Ti T 

2

T T-

2

(b) Good Jordan block (b) and bad Jordan block (a) prediction.
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Figure 2-10: (a): Jordan block (a) and Jordan block (b) predictions at B1
(e1 = .005,e2 = .01). (b): Jordan block (a) and Jordan block (b) predictions
at B2 ( = .005, e2 = -.01) ( : Exact Eigenvector, o: Predicted Eigenvector.)
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2.4.1 Prediction of modes for ten pendula using lower order

coalescence expansion

We have so far been looking mostly at eigenvector predictions where the Jordan block

is the same size as the stiffness matrix. For example in an n pendula system, we have

a Jordan block of size n. We next examine a case where the Jordan block is of size

m where m < n. In such a case, we would have an mth root branch point in the

eigenvalue-disorder relation. If we apply a similarity transform, we would get

yH [K][X] =

A0

0
0

0

0

0

0

0

0

0sO

tO

tO

tO

tO

tO

sO

tO

1 0 0 0
.1 00

0 . 1 0

00 . 1
0 0 0 A

0 0 00
0 0 00
0 0 0 0
0 0 00
0 0 00
0 0 00

0 0 0 00

0 0 0 00

0 0 0 00

0 0 0 00

0 0 0 00

m+1 0 0 0 0

0 Am+2 0 0 0

0 0 .00

0 0 0 .0

0

0

0

0

0

0

0

0 0

When we apply a Jordan block expansion about this point, we would be using

a hybrid of two methods. The first method is the Jordan block expansion while

the second method is that used for matrices with distinct eigenvalues (Courant and

Hilbert [11]). The m eigenvectors associated with the Jordan block are expanded in

a series in powers of the m th root of the disorder parameter. The other eigenvectors

can only be expanded in integral powers of the disorder parameter. We examine the

expansion associated with a Jordan block of size two as a special case to illustrate a

few principles. The eigenvectors associated with the branch point are expanded using

the equation similar to that for the square-root branch point.
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[Ko+6+62 +.. .]{x 1 6x+6 } = (+6++...){6x+6...} (2.73)[Ko+JK+ K+.. .Ifxo,+ zjG+...=(AO+ j A+JA+...)jx+J x+6+...j (2.73)

The eigenvector not associated with the branch point can be expanded using a Taylor

series.

[Ko+gK+&2K+...]{xo+ojx+2x+...} = (Ao+6A+62A+...){xoj+x+662X..... (2.74)

xoj is the eigenvector not associated with the branch point. There is clearly a big

difference between the expansions used for the two types of eigenvectors. At each

order, the branch point perturbation is expanded using equation 2-23.

The issue of interest is to determine the nonzero coefficients in the expansions for

the eigenvectors associated with the branch point. The generalized eigenvector is the

eigenvector number 1. Since the eigenvector is perturbed away from eigenvector 1, all

the coefficients associated with that eigenvector are zero for all orders. Many of the

other eigenvector coefficients are also zero making the calculation relatively simple.

We will refer to this method as a hybrid Jordan block expansion to distinguish it

from the Jordan block expansion.

We provide lower order coalescence expansion predictions for moderately localized

modes of a system of ten coupled pendula. We could have used a ten root coalescence

expansion but determining the ten root coalescence coordinates is difficult because

as the order of the characteristic polynomial increases, the roots of the polynomial

become increasingly sensitive to small perturbations to the coefficients of the poly-

nomial. So truncation errors can cause us to make errors in our estimate of the

branch point. For example if we calculate the n root coalescence coordinate correct

to p decimal places, and then substitute the disorder values back into the stiffness

matrix, we would have errors of 0(10-p) in the eigenvalues due to the n root de-

pendence of the eigenvalue on disorder. If n = 10 and m = 8, we would only be

able to obtain 10-5 accuracy which is not even one decimal place accuracy. There

is another important effect of computing higher order coalescences. The coefficients
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of the characteristic polynomial are polynomial function of R2. For larger systems,

the polynomial coefficients could be function of high powers of R2 . If the coupling

is a small number like .01, we would get round-off errors affecting the coefficients of

the polynomial. For example, if we have coefficients which are functions of (R2)9,

we would have, due to finite precision effects, lost significant digits associated with

these coefficients if we working in double precision. n th root amplification of this

error would result in O(.1) errors in the roots of the equation. The Jordan block

vectors (especially the generalized eigenvectors) are very sensitive to small errors in

calculation of the complex branch point coordinates. Since we cannot compute higher

order coalescences accurately, we cannot provide analytical prediction of modes for

large systems of pendula for cases where the disorder is very small, and where all, or

a large number of modes show appreciable modal sensitivity. Even if we were able

to calculate the complex coordinates for eigenvalue coalescence, we would require a

large number (2n) of terms to obtain reasonable eigenvector predictions since we are

expanding in powers of En where is the disorder parameter. As an example of the

computational needs, for n = 20, we would require 40 terms if we wish to expand the

series to order e 2 .

We follow the techniques described earlier in performing hybrid Jordan block

expansions. We provide a Jordan block expansion about the disorder parameter

e9 = -. 2643- .4866i. This is a point of two root coalescence. We provide predictions

of the two modes which are linked with the two root coalescence. We cannot use the

MPM because adjacent modes have zero disorder. We use the CPM because it is

is the only expansion which could provide predictions in this zone of the parameter

space. We again traverse two points along a line. The first point is tl with coordinate

1 = 0, E = 0, ... , e = 0, e 9 = -. 2643, and the second t2 with coordinate el = 0, e2 =

0, ... 68 = 0, e9 = -. 0043. The first point is close to the two root coalescence.

The second point is close to the periodic state. If we could use a 10 root coalescence

expansion, we would get excellent predictions for the second case. However, due to

our numerical constraints we will only explore the predictive capabilities of a two root

coalescence expansion. Point tl and t2 lie on this straight line. The predictions are
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shown in figure 2-11. The Jordan Block method (2-11a) works far better than the

CPM (2-llb) at the point tl. The CPM works better at t2(2-11d) than the Jordan

expansion(2-llc). The CPM is useful only for modes which are almost periodic. This

is obvious by examining the modes predicted by the CPM. The MPM is far more

useful for examining heavy localization than the CPM. The Jordan Block method is

the third alternative in the analytical study of localized modes.

2.5 Conclusions

We provide a new method in the analytical description of localized mode shapes

thereby extending the existing predictive capabilities of perturbation techniques. The

MPM and CPM expansions are useful for describing lightly and heavily localized

modes over a vast range of disorder parameters. The intermediate and relatively

smaller range of parameters corresponds to moderately localized modes. The mode

shapes in this range of parameters display maximum sensitivity in their transition

from periodic to localized modes. We demonstrate that the usage of different order

Jordan block expansions is useful in describing different modes in this intermediate

range. We also provide convergence zones associated with different expansions. The

drawback of this method associated with numerical limitations, (i.e. the inability to

calculate the branch points associated with higher order coalescences) is discussed.
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Chapter 3

Investigation of the effects of the

strength and location of the

branch points on localization

3.1 Introduction

We have in the previous chapter found the general trend that the modes in an in-

termediate state of localization displayed large sensitivity to disorder. Jordan block

expansions about these branch points were useful in describing modes in an interme-

diate state of localization. However we have only talked in very general terms about

the sensitivity of modes without specifying any quantitative measures for localiza-

tion. We introduce quantitative measures for modal sensitivity and localization in

this chapter and then use these measures to study localization.

Triantafyllou and Triantafyllou [39] performed asymptotic analyses to demon-

strate that branch points in the frequency-disorder relation were responsible for the

large sensitivity seen in localization. The term "geometry" refers to the properties

of points and surfaces. Depending on the number of pendula and disorder parame-

ters, we could have either a simple branch point in the eigenvalue-disorder relation or

more complicated surfaces (when the term branch-surface would be more appropri-
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ate). The branch point geometry is responsible for the large sensitivity seen in systems

exhibiting localization. The strength of the branch point(referring to the order of the

branch point in the mode-disorder relation) and the location of the branch point with

respect to the real axis are the main geometric properties which control the modal

sensitivity and localization. The precise distribution of these branch points which

have varying strengths (determined by the order of the branch point) and distances

from the real axis is responsible for the varying levels of sensitivity to different com-

binations of disorder. A very rich analogy exists with the field of electromagnetism.

The electromagnetic field at a point is determined by the distribution of singularities

of varying strengths like poles, dipoles, quadrupoles etc. and their distance from the

point of the space in question. In complete analogy, we have a set of singularities

(albeit weaker, being branch points) of varying strengths (the n th root dependence

on disorder where n is the variable order of the branch point) and varying distances

(depending on their positions in the complex plane) from the point of the disorder

parameter space in question, defining the modal sensitivity (or alternately the local-

ization) at the point. One special feature of localization which does not exist in the

electromagnetic analogy is that n modes show appreciable sensitivity if the disorder

parameter combination is close to an n root coalescence (Refer Chapter 2, Jordan

Block Perturbation for a Jordan block of size n).

This chapter explores the complex implications on mode localization due to the

distribution of these branch points in the complex plane. Sensitivity is connected to

localization because the integral of the modal sensitivity is related to localization.

So understanding sensitivity helps us understand a number of problems in localiza-

tion. One problem which will be resolved here is the observation by Hodges and

Woodhouse([19]) that similar combinations of disorder which share the same statis-

tical properties (we examine the mean square disorder here) result in different levels

of localization. Another problem which we look at is the utilization of this knowledge

of the distribution of strength and location of branch points to determine directions

to search parameter combinations which have minimal mean square disorder. We

also study the conflicting effects of the two geometric properties i.e. the strength and
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location of the branch point by examining some unusual configurations. Modal sen-

sitivity of configurations which are associated with high strength branch points can

sometimes be lower than those associated with lower strength branch points owing to

differing locations of the branch points.

Obviously the presence of damping would alter the characteristic polynomial and

alter the positions of the branch points in the complex plane. We neglect damping

from the analysis because the effect of damping is not very relevant in the study of

localization.

3.2 Two pendula example

We utilize modal sensitivity and localization factor definitions from Appendix A

throughout to quantify localization and modal sensitivity. The modal sensitivity

for a system dependent on only one parameter is determined by the

Lim Iq( + ')-q(E)l (3.1)Q(q, )= 0(3.1)

If the system is dependent on two parameters say E1 and 62, the modal sensitivity

would actually represent a partial modal derivative. The total modal derivative or

modulus of modal sensitivity would be

j=2
Q(q) E Q(q, j)2 (3.2)

j=l

The localization factor which is also defined in Appendix A is a measure of the

exponential decay associated with the mode shape. It is based on the exponential de-

cay associated with modes displaying heavy localization. The constant of exponential

decay is assumed to be the localization factor. For modes displaying light localization,

we do not usually witness a clear exponential decay and hence an exponential curve

is fitted through the modal amplitudes to give a value for the localization factor (see

Chapter 2 for details).

Asymptotic analyses performed by Triantafyllou and Triantafyllou [39] showed

73



that the cause of the large modal sensitivity seen in localization was the presence of

branch points in the mode-disorder relation. For a system with n disorder parameters,

the mth root branch points could be determined by solving the equations

A(, 1, ... n-_l) = IK - I I = (3.3)

and 0aOi = ° (3.4)
where 1 < i < m- 1 and m < n.

Here K is the stiffness matrix associated with a system of n disordered pendula

and Ei (1 < i < n) are the disorder parameters introduced into each pendulum. The

stiffness matrix as described in Chapter 2 is

+ 1 + E j-1)
(3.5)

where 1 < j < n. The notation Tridiag(oaj, Pj, rj) designates a tridiagonal matrix

with aj being the element of the lower diagonal (jth row, (j - 1)th column), j is

the element on the main diagonal (jth row, jth column), and Kj is the element on

the upper diagonal (jth row, (j + 1)th column). By definition ar = n, = 0.6i,j is the

Kronecker Delta function.

Consider a system of two coupled pendula with disorder e. Consider in figure 3-1

the modal sensitivity plotted as a function of disorder. This is done for three values

of the coupling parameter. Clearly, the peak is not centered at zero disorder and the

off-centered nature of the peak becomes more pronounced as we increase coupling.

Conventional perturbation techniques(Pierre and Dowell [27]) indicate that the main

cause of the large modal sensitivity is the closely spaced nature of the eigenvalues and

that the peak modal sensitivity is at the point where the difference in the eigenvalues

is minimum i.e. the point of zero disorder. This graph would seem to indicate the

close eigenvalue spacing may not be the reason for the large modal sensitivity since

the peak is not at the point of zero disorder. The reason for the off-centered peak can
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Modal Sensitivity for Two Pendula
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Figure 3-1: Modal Sensitivity as a Function of Disorder for R2 = .01, R 2 = .05, and
/{2 = .1
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be clearly understood by inspecting the expression for the branch point in equation

3-5.

