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Abstract
Vibrations of structural members induced by natural winds have been the source of
fatigue damage to offshore platforms during fabrication and transportation and to
flarebooms during in-service conditions. To design fatigue-resistant structural mem-
bers based on steady-state vibrations at a constant Nwindspeed is not acceptable since
steadv-state vibrations would lead to excessively conservative predictions.

This thesis provides analytical and empirical models to predict fatigue damage of
structural members induced bv natural winds. Results of wind tunnel experiments
on a 1.903 inch diameter flexible cylinder indi:czte that unsteady fluctuations in the
mean windspeed typically prevent vortex-excited vibrations from reaching steadv-
state amplitudes. A time domain model is proposed, where the transient vibrations
of a flexible cylinder induced by unsteady winds are simulated in the time domain by
an equivalent single degree of freedom (SDOF) oscillator. This SDOF oscillator has
the properties of the responding resonant mode of the cylinder. After the dependence
of steady-state response on the windspeed is determined. the excitation force on the
oscillator is modeled as the steady-state sinusoidal excitation corresponding to the
input windspeed sequence. The resultant transient vibrations of the flexible cylinder
are found by a convolution of the derived excitation force and the impulse response
function of the SDOF oscillator. The predictions by the time domain model agree
well with the wind tunnel measurements.

To predict fatigue damage of a flexible cylinder induced by natural winds, a prob-
abilistic model is proposed. After analyzing relevant wind statistics and structural
parameters, this probabilistic model identifies three fatigue damage discount factors.
The first factor accounts for the fluctuations of the instantaneous windspeed around
the mean. and can be determined by the probability density function (PDF) of the
instantaneous windspeed and the critical velocitv of the structural member (l ,,t).
The second factor accounts for the finite rise time of the structural response, and is
predicted in terms of the ratio of the expected duration of a visit by the windspeed
to the critical velocitv interval to the rise time of the structural response. The third
factor accounts for the over- estimation of fatigue damage caused by discretizing the
PDF of the mean windspeed into rather broad bins. The real fatigue damage with



natural winds is equal to the fatigue damage with steady-state conditions, multiplied
by these three discount factors. The probabilistic model is verified against the time
domain model using high sampling rate real windspeed data.

Desirable wind statistics which determine the duration of a visit by the wind-
speed to the critical velocity interval are analyzed from high sampling rate raw wind
data measured at a typical maritime site. A design methodology for fatigue resistant
structural members excited by natural winds is proposed based on the probabilistic
model. The design methodoloy is illustrated through examples.
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Chapter 1

Introduction

1.1 Vortex-induced vibrations
The flow around a circular cylinder is a classical problem in fluid mechanics. At very
low Reynolds numbers (less than 5). the flow around the cylinder remains unsepa-
rated. As the Reynolds number is increased to 15. two attached vortices appear in the
wake behind the cylinder, and grow in size with Reynolds numbers. As the Reynolds
number is increased to 40, the wake becomes unstable to small disturbances. The
boundary layers on either side of the cylinder separate. Vortices shed alternatively
from eithtr side orf he cylirder and move downstream. generating a periodic asym-
metric flow, which is known as a vortex street.

In the subcritical Reynolds number range (300 < Re < 1.5 x 105). the tran-
sition to turbulence begins to occur further downstream in the vortex street, then
moves progressively forward to the near body as the Reynolds number is increased.
The vortex street becomes fully turbulent when the transition to turbulence oc-
curs prior to rolling up into vortices. In the transitional Reynolds number range
(1.5 x 105 < Re < 3.5 x 106), the transition to turbulence occurs in the laminar
boundary layers. Turbulent mixing causes the separation point to move downstream
along the surface of the body. The wake becomes narrower and disorganized. The
vortex street disappears. Regular vortex shedding resumes with fully-established tur-
bulent boundary lavers in the supercritical Reynolds number range (Re > 3.5 x 106).

The frequency of vortex shedding is related to the flow velocity. the diameter of
the cylinder and a dimensionless constant known as Strouhal number:

fS '= (1.1)
D

where f [s-l] is the vortex shedding frequency. I - [m-s- l] is the free stream flow
velocity approaching the cylinder, D [ml is the diameter of the cylinder, and St is the
Strouhal number. The Strouhal number of a stationary circular cylinder in a sub-
sonic flow is a function of Revnolds number and. to a lesser extent, surface roughness

1 -
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Figure 1-1: The dependence of Strouhal r.,..ber on Reynolds number relationship for
circular cylinders, from Blevins (1990)

and free stream turbulence (in the transitional Reynolds number range), as shown in
Figure 1-1.

The alternate shedding of vortices in the near wake causes fluctuating velocities
and pressures in the vicinity of the cylinder. which in turn cause oscillating lift and
drag forces on the cylinder. The oscillating lift forces are predominant, and if the
cylinder is free to move. it responds to the oscillating lift and vibrates in a direction
transverse to the ambient flow. These vibrations are referred to as "vortex-induced
vibrations".

As the flow velocity is increased or decreased so that the frequency of the vortex
shedding approaches the natural frequency of the cylinder, the vortex shedding fre-
quency suddenly locks onto the structure frequency. The resultant vibrations occur
at or nearly at the natural frequency of the structure. The motion of the cylinder
is referred to as "locked-in". Lock-in is characterized by some significant changes in
the aeroelastic mechanism driving the structure. most notably a large increase in the
correlation length of vortices. and hence a large increase in the correlated force along
the structure. However. this mechanism is self-limiting. with maximum amplitudes
of the order of 1 to 1.5 diameters.

Lock-in sustains over a range of flow velocities, but the vibration amplitude varies
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Figure 1-2: The maximum cross-flow displacement range, 2 EFF.MAX (wice the max-
imum cross-flow displacement amplitude), as a function of the response parameter SG,
from Griffin (1985)

with the flow velocity. Figure 1-2. originally presented by Griffin and Ramberg (1982)
and subsequently amended [14] to incorporate the latest work. shows the general trend
of the maximum cross-flow amplitude of a circular cylindrical section in water as a
function of the response parameter (SG). 1 The experimental data depicted encom-
passes a wide range of single cylinders of various configurations and Reynolds numbers
from 300 to 106.

The critical velocity (l',,t) is defined as the velocity at which the maximum vi-
bration amplitude occurs. Using the same terminology, the range of flow velocities at
which lock-in occurs is referred to as the critical velocity interval ([a, b]). The critical
velocity interval is often established based on empirical observations.

1The response parameter (So;) is defined as

S, = 2SK2Ic 8 (1.2)

'where K, = is known as the reduced damping [], or the stability parameter 10]. me is thePfD2 .:'
effective mass per unit length of the structure. 6 is the logarithmic decrement of structural damping,
pf is the mass density of the fluid.
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1.2 Vibrations induced by natural winds
Structural members of offshore platforms exposed in natural winds may vibrate as a
result of vortex shedding. Since both speed and direction of natural winds vary with
time in a random fashion. strong vibrations are seen to occur at random time intervals
separated intermittently by weak or no vibrations. Vibrations start to develop when
the windspeed stays in the critical velocity interval of the member. and start to decay
as soon as the windspeed moves out of the critical velocity interval.

Transient vibrations of structural members induced by natural winds have direct
impact on their fatigue lives. Random fluctuations of natural windspeed considerably
reduce the frequency of occulrrence of the critical wind velocity. Consequently, the
amplitudes of transient viblrations are smaller than the amplitudes of steady-state
vibrations at the critical velocity. This seems to explain why practical experience [16]
has revealed that current VIV prediction methods based on the mean windspeed
over-predict the response. and. predict structural failures too frequently.

\While the reduction of fatigue damage (or increase in fatigue life) of wind sensitive
structures in natural winds is favorable in design's perspective, vibrations induced by
natural winds could still be destructive. Natural wind-induced vibration of structural
members has resulted in fatigue damage to offshore platforms during fabrication and
trensporration. and flarebooms during in-service conditions [16]. It is important to
accurately predict vibrations and the resulting fatigue damage caused by natural
winds, to avoid potential disasters.

Predicting fatigue damage of a structural member in natural winds is difficult
due to aerodynamic and structural reasons. Random fluctuation of the natural wind
often does not allow the instantaneous windspeed to stay within the critical velocity
interval of the member for very long, allowing lock-in to develop to its fullest extent.
On the other hand, even under ideal wind conditions, a structural member needs a
finite amount of time to build-up large response. This finite amount of time. known
as the rise time. depends on the natural frequency as well as structural damping.
Large-amplitude vibrations seem to be possible only when the duration of a visit
by the windspeed to the critical velocity interval is longer than the rise time of the
structural response.

This thesis is intended to study vibrations of a flexible cylinder induced by natural
winds and their impact on the design of fatigue-resistant structural members. Re-
sults of wind tunnel experiments on a 1.903 inch diameter flexible cylinder indicate
that unsteady fluctuations in the mean windspeed typically prevent vortex-excited
vibrations from reaching steady-state amplitudes. A time domain mcdel is proposed.
where the transient vibrations of a flexible cylinder induced by unsteady winds are
simulated by an equivalent single degree of freedom (SDOF) oscillator. This SDOF
oscillator has the properties of the responding resonant mode of the cylinder. The
excitation force on the oscillator is modeled as that which would exist at steady-state
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vibration levels for each sequential value of windspeed. The resultant transient vibra-
tions of the flexible cylinder are a convolution between the time varying excitation
force and the impulse response function of the SDOF oscillator. The predictions by
the time domain model agree well with the wind tunnel measurements.

To predict fatigue damage of a flexible cylinder induced by natural winds. a prob-
abilistic model is proposed. After analyzing relevant wind statistics and structural
parameters, this probabilistic model identifies three fatigue damage discount factors.
The first factor accounts for the fluctuations of the instantaneous windspeed around
the mean, and can be determined by the probability density function (PDF) of the
instantaneous windspeed and the critical velocitv of the structural member (Vcrit).
The second factor accounts for the finite rise time of the structural response. and is
predicted in terms of the ratio of the expected duration of a visit by the windspeed
to the critical velocity interval to the rise time of the structural response. The third
factor accounts for the over- estimation of fatigue damage caused by discretizing the
PDF of the mean windspeeds into rather broad bins. The real fatigue damage with
natural winds is equal to the fatigue damage with steady-state conditions. multiplied
by these three discount factors. The probabilistic model is verified against the time
domain model using high sampling rate real windspeed data.

Desirable wind statistics which etermine the duration of a visit by the wind-
speed to the critical velocity interval :.re analyzed from high sampling rate windspeed
data measured at a typical maritime site. A design methodology for fatigue resistant
structural members excited by random winds is proposed based on the probabilistic
model. The design methodology is illustrated through examples.

1.3 A preview of the chapters that follow
This thesis has eight chapters. The introductory material presented thus far com-
prises the first chapter. The contents of each of the following chapters are briefly
summarized below.

Chapter Two contains extensive descriptions of wind tunnel experiments on a
1.903 inch diameter carbon-fiber tube. These include a brief review of experimental
results by different authors, model descriptions, instrumentation of the wind tunnel,
turbulence-generating grids, strain gauges, hot-wire anemometers. data acquisition
systems, turbulence measurements, and test results at different turbulence levels.

Chapter Three proposes a time domain algorithm for predicting ortex-induced
vibrations of structural members in unsteady winds. Procedures to implement the
time domain model are presented and illustrated by an example. where predictions are
compared with the wind tunnel measurements. Results using steady-state response
functions proposed by different authors are compared. The effect of downsampling

18



the windspeed sequence and the effect of using the mean windspeed on VIV predic-
tions are illustrated through examples.

Chapter Four proposes a probabilistic model for predicting fatigue damage of
structural members induced by random winds. Time scales which determine VIV in
natural winds are analyzed. Two fatigue damage discount factors are identified to
account for the effects of rand(ol fluctuations of the instantaneous windspeed and the
finite rise time of structural resp!onse. Examples to illustrate the use of the proposed
probabilistic model are preserltcd in a designer's perspective. Predictions by both
the probabilistic model an( te' time domain model proposed in Chapter Three are
compared using high samplinlg rate real windspeed data.

Chapter Five studies te tli,(ct of discretizing the PDF of the mean windspeeds
on fatigue damage estimation. The third fatigue damage discount factor is derived
to account for the over-estinlltio1l of fatigue damage caused by discretizing the PDF
of the mean windspeeds into rat her( broad bins. This factor is modeled as a function
of turbulence level and the ratio of the bin size to the critical velocity for various S-N
curves.

Chapter Six studies the characteristics of natural winds. Existing knowledge on
natural winds are summarized. A typical maritime wind database which contains
0.85 Hertz sampling frequency windspeed measurements is intr-duced. WVind statis-
tics which determine the duration of a visit into an interval are derived directly from
the raw wind data.

Chapter Seven proposes a design methodology for fatigue resistant structural
members excited by natural winds, based on the probabilistic model developed in
Chapter Four and Chapter Five. The wind statistics that have been developed based
on real maritime wind data are recommended as the input to the probabilistic model.
The implementation of the proposed design methodology is presented in terms of
formulae and figures.

Chapter Eight presents conclusions of the thesis and recommendations to future
work which could improve the performance of the proposed probabilistic model and
the design methodology.
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Chapter 2

Experimental Studies

2.1 Review
Current design guidelines for preventing structures from vortex-induced fatigue dam-
age often predict consistently high dynamic response [301 for offshore structural mem-
bers. One of the reasons of the apparent over-prediction is due to negligence of the
free stream turbulence effect. Free stream turbulence is generated in the atmospheric
boundary layer when wind blows past the surface of the earth. A number of inves-
tigtors have studied the effects of free stream turbulence on vortex shedding and
dyvanamic forces on stationary and rigid circular cylinders in wind tunnels over the
years. Following is a brief summary of the major findings on this subject:

Surry

Surry [36] measured pressure correlations along the span of a rigid circular cylinder at
subcritical R.evnolds numbers (approximately 40,000). High intensity (greater than
10%) large scale (from 0.36 to 4.4 cylinder diameters) free stream turbulence was
generated by biplanar grids. He concluded that turbulence broadens the bandwidth
of vortex shedding but does not disrupt the vortex shedding phenomenon.

Novak and Tanaka

Novak and Tanaka [25] measured the pressure correlations on both a stationary and
a driven cylinder in smooth and turbulent flows (generated by a coarse grid) at
subcritical Reynolds numbers. Thev concluded that turbulence produces significant
broadening of the power spectrum of pressure and shortening of the spanwise corre-
lation length. Vibration increases the correlation length drarrmatically, particularly in
smooth flow. A motion with an amplitude of 0.1 diameters increased the correlation
length form 3.5 diameters to 43 diameters in smooth flow and from 2.4 diameters to
10.4 diameters in turbulent flow (turbulence intensity 11%).
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Howell and Novak

Howell and Novak [17] measured pressure correlations and response on freely vibrating
and driven cylinders in turbulent flows at subcritical Reynolds numbers. Two types
of turbulent flows were used: grid generated homogeneous turbulence and turbulent
boundary layers. They confirmed the conclusions made by Novak and Tanaka [25].
In addition, they calculated the r.m.s. lift coefficient as a function of amplitude up to
0.1 diameters from the pressure measurements in both smooth and turbulent flows.
A motion of 0.075 diameters resulted in an r.m.s. lift coefficient of 0.42 in smooth
flow and 0.15 in turbulent flows (turbulence intensity 11%).