2R 2i (3.6)
(1 T±2 R2i)

There is a real negative part associated with the branch point coordinate. Its

magnitude increases with coupling. So we should see a leftward shift in the peak of

the modal sensitivity curve with an increase in coupling. Of course there is a decrease

in the peak sensitivity with the increase in coupling because of the rapid approach of

the branch point towards the real axis. See figure 3-2 for the variation of position of

the branch point in the complex plane as a function of the disorder.

We also provide a plot of the variation of the localization factor versus disorder

for a two pendula case in figure 3-3. The localization factor plot is also slightly

asymmetric indicating a path skirting the branch point would result in larger change

and quicker transition to localized state (i.e. the < 0 contour) as opposed to

the > 0 contour which results in a slower transition to localized state. This seems

reasonable because localization is proportional to the area under the modal sensitivity

curve. Moving along the < 0 contour results in our covering greater area under the

modal sensitivity curve as opposed to moving along the > 0 curve where far less

area under the modal sensitivity curve was covered. Already an important fact has

emerged. If our interest is to induce a certain level of localization in the modes of

the structure, some combinations are more effective than others. Here, to ensure a

localization factor of y = 1.6, we would have to pick a disorder magnitude e slightly

less than .05 if we considered negative disorder whereas if we considered positive

disorder, we need a disorder magnitude slightly greater than .05.

3.3 Three Pendula Example

We now consider a system of three pendula with disorder parameters (, E2 ). We

could either have square-root or cube-root type branch points in the mode-disorder

relation. The cube-root branch points can be obtained by solving equations 3-1 and
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Complex Branch Point Coordinate as a Function of Coupling
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Two Pendula: Localization vs. Disorder
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Figure 3-3: Localization factor versus disorder

3-2 with m = 2. We could also have square-root type branch points in the mode-

disorder relation. If we solve equations 3-1 and 3-2 with m = 1, we could solve

for square-root branch points. As we have remarked in chapter 2, we have only two

equations and three variables A, el and E2 as variables. The only way to ensure unique

solutions for equations 3-1 and 3-2 is by arbitrarily fixing one parameter say el and

solving for A and e2 as unknowns. We could do the reverse i.e. fix 2 and solve for the

unknowns A and e1. The next question is what arbitrary value do we fix for e1 for the

first case. We could permit el to vary over the entire field of complex numbers. But

we should pick that point on this surface which exerts maximum influence on the real

axis. A reasonable argument is that we only permit e1 to assume real values. 2 and A

are complex. If this choice is correct, we should expect to see the square-root branch

point lines run parallel to the modal sensitivity lines. In figure 3-4, we provide plots of

the modal sensitivity Q(qi, 62) superposed on the projections of these branch points on

the axis of real disorder for all three modes of the system. There are two square-root

branches which are plotted in figure 3-4 and these lines run parallel to the ridges. We

will name the one on the left as branch B1 and the one on the right branch B2. The
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Figure 3-4: Modal Sensitivity Q(qi, E2 ) for three pendula.
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cube-root strength branch points are marked on the same figure. They are located

close to the origin. The zone close to the cube-root branch point is a zone where

all three modes have significant sensitivity. We can see that the modal sensitivity

contours vary in magnitude over different regions of the graph. We have not marked

any magnitudes to prevent the figures from being too crowded but it is sufficient to

note that zones where there is significant clustering of the sensitivity contours are

also zones where there is increased sensitivity while zones where the contours are well

spaced are also zones where there is reduced sensitivity. This variation is because the

imaginary part of the branch point varies in magnitude over different zones of the

graph. In zones where the imaginary part is large, we have low sensitivity while in

zones where the imaginary part is small, we have large sensitivity. Similar figures can

be obtained for Q(qi, 61) and are plotted in Appendix C.

The cube-root strength branch point occurs close to where the square-root strength

branch point surfaces converge. In the case of the branch point lines drawn in figure

3-4, if we had permitted el to be complex, we would have seen actual intersection

of the square-root branch surfaces for some special value of el. The next question

to be answered is which branch point is more important, the cube-root variety or

the square-root variety, when both are close to each other ? In chapter 2, we have

already seen that the square-root branch point is associated with two 62 splits in

the eigenvector perturbation. Since the modal sensitivity is directly related to the

square-root term, it is reasonable to conclude that only two modes show appreciable

sensitivity. Eigenvector perturbation expansions about the cube-root branch point

have three modes which possess the 63 dependence on disorder and hence in zones

where the cube-root branch point effects are important, we would see three modes

possessing large modal sensitivity. In the figure 3-4, we can see that close to the origin

all three modes possess appreciable sensitivity. Hence it is unlikely the square-root

branch point is important in its effects close to the origin since we should expect to

see significant modal sensitivity for only two modes.

We confirm our suspicions by using Jordan block expansion predictions at three

points P1, P2 and P3 which lie on the line 1 = 0 and represent points with grad-
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Figure 3-5: Gradual transition from cube-root branch point to square root
branch point. Point P1 : e1 = .0043, 2 = -. 01186. (a) : Jordan block size
three expansion about (a). Jordan block size two expansion about el = .0043, E2 =

-. 01186 - .01616i. Point P2: e1 = .02, E2 = -.003335576. (b) : Jordan block size
three expansion about (a). Jordan block size two expansion about E1 = .02, E2 =

-. 00333556 + .0112921i. Point P3: el = .06, E2 = -.00018283. (c) : Jordan block
size three expansion about (a). Jordan block size two expansion about = .06, e2 =

.000182S3 - .004099i. (: Exact Eigenvector. o: Predicted Eigenvector.,
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Figure 3-6: Variation of magnitude of Imag(el) with E2 for square-root branch point
curve. o: Imaginary part of projection of cube-root branch point

ually increasing distances from the origin. These are shown in figure 3-5. Point P1

(el = .0043, E2 = -. 01186) is a point where the Jordan block size three expansion

about branch point (a) (3-5 a) is effective while the Jordan block size two expansion

about (l = .0043, E2 = -. 01186 + .01616i) is ineffective. The Jordan block size two

expansion blows up because of the close proximity of the higher order branch point.

The point P2 (E1 = .02, E2 = -. 003335576) is a point in between where the Jordan

block size three expansion (fig. 3-5 b) is beginning to function poorly while the size

two expansion about (l = .02, c2 = -.003335576 + .0112921i) is performing ade-

quately. The point 3 ( = .06, E2 = -. 00018283) is a point where the Jordan block

size 3 expansion (fig. 3-5 c) is inadequate while the Jordan block size two expansion

about (l = .06, 62 = -. 00018283 + .004099i) performs well indicating that only the

effects of the square-root branch point is important in this zone of the parameter

space. So the broad conclusion is that in a zone of the parameter space where two

different order branch points are present, the higher order branch point predominates

in its effects.

Some more interesting features of the branch point geometry close to the cube-root
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branch point surface becomes obvious if we examine the imaginary parts associated

with the square-root and cube-root branch points. We plot imaginary part of the

square root branch point curve involving complex el as a function of the real coordi-

nate 2 in figure 3-6. We superpose the projections of the positions of the three root

coalescence on this plot. Clearly the large changes in the magnitude of the imaginary

part occur close to the three root coalescence. Also the three root coalescence has

a larger magnitude of the imaginary part than the square-root branch point. In the

vicinity of the cube-root branch point the imaginary part of the square root branch

point actually increases in magnitude while always being less in magnitude than that

of the cube-root branch point. However, the effects of the cube-root would predom-

inate close to the cube-root because a cube-root dependence is far stronger than a

square-root dependence.

Let us say that we are examining a square root branch point with complex 2. In

figure 3-4, we only considered real el while evaluating the square-root branch point

lines, but this was not necessary, and el could be a complex but free parameter

which we may vary. We now have the three eigenvalues with two eigenvalues being

coincident along this surface. The box indicates the coincident eigenvalues.

(Ai,A 2 ,A 3) (3.7)

Let us say we have another square-root branch point line with complex el and A

being the unknowns obtained from solving equations 3-1 and 3-2. Two eigenvalues

are coincident again but not the same two that we saw coincident earlier in figure 3-4.

(A1, 2 , A3) (3.8)

There is only one situation in which we could obtain a three root coalescence. That

would occur if these two square-root branch point surfaces cross and the eigenvalues

would now be of the form shown below:

(I A1 , A2 , 3 (3.9)
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Schematic Two Parameter Geometry

c

sl

sl: Two root coalescence line

s2: Two root coalescence line

c: Three root coalescence point

Figure 3-7: Schematic diagram of branch point surfaces for two parameter system

The obvious implication is that the two root coalescence is a subset of the three

root coalescence since a two root coalesence is a necessary condition for a two root

coalescence to occur. We have noted that a square-root branch point can only be

determined by solving two equations for eigenvalues coalescence. One of the disorder

parameters can be varied arbitrarily over the entire field of complex numbers to

generate a two dimensional surface(the real and imaginary parts can be taken as

independent coordinates). This surface is said to have codimension two since we need

two equations to define the surface. ~We have two two-dimensional square-root branch

point type surfaces crossing to generate a three root coalescence point. If we restrict

ourselves so that one of the parameter values is real and the other complex. we obtain

loci for the branch points which approach each other but do not cross as in figure 3-4.

A schematic diagram of the distribution of these branch points is provided in figure

3-7 for a two parameter system similar to the type we saw for three pendula.

Ve now examine the square-root branch point lines for the three pendula system.

We have alreadv noted that there are three cube-root branch points (a). (b), and

(c). Instead of permitting E1 to be pure real, we specify that 61 assume the same
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Table 3.1: Three Root Coalescences

values as in figure 3-4 but with an imaginary part equal to that of cube-root branch

point (a) ie .0268i. We are thus taking a section in the complex space through

the cube-root branch point instead of restricting ourselves to real values of el. We

plot the real and imaginary parts of the complex coordinate e2 obtained by solving

equations 3-1 and 3-2 with m=l, as a function of the real part of el in figures 3-8a

and 3-8b. The various branch point lines can only cross at a point of three root

coalescence. As described earlier, for a system of eigenvalues (A1, A2, A3 ), one of the

branch point lines corresponds to a case where two eigenvalues say A1 and A2 are

equal while the the second branch point line corresponds to a case where the other

two eigenvalues, say A2 and A3 are equal. A cube root branch exists if both of the

real and imaginary parts of the various branch point lines cross each other. If only

one or the other cross each other, we do not have a cube-root branch point and in

fact nothing special can be attached to this phenomenon. We can clearly see there

are only two coordinates at which this occurs. Cube-root branch points occur if

Real(e 2) , .01 and Real(e 2) -.01. The imaginary part at the point of cross-over is

zero for both branch points. Comparison with branch points which were calculated

in Chapter 2 (and are presented again for ready reference in table 3-1) show that the

the cube-root coalescence coordinates are indeed correct.

We will see these features for larger systems which are dependent on many param-

eters (, ... , en-1). We have a hierarchy of surfaces. The higher order branch point

surfaces are embedded in the lower order branch point surfaces. The square root type

branch point surface can be obtained by solving two equations and by systematically
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varying (n - 2) parameters to generate a surface of dimension 2(n - 1). We could

select these surfaces in 2!(n2)! ways. Cube root branch point surfaces are generated

wherever these square-root branch point surfaces intersect. We need three equations

to determine these cube-root branch points. We can vary (n -3) parameters at a time

and hence the cube-root branch point surface is of dimension 2(n-3). In general, nCm

mth root branch point surfaces can be generated and these are of dimension 2(m- 1)

and require m equations to be solved for the complex branch point coordinates.

We next consider the modulus of the modal sensitivity given by

Q(qi) = vQ(qi, ei)2 + Q(qi, e2)2

in figure 3-9(Modes 1-3). Here the contributions of all the partial modal derivatives

have been accounted for and we can expect these contours to be similar to the localiza-

tion factor contours because they reflect the integral of the modal sensitivity. We next

plot the localization factor as a function of disorder over the same numerical range

in figure 3-1O(Modes 1-3). There is a remarkable similarity between the contour lines

for modulus of modal sensitivity(3-9 Modes 1-3) and localization factor(3-10 Modes

1-3). The asymmetry in the localization factor curves appear to be directly related

to the asymmetric position of the three root coalescence points, the projections of

which have been marked on the graph.

We examine the mode shapes at points a and b on figure 3-4b. At (b), we are

close to a two root coalescence curve and two modes have appreciable amplitudes. At

(a), we are far from all branch points and all modes are heavily localized. These three

modes are shown in figures 3-11 (a-c) where we show Jordan block size two expansion

predictions and in figure 3-11 (d-f) where we show MPM predictions at point (a).

Clearly the MPM performs better because of the point being distant from all branch

points while the Jordan block size two expansion prediction is poor. In figure 3-11

(g-i), we show predictions using the Jordan block expansion for point (b). Clearly the

Jordan block expansion does provide good predictions because of the proximity to the

square-root branch point. The MPM blows up. The important feature here is that (a)
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and (b) are disorder configurations possessing the same mean square disorder. Inspite

of that, we see that (b) corresponds to nonlocalized modes whereas (a) corresponds to

localized modes. This provides us with a good explanation of Hodges and Woodhouses

discovery that statistically similar combinations of disorder yield significantly different

levels of localization. The answer is that rather than any absolute magnitudes of

disorder, the distance from that point in the parameter space to the closest branch

point surface is the crucial factor in deciding the amount of localization seen in the

modes. We have looked at a simple example here to explain this phenomenon but it is

true for arbitrarily sized systems. Of course, we would have to determine the closest

eigenvalue coalescences of all orders to find out the number of oscillators which have

significant amplitude and the number of modes which are not localized.

It is clear there are regions of increased localization on these maps of the parameter

space. In figure 3-12 a-r, we provide plots of variation of eigenvectors along the

two square-root branches in figure 3-4 (a-c). The branch point lines are lines along

which the modes display large sensitivity but have not undergone sufficient change

to look localized. Evidently, the branch point lines are lines where it is sub-optimal

to search for localization given that all the modes in figure 3-12 a-i look reasonably

extended. We see in figures 3-12a through 3-12c that mode 1(figure 3-12a) is localized

and mode 2 and 3 (figures 3-12b through 3-12c) have appreciable amplitude on two

oscillators. In figures 3-12d through 3-12f, we are actually in a zone where the effects

of three root coalescence are felt and although we have used coordinates for a two

root coalescence, we are in reality seeing the effects of the three root coalecence.

Further down the branch in figures 3-12g through 3-12i, we see that the modes have

undergone appreciable change in relation to the modes in figure 3-12a through 3-12c.

Now, the modes 2 and 3 (figures 3-12h and 3-12i) are extended with appreciable

amplitude on two oscillators while mode 1 (figure 3-12g) is localized. For much of

the distance along this line there was relatively little change in the mode but owing

to the three root coalescence, there was a violent change in the mode whence the

mode remained relatively unchanged for much of the second half of the branch point

line. The main difference between the modes in figures 3-12a through 3-12c and those
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in 3-12g through 3-12i is that the cube-root branch point has caused the modes to

switch the oscillators on which there were significant amplitudes. Thus modes in

figures 3-12b and 3-12c had significant amplitudes on the first and second oscillators

while modes in figures 3-12h and 3-12i had significant amplitudes on the first and

third oscillators. Modes a and g were localized but with the oscillator with large

amplitude being the third and second respectively. There is an analogy existing with

the curve veering (Perkins and Mote [25]) seen earlier in the manner of eigenvector

exchange which occurs, although here the veering is that associated with the square-

root branch point curve. Modes 3-12j through 3-12r represent modes at points on B1

corresponding to those in figures 3-12a through 3-12i on the branch B2. Modes in

figures 3-12a through 3-12c and those in figures 3-12p through 3-12r on the one hand

and those in figures 3-12g through 3-12i and in figures 3-12j through 3-121 on the

other are the same but shuffled around indicating that interchange of mode shapes

has occurred along these branch point loci. This feature explains another aspect of

the asymmetry seen in figure 3-10 (Modes 1-3) for the localization factors for the three

modes of the three pendula system. The localization factors of mode 1 form a triangle

while those of mode 3 appear to also form a triangle but with the vertices of the

triangle rotated around. The reason is that during the veering the modes associated

with the branch point lines have been exchanged and the localization factor contours

reflect this fact.

Please see Appendix C for square-root type branch point surfaces for a four pen-

dula system.

3.4 Optimal directions to maximize localization

The asymptotes of the branch point surfaces appear to be straight lines. The bisectors

between the asymptotes of the square-root type branch point surfaces appear to be

zones of increased localization in figure 3-10(Modes 1-3). Any search to determine

optimal combinations of disorder for localization must proceed in an initial direction

along this bisector. Some bisectors appear to be more conducive to localization than
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Figure 3-13: Optimal Search Directions to maximize localization superposed on lo-
calization factor contours for mode 2: '-': Directions al-a6.

others. It is not clear what precise criterion is to be used to determine which of these

bisectors ensures more localization. The asymptotes are obtained by obtaining square-

root branch point solutions for equations 3-1 and 3-2 for the asymptotic values of the

disorder i.e. e -+ o,el -+ -1 with complex 62 and 62 -+ 00, 62 -+ -1. with complex

e1. In figure 3-13, we provide plots of the bisectors to the asymptotes superposed

on the contour lines for mode 2 of the three pendula system. Since all the two root

coalescences cause interaction of this mode with the other modes, this mode is the

least localized of the three modes. It is fairly obvious that the localization is maximum

along these bisectors and the localization is more in some of these directions than the

others. For example, directions a3 and a6 offer more localization for the same mean

square disorder than the other directions. There are no consistent conditions which

can be used to determine which of these directions offer the most localization. But

it is of interest that the optimal direction a6 actually lies along the direction away

from the three root coalescence, whereas the direction a3 lies in the direction of a

cube-root branch point. Between a3 and a6, a6 provides more localization for the

same mean square disorder.
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These general trends of the optimal directions being along the bisector between

adjacent square-root branch point surfaces is true for systems with more disorder

parameters. However, instead of square-root branch point lines, we would be dealing

with a branch point surface in the n dimensional space. We would again have to deter-

mine the bisectors between adjacent square-root branch point surfaces to determine

the optimal directions for maximizing localization.

3.5 Quantifying difference between two and three

root coalescences.

The main difference between the two and three root coalescence so far has been in the

number of modes showing sensitivity to applied perturbation. Another quantitative

approach to show this difference is by using perturbation method predictions. In

short if we are close to a cube root branch point, a cube-root perturbation expansion

would provide good predictions while if we are close to a square-root branch point a

square-root expansion would work well.

In figure 3-14, we show predictions of the eigenvalue loci as we traverse the contour

E1 = 0. As we start from E2 = -. 05, we first encounter a square-root branch point

and then two cube-root branch points and finally a square-root branch point before

we approach 2 = .05. Jordan block size two predictions of the eigenvalue loci are

shown in figure 3-14 a. In figure 3-14 b, we show Jordan block size three predictions

of the eigenvalue loci about branch point (b). In figure 3-14c we show Jordan block

size three prediction of the eigenvalue loci for the expansion about branch point (a).

Finally we show the Jordan block two expansion prediction for eigenvalue loci close to

the square-root branch point of coordinates. The expansions close to the square-root

branch points appear to be associated with a veering of the eigenvalue loci as predicted

in Triantafyllou and Triantafyllou [39]. The intermediate cube-root branch points are

very closely spaced hence each cube root expansions works well over a short range

before failing. These also happen to be the zone closest to the origin. The square-root
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E1 E2 62 E3 C4 E5 l

-. 0218 - .0781i -. 0941-.0816i -. 1126 + .0339i -. 0483 + .0555i -. 1397 - .02731 i

Table 3.2: Six Root Coalescences

branch points influence sensitivity for larger disorder. This confirms the general trend

we observed that the strongest (nth root) branch point occurs closest to the origin.

The lower order branch points can occur for larger values of disorder and can also

possess smaller imaginary parts. Depending on the trade-off between the magnitude

of the imaginary part and the strength, we could get lesser or greater sensitivity for

the lower order branch point relative to the higher order branch points.

3.6 Conflicting effects of strength and distance

from the real axis : Trends and Examples

We illustrate this point with a very interesting example i.e. a system of six coupled

pendula. We consider an extreme case where the disorder is of the order of 50% of

the length to highlight the problem in a clearer fashion. Consider two possible cases

viz. the first being one where we have the effects of a six root coalescence being im-

portant and the second where we have the effects of two three root coalescences being

important. The complex coordinates of one of the complex branch point coordinates

is shown in table 3-2.

We show the modes of the six pendula system with the six root coalescence being

important. The modes are those corresponding to that of the periodic state. These

are shown in figures 3-15 a-f. The case corresponding to the system where the effects

of two three root coalescences are important is next discussed. Such a system is seen

in a system of six pendula with three of them having a length of two units and the

other three having a length of one unit. The disorder combination for the special

97



· T -I ED

1 . .. . , - 1

0

-1

E

i1 

0 2 4 6 0 2 4 6
(a) (b)

1 1

-1 , , , -1

. C3 [ 1 z~CwI

0 2 4 6 0 2 4 6
(c) (d)

1 1

0 -4 

-1 -1

0 2 4 6 0 2 4 6
(e) (f)

Figure 3-15: Six Pendula System : Modes close to Six Root Coalescence

98

Q Y E
A A ~~~~~E

11 I



1

I T Y MI . E ' 0

0 ~ ~~ ~~ ~~~ 2 4 6ii

0 2 4 6
(a)

-1

1

0

0 2 4 6
(c)

l ~ ~ ~ ~ , . .

-1

1

C

2 4
(e)

-1
6

1I

0

0 2

E

4
(b)

6

*, F1 r7

2 L 4 6

0 2 4 6
(d)

2 4 6
(f)

Figure 3-16: Six Pendula System: Modes close to Three Root Coalescences

99

0

-1

1

C

-1

1

-1

-1
0

P7- El EL

I i 

I -

1 .

:l

-I

Ill



Modal Sensitivityv near a Six Root Coalescence
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Figure 3-17: Six Pendula System: Modal Sensitivity for six root coalescence :

Q(qi, E5) where 1 < i < n.
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E1 62 C3 64 65

0 0 0 1.0155-.1058 i 1.000796+.00000693i

Table 3.3: Three Root Coalescence for configuration 1

configuration associated with two three root coalescences is as follows:

60 = 61 = 62 = 1, E3 = 4 = 5 = 0

The modes are shown in figures 3-16 a-f. There are two sets of modes, group (a)

and group (b). The former has significant amplitudes on the first three pendula while

the latter has significant amplitude on the last three pendula. We plot the modal

sensitivity as a function of 65 for the six root coalescence problem in figure 3-17.

We consider the modal sensitivity for the three root coalescence as a function of

e0 for the group (a) modes and as a function of 5 for the group (b) modes. These

are plotted in figure 3-16. Note the peak sensitivity of the group (a) set of modes

is much lower than that for the six root coalescence. The peak sensitivity for the

group (b) set of modes is higher than that for the group (a) set of modes but less

than the six root coalescence. Note also the group (a) set of modes appear to be

completely decoupled from the group (b) set of modes. In other words, the group (a)

set of modes are not sensitive to variations in 65 and the group (b) set of modes are

not sensitive to variations in e0. We provide the complex coordinates of one of the

branch points for this configuration in table 3-3. The magnitudes of the imaginary

parts for the three root coalescences in table 3-3 are much smaller than those for the

coordinates of the six root coalescence in table 3-2.

We now consider a second configuration where the first three modes have a length

of .5 units while the last three pendula have a length of 1 unit. The modal sensitivities
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Figure 3-18: Modal Sensitivity for the three root coalescences. Group (a) : O(qi, Eo)
and Group (b) : Q(qi, Cs) where 1 < i < n.
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Figure 3-19: Modal Sensitivity for the three root coalescences. Group (a): Q(qi, Eo)
and Group (b): Q(qi, E5), where 1 i < n.
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l61 1 62 E3 1 E4 65

0 o0 -.5 -.501143-.0065258 i -.50003+.000000108725 i

Table 3.4: Three Root Coalescence

are plotted as a function of e0 and 5 in figure 3-19(a-b). The configuration is as below

= 1 = 2 = -5, E3 = 4 = 5 = 0

Only three modes display appreciable sensitivity. Previously, the group (a) set of

modes displayed almost no sensitivity relative to the six root coalescence while the

group (b) set of modes displayed lower but comparable sensitivity. Now the group (a)

set of modes display slightly larger sensitivity than the six root coalescence while the

group (b) set of modes display the same sensitivity as earlier. The obvious conclusion

would be one of the three root coalescences has moved as we altered the length of

the pendula. In table 3-3, we provide the complex coordinates of the three root

coalescence branch point corresponding to the new configuration. The imaginary

parts of the complex coordinates have clearly decreased.