Cheung and Melbourne

Cheung and Mielbourne 81 obtained the lift force coefficient. drag coefficient and
Strouhal number from pressure measurements on stationary cylinders for different
levels of turbulence intensity (p to 9.1%) at critical and supercritical Revnolds num-
bers up to 106. Their data showed that mean drag force. fluctuating drag and lift
force decrease at higher turbulence at subcritical Reynolds and increase with turbu-
lence in the supercritical regime. All of the above results were to provide quantitative
understanding of free stream turbulence effects on the vortex shedding phenomenon
with rigid cylinders. The results cannot be unduly extended to the case of flexible
cylinders without further justification.

Our experiment was intended to investigate the effect of free stream turbulence on
dynamic response of a flexible circular cylinder due to wind-induced vortex shedding
at subcritical Revnolds numbers. The cvlinder was made of carbon fiber, and had
a diameter of 1.903 inches with pinned-pinned supports. The Reynolds number at
the critical velocity was 26.000. Bi-planar grids were used to produce homogeneous
turbulence fields with longitudinal scales ranging from 1.8 to 6.2 inches (or 0.95 to
3.25 diameters) and with longitudinal intensities up to 9.9%.

MIeasurements of steadv state vibration magnitudes at different wind speeds in-
dicated that turbulence intensity up to 9.9% did not drastically reduce the peak
vibration magnitude at critical velocityv. but reduce the hysteresis effect as turbulence
intensity increases. Helical strakes that were wrapped around the cylinder were very
effective in suppressing VIV response. Low-frequency variation in mean wind speed
typically prevented the VIV' response from reaching steady state. thus reducing its
fatigue damage.

In the following sections, model descriptions, instrumentation. turbulence mea-
surements. test results and a summary are presented, respectively.
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2.2 Model descriptions
The model was mounted vertically in the test section of the tunnel. One end of the
model was attached at the base to the load measuring balance while the other end
was attached at the top to an existing mounting rail through mounting plates.

The flexible model was designed to have pinned-pinned supports to achieve a
mode shape more representative of the real structural members. The pinned bound-
ary conditions were achieved using carbon fiber membrane flexures in the latest tests.
These flexures allowed for thermal expansion of the wind tunnel test section as well
as cylinder vibration in both in-line" and 'cross-flow" directions while contributing
very little to the model's structural damping.

The model was made of carbon fiber because of its ability to withstand high cyclic
stresses, its low material damping. and the ability to tolerate high tunnel tempera-
tures up to 160UF.

The material and sectional properties of the cylinder were:

* Total length (L) = 2.0955 [m] or 82.5 [in]

* Outside diameter (D) = 0.0483 [n] or 1.903 [in]

* Wall thickness (t) = 0.0023 [mj or 0.089 [in]

* Mass density (Pm) = 1597.674 [kg.m-3] or 3.100 [slug.ft-3 ]

* Natural frequency (first mode fl) = 32.375 [s- ]

* Structural damping ratio in air () = 0.12% to 0.16%

* Young's modulus (E) = 7.7 x 106 [psi] or 5.3 x 104 [MPa].

Figure 2-1 shows the configuration of the model as described. More detailed de-
scriptions of the model as well as its design evolutions can be found in Rudge et.
al [30], [31] and Nicholls [26].

2.3 Instrumentation
Instrumentations include wind tunnel. turbulence-generating grids, strain gauges, hot
wire anemometers and data acquisition. Each is described in details as follows.
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Figure 2-1: Configuration of the model

2.3.1 Wind tunnel
The testing program was undertaken in M.I.T.'s Wtright Brothers Wind Tunnel. The
tunnel is of the pressurized. closed circuit type with an elliptical test section 10 feet in
width. 7.5 feet in height and 15 feet in length. A variable pitch propeller is driven by
a motor. and can be rotated at different rpm, which gives the tunnel an airspeed ca-
pability of up to 140 miles per hour at atmospheric pressure. The model was located
at the downstream end of the tunnel test section in order to maximize the allowable
distance between the model and the turbulence-generating grid.

2.3.2 Turbulence-generating grids
Turbulence with the desired properties (turbulence intensity and length scales)can be
generated by placing grids in the air flow. Grids were constructed as square biplanar
lattices of wooden boards or bars. This biplanar screen, consisting of bars, served as
a two dimensional array of jets to mix up the flow field as the flow passed through
the screen. and creating turbulence.

The turbulence characteristics behind grids has been studied extensively in the
past. It has been found that immediately behind the grid, the flow is highly inhomoge-
neous with a strong memory of the particular grid geometry. The flow becomes more
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homogeneous and the turbulence intensity decreases with downstream distance. Typ-
ically the flow approaches homogeneity between about five and ten mesh lengths, and
approaches isotropy after about twenty mesh lengths [3.]. Wkhile turbulence intensity
decreases rapidly downstream. turbulence integral length scales increase slowly due to
the dissipation of high frequency turbulence components. It has also been found that
the turbulence intensity obeys the following power law beyond twenty mesh lengths,
when the turbulence becomes isotropic [4].

T, = - 1.12( )- ' (2.1)

where T, is the turbulence intensity. U is the mean velocity in longitudinal direc-
tion. u' is the root mean squared r.m.s.) value of fluctuating velocity in longitudinal
direction. x is the distance between the grid and the measuring spot. b is the bar
width of the grid.

2.3.3 Strain gauges
Strain gauges were used to measure deflections of the model. Strain gauge bridges
were mounted, on the cross-flow and in-line axes. at. approximately. the lower quarter
point of the I.odel. This ensured that both first and second mode response could be
identified.

Static calibrations of the strain gauges were made after the model was installed
in the wind tunnel [26]. The final calibration constant between the deflection of the
model at its mid-span in diameters and the measured strain gauge output in volts
was corrected to account for the sinusoidal mode shape [30].

2.3.4 Hot wire anemometers
Hot wire anemometers were used to measure the streamwise fluctuating velocities in
the free stream and in the wake of the model while it was vibrating. The hot wire
anemometers employed were single wire U-probes and were operated in the constant
temperature mode.

In measuring the free stream turbulence, two DISA hot wire U-probes. both in-
stalled on probe supports. were used to measure the longitudinal component of ve-
locitv fluctuations (perpendicular to the test tube) at the model plane. The two wire
and support assemblies were placed perpendicular to the model plane. parallel to the
centerline of the wind tunnel. Both U-probes were connected to the data acquisition
system through cables on the probe supports. One of the U-probes was placed sta-
tionarv at about a quarter height away from the ceiling of the wind tunnel; while
the other U-probe was placed originally at slightly lower than the stationary one,
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and could be moved verticallyv downward by a traversing mechanism. The traversing
mechanism was controlled b a motor. and was capable of moving the probe verti-
callv. thus covering about one half the height of the test section in the center of the
tunnel. Figure 2-2 shows the set-up of the hot wires.

In measuring the wake coherence, a pair of DISA hot wire U-probes were placed
in the wake of the tube. each 1 diameter off the centerline of the tube and 3 diameters
behind the axis of the tube. One probe was held stationary, while the other probe was
capable of moving downward parallel to the axis of the tube to a maximum distance
of half the length of the tube from the stationary one. through a motor controlled
traversing mechanism. This traversal of the hot wires allowed us to examine the lat-
eral coherence between the vlocitv fluctuations in the wake and thus the coherence
of vortex shedding in the spanwise direction of the flexible model.