In the first case(figure 3-19a) the three root coalescence was relatively far away

from the real disorder axis and the modal sensitivity was very low. In the second case

(figure 3-19b) the three root coalescence was relatively very close to the real disorder

axis and the modal sensitivity was comparable with the six root coalescence even

though the dependence on the disorder was a third root dependence as opposed to

the sixth root dependence we saw earlier. Of course, the imaginary components of

the six root coalescence were fairly large relative to the imaginary parts seen for the

three root coalescences but the sixth root dependence on the disorder was responsible

for the relatively large sensitivity.
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3.7 Conclusions

We provide numerical confirmation of the asymptotic results of Triantafyllou and

Triantafyllou. Some broad trends in the numerical investigation of this problem were

detected. The "strongest" branch point, corresponding to an n th root branch point

for n pendula occurred, typically, for values of small disorder and were fixed and

relatively further away from the real axis. The weaker branch points correspond-

ing to an mth root (where m < n) dependence of modes on disorder were "mov-

able" branch points and typically had larger imaginary parts as they approached the

stronger branch point. For larger values of disorder the weaker (m th root) branch

points actually had sufficiently small imaginary parts to result in modal sensitivities

comparable to or greater than those for the stronger branch points, but would only

affect m modes. A form of curve veering was observed where the square-root branch

point loci for a three pendula problem were seen to exchange loci as the branch point

approached each other before veering away. The bisectors to adjacent square-root

branch point surfaces were found to be lines along which localization was maximum.

Among these directions, one of them actually was the most optimal direction to max-

imize localization but there does not appear to be any quantitative means to identify

the most optimal direction.
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Chapter 4

Optimal Mode Localization

4.1 Introduction

Mode Localization offers very exciting possibilities for reducing vibration transmission

in periodic structures like bridges, moorings, and offshore structures. The problem

with these structures is that the excitation frequency which causes vibrations is not

monochromatic. Conventional methods have focused on using anti-resonances to con-

fine vibrations about the source. But if the exciting source has a frequency spectrum

with the excitation frequencies spread over a broad range relative to the bandwidth

of the resonances of the structure, we would be unable to achieve vibration confine-

ment. The importance of mode localization is that even if we excite the structure at

resonance, the vibration is still confined close to the source. There have been some

situations where this method has been applied successfully. Cornwell and Bendik-

sen [9] has commented about the deliberate mistuning of blade assemblies to ensure

some level of localization in turbines. However the disorder parameter selection was

essentially a trial and error selection. There is a need to develop a systematic method

for parameter selection while using localization in vibration isolation. This however

required a mature understanding of modal sensitivity which was only acquired in the

previous chapter.

Introducing disorder into an otherwise periodic structure results in manufacturing

and aesthetic problems. Manufacturing problems are related to the fact that it is
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expensive to manufacture nonstandard parts. There is also a matter of aesthetic

beauty in that public utilities like bridges would look ugly by having very irregular

spans. We have already observed that there exists a mapping from the disorder

parameter space to the eigenvalues determined by the solution to the characteristic

polynomial. This mapping divides the parameter space into zones of higher and lower

order localization. The transition from periodic to localized modes occurs very rapidly

in a small range of parameters close to the solutions of the bifurcation equations.

Hence we can accommodate our requirements of having as little disorder as possible

while trying to maximize localization with this prior knowledge of the behavior of

systems which exhibit localization.

4.2 Work done in this chapter

In this chapter, we study two optimization problems. The first problem, is that of

parameter selection to ensure all the modes are localized to some minimum level

while ensuring the sum of the squares of the disorder was a minimum. The second

problem is that of maximizing localization while ensuring that the sum of the squares

of the disorder is some specified amount. Numerical tests on small systems of pendula

indicated that the distribution of optima is such that the optima are along lines of

maximum distance from the lines of two root coalescence. Also, the convergence

basins of each optimum are bounded by different lines of two root coalescence. An

algorithm is suggested for tracking down all the optima with a view to determining the

global optimum using this knowledge of the location of the optima. Since there was an

exponential growth of optima and computational effort with the number of disorder

parameters, a statistical analysis was performed to show that for small systems of

pendula (two to six pendula) , it was sufficient to sample only a few optima to obtain

a good estimate of the global optimum. Special optimal solutions were also examined.
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4.3 Statement of the Problem

In this chapter, we will answer two fundamental questions. How do we select parame-

ters (disorder) for the system so as to ensure a certain minimum level of localization?

Alternately, if the constraint being placed on the system is that the disorder in the

system has some mean value, the obvious question would be how do we ensure opti-

mum selection of parameters to maximize the localization seen in the system?

4.3.1 Problem 1 :Minimum Disorder to attain Minimum

Level of Localization

We use the same definition for localization factor used earlier. Consider a generic

system of n coupled pendula with (n - 1) possible disorder units i. We then state

the optimization problem to ensure all the modes have a minimum localization factor.

Minimize

i=n-1
f(Ei)= Z (cr) (4.1)

i=l

subject to the constraints

7i > b (4.2)

for 1 < i < n, where b is some minimum value of the localization factor as defined in

appendix A.

4.3.2 Problem 2: Maximize Localization for given Mean

Disorder

Maximize

i=n 1

f(i= 1 (4.3)
i=1 Yi

with the constraint
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i=n-1
(E2) = n(b)2 (4.4)

Here b is the mean desired disorder. If we need 5% disorder, we would b = .05.

4.3.3 Problem 1: Objective Function

We now state the optimization problem in terms of optimization theory.

i=n-1 i=n
f (in i, Ci) = (s) + E (i - b - 2) (4.5)

i=l i=l

The objective function is used as defined earlier. The variables Ai are Lagrange

Multipliers and the variables ci are slack variables used to implement the inequality

constraints. Note the increase of the number of unknowns from (n - 1) variables i

to 3n - 1 unknowns including n additional unknowns in the Lagrange multipliers Ai

and n unknowns in the form of the slack variables ci. The optimal solution exists as

the solution to the system of equations

n-1 j-"n aY
= (2i) + E - = 0 (4.6)

i=1 j=1 Ei

1< i <n-1
= yi -b-c=0 (4.7)

aAi

n < i < 2n-1.

af
= ciAi = 0 (4.8)

aci

2n < i < 3n- 1.

This is the complete statement of the problem. The equations are coupled, non-

linear algebraic equations, and we will have to use some iterative method to obtain

the solution. Note there is a total of 3n - 1 equations in 3n - 1 unknowns.

Note the following feature about the equations. The third set of equations. in-

volves the product of the slack variable and Lagrange multiplier. The Lagrange
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multiplier is zero when the constraint is not enforced and 0(1) when the constraint is

enforced. The slack variable is typically zero when the constraint is enforced and of

signficiant magnitude when not enforced. Together, they satisfy an "or" relationship.

4.3.4 Problem 2: Objective Function

We now state the objective function required for the second problem.

i=n 1 j=n-1
f(Ei, A) = -+A + (E2 - nb) (4.9)

i=1 i j=l

The conditions for optimal solutions to exist give

f Z=n 1 yi i=n-1
-= - Eny - + A (2Ei) =0 (4.10)
i i=1Y a E i=1

These equations (4-10) number (n - 1) altogether.

f i=n-l
= 2 - n = (4.11)

i=1

Along with equations 4-10, we have n equations altogether. Please refer to Appendix

D for a brief review of the solution techniques used for the equations.

4.4 Distribution of Optimal Solutions

We shall in this section study the optimal solutions of the objective function 1 (equa-

tion 4-5).

As a preliminary investigation of the problem, we apply these optimization tech-

niques to a system of three pendula to determine the precise structure and distri-

bution of these optima. We first use the steepest descent method with a series of

initial guesses ranging over -. 05 < el < .05 and -. 05 < 62 < .05. We focus on both

objective functions. This would enable us to determine all the optima and determine

the nature of the distribution of these optima in the two parameter space. The results

of this study are as follows. There are six local optima shown in figure 4-1. They are
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Figure 4-1: Distribution of Local Optima for System of Three Pendula : Objective
Function 1
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marked on the localization factor contour map for mode two which is the least local-

ized mode. Interestingly, each of these optima lie roughly on the bisector between the

lines of two root coalescence. In some sense these optima are situated on the points

of maximum distance from the two root coalescence lines. We specified a minimum

localization factor of y = 2. As we increase the minimum localization factor, we will

see the optimal point move outward. The optimal solution does not necessarily lie

exactly on the y = 2 curve, because there are three modes and it could be that one of

the other modes is satisfying the condition for the minimum localization factor value.

We next look at the distribution of optima connected with the objective function

2. These are shown in figure 4-2 superposed on the localization factor plot. These

optima are those that satisfy the constraint that the mean square disorder is 5%. All

the optima lie on a circle however because of the constraint that the mean square

disorder is 5%. They also again seem to lie on the line of maximum distance from

the branch point curve.

We now perform a convergence study on the steepest descent method applied to

this problem. We systematically cover the entire range of parameters -. 3 < el, 62, < .3

with guesses ranging over a grid of width .05. The convergence basin for each optima

is that region of space which is demarcated by the two root coalescence lines and is

shown in figure 4-3. There are six symbols on the graph representing each one of the

six final solutions. Each symbol represents the final solution for an initial guess at the

point in question. Those initial guesses which were positioned on or close to the two

root coalescence lines resulted in final solutions which were far away from their initial

guess and did not stay within the quadrant bounded by the two root coalescence lines.

This was because of the local minima associated with the localization factor in those

regions of the parameter space.

Three facts emerged from this study. There exist multiple optima. These op-

tima are in quadrants of the space separated by the two root coalescence lines. The

convergence basins are roughly the quadrants carved out in this space by the lines

of two root coalescence. Initial guesses in the zones of large sensitivity however do

not result in final solutions which are close to the initial guess. This is because the
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iterated solution tends to shoot off far away from the initial guess due to the large

change of gradients and the discontinuities associated with the absolute value in the

localization factor definition, in this zone of the parameter space.

4.5 Development of an Algorithm to determine

the Global Minimum

We use the knowledge of these optima gained from our preliminary analysis to develop

an algorithm to determine the global minimum for objective function one.

Stage 1 : Identification of the quadrants: The n dimensional space is divided

into n quadrants by the two root coalescence lines. The asymptotic values of these

two root coalescence surfaces can be used to demarcate the parameter space into

the different convergence zones. The asymptotic values that can be assumed by the

disorder parameter i are -1 and oo. We systematically solve the two root coalescence

equations for asymptotic values of the branch point surfaces. Direction cosines of these

asymptotically determined points in the branch point surface are known.

Stage 2: Initial search direction: We have already seen for the three pendulum

model that the bisector to these asymptotic two root coalescence points for the least

localized mode passes close to the optimal solution. Hence for the n dimensional

problem, the logical procedure is to first determine the least localized mode and

then proceed along the bisector to the asymptotic points on the two root coalescence

surface seeking to minimize the function (ymin- b)2 where b is the specified level

of localization for the system and ~min is the localization factor associated with the

least localized mode. One issue remains. How do we identify the least localized mode

in the direction of search. We do it by taking a big initial step in the direction of

minimization and determining the least localized mode. In that direction of search,

it would in general be correct to assume that is the least localized mode. We used

the method of golden section for the minimization procedure (See Press et al. [33]).

Application of this stage would yield an estimate for the disorder which would be
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fairly close to the actual solution and lying in the convergence basin for this solution

using the Steepest Descent technique.

One issue remains. The bisector to the asymptotic branch point surface should

in general lead us to the correct estimate of the solution. However, in multiple

dimensions, we are handicapped by the fact that while we have a multidimensional

asymptotic surface in this space, we possess the directions of only isolated points on

these surfaces. Evaluating bisectors of any two of these points would in general lead us

to the correct solution if the points are on adjacent surfaces. If they are on the same

surface or on two surfaces separated by another surface, we have a search direction

which would give us an estimate of the solution which need not be meaningful. This

is a shortcoming of this method. We generate a number of points which need not

provide us with a correct estimate of the solution. See figure 4-4 for examples. In

figure 4-4, a, b and c are asymptotic points on the surfaces of two root coalescence.

dl and d2 are two examples of search directions along the bisectors. d2 is a valid

search direction while dl is not valid as a search direction since it lies along a branch

point surface. So any search along dl will essentially yield meaningless results and

represents wasted effort. This is an inefficiency associated with this method. A useful

rule of thumb was to calculate the angle bisector between any point and m of its

closest neighbors. The value m could be taken to be half the total number of points.

Alternately, a more time consuming method would be to compute bisectors between

all the points calculated. This would heighten the labor involved. We opted for the

latter approach to retain accuracy.

Stage 3: Usage of Steepest Descent Method to obtain a refined solution:

We now use estimates from the second stage as initial guesses for the Steepest Descent

method. Some of these initial guesses are fairly accurate estimates of the actual

solution. Some are a result of searching initially in the wrong direction but may still

provide us with a correct estimate of the solution. Some of these wrong initial guesses

may not converge to the correct solution. Two initial points might converge to the

same solution. A lot of book-keeping effort was needed to keep track of all these

possibilities.
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(b)

a,b,c: Asymptotic Positions on Two root coalescence surfaces.

d 1 d : Directions between two asymptotic points on the branch point surface

Figure 4-4: Examples of legal and illegal search directions
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Distribution of Optimal Solutions (Four Pendula)

2 e

Figure 4-5: Distribution of Local Optima for Sstem of Four Pendula
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Table 4.1: Coordinates of points al,a2,a3 and a4

We now consider a system of four pendula. We examine the spatial distribution

of optima. This is shown in figure 4-5. We have tracked down all the optima using

the algorithm suggested earlier. One surprising fact seen in this study is that many

of the optima lie close to each other. This is surprising. We examine the mode shapes

associated with some of these optimal solutions. The coordinates are shown in table

4-1. Note that (al) and (a2) are points sharing similar coordinates but when we plot

their modes in figures 4-6 and 4-7, we find that they differ in the positions of the

peak of the mode. This can be explained by referring to the Chapter 2 about the

mode shapes close to the surfaces of two root coalescences. We can interpret these

two optima to lie on either side of the two root coalescence line. Hence they are legal

separate optima. However we can have situations in figures 4-8 and 4-9 where we

have optima with almost similar coordinates. These are the optima (a3) and (a4).

The mode shapes in these figures are also the same. These are not separate optima

and they are actually caused by round off differences in the numerical solutions.

However if our interest is the global optimum, the existence of these indistinguish-

able optima is not that critical. We can obtain the optima by systematically tracking

down all the optima and even if there exist multiple, non-distinguishable optima cor-

responding to the global minimum, the error in round-off would be too small to be

significant. The only issue at stake is the time taken to track down all optima. This

can be very significant.

We calculated the global optimum for a system of six pendula. We uncovered 1227
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11 Optimum I 1 62 3 

al -.1071 -.1146 -.0345
a2 -.1197 -.1004 -.0339
a3 .0676 -. 0563 .1158
a4 .0511 -. 0687 .1219
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local optima when we counted only those optima which had a distance of le - 06 from

each other. The modes corresponding to the global optimum are shown in figure 4-

10. It took us 22 hours of running time on the SPARC workstation of the Design

Laboratory.

4.6 Discussion of the performance of the algo-

rithm

The algorithm for determining the global optimum is slow in terms of absolute com-

puter time. We cannot doubt that. However it is relevant to look at the problem in a

different light. The question for examining the performance of the algorithm should

be posed as: How does this algorithm compare to other alternatives for obtaining

the global optimum for an optimization problem ?

There are very few other alternatives. We are fortunate to possess an in depth

knowledge of the distribution of global optima. The only other alternative in this con-

text is the method of Simulated Annealing and this does not promise to track down

the global optimum but only promises to do so with probability one with infinite

sampling of the parameter space. If we have any special knowledge of the distribu-

tion of optima, it is advisable to use that knowledge on tracking down all the optima.

Computer run-times of one week are not uncommon when using the method of sim-

ulated annealing in minimization procedures for parameter estimation and this does

compare favorably. However there is no doubt that this method becomes impossibly

slow in estimating the global optimum for a system of say 30 pendula. This is not

a shortcoming of the method as much as the fact that we have a large number of

optima and these run-times are necessary to track them all down systematically.

In figure 4-11, we provide a plot of the variation of the number of optima with

the number of pendula. We provide a semi-log plot. The data for these few points

appear to fall on a straight line. Thus there appears to be an exponential increase in

the number of optima with the number of pendula. Now, we should note that this
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Figure 4-11: Plot of Variation of Number of Optima with Number of Pendula
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is only a trend and it would be reasonable but not absolutely correct to assume that

this trend would continue for very large problems. Thus, if we denote the number of

pendula by Np and the number of optima by Nop.

Nop = e4 .1258+1.7702(Np-3) (4.12)

An exponential growth of the number of optima implies that the reason for the

computational effort increasing so rapidly with the number of pendula might be due

to the number of optima rather than the time taken to uncover each optimum.

4.6.1 Operation Count

We provide an estimate of the operation count for large N for confirming our suspi-

cions of the growth rate in computational effort being due to the number of optima

rather than the optimization algorithm itself. We will make a preliminary estimate

assuming out initial search direction algorithm operates with 100% efficiency i.e. the

initial direction results in a guess close to an optimum and the final solution is never

duplicated during the entire process.

* Number of pendula = Np

* Number of disorder units n = Np - 1.

Note the following operation counts:

* Operations for determination of modes of a size N * N matrix: 0(3 - 5N) using

Q-Z algorithm.

* Operations for LU back substitution for size N * N matrix: O(N).

* Operations for LU decomposition for size N * N matrix: O(N2).

We now use this method to determine the operation count for the various algorithms.

Approximations for large Np are introduced everywhere. The following operation

counts are made per optimum solution The operation count for the initial search

follows:
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· Average Number of Iterations - 50(Np-1)

* Number of function evaluation per iteration 3

Total average number of function evaluations = 150(Np-1). Operations per function

evaluation = 5Np + (2Np + 1)Np _ Np2. The second term is the effort for actual

estimation of Np localization factors for each mode. Total number of operations _

150Np3 . The Steepest Descent has the following significant statistics:

* Maximum iterations = 10ONp

All the following calculations are for one iteration. On average, we can expect 10Np

iterations. Operations in determining the Jacobian : 2((3Np - 1)2 + 2Np) _ Np2.

The first Np2 denotes effort in calculating the localization factor and the other terms

like Np denote the effort in other multiplications and divisions. The factor of two

exists because the Jacobian is calculated by finite difference. Operations in LU de-

composition: (3Np - 1)2 _ Np2. Operations in back substitution: 3Np - 1 ~ Np.

Operations in linesearch per iterations: Np(3Np - 1)2 -~ Np3. Summing and mul-

tiplying by the number of iterations, we get total operation count to leading order

N- ip 4.
There are Nop optima. Hence we get the total effort to be e4 .1 258+1.7702(N p - 3) Np 4

e4 .1258+17702(Np-1) Thus the exponential term dominates the effort for computation.

Any decrease in the number of optima sampled would make a significant reduction

in compute time.

'We should now make a more complete analysis noting that we have not included

the computational effort to calculate the initial search directions in this analysis. We

note that we solve the two root coalescence equations for the Np pendula problem to

determine the search directions.

We will first determine the operation count for determining the two root coales-

cence asymptotes. There are two asymptotic values ei = oo, -1. Thus we have a total

of Ntot = 2 Np-2 (ip - 1) e1 .3 8 63 Np asymptotic values. Note Ntot is an exponential

function of the number of pendula. The effort for determining the solution can be
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shown to grow as Np2. We calculate the bisectors to Ntot(Ntot - 1) combinations

to get the same number of search directions. We thus get a total of

~ Ntot + Ntot(Ntot - 1)150Np3 - el. 38 63NpNp 3 e1.3863Np

to leading order which is also exponential. We should now note that a big fraction of

these search directions results in meaningless results.

So this analysis spells problems in the sense that the computational time grows

exponentially with the number of pendula. However the next question is can we

perhaps by sampling fewer of the optima still obtain a good estimate of the global

optimum ? Obviously since there is an exponential growth in computational effort, if

we examine a sufficiently large system(like say eighteen to twenty pendula), we will

find it impossible to track down all the optima and then estimate the global optimum.

But this reduced sampling would still make the method viable for small systems of two

to ten pendula. The effect of any such analysis would be two-fold. Firstly, we would

only have to sample a fraction of the the points for estimating the global optimum.

Also, we would only be required to estimate a fraction of the asymptotic directions

which are used to determine the initial guesses for the Gauss-Newton search.

4.7 Statistical Analysis of the Distribution of Op-

tima

The first step in the analysis is to determine whether there is a sufficient spread in the

optima to warrant determining all the optima and thence the global optima. Hence,

it is instructive to examine the distribution of optimal solutions. In figure 4-12, we

provide a histogram plot of the distribution of the Root Mean Square (RMS) disorders

of the optimal solutions for six pendula. Note the following :

* The distribution is one-tailed.(If there is a minimum, the distribution has to

be one tailed).
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* The distribution is skewed and has a long tail.

For the sake of completeness, there is no doubt that we need to compute the global

minimum. Is there a sufficiently large difference between the global optima which have

the greatest mean square disorder(GMSD) and least mean square disorder(LMSD)

to warrant the extra effort to calculate the optimum? We plot histograms of the

distributions of mean square disorders which we obtained for systems of three, and

four pendula in figures 4-13 and 4-14 also. In figure 4-12, we see clearly that there

is a ratio of about five between the GMSD and LMSD. But there is a band close

to the LMSD where most of the optima are located. In figure 4-13, we see that the

band is still there close to the LMSD but the ratio between the GMSD and LMSD is

about two. In figure 4-14, we see that the band is broad and is again located close to

the LMSD but the ratio between the GMSD and LMSD is about two. So while the

outliers in this distribution are well separated, the vast majority of the optima are

closely spaced in a band close to the LMSD. If we ensure that any optimum we select

falls in this band, we will obtain a very good selection of the optimal solution. So if

the aim is to gain a good estimate of the global optimum rather than the exact global

optimum, a good estimate would be obtained by sampling a few of these local optima

and taking the least of that selection. We would then be no longer in the region of

the long tail. The question to be answered is how many optima do we need to sample

to ensure our estimate of the minimum falls in the band where most of these optima

lie?

This falls in the domain of order statistics. Let us consider the distribution of the

RMS disorder D. Let it possess a probability density function f(D). The cumulative

density of the RMS disorder of these optimal solutions is F(D). Let us now attempt

to determine the CDF Gm(d,) and PDF g(dm) of the random variable denoted

by dm = min(Di) where 1 < i < m. This random variable represents the global

minimum of a sample of size m.

We follow the development in Drake [13] and Lass and Gottlieb [21] where the

CDF of the minimum of a sample of size m is given by
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Histogram of Three Pendula Optima Distribution
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Figure 4-13: RMS disorder distribution for local optima for three pendula system
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Figure 4-14: RMS disorder distribution for local optima for four pendula system
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Gm(dm) = 1 - (1 - F(dm))m (4.13)

and the PDF is given by

gm(dm) = m(1 - F(dm))m-lf (dm) (4.14)

Our illustrative example is the distribution of optima for the six pendula system.

We fit a Weibull distribution to the data. The choice of this is based on two reasons.

The first reason is that the Weibull distribution has historically been used on data for

weakest link in a chain type problems where the chain with the minimum strength has

to be identified. This is very parallel to this problem in that the statistic of interest

is the minimum value of the parameter. The second reason is that the data is one

tailed with a well defined cut-off and has a skew to the left. This can be handled

by the Weibull distribution. We should note that there are other distributions which

can capture the features of the data. The general results viz. that the minimum of a

sample of a few of these optima provides a good estimate of the minimum, is however

independent of the fitted distribution.

4.7.1 The Weibull Distribution

The three parameter distribution is defined by the parameters p, a and A. If D be the

random variable which represents the RMS disorder of any optimal point, we define

x = D - I. The CDF is defined by

Fw(D, It, a, A) = 1 - exp(-( (D - ))) (4.15)

where u < a, -oo < < o, 0 < a, A.

We determine if the data is indeed Weibull distributed by plotting the data on

a double log paper. In figure 4-15, we provide plots of the data without the cutoff

1t being incorporated into the model. Clearly, the data is skewed. This is a test to

determine if the data has a Weibull distribution with two parameters. If the data
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Figure -15: RS data plot on Weibull graph without cutoff
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Data Plot on Weibull Paper
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Figure 4-16: RMS data plot on VWeibull graph with cutoff
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were distributed as a Weibull distribution of two parameters, we would have the data

distributed as a straight line. In figure 4-16, we provide a plot with the cut-off p.