In calibrating each hot wire. the wind velocity was increased incrementally. At
each wind velocity. both the Nwind speed reading from a pitot probe and the volt-
age reading from the hot wire circuit were recorded. After about twenty such wind
velocity increments, the collected data points were used to fit a fourth order polyno-
mial. This polynomial is then the calibration curve of this particular hot wire. which
determines the corresponding wind speed from the voltage reading of this hot wire.
Figure 2-3 shows a typical hot wire calibration c.urve. See Nicholls [26] for the details
of the hot wire calibrations.

2.3.5 Data acquisition
Data acquisition was handled by a Tektronix 2630 Fourier Analyzer. which was con-
trolled by a portable 386 Personal Computer. This four channel device first passes
the input signal through a low-pass anti-aliasing filter, with a flat bandpass ranging
from 0 to 20 kHz. This filtered signal is then digitally sampled at 51.2 kHz. using
a sampling factor of 2.56. Lower bandwidths were achieved by digital filtering and
decimation. A data file typically contained data from the four channels, and was
stored on the hard disk of the PC.

Typical sampling parameters were:

* frequency bandwidth. 100 or 200 Hz.

* franie size, 10?4. 2048 or 4096.

* number of averages. 10, 16 or 40.
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Figure 2-3: Hot wire calibration curve

In measuring the free stream turbulence. the following information were contained
in a single data file:

* time traces of the last data frame taken. for channels 1 and 2, the inputs from
the two hot wire U-probes.

* averaged power spectral density functions and auto-correlation functions for
channels 1 and 2. computed by the Instrument Program built in the Fourier
Analyzer.

* cross-correlation functions, cross spectra and coherence functions between chan-
nels 1 and 2, computed by the Instrument Program.

In measuring the response of the tube and the wake coherence, the following in-
formation were contained in a single data file:

. time traces of the last data frame taken. for channels 1 and 2. the inputs from
the in-line and the cross-flow strain gauges.
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* averaged power spectral density functions for channels 1 and 2. computed by
the Instrument Program.

* time traces of the last data frame taken. for channels 3 and 4. the inputs from
the two hot wire U-Probes deployed in the wake of the model.

* averaged power spectral density functions for channels 3 and 4. computed by
the Instrument Program.

* wake coherence functions between channel 3 and channel 4. computed by the
Instrument Program.

2.4 Turbulence measurements
In our tests. turbulence with different intensities and length scales was generated in
the wind tunnel through installation of one of the two bi-planar grids upstream of the
model. These two grids were originally designed and used by Lazar and Durgin [20], to
investigate the distortion limitations orn the frequency response of stagnation pressure
taps in grid-generated isotropic turbulence. The two grids are geometrically similar,
thus having the same solidity ratio '. but different sizes. Geometries of the grids are
defined by two parameters, b and .l. b is the bar width, and AM is the mesh size,
which is the spacing between the centers of successive bars. The values of b and M
of the two grids are defined in Table 2.1. Geometries of the two grids are shown in
Figure 2-4.

Grid Number Bar Width (b) Mesh Size (M) Solidity Ratio
(inches) (inches)

A 0.75 4.5 0.306
B 3.0 18.0 0.306

Table 2.1: Grid geometries

Four flow fields were measured: two cases (case one and case two) with grid A.
one case (case three) with grid B and one case (case zero) with no grid. In case one
and case two. grid A is placed at 30 and 45 inches respectively, upstream of the test
plane where the test tube was located. In case three. grid B was placed at 1 feet (10
mesh sizes) upstream of the model plane. For each case, turbulencp characteristics at
the model, including power spectral density functions, turbulence length scales and
intensities. were measured.

lratio of the obstructed area of screen to the total area of the screen.
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2.4.1 Power spectral density functions of longitudinal tur-
bulence components

For each case, the mean wind speed was set at the critical velocity of the model where
the maximum steady state vibration amplitude was observed. Time histories of fluc-
tuating velocity in the longitudinal direction were recorded in the plane of the model
at four (case zero), nine (case one), and eleven (case two and case three) lateral posi-
tions respectively. Averaged power spectral density functions at each lateral position
were computed by the Instrument Program. The spectral data was then presented in
the form S,,//a-, where S,,(f) is the calculated power spectral density function at
frequency f, and a2 is the variance of the spectrum.

These normalized power spectral density functions were averaged across lateral
positions in the model plane to form a mean normalized power spectral density func-
tion for each case. For case zero, where no grids were present. the mean normalized
spectral function was merely a noise spectrum. For case one. case two and case three,
the mean normalized spectral functions were found to fit reasonably well by the von-
Karman spectrum model [35], which is given by:
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Su(f) 4L,, 1
a2 -- 92,rL- )2 (2.2)U - [1 + (1.3392iL2 )2]5/6

where L, [m] is the turbulence length scale in longitudinal direction. U is the
mean velocity in longitudinal direction. f [s- 1] is the frequency.

The mean normalized power spectral density functions for each of the four cases
are shown in figures 2-5, 2-6. 2-7 and 2-8 respectively.

2.4.2 Turbulence length scales
For case one. case two and case three, the longitudinal turbulence length scale was
determined as the value which enabled the Von-Karman spectrum model to best fit
the calculated mean power spectral density function. For case zero (empty tunnel),
the measured noise spectrum did not fit well to \Von-Karman spectrum model for any
reasonable value of longitudinal turbulence length scales. Therefore. the longitudinal
turbulence length scale was not calculated for that case. Table 2.2 shows a summary
of turbulence length scales in longitudinal direction for all cases 1. 2 and 3. As ex-
pected. turbulence length scales grow as distance increases due to the dissipation of
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high frequency turbulence components.

2.4.3 Turbulence intensity
Turbulence intensity is defined as the ratio
mean velocity.

of the r.m.s. velocitv fluctuation to the

UI

U,
(2.3)

where Tu is the turbulence intensity, U [m.s-'] is the mean velocity in longitudinal
direction. u' is the r.m.s. fluctuating velocity in longitudinal direction. Due to limited
test section length in the wind tunnel, the turbulence was not truly homogeneous at
the test plane. Subsequently, turbulence intensity varied along the axis of the model.
Turbulence intensity at the model was estimated as the average of local turbulence
intensities that were measured at different lateral stations across the model plane.

(2.4)
ns

T",= F2 (T,,)in,
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where T is the mean turbulence intensity along the axis of the model. n, is the
number of stations where turbulence was measured along the axis of the model, ns
varies from 4 to 11, depending on each case. (Tu)i is the local turbulence intensity at
station i along the axis of the model. and can be calculated by Equation 2.3.

Turbulence inhomogeneity at the model for each case can be evaluated byv naxll(T)j-T;

the maximum relative percentage deviation of local turbulence intensity compared to
its spatially-averaged value. Both the mean turbulence intensities and the percent
turbulence inhomogeneity for each case are summarized in Table 2.2.

Case Number Grid Number x T maxI(T,), -Ti |i L
(inches) (inches)

0 " I1.3 i 3%

1 A 30 1 9.9 i 8% i 1.8

2 A 45 7.5C i 12% 2.1

.3 I B [ 180 -7.7 4% l 6.2

Table 2.2: Summary of turbulence characteristics at the model plane for cases 0, 1, 2
and 3.
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Figure 2-8: Power spectral density function of longitudinal turbulence, case three

2.5 Model response at different turbulence levels
13 different tests were conducted on the model in the wind tunnel during the spring
of 1993. For each of the 13 tests, the test tube was located at about 15 feet from
the entrance of the tunnel test section. A pair of strain gauges were installed on the
surface of the tube. to infer instantaneous displacements at the mid-span of the tube.

Each of the 13 tests belongs to one of the four turbulence cases that were defined
earlier. In addition. each test is either a steady state test or a transient test. In the
steady state test, the wind speed was held at a constant value, and the corresponding
steady state vibration amplitude of the model was recorded. In the transient test,
the wind speed changed continuously in time, and the corresponding transient dis-
placement response was measured.

Each of the steady state tests was conducted by increasing the mean velocity in
the wind tunnel monotonicallyv. passing through the range of speeds at which the
tube responded primarily at its first mode: followed by decreasing the mean velocity
monotonically back to its starting value. At each speed, the instantaneous strain
gauge output at both in-flow and cross-flow directions were recorded. so that the in-
stantaneous motion of the tube at the mid-span could be inferred: the instantaneous
velocitv fluctuations in the longitudinal direction in the wake at different locations
along the tube were recorded through the hot wire outputs: power spectral density
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functions of the tube transient motion and of the velocity fluctuations in longitudinal
direction in the
also calculated.

wake, as well as coherence functions between the two hot wires were

Case Number Test Number | Test Type ' Ks (77rms)max Vr at
(% Critical) ! (% Diameter) (lrms)rms

Case 0 Test 28 Steady 0.12 l 2.9 30 6.7
Test 35+ , Steady 0.15 3.6 15 6.3
Test 36- I Steadv 0.15 3.6 14 6.2
Test 14* ' Steady 0.24 . 5.8 31 6.4

Case 1 Test 29 i Steady 0.13 i 3.2 28 6.2
Test 30 Transient 0.14 ' 3.4 31 6.0
Test 31 Transient 0.13 3.2 34 6.2

Case 2 Test 32 : Steady 0.13 3.2 24 6.2
Test 33 ITransient 0.15 1 3.6 30 6.4
Test 34 Transient 1 0.15 3.6 30 6.3

Case 3 Test 37 Steady 0.14 ' 3.4 25 6.7
Test 38 Steady 0.16 , 3.9 19 6.4
Test 39 Transient 0.13 13.2 30 6.4
Test 40 Transient 0.13 3.2 30 6.6

Note: + denotes that the surface of the model was wrapped helically by a wire with a
diameter of -3 inches. The helical spacing is 16 inches per wrap.

- denotes that the surface of the model was wrapped helically by a wire with a
diameter of inches. The helical spacing is 16 inches per wrap.

* denotes that the test was conducted in the summer of 1992.

Table 2.3: A summarv of measured structural damping ratios. Ks values, measured
peak cross-flow r.m.s. vibration amplitudes and their corresponding reduced velocity
values from different tests.

For each of the transient tests, the wind speed was varied continuously through
manually-controlled adjustments of the pitch angle of the tunnel fan. The wind
speed was sampled at 512 Hertz. and was recorded continuously for 246 seconds by
the Spectral Analyzer. The corresponding in-line and cross-flow transient motion was
also recorded simultaneously bv the Spectral Analyzer. The total recorded length of
both wind speed and transient motion was 246 seconds.

The results of the structural damping measurements. taken prior to. or on comple-
tion of. each test is summarized in Table 2.3. The peak vibration magnitude and the
corresponding reduced velocity value for each rest are also listed in the same table.
Structural damping ratios were found by the log-decrement method of square root of
the total response energy, total response energy being found by taking the sum of the
squares of the in-line and the cross-flow response decay time histories.
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2.5.1 Results of steady state tests
Steady state tests were conducted for each of the four turbulence cases. The results
of steady state tests at different turbulence levels are presented in the following forms:

* r.m.s. vibration amplitudes vs. wind speeds.

* averaged power spectral density functions of vibration amplitudes at different
wind speeds.

* averaged power spectral (lenrsit functions of wake velocity in the longitudinal
direction at different wind speeds.

* averaged wake coherence functions at peak vibration magnitudes.

* The effects of helical strakes on suppressing steady state vibration magnitudes.

R.M.S. vibration amplitudes vs. wind speeds

Figures 2-9, 2-10, 2-11 and 2-12 show the steady state r.m.s. vibration amplitudes
at the mid-span of the test tube as functions of windspeeds expressed in terms of
reduced velocities for case 0, case 1. case 2 and case 3 respectively. Each case consists
of a forward pass and a backward pass. The forward pass starts at a small wind
speed where the tube did not respond. The wind speed increased monotonically,
and the steady state responses were measured at progressively higher wind speeds,
until at a wind speed where no considerable response of the model was observed. In
the backward pass, the wind speed decreased from the last wind speed recorded in
the forward pass, and the steady state responses were measured at lower wind speeds.

Test 28 (case 0, empty tunnel) was intended to test the performance of the flexure
end assembly [26] that was designed for the test tube in the summer of 1992. Fig-
ure 2-9 shows the complete forward pass of Test 28. and the complete forward and
backward passes of Test 14 that were conducted in the summer of 1992, shortly after
the end assembly was designed. The peak magnitude measurements from the two
tests are remarkably similar, thus demonstrating the reliabilitv of the newly designed
end assembly. Test 28 was also intended to be the benchmark results to compare
against cases with grid turbulence. The peak measured r.m.s. vibration amplitude
was about 30% of a diameter.

In Test 29 and Test 32. grid A was placed at 30 and 45 inches upstream of the
model plane respectively. Figures 2-10 and 2-11 show the response measurements for
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Test 29 and Test 32. In the presence of grid turbulence, the peak magnitudes of the
model were 0.28 diameters (Test 29. 9.9% turbulence intensity) and 0.26 diameters
(Test 32. 7.5% turbulence intensity), as compared with 0.3 diameters (Test 28, no
grid). Although the peak response magnitude was achieved in the forward pass for
both Test 29 and Test 32, as it was for Test 28. the difference in peak magnitudes
between the forward path and backward path was not as apparent in both Test 29
and 30 as it was in Test 28. The degree of hysteresis effect is reduced in the presence
of grid turbulence.

In Test 37 and Test 38. grid B was placed 15 feet upstream of the test plane.
Figure 2-12 shows the complete forward and backward passes for both tests. This
Figure seems to tell a similar story as the previous two figures did: the peak response
magnitude was 0.25 diameters for Test 37 and 0.19 diameters for Test 38 2; Hysteresis
effect was apparent in the response vs. windspeed for both tests, especially for Test
37, but not as severe as that for Test 28. where no grid was present.

2Sizable drop of peak vibration magnitude for Test 38. where the test conditions were the same
as those for Test 37. was caused by a slight increase of structural damping from 0.14% to 0.16%.
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Figure 2-10: Steadv state r.m.s. vibration amplitude at mid-span of the test tube as
a function of reduced velocity, case 1 (turbulence intensity 9.9%)

Power spectral density functions of vibration amplitudes at different wind-
speeds

Figures 2-13, 2-14, 2-15 and 2-16 show the power spectral density functions of the
cross-flow vibration amplitudes at three different reduced velocities for Test 28 (case
0. empty tunnel), Test 29 (case 1, turbulence intensity 9.9c), Test 32 (case 2. tur-
bulence intensity 7.5%) and Test 37 (case 3. turbulence intensity 7.7%) respectively.
The values of the three different reduced velocities for each case were chosen as less
than the critical reduced velocity, close to the critical reduced velocity and greater
than the critical reduced velocity.