The cutoff p = min(D). The data are scattered along a straight line without a

skew. This is a graphical test to determine whether we use a three parameter Weibull

distribution. Since the data is scattered roughly in a straight line, we can conlude

that it is correct to use a three parameter Weibull distribution The y-intercept of the

plot is -Alog(a) and the x intercept of the plot is a. However the graphical procedure

is only used for a check and for actual estimation of the parameters we will use the

maximum likelihood equations from Bury [8]. These equations are as follow:

j=n j=n M D
n nlog(f) + log(Dj)- E log-) = O (4.16)
A j-1 j=1

j=n jn 1 E_- log(Dj)
(- Dlo(Dj))( D~)- 1 - - IoD (4.17)
3=1 j=1 n

T=he cyegth

They can be easily solved numerically using some iterative method to obtain the

solution. A plot of the Weibull Distribution is shown in figure 4-17. It recaptures

the long tail and skewed nature of the original data. We now return to figures 4-13

and 4-14. In both cases we see the same broad features of a skewed peak and a long

tail. This is a check. We wish to establish beyond any doubt that the results of the

statistical analysis are valid for different numbers of pendula by checking if a trend

exists in smaller systems of pendula for the distribution of optima to remain similar

regardless of the number of pendula. We will assume that the distribution obtained

for six pendula is roughly what will be seen for larger systems of pendula.

We now determine the 90% confidence interval for the minimum of samples of

size m as m increases in size. This analysis has however made some rather strong

assumptions about the optimal solutions. We assumed that the RMS disorders of

the optimal solutions are random variables which are independent of each other. In

other words, selecting say the first three optima did not affect the distributions of
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Figure 4-17: Fitted Weibull Distribution
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the other optima. This need not be correct, especially for small sample sizes but it

is a reasonable assumption. In figure 4-18, we provide plots of the 90% confidence

intervals for the minimum of a sample of size n as a function of the size of the sample.

The 90% confidence interval is

(dn).9 = + (-l (l)) (4.19)n

We see that sampling as few as 10% of the optima, provides us with a good

estimate of the global optimum (within 2%). This on first sight appears contrary to

our intuitive expectations viz. that in the histogram shown in figure 4-12 we needed

to count at least 100 samples to ensure we were out of the tail of the distribution, and

perhaps 800 before we were truly close to the global optimum. However we should

note that this is not true because we are making the assumption that a sample of

size much smaller than the population would essentially reflect the distribution of the

whole population. In other words, the chances are that we will not sample the optima

in the order where we first cover all the optima in the tail and work our way to the

global optimum. The question then is whether the numerical algorithm we are using

also tracks down the optima in accordance with this assumption. We answer this by

actually sampling the optima in the order in which the algorithm uncovered them and

plotting the minimum of the sample as a function of sample size. This is superposed

in figure 4-18 on the predicted confidence intervals calculated from the distribution.

The actual data shows good agreement with the predictions from the distribution.

Obviously, this is only one combination of the data. Our analysis indicates that 90%

of the combinations of data would have global optima of samples of various sizes lying

within the indicated curve. We have taken some pains to explain this concept because

in our mind, this is an area which readily lends itself to misinterpretation of results.

We note that when we examine a different system of pendula than n = 6, the

parameters p, a and A will change. The estimate requiring 10% of the optima to be

sampled to obtain an estimate within 2% of the global optimum would continue to

remain true if a and A do not vary too much. A is a parameter which determines the
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Variation of minimum of sample with sample size

30
Size of Sample

Figure 4-18: Minimum of sample(expressed as a percentage of global minimum) vs.
sample size.-: Confidence Bound from Weibull Distribution. o: Actual Minimum.
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extent of skew and a is a parameter which determines the spread of the distribution.

As we have seen, over the histograms associated with different numbers of pendula,

these characteristics remain reasonably constant over different numbers of pendula.

Hence it is reasonable that this result would hold true for different numbers of pendula

too.

4.8 Optimal solutions for larger systems of pen-

dula

We provide optimal solutions for the system of ten coupled pendula for objective

functions 1 and 2 (equations 4-5 and 4-9). We note that we have only found a local

optimum for the system of ten pendula. The modes are plotted in figures 4-19 and

4-20. Clearly, the modes associated with the objective function two, appear to have

the same level of localization as those associated with the objective function one even

though at first glance, the RMS disorder appears to be far larger for the first objective

function. This is because we have not found the global optimum. However, the fact

that two of the oscillators only have significant amplitude indicates that we are close

to a two root coalescence surface in the 10 dimensional space.

Note that we have not even tried to locate the global optimum because of the large

requirements of computational time. Hence we have restricted ourselves to merely

finding local optima which do satisfy the equations for optimality.

In theory, we can apply this method to very large systems of coupled pendula.

However, we found that the method of steepest descent converged to optimal solutions

only for n < 15. For larger systems of coupled pendula, we actually found the method

did not converge. This was initially mystifying. But we were successful in finding

out the reason for the non-convergence of the method. In figure 4-21, we plot the

localization factor as a function of disorder in the left-most pendulum for a three

pendula system and thirty pendula system and in figure 4-22 we show the logarithm

of the mode shape associated with a localized mode of a thirty pendula system. The

141



0.

1

*4II0i

0.

-1

.1

0.

-I

0.
9,;

(a)

I

rr i
E :C " I 

(C)

(C)

(S)

G-U I 43

(i)

0l

.11

1

0

I
l1

,I U

(b)

(d)

r - nn i _ 

(1)

.3

(h)

r 8 9 B _ n I0

-1

(j)

Figure 4-19: IModes of ten pendulum for objective function 1: e9 = .2201, e8 =

.1029, e7 = .0434, E6 = .1599, E5 = .0211, e4 = .1992, E3 = .1992, 2 = .0797, e- = .2299.
RMS disorder=.1436

142



*I,

0

4

* I 0

0

.1

:; - }

(a)

C,)1. .:

U U 1

(I)
(C)9 cI - 1n Q rt - r; 9 e 

(S )~~ 

0

-1

(I)

(b)

(d)

(f)

(h)

oo.: ~Io 

c)

Figure 4-20: Modes of ten pendulum system for ten pendula for objective function
2: e9 = .0613, es = .0101, E7 = -.0296, E6 = -.0554, E5 = .0519, e4 = -. 0149, 3 =

-. 0431, e2 = -. 0698, el = .0375, RMIS disorder = .05

143

*1,

o

.li

.1 

ol

I

*1



0.05
Disorder

0.1

2

0
c; 1.5

U-

a

N

co

0
0 0.05 0.1

Figure 4-21: Localization factor as a function of end pendulum disorder for three and
thirty pendula system

0

-a 
) - IU
-20

'-20
E

'a -30
0

-40

,0,0 10 20
Pendulum

30

Figure 4-22: Log of absolute amplitude of mode shape of thirty pendula system

144

o 2
0
c

L.
L 1.5
O

.9 1

0
-- 0.5

0

rC

-;n



insidious effects of machine accuracy have resulted in the mode shape not having

a clean exponential profile. The numerical noise would result in the localization

factor fluctuating in a discontinuous manner when plotted as a function of disorder.

All derivatives are evidently discontinuous and hence there would exist problems in

finding an optimal solution. The reason is easy to understand. Consider a localized

mode with localization factor y. Consider the mode near its peak. On either side the

amplitude decays as e- ' where n is the number of oscillators. If y = 2, for n=3, we

should see a decay of e-6 away from the peak. If n = 30, we see a decay of e- 60 away

from the peak. Clearly, the decay would result in the modal amplitude being below

resolution and the effects of roundoff would alter the computed localization factor

since part of the mode shape would have the well defined exponential decay and

part would have an amplitude which is below machine tolerance. During calculation

of the localization factor. we usually only retain the part of the mode with the well

defined decay for computing the localization factor. This became important for larger

systems of coupled pendula.

We also use our knowledge of the geometry of the system to search for special

configurations using our knowledge of the geometry. We have seen in Chapter 3

how in general if we clumped groups of pendula together to have the same disorder,

they would be associated with eigenvalue coalescences of that size. We now look

at a system of eight pendula and consider the pendula in groups of four and two.

Thus for the first case we see the optimal solutions for a system of eight pendula in

two groups of four (we are thus looking for solutions close to four root coalescence).

These are shown in figure 4-23. In figure 4-24, we examine the optimal solutions

for the case where we have four groups of two root coalescences. Again note that

some of the modes appear to be subsets of the modes for the previous case. We have

specified a minimum localization factor of -y = 1.0 in these cases. For the case of

the solution close to four root coalescence, we see the existence of mode shapes which

have two sets of modes. Each of these sets of modes appear to be very similar to those

associated with those of a system of four identical pendula. The first four modes are

thus localized about this set of four pendula. The second set of modes are localized
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about the other four pendula.

The second case involving four groups of two pendula is also very educative. If

we consider only those oscillators of a mode which have significant amplitude, we

now have modes similar to those of a set of two identical pendula. Four modes are

localized about a group of two pendula at a time. The modes which are not localized

about two pendula have the lowest value for the localization factor.

4.9 Conclusions

We have used nonlinear optimization techniques in this chapter to design structures

which would minimize vibration transmission. Two problems were studied. The first

problem was that of introducing disorder into the systems in such a fashion so as

to ensure all modes were localized to some minimum level. The disorder would be

selected so as to minimize the sum of squares of the disorder. The second problem

studied was that of maximizing the localization in the system so that the sum of the

squares of the disorder would be some specified amount. We examined the spatial

distribution of the disorder in the first problem and found that the position of the

branch point was the exclusive factor in determining this distribution. The optima

were along the line of maximum distance from the two root coalescence lines. The

two root coalescence lines also divided the space into the convergence basins for

each optimum. In order to determine the global minimum, we provided a search

procedure which utilized our knowledge of the distribution of optima to systematically

track down all optima. We studied the spatial distribution of optima for the second

objective function in reference to the branch point distribution and again found the

distribution of minima to be along the line of maximum distance from the two root

coalescence lines. We found the number of optima and the computational effort grew

exponentially with the the number of disorder parameters. Hence for large problems

(eighteen to twenty disorder parameters), computational effort would be too large

to find the global optimum. However for smaller problems(two to ten problems),

a statistical analysis was carried out to prove that sampling as few as 10% of the

148



optima would provide us with an estimate within 2% of the global optimum. We also

examined a few larger systems of pendula and obtained locally optimal solutions and

determined a few special optimal configurations.
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Chapter 5

Mode Localization as a passive

vibration isolation device in a

real-world structure

5.1 Introduction

We now examine the applications of localization for passive vibration isolation in a real

world structure. We consider an oceanographic mooring system which has submerged

buoys at regular intervals. The buoy is a symmetric structure and hence the wave

induced excitation due to pressure loading would be vertical and the vibrations which

would be excited would be inline, elastic excitations in the cable. We assume there

will be no surge.

We consider two types of mooring conditions. The first is the case where we have

a fixed end condition at the lower end and the second is the case where we have a

free end condition at the lower end. The first corresponds to a fixed mooring and the

second to a drifting buoy-cable system.
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5.2 Work done in this chapter

We write the equtions of motion for the simplified model of the mooring system.

WTe demonstrate that all harmonic modes of the structure can be localized by adding

disorder. We demonstrate that localization of response can be obtained for typical sea

states only for deep waters of 1000 - 4000m. It does not work for shallow waters(40-

50m). We demonstrate that different boundary conditions(towed and moored) do not

affect the degree of localization of response.

5.3 Equations of Motion

Consider the free body diagrams of sections of the cable shown in figure 5-2. The

equations of motion for the stretch of cable between masses are

92Ui 92Ui
pA = EA (5.1)

at2 as2

where s denotes the distance along the cable, t denotes time, ui denotes the inline

displacement of the i th segment, E denotes the Youngs Modulus, A denotes the cross

sectional area of the cable.

The equations of motion for the intermediate masses is

02ui 9ui. E uiA( · 9uimj-2i + bj(a~) = EA( +_ aus) (5.2)

where the mass mj refers to the virtual mass of the j th buoy and bj is the damping

associated with the buoy. Note 1 j < N- 1 and 1 < i < N with j = i. During

the analysis, we will assume that the primary source of drag is separation drag and

will use standard drag coefficients. This is reasonable because, the dimensions of

the subsurface buoy are such that viscous effects are insignificant compared to the

separation induced drag.

The boundary conditions are given by

U1 (0) = 0 (5.3)
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Un(nL)(0) =0 (5.4)

For boundary condition 2, we modify the zero displacement condition at the lower

end to result in

aUn(nL).U(n)0 (5.5)
ax

This is the condition for zero force at the lower end. Thus the boundary condition

matrix would be slightly altered for this case.

The equations given above can be solved using the transfer matrix formulation

described in Pestel and Leckie [26].

5.4 Modes of Vibration of Periodic and Disor-

dered Structure

We consider an oceanographic mooring system as shown in figure 5-1. Free body

diagrams of the mass and cable are shown in figure 5-2. Note that there is an infinite

set of natural modes of the system, but we will restrict our attention to the lowest

set of modes.