Figure 2-13 shows the power spectral density functions of the cross-flow vribra-
tion response for Test 28 (case zero, empty tunnel) at the reduced velocities of 4.8,
6.7 and 6.9 respectively. In this test. there was no grid upstream of the test plane.
For each of the three response spectra at different reduced velocities, major peaks at
about 32 Hertz and 130 Hertz which correspond to the first mode and the second
mode of transverse vibrations of the model respectively, are clearly visible. ut the
magnitude and the bandwidth of the peaks are drastically different. At the reduced
velocity of 4.8, the corresponding wind speed is smaller than the critical velocitv of
the model. Two adjacent spectrum peaks are visible near 32 Hertz. The first peak
is located at 28.375 Hertz, and it is the dominant vortex-shedding frequency at the
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Figure 2-11: Steady state r.m.s. vibr,,,tion arlitude at mid-span of the test tube as
a function of reduced velocity, case 2 (turbulence intensity 7.5%)

location of strain gauges, with the Strouhal number of 0.18. The second is located at
32.375 Hertz, and it is the first mode natural frequency of the model. Vibrations at
the second mode and at higher harmonics of the vortex- shedding frequency are also
present. but never as dominant as vibrations in the neighborhood of the first mode
and the vortex-shedding frequency. This is a typical non-lockin response spectrum.

As the wind speed increased to the value where the corresponding reduced ve-
locity was 6.7, the response spectrum tells a different story. In stead of dual peaks
near the natural frequency of the model, there is only one spectrum peak at 32.375
Hertz. Compared to the corresponding peak in Figure 2-13(a), the single peak in
(b) at 32.375 Hertz is 4 orders of magnitude greater. and the band-width is much
narrower. The peak at the 129.3.75 Hertz resonance is also visible. but about 4 orders
of magnitude smaller than the peak at the first mode. This is a typical lock-in re-
sponse spectrum. when the vortex-shedding is controlled by single-mode dominated
vibrations.

As the wind speed further advanced to a value where the corresponding reduced
velocity was 6.9. the response spectrum was very similar to that at the reduced ve-
locity of 4.8. with the exception that in this case. the vortex-shedding' frequency is
located at 41 Hertz. It shows that as the wind speed further increases. the snchro-
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Figure 2-12: Steady state r.m.s. vibration amplitude at mid-sp'an of the test tube as
a function of reduced velocity, case 3 (turbulence intensity 7.7%)

nization between the vortex-shedding and the response of the model broke down.

Figure 2-14 shows the power spectral density function of the cross-flow vibration
response for Test 29 (case 1, turbulence intensity 9.9%) at the reduced velocities of
4.6. 6.2 and 6.8 respectively. In this test. Grid A was installed at 30 inches upstream
of the model plane, which in effect generated 9.9% turbulence at the model. The re-
sponse spectra before lock-in, at lock-in and after lock-in were not noticeably different
from those in Figure 2-13, thus suggesting that free-stream turbulence up to about
10%c does not have appreciable effect on the VIV response spectrum. Figures 2-15
and 2-16 reveal the same conclusions for the results of Test 32 (case 2) and Test 37
(case 3). In Test 32, Grid A was installed at 45 inches upstream of the model plane,
effectively generating 7.5% turbulence at the model plane. In test 37. Grid B was
installed at 15 feet (180 inches) upstream of the model. effectively generating 7.7%
turbulence at the model.

Power spectral density functions of wake velocity in the longitudinal di-
rection

Time traces of wake velocity in the longitudinal direction were measured simultane-
ously with the vibration response. Averaged power spectral density functions (aver-
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Figure 2-13: Test 28 (empty tunnel): power spectral density functions of the measured
cross-flow vibration amplitudes at three different reduced velocities.

age in frequency domain over 16 frames) were calculated. The results indicate that
free-stream turbulence affects the wake velocity spectrum differently than it does the
corresponding VIV response spectrum.

Figure 2-17 shows the averaged power spectral density functions of the wake ve-
locity fluctuations in the longitudinal direction behind the model which corresponds
to each of the three response power spectral density functions shown in Figure 2-13.
The wake velocity fluctuations in the longitudinal direction were measured by a sta-
tionary hot wire U-probe. This stationary U-probe was installed longitudinally in the
wake of the model at about 3 diameters behind the axis of the model and vertically
about a quarter height of the tunnel from the ceiling. In this case (case 0), no grid
was installed.

As the wind speed increased to a reduced velocity of 4.8. where the wind speed is
less than the critical wind speed of the model. a narrow spectrum peak at 30.25 Hertz.
is clearly visible. This is the dominant vortex-shedding frequency at the stationary
probe with the Strouhal number of 0.19. Notice that this local shedding frequency
is slightly different from the local shedding frequency at the strain gauges shown in
Figure 2-13. revealing the inhomogeneity of the flow across the test section. The
wake field seems to be dominated bv the local vortex-shedding frequency. Higher
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Figure 2-14: Test 29 (turbule;lce ince-n;tv 9.9%): power spectral density functions of
the measured cross-flow vibration amplitudes at three different reduced v-elocities.

harmonics, except the second harmonic. are hardly recognizable.

As the wind speed increased to a reduced velocity of 6.7. a quite different spectrum
was observed. The spectrum peak moves forward to 32.375 Hertz. This is the lock-in
phenomenon that we previously observed from the response auto-spectrum shown in
Figure 2-13. From the wake spectrum. we observe that the local vortex-shedding is
totally controlled by the motion: The wake band-width is very narrow: higher order
harmonics of the Strouhal frequency (up to 4th) are also narrow-banded and clearly
visible.

As the wind speed further increased to a reduced velocity of 6.9. the wake-motion
synchronization collapsed. The spectrum is very similar to that at the reduced veloc-
ity of 4.8, with the exception that the spectrum peak has moved to 44 Hertz. That
frequency is the new dominant vortex-shedding frequency at the stationary probe,
with the strouhal number of 0.20. The band-width is considerably broader than the
wake auto-spectrum at lock-in.

Figures 2-18 shows the corresponding power spectral density functions of wake
velocity fluctuations in the longitudinal direction to each of the three response power
spectral density functions shown in Figure 2-14. In this case (case 1). grid A was in-
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Figure 2-15: Test 32 (turbulence intensity 7.5%): powe.- spec.:rl density finctions of
the measured cross-flow vibration amplitudes at three different reduced velocities.

stalled at 30 inches upstream of the model, thus generating 9.9% turbulence intensity
at the model plane.

Noticeable differences in the wake spectrum between Figure 2-18 and Figure 2-17
suggest that free-stream turbulence may have the following effects on vortex-shedding
processes in the wake of a flexible member:

* free-stream turbulence reduces the energy in the wake at higher order harmon-
ics of the shedding frequency.

* free-stream turbulence tends to broaden the band-width of the Strouhal peak
in the wake spectrum.

The above observations were further supported by Figures 2-19 and 2-20. where
the wake spectra at different reduced velocities for Test 32 and Test 37 were shown. In
Test 32. grid A was placed at 45 inches upstream of the model plane. thus generating
7.5% turbulence intensity at the model plane. In Test 37. grid B was placed at 15 feet
upstream of the model, thus generating 7.7%' turbulence intensity at the model plane.
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Figure 2-16: Test 37 (turbulence intensity 7.7%): power spectral density functions of
the measured cross-flow vibration amplitudes at three different reduced velocities.

Wake coherence functions

The wake coherence function between two different locations is defined as follows:

s2U(f) _ (f) fl (2.5)

where Su,,, (f) and S 212 (f) are the power spectral density functions of the fluc-
tuating velocity in the longitudinal direction at locations 1 and 2. S 2 (f) is the
cross-spectrum of the fluctuating velocity in longitudinal direction between locations
1 and 2. 72(f) is the coherence function between locations 1 and 2. The magnitude
of 72(f) varys between 0 and 1.

At the maximum steady state response of each case. the wake coherence function
was calculated by the Spectrum Analvzer from the time traces of the two hot wire
U-probes. The two hot wire probes were installed at about 3 diameters behind the
axis of the model. One probe was located at about a quarter height of the test section
from the tunnel ceiling. The other probe was located at 40.25 inches downward from
the stationary probe. so that the distance between the two probes was approximately
half of the total length of the model.
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Figure 2-17: Test 28 (case 0, empty tunnel): power spectral density functions of the
wake velocity in the longitudinal direction at three different reduced velocities.

Figure 2-21 shows the peak magnitudes at lock-in of the averaged wake coherence
functions as a function of measured turbulence intensities for cases 0, 1, 2 and 3.
The averaged wake coherence functions are the arithmetic average of wake coherence
functions in the frequency domain over 16 data frames. The peak magnitudes of co-
herence functions seem to decrease a little in the presence of free-stream turbulence,
but the wake is still highly correlated over half of the total length of the model (21.15
diameters).

Effects of helical strakes on suppressing VIV response

In Test 35 and Test 36, the effects of helical strakes on suppressing VIV were inves-
tigated briefly in the absence of grids. Helical strakes were simulated by wrapping
wires spirallv around the test tube. The diameters of the single wires used in Test 35
and Test 36 were 35- inches (8.2% of a diameter) and inches (13.1% of a diameter)
respectively, and the helical spacing (pitch) between successive wraps was set to 16
inches (8.41 diameters). In both tests, the wind speed was advanced to a value where
the peak vibration magnitude was found. The steady state vibration amplitudes at
several other wind speeds were also recorded. The reduction of vibration response
resulting from helical strakes was very impressive: The peak vibration magnitudes
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Figure 2-18: Test 29 (case 1, turbulence intelsitv 9(.9%): power spectral density
functions of the wake velocity in the longitudinal direction at three different reduced
velocities.

were 0.15 and 0.14 diameters respectively, compared to 0.30 diameters without helical
strakes (Test 28), a 50% response reduction.

2.5.2 Results of transient tests
Having studied the effect of free-stream turbulence on VIV, we now turn our atten-
tion to the effect of low-frequency variations in wind speed. Two transient tests were
conducted for each of the three grid-turbulence cases. Test 31 was a representative
of the six transient tests.

Test 31 was conducted with an experimental set-up that was identical to Test 29,
where grid A was installed 30 inches upstream of the model plane. The low-frequency
varying wind speed was achieved by continuous changes of dynamic pressure, through
manually-controlled adjustments of the pitch angle of the tunnel fan. The time trace
of the dynamic pressure was recorded by the Spectrum Analyzer, so that the time
trace of the instantaneous wind speed could be inferred. The time trace of the corre-
sponding in-line and cross-flow transient motions of the model were also collected by
the Spectrum Analyzer.
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Figure 2-19: Test 32 (case 2 turbulence intensity 7.5%): power spectral density
functions of the wake velocity in the longitudinal direction at three different reduced
velocities.

Figure 2-22 shows the time trace of the measured wind speed expressed in terms
of reduced velocities for Test 31, and Figure 2-23 shows the time trace of the cor-
responding cross-flow transient motion of the model at its mid-span. The transient
motion of the model vividly demonstrates how the unsteady wind speed typically
prevented the VIV response from developing to its steady state: vibration builds up
as the wind speed moves toward the critical velocity, sustains as the wind speed stays
within a critical interval. and decays as the wind speed moves aay from the critical
velocity. This helps to explain why large amplitude steady state lock-in vibrations of
structural members under ideal conditions are not frequently observed in practice.

2.6 Summary of test results
The results of wind tunnel experiments on a 1.903 inch diameter carbon-fiber tube
are summarized as follows:

At a Reynolds number of approximately 26.000, intense turbulence (up to 10%)
does not drastically disrupt the vortex shedding or reduce the magnitude of vi-
brations on a flexible cylinder. Vortex shedding still remains highly correlated
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Figure 2-20: Test 7 (ase 3. turbulence intensity 7.7%): power spectral density
functions of the wake velocity in the longitudinal direction at three different reduced
velocities.

over half of the total length of the flexible cylinder in intense turbulence. How-
ever, the hysteresis effect on the response magnitude does seem to decrease as
turbulence intensity increases.

* Free-stream turbulence up to 10% tends to broaden the Strouhal peak and to
reduce higher order harmonics of vortex shedding in the wake.

* Helical strakes are very effective in suppressing VIV response. A. single inch
diameter wire (0.131 diameter) was responsible for a 50% response magnitude
reduction on a 1.903 inch diameter flexible cylinder.

· Low-frequency variation in wind speed typically prevents VIV response from
reaching steady state.
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Figure 2-21: Peak magnitudes of averaged wake coherence functions vs. turbulence
intensities, Cases 0, 1, 2. 3.
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Chapter 3

Time Domain VIV Prediction
Model

3.1 Overview
Structural members of offshore platforms exposed in natural wind may vibrate as a
result of vortex shedding. Strong vibrations are observe}d o occur at random time
intervals separated intermittently by weak or no vibrations. since natu7al wind varies
its speed and direction in a random fashion. The random variation of the natural
windspeed causes the vortex shedding frequency to vary continuously over time. Vi-
brations start to develop when the vortex shedding frequency is in the vicinity of the
natural frequency of the member. and continue to rise as long as the windspeed stays
within a narrow range of flow velocities. The rise time depends on the structural
damping. as well as the natural frequency of the member. The range of flow veloci-
ties which permit strong vibrations. or the critical velocity interval. is often defined
ill terms of the reduced velocity of the member.

Natural wind-induced vibration of structural members has resulted in fatigue dam-
age to offshore platforms during fabrication and transportation, and flarebooms dur-
ing in-service conditions [16]. It is important to accurately predict vibrations and the
resulting fatigue damage caused by natural wind. to avoid potential disasters.

When the Vortex-Induced Vibration (VIV) of a flexible cylinder is dominated by
the resonant response of a single mode. then by modal analysis, the response of the
cylinder may be modeled in terms of an equivalent single degree of freedom (SDOF)
oscillator. This oscillator has the properties of the responding resonant mode of the
cylinder.

In this chapter. a time domain VIV prediction model is proposed. where the VIV
of a flexible cylinder in unsteady winds can be predicted in the time domain by an
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equivalent Single Degree of Freedom (SDOF) oscillator. A step-by-step procedure of
implementing the proposed VIV prediction model is discussed. Examples are pre-
sented to evaluate the performance of the proposed VIV prediction model.

3.2 Mathematical basis of the VIV prediction model
In this section. a time domain V\IV prediction model is proposed. The VIV of a
flexible cylinder in unsteady winds is modeled as the response of an equivalent SDOF
oscillator which has the properties of the responding resonant mode. The equiva-
lent excitation force acting on the SDOF oscillator is first derived from the given
time trace of the wind speed: then the transient vibration response is computed as
the output of the SDOF (scillator. To further increase the implementation speed.
the SDOF oscillator is replacedi by an equivalent Auto Regressive Moving Average
(ARMIA) filter.

3.2.1 Derivation of equivalent excitation force
In this section. the excitation force is derived from the time trace of the instan-
teneous wind speed based on the assumption that the instantaneous lift coefficienr
takes a constant value which corresponds to the steady state vibration amplitude at
the instantaneous wind speed. The derived sequence of excitation force is used later
as the input to the SDOF oscillator.