We consider a system with four masses on it. The disorder introduced into the

system is shown in table 5-1. They are placed 200 m apart as shown in table 5-2.

The total length of the mooring is 1000 m.The disorder shown in table 5-1 was picked

from a uniform distribution spread between -50 and +50 m(i.e. +25%). The added

mass for a sphere is obtained from Blevins ([4]).

The first four modes of the periodic system are shown in figure 5-3. These modes

have wavelengths of the order of the entire structure and form the fundamental set

of modes. Others have half wavelengths of the order of the length of the distance

between the masses. These form the first harmonic set of modes which are shown

in figure 5-4. Still others have half wavelengths of the order of the half the distance

between adjacent masses. These form the second harmonic set of modes and are
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(a) Free Body Diagram for Cable Element

i EA u\

p A du i
P dt

dt2

EA du
\d s 

V s +ds

(b) Free Body Diagram of Buoy

EA(dsui+
\ -- I - .

1'
1 t 2
1 

M du i
I

I I dt t

( dui
S V-)~~~~~~

Figure 5-2: Free Body Diagram of Parts of Mooring. i : Displacement of ith
segment. M : Virtual Mass of buoy. s : Coordinate along cable. D : Drag on buoy.E :
Youngs modulus of the cable. A: Area of cable. t : time
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Table 5.1: Disorder

Table 5.2: Column 1 : Cable Parameters, Column2 : Mass Parameters

155

Mass I Disorder 

1 -29,9849
2 43.3032
3 -3.4485
4 .7147

Cable Mass

EA = 600N M=200 kg (sphere)
p = 1070kg/m3 d=.669 m(sphere)

d= .0252m
nL = 1000m
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shown in figure 5-5. Note that although we are examining in plane displacement,

we have plotted the displacement in a transverse fashion. This is only for ease of

viewing. The modes of the disordered structure for configuration (a) are shown in

figure 5-6, 5-7 and 5-8. Note that the fundamental set of modes shown in figure 5-6

are not localized. But all the higher groups of modes as shown in figure 5-7 and 5-8

are localized. Thus localization is not useful for localizing low frequency vibration. It

is useful for localizing higher frequency oscillations. Essentially, the reason is that in

situations where the modes can be localized, the stretch of cable between the masses

can be viewed as an oscillator with the mass serving as a decoupling element. In the

limit of the mass tending to infinity, we recover the degenerate situation corresponding

to a set of decoupled pendula and for the other situation where the mass tends to

zero, we recover the asymptotic case corresponding to a system of rigidly coupled

pendula.

Localization can thus be used as a passive vibration isolation device only in a

restricted set of frequencies. During applications, we have to ensure that the distri-

bution of the passband natural frequencies has a special distribution for the vibration

isolation to be effective.

However for oceanographic structures in relatively deeper waters, as we will see,

this is precisely the distribution of the passband natural frequencies and can be ex-

ploited to design a passive vibration isolation device. We note that for the effective

utilization of mode localization as a passive vibration isolation device, we need to

ensure that the fundamental set of modes which are nonlocalizable have to be at the

lower end of the sea-spectrum where there is no energy while the localizable modes

may be permitted to remain in the region of the sea spectrum where there is sig-

nificant energy. We use a Pierson-Moskowitz Spectrum to represent the sea-state

assuming a fully developed sea-state (fetch-independent) with a modal frequency at

.5 rad/s. The Pierson-Moskowitz Spectrum is generated using

S(w) = 8.110 -3 (5.6)
0.]5
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where wm is the modal frequency and S(w) is the spectrum. This is shown in

figure 5-9.

We summarize the design constraints

(a) The lowest passband corresponds to modes whose half wavelengths are of the

order of the whole structure and cannot be localized.

(b) The lowest passband whose modes can be localized is that for which the half

wavelength of the center frequency is of the order of the distance between the masses.

(c) The sea-spectrum is such that the wave zone is between 0.4-1.2 rad/s. So the

lowest passband (nonlocalizable) should be positioned at frequencies below the wave

zone. The higher passband (localizable) can be positioned at the wave zone or higher.

We can do a preliminary design feasibility plot to determine the parameter ranges

in which we could have a feasible design given these constraints. We note the if we

desire half wavelength of the order of the distance between the masses or smaller,

W= EA (5.7)

Here L is the distance between the masses. We require w to be between 0.4 rad/s

and 1.6 rad/s. p is fixed for the cable. So we prepare a plot indicating the variation of

E and L with w. This is shown in figure 5-10. We note that we can use this in shallow

water moorings (40 m) only if we have very low Youngs Modulus Values of E = 104

Pascals. With existing technology (we quote Youngs Modulus values from commercial

material available from Buoy Technology Inc.), we would need distances between the

masses to be 150 - 200 m. The Youngs Modulus value here was E = 1.2 x 106 Pascals.

So we shall focus on deep water applications.

We now consider the response of the structure to typical sea-spectra as shown in

figure 5-9. We consider a structure with 20 segments of cable and 19 masses between

them. The masses are separated by lengths of 200 m. The details of the cable and

mass are given in table 5-3. The total length of the structure was 4000 m.

The damping constant b is estimated using the equation

b = CDpA (5.8)
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Figure 5-9: Pierson Moskowitz Spectrum
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Table 5.3: Column 1 : Cable Parameters, Column2 : Mass Parameters

The coefficient of drag CD associated with the submerged sphere (This is taken

to be .1 from Newman [24]), p is the density of water, and A is the projected area on

the direction of motion of the sphere. This is included in the equations of motion for

the submerged sphere.

If H(w) is the transfer function of the system and S(w) is the sea-spectrum, then

the Response Amplitude Operator is

y(w) = H()1 2S() (5.9)

In figure 5-11, we show the transfer function of the mooring for the periodic case.

Note the first bay has significantly more amplitude than the other bays because of

damping but there is clear evidence of a spatially extended response. In figure 5-12,

we show the transfer function of the mooring for the disordered case. The disordered

system shows clear evidence of vibration isolation with the lower half of the structure

showing almost zero amplitude.

'We now examine the responses of the same structure but with the free end con-

dition corresponding to the towed condition. We also ensure that for the disordered

structure, the same set of disorder is used to provide comparison.

We now examined the disordered case in figure 5-13. The response is slightly

more localized than in figure 5-12 but not significantly so. Hence we can conclude

that changing the boundary conditions did not alter the fundamental nature of the

response for the localized case.
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II Cable Mass l

E = 105N M=5000 kg (sphere)
p = 1070kg/m3 d=1.54 m(sphere)

d = .3257m
nL = 4000m
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Twenty Bays, Disordered Case
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5.5 Conclusions

We demonstrate the application of mode localization to a practical structure (an

oceanographic mooring). First. we demonstrate the existence of localization of har-

mnonic modes in this structure. We did not find localization useful as a passive vi-

b)ration isolation device for shallow water moorings(40 m) but we found it useful for

deep water moorings from 1000-4000 m. We ensure that nonlocalizable (fundamen-

tal) modes fall outside the wave zone of the sea spectrum. We found that altering

boundary conditions (towed and moored) does not result in any significant change in

localization.
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Chapter 6

Conclusions and

Recommendations for Future

Work

6.1 Main Features

We will, in this section, briefly describe the main features of the work in this thesis.

This work has succeeded in filling a few gaps existing in research in the area of

localization caused by deterministically introduced disorder.

Perhaps the best way to realize where this work fits in is to understand the chain

of research that has occured in the field of localization. The work started with seminal

work by Hodges and Woodhouse [16] (See the tree in figure 6-1). Their papers ([17],

[19]) resulted in a series of spin-off papers by other authors (Kissel [20], Pierre et al.

[27]., [29], [28], [31] and Triantafyllou and Triantafyllou [39]). Hodges and Woodhouse

[18] also interpreted many of the results of solid-state literature in a form that was

meaningful to the structural-dynamics community.

The precise niche that this thesis has carved out for itself is apparent by viewing

figure 6-1. The main contribution of this thesis is in providing a framework to under-

stand modal sensitivity and then using that to create a new area of study i.e. optimal
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localization. This has tremendous potential in the area of passive vibration isolation.

6.2 Summary of Conclusions

In Chapter 2, we showed that Jordan Block perturbation expansions about branch

points in the complex plane are a useful tool to describe modes of a real system of

pendula in a state of moderate localization. We also solve the branch point equations

to obtain the convergence zones of the various perturbation techniques.

In Chapter 3, we provided numerical confirmation of the fact that modal sensitivity

and localization were phenomena associated with the presence of branch points. We

examine the effects of parameter combinations which result in the system of pendula

being close to branch points of different orders. Sensitivity due to branch points

depends on the order of the branch point and the magnitude of the imaginary part.

The modes associated with different order branch points have different appearances.

The conflicting effects of the two parameters on localization are examined. The

existence of optimal directions in the parameter space along which localization is a

maximum is also noted.

In Chapter 4, we solve the problem of selecting parameter combinations to ensure

all the modes have a certain minimum level of localization. The optimal solutions were

found to be at maximum distance from the branch point surfaces and the convergence

basins of the optimal solutions were found to be divided by the sectors of space created

by the two root coalescence lines. This knowledge was used to install a numerical

scheme to track down all the optima. The initial search determined a point within the

convergence basin and reasonable close to the final solution. The final solution was

found by using a steepest descent method. The number of optima and computational

effort was found to grow exponentially with the number of pendula. A statistical

analysis was done to show that sampling as few as 10% of the optima provided a

solution within 2% of the global optimum. However due to the exponential growth of

optima and effort with the number of disorder parameters, this result only helps for

smaller systems of pendula (approximately two to ten pendula). For larger systems,

172



Hodaes and Woodhouse provide numencai -_

experimental evi. 'ncc of Iocalhzaton. Tlhcy aio

prove the response of a system of pendula when

averaged over an ensemble posse's a well defind

mean. They note the high sensitivity of mods :o

small amounts of disorder.

the ia? moda

F

This Thesis provides numerical confirmation of

Trianrfyllou and Triantafyllou 's bifureations.

Introduces a third perturbative technique to

analytically describe localized modes. Utilizes

the understanding of modal sensitivity to open a new

research area: optimal localization

ill
Nume

vtically describe larae modal ensitivltv

diction of heavily localized

statistical penurbative

aistical prediction of the

he failure of

chniques

Triantafyllou and Triantafyllou discover
bifurcations which cause modal sensitivity.

These also limit the convergence zone of

pemurbative techniques ]
cricai Proof of branch point effect on sensitivity

Figure 6-1: Flow of Research in Mode Localization

173

%,

_- - -- - -

i
I

r

/

- ------ I ---- -

I I



the large number of optima makes it impossible to determine the global optimum in

any reasonable time. This is a failing in the research.

Applications of localization as a passive vibration isolation device were studied.

The structure studied was an oceanographic mooring with regularly spaced subsurface

buoys and the vibrations of concern were the inline, elastic oscillations. It was found

useful for localization of the harmonics. It was found useful in deep waters of depths

from 1000m - 4000m. Moored and towed boundary condition were examined. It

was found that the alteration of boundary conditions resulted in the towed condition

having similar localization.

6.3 Future Work

Future Work would involve the following three main areas

(a) Determining the branch point surface for a two dimensional system. Compar-

ing; how these surfaces with those for one dimensional surfaces.

(b) Determining the bifurcation equations for a continuous system. How do these

branch point surfaces look for such a system ? Even the continuous system we looked

at in Chapter 5 had a discrete aspect in the sense that the mass was a point mass.

How would this system link up with the WKB problems studied earlier (Luongo [23])

(c) Determining methods for applying these optimization techniques to continuous

systems. In present form, these methods are only applicable to discrete sytems like

the system of coupled pendula or spring-mass systems.

(d) Suitable methods to estimate the global optimum of large systems of coupled

pendula.

This thesis is only a small step in understanding localization. We have mostly

focused on linear dynamics. There is of course considerable research to be done in

the area of response localization in coupled oscillators with nonlinear dynamics. A

good start has been made by Tjavaras [38] in examining coupled nonlinear oscillators

in one dimension. However nonlinear dynamics and localization for two dimensional

coupled oscillators is still an unexplored area.
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Appendix A

Definition of Modal Sensitivity

and Localization Factor

A.1 Definitions of Modal Sensitivity Parameter

and Localization Factor

Consider a dynamic system dependent on only one parameter e. We seek to study

the sensitivity of the mode shapes to the disorder parameter . So we introduce the

modal sensitivity parameter

Q(q, e) = lim lq ( e + 4 )q( (A.1)

This is a classical definition of a derivative with the vertical lines denoting the

Euclidean norm in the n dimensional space spanned by the vector. We will use this

definition of the derivative to describe the modal sensitivity. In general for a system

of pendula, where we have n different disorder parameters ci, we would have partial

modal sensitivity parameters (PMSP). The total derivative for the ith mode would

then be expressed as follows:

j=n
Q(qi) = E Q(qi, ej)2 (A.2)

j=1
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We also define the following measure of localization. Consider the mode shape

given by qi. We seek to provide a quantitative measure of the localization in the

system. Anderson's original theorems on localization predicted an exponential decay

in the mode shape especially in the limit of the number of substructures tending

to infinity. This was used as the basis for definitions of measures of localization.

Most of these used the exponential decay constant associated with the mode shape to

provide a measure of the extent to which the mode shapes were localized. They were

used in the context of randomly introduced disorder. However, since we are studying

localization caused by deterministically introduced disorder, we will use the following

measure of localization. Consider the mode shape qi(j) where i denoted the ith mode

and j denotes the amplitude at the j th oscillator. Evaluate i(j) = log[qi(j)]. Fit a

simple regression to the curve. Determine the slope y. This is the localization factor.

In figure A-1, we provide an example where the modes of the system are mod-

erately localized and there is a need to determine a logarithmic fit to determine the

constant of exponential decay. In figure A-2, we provide an example where the modes

are heavily localized and there exists a well defined exponential decay.

There is an obvious connection between localization and modal sensitivity. The

modes for any combination of disorder are essentially an integral of the modal sensitiv-

ity over the parameter space. The localization factor is the exponential fit associated

with the mode shapes.

Thus zones where the modal sensitivity is high also correspond to zones where the

localization factor changes very rapidly. In general, the modal sensitivity contours

must run parallel to the localization factor contours because of the relation between

the modal sensitivity and the localization factor.
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Appendix B

Solutions to Jordan Block Size

Three Perturbation

The perturbation problem for the Jordan block of size three is derived in this ap-

pendix. The perturbation series about the Jordan block of size three is written as

follows:

[K o+6K+6 2 K] {xo1+6 3X+63 Cx+6x+.. } = (o+6 3 A+6 3 A+6A+. . .){xol+6 3 x+6 3 X+. ..

(B.1)

We have expanded the eigenvector and eigenvalue in a series in one-third powers of

the disorder.

0(i)

[Ko - AoI]xol = 0 (B.2)

0(e3)

[Ko - AoI]{6x3z = 63A{xzo} (B.3)

0(,3 )

[Ko - AoI]{6(x} = ( ){6x} + (A){xol} (B.4)
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o(E)

[Ko - Aol]{6x} = -[6K - (6A)I]{x} + (6A){6x} + (6A){6½x}

o0( =I + A) + ()

[Ko - AoI]{6Sx} = -[6K - (6A)I]{6Sx} + (6S){6x + (6SA){c5~x}

(B.5)

(B.6)

o(E)

[Ko-AoI]{6x} = -[6K-(6A)I]{6x }+ (6 A){6zx} + (6A ){S6z}+ (6 A){6zx} (B.7)

0(62)

[Ko - AoI]{62z} =-[6 2K - 62 AI]{xol} - [6K - 6AI1]{6x} + (6*A)(6x)+ (B.8)

(62>)(63x) + (>(A){6x} + (A>){63x}

0(di)

[Ko - AoI]{6½x) = -[6 2K - 62AI]{6x} - [6K - 6AI]{63x} + (A)(62x)+ (B.9)

(6 X)(6) + (64A){6x} + (6 ){ 62X} + ( X){ xo}

0( )

[Ko - AoI]6 x) = -[6 2 K - 62AI]{6 - [6K - AI] {6x} + (6A)(63x) + ( A)( 6X)+

(B.10)

(64A){63X} + (6JA){6x} (6A)6){x} +) (+ (){xol}

As in classical matrix perturbation, we will expand the eigenvector perturbation

at each order as a linear combination of the basis vectors. If m is the order of the

perturbation, then:
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3 X = Cm 1,lXol + C ,2Xo2 + Cr,3XO3 (B.11)

In these equations, the unknowns are c ,l1 , ... , Cm,3 6 A.

Solution of the Problem

The orthogonality relation yields

y0(Xol +½ x + .3 ) =- (B.12)

Equating the left and right hand side term by term, we get

cm,1 = 0 (B.13)

if rm > 1.

At each order, we multiply successively by yn,, y' and y' to evaluate the eigen-

value and eigenvector perturbation. We have to solve sytems of equations of size three

to obtain solutions to the perturbation coefficients at any order. We get three sepa-

rate solutions emerging from the Jordan block eigenvector as we perturb the matrix.

The lowest order solutions are

0(e3)

A Y U03(6K)xo1 ) 3 2 (B.14)
Yoj.ixol

Here 1 < j < 3 and i = /-i.

C,' = J3A (B.15)

C3,2= 0 (B.16)

C =,3=O (B.17)
3½s 
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Higher order perturbation coefficients can be obtained by applying this procedure.

If we compute perturbation coefficients for O(e2 ), we have to write out equations for

orders extending to the 0(63) problem. This is due to the observation made in

Chapter 2 that to solve for the complete problem at any order m, we have to write

out the equations for O(m + -h). Equations at different orders are coupled together

and are solved to obtain the unknown perturbation coefficients.

182



Appendix C

Examples of Branch Point

Surfaces and their effects on

Localization

We examine a few more examples of branch point surfaces and their effects on local-

ization. We examine Q(qi, el) for a system of three pendula. We solve equations 3-1

and 3-2 for complex (A, e1) given that 2 is permitted to be real. We plot Q(qi, el)

superposed on the square-root branch surface. We again see the correlation between

the branch point curves and modal sensitivity.

We now plot the two root coalescence surfaces for the system of four pendula.

We permit 2 and 3 to be real and solve for complex A and el. We obtain three

surfaces, the real parts of which are plotted in figures B-1, B-2 and B-3. Note the

complicated folds of these surfaces. On these surfaces, we would have two modes with

appreciable sensitivity and with appreciable amplitude on two oscillators in complete

analogy to the two pendulum problem. The other two modes are localized. Again

three root coalescences would occur where these two root coalescences come close

together. This three root coalescence forms a line in the space spanned by these real

coordinates. Thus we have a surface of reduced dimension associated with the higher

order coalescence.
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Appendix D

Solution of the System of

Equations

We now discuss the methods used to solve the system of equations. We note at the

outset that optimal solutions using Lagrange multipliers are saddle point solutions.

So we have not resorted to using minimization techniques like the conjugate gradient

method (Rao [35]) to obtain the minimum of the objective function. There is no

minimum, and only a saddle point exists at the solution. The only way to solve the

problem is by actual solution of the conditions for existence of an optimal solution

i.e. we solve the problem using nonlinear equation solution techniques rather than

minimization techniques unless we use a penalty function approach(Rao [35]). The

main solution method we used is the Gauss-Newton method with cubic-quadratic

line-search (also called the Steepest Descent Method). Some of our calculations were

verified using the NAG algorithm, the Fletcher-Powell method. We will briefly re-

view this method also. For some of the trivial (smaller cases of three pendula) ex-

amples, we also verified the techniques using the Matlab command "fsolve", which

utilized a combination of the Gauss-Newton (with cubic-quadratic line search) and

the Levenberg-Marquadt method. The Levenberg-Marquadt solution is essentially a

relative of the Fletcher-Powell method.

Consider a general system of nonlinear algebraic equations as given below.
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fj(xi) = 0 (D.1)

Here fi is so that 1 < i < n and 1 < j < n. We briefly compare the bare equations

of the Steepest Descent and Levenberg-Marquadt Methods. These are all forms of

explicit Jacobian Methods.

We shall frequently in this section, utilize the least-squares residue which is de-

noted as follows:

n

g = -(f) (D.2)
i=l

D.O.1 The General Form of Equations

The General Equations of the Explicit Jacobian form are as follows

xi+l = i - Hifiti (D.3)

This general way of viewing these classes of solution methodologies has been advo-

cated by Broyden [7]. Here Hi is a matrix at the ith iteration, xi is the ithe iteration,

(i is the function values at the ith iteration, and ti is a fraction between 0 and 1.

For the classical Newton method in n dimensions, we have

Hi = J 1 (D.4)

where Ji is the Jacobian matrix associated with the system of equations D.1.

t = 1.0 (D.5)

For the method of steepest descent, we have

Hi = J (D.6)
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ti > 

Note in the method of steepest descent, the gradient of the least squares residue g is

2JTf. And the factor 2 is absorbed in the ti. For the Levenberg-Marquadt method,

we have

Hi = (jTj + AiI)-lJT (D.8)

ti = 1.0 (D.9)

We next provide some deeper explanation of the two methods.

D.0.2 Method of Steepest Descent

We now briefy prove that this is indeed the steepest descent direction following the

development in Rao [35]. The rate of change of g with respect to the step length ds

is given by

dg = drd= vgTg (D.10)ds *= ds

If u denotes the unit vector along the direction dr, we get

dr = uds (D.11)

We then have

df 
d-= VfTU (D.12)ds

We write the gradient as an expansion in the components of the unit vectors ui.

We seek to select a set of unit vector components ui so that the descent direction is

steepest while ensuring i= 2 = 1. We write the Lagrange function assteeestwhil enurin El-- Ui--'

190

(D.7)



dg i=n
L(ui, A) = + A(1 - 2 u) (D.13)

i=1

We set the derivatives of L with respect to ui equal to zero. We obtain

i = i (D.14)
IVg

and

I- =Vgl (D.15)
2

Thus the steepest descent direction is indeed the direction whose cosines corre-

spond to that of the gradient.

There have been complaints raised against the convergence properties of the Gauss

Newton Method(Rao [35]). See figure 4-1 for an example of situations where the

convergence may be poor. We see that there is a tendency for the iterative scheme

to move along directions which are in a zig-zag fashion rather than in a move along

directions which are in a zig-zag fashion rather than in a path which goes directly to

the solution.

The best search direction in a local sense is the direction along the gradient.

However when we are attempting a solution in multiple dimensions, it is not necessary

that the taking the entire Gauss-Newton step would be of advantage because the

function may not necessarily be decreasing the entire step. It is necessary to determine

how much of a step we should take in this direction. This is done by assuming the

function to have a cubic or quadratic variation in this search direction(See Press et

al. [33]) and then taking the step in such a fashion as to maximize the decrement

of the function. The Gauss Newton method assures us linear convergence if we are

sufficiently close to the solution.
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Figure D-1: Example Case where the Steepest Descent Method is inefficient
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D.0.3 Model-Trust Region Approaches

The Fletcher Powell Method and Levenberg Marquadt Methods are philosophically

very different from the Steepest Descent Method and utilize a model trust region

approach. We will very briefly describe the Fletcher Powell Method. Interested

readers are referred to Broyden [7] or Powell [32] for greater details.

It has been numerically observed that the steepest descent method has linear

convergence and is often slow in the neighborhood of the actual solution. But it is

more effective further away from the actual solution. The Newton Raphson in multiple

dimensions has a much smaller convergence zone but has a quadratic convergence close

to the actual solution. The model trust region approach was designed to combine the

best of both techniques.

If Ai is sufficiently large, we obtain the steepest descent step in the asymptotic

limit while if Ai is sufficiently small, we get the Newton step. The Fletcher Powell and

Levenberg-Marquadt method only differ in the way the Jacobian Matrix is obtained.

The Levenberg Marquadt method relies on the use of analytical or finite difference

formulations for the Jacobian. The Fletcher Powell Method analytically calculates

the Jacobian only for the first iteration. Subsequent iterations use approximations

which are as follow

Jk+l jk + (yk _ Jkk( 6k)T) (D.16)
16k12

and the inverse of the Jacobian is

Hk+l _ H + k Hyk)kHk (D.17)
H+=kHkyk) + (1 - a)(6k(2 (D.17)

The value of alpha is calculated by determining if

ikH kk < 1 i6 k12 (D.18)

where a = .8 else a= 1. Also at each iteration,

193



5~ = -Hi,jfj(xk) (D.19)

Y = fi(xk + 6k) _ fi(xk) (D.20)

This defines all the quantities in each iteration. The basis for these formulae

are some theorems which guarantee that the error norm with respect to the actual

Jacobian, using this sequence of formulae is going to decrease with each successive

iteration. This approach avoids all the extra effort in computing the Jacobian at each

time step in the Levenberg-Marquadt Method.

D.0.4 Comparison Between the Different Methods

According to R.S.Schnabel [36], numerical experimentation over the years has not

indicated any consistently large differences between these methods. In our numer-

ical experimentation too, we did not notice any really significant differences in the

performances of these methods.
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