\When a SDOF oscillator is subjected to sinusoidal excitation at a resonant natural
frequency, the oscillator will respond at the excitation frequency. Vortex shedding in
wind mav cause an elastic cylinder to develop such resonant oscillations. As the wind-
speed is increased or decreased so that the vortex shedding frequency approaches the
natural frequency of the elastic cylinder, the vortex shedding frequency locks onto the
cylinder natural frequency over a range of flow velocities. The resultant vibrations oc-
cur at or close to the natural frequency of the cylinder. The resonant excitation range
of cross flow oscillation is found to depend on the mass ratio of the member [12]. In air,
where the mass ratio is large. this excitation range extends over the reduced velocity
values of approximately 4.75 to 8 [33]. At any -windspeed within this reduced velocity
range. the cylinder undergoes narrow-band cross-flow oscillations close to the natural
frequency, with a preferred mode shape that is determined by the end conditions of
the clinder. The vibration amplitude. which is defined as the peak magnitude of
oscillations along the cylinder. is typically large (above 1% of a diameter) [31]. The
maximum value of vibration amplitudes falls within the reduced velocity range of 5.5
to 6.5 33]. At windspeeds outside the reduced velocity range of 4.5 to 8. the cylinder
undergoes broad-band cross-flow oscillations without any dominant frequencies. and
the vibration amplitude is small (less than 17c of a diameter) [31].
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It has been shown [16] that fatigue damage due to VIV is contributed almost
exclusively b narrow-band oscillations. From now on. we will neglect broad-band
oscillations and focus our attention exclusively on narrow-band oscillations. Since
the narrow-band oscillation of the flexible cylinder is dominated by the resonant os-
cillation of a single mode. we will further assume that the cylinder undergoes pure
sinusoidal cross-flow oscillations at this mode when the windspeed is within the crit-
ical velocity band.

Based on the single-mode, ias.umnption. steady state vibration amplitudes of an
elastic cylinder can be expresse(l a. a function of the steady wind speed expressed in
terms of reduced velocities

I;' f(1;)
' - fIl'I

f( ) (3.1)

where A(IV) is the steady state vibration amplitude of the flexible cylinder at a
constant flow speed V. Amax is the maximum vibration amplitude. presumably at the
critical windspeed V,,,t. An,,,,, can be predicted using various VIV design methodolo-
gies, such as DnV, BS 8100. ESDYJ 85038 and Brown & Root. etc. A complete
review of these methodologies was documented in [30]. f,, and D are, respectively,
the natural frequency and the diameter of the cylinder. f(Vr) is a real function that
relates the flow speed to the steady state vibration amplitude of the cylinder that is
excited by the flow at that speed. and is defined as the steady-state response func-
tion. f (V) can be determined based on experimental evidence [31] [12]. Different
expressions of this function resulting from the models proposed by various authors
are given below.

* DnV [10] [9]

1 4.7 < I ; < 8.0
0 otherwise (3.2)

* BS 8100 [6]

r3)2 O2 3.85 < I < 6.90( () otherwise

· ESDU 85038 [12] and Brown & Root [29]
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(1 r 2 104.5 ( )
f(V;) = e !V- tL D 4.25 < I < .25

otherwise

* Fei & Vandiver [13]

f(1;.) = {;, - 5.0
2(6.5 - I r)
0

5.0 < lr; < 6.0
6.0 < r < 6.5
otherwise

Single mode dominance of I\' response of an elastic structure over a critical ve-
locity range suggests that the response of the cylinder may be modeled as the output
of an equivalent SDOF oscillator which has the properties of the responding resonant
mode. In fact. this is possible by constructing a proper transformation between the
windspeed and the amplitude of resonant excitations at the corresponding windspeed.
Consider the following governing equation of a SDOF oscillator excited by a constant
magnitude sinusoid at the resonant frequency n

iX + 2(w,j: + M.x = fcos wnt

along with the following initial conditions:

x(0) = 

.2(0) = 

where x(t) is the transient vibration response of the oscillator. w, and ( are the
undamped natural frequency and the damping coefficient of the oscillator. f is the
magnitude of the modal excitation force per unit modal mass of the oscillator and
is to be determined from the time trace of the instantaneous wind speed. Assuming
that the wind speed is held at a constant value of V, the solution of the transient
vibration response is given by

x(t) = e -' [xocos COS t +
1o0 + Xosn - i fa

1'd 2 (~'n

where d is the damped natural frequency of the system. and

WUd = l - C
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The solution of steady state vibrations can be obtained from Equation 3.7 as t
approaches infinity

1
x(t) = .4(')sin wnt = ; fa(')sinw,t (3.9)

where .4(V) is the steadv state vibration amplitude at the given constant wind
speed V, and is given by

14(') = 2 2f( ) (3.10)

Combining Equations 3.1 and 3.10, the amplitude of the harmonic excitation
force at the resonant frequency can be expressed in terms of the steady windspeed as
follows.

fa (lV) = 2(W2Amaf( ) (3.11)

Equation 3.11 implies that by defining such a transformation between the wind-
speed and the amplitude of the harmonic excitation force at the resonant frqullncy,.
the vibration amplitude of a flexible cylinder excited by a constant windspeed can be
predicted by a SDOF oscillator under the equivalent harmonic excitation. Of course.
this relationship between the amplitude of the excitation force and the wind speed
is valid in case of the steady wind. where the wind speed is held at a constant value
and the wind direction does not change.

To extend VIVr prediction to any wind speed distribution V (t), an important ap-
proximation is necessary at this point which has proven to be quite accurate. The
excitation f(V) evaluated above is the magnitude of the periodic lift force which is
required to drive the cylinder to the steady state vibration amplitude corresponding
to the wind speed V. Since the lift coefficient changes with vibration amplitudes, the
approximation is made here that as the cylinder vibration rises toward the steady
state value, the periodic excitation force magnitude stays constant. In other words,
during finite rise time. the lift coefficient is assumed to be constant at the value which
would correspond to the final steady state vibration amplitude. W\ith this approxi-
mation we may estimate the excitation which corresponds to any wind speed V(t) by
the following formula:

fM(t) = fa(V(t))

= 2(WAma.. f ( )
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- 2(,2Amazf (V (t)) (3.12)

3.2.2 Prediction of transient vibrations of a flexible cylinder
Due to changes in wind speed Vl(t) and subsequently in reduced velocity ;(t), the
vibration response of a flexible cylinder will be modulated in amplitude. In this sec-
tion. transient vibrations of a flexible cylinder are predicted as a standard convolution
integral of the time varying excitation force, f(t) cos wt. and the impulse response
function of the SDOF oscillator which has the same resonant properties.

Consider the following differential equation governing the motion of a SDOF os-
cillator excited by an external force f(t) cos wt:

.F + 2(w',.i +: = fa(t)coswnt (3.13)

along with the initial conditions:

x(O) = xo

.(O) = 0

The solution to Equation 3.13 can be expressed in terms of a convolution integral
as follows.

x(t) = (cl + ic2) exp [(-(; +i i1 - 2)t] + f(Fr)cosW'- X h(t- )dr (3.14)

where cl and c2 are real constants that are determined b the initial conditions.
i is the unit of pure imaginary numbers. and i = /'ff. h(t) is called the impulse
response function of the oscillator. and

exp (-wnt) sin wdt t >O h(t) = o '< (3.15)
0 t < 

The first term on the right hand side of Equation 3.14 depends only on the initial
conditions, and the magnitude of this term decays exponentially with time. Therefore
it can be neglected for large time. The second term is an integral that expresses the
transient motion due to the external force .f(t). This integral is called the Duhamel
integral. If we neglect the contribution from the initial conditions. the motion of the
SDOF oscillator can be expressed in terms of the Duhamel integral:
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x(t) = f.(T)os o,.,nT x h(t - )dr (3.16)

1_ 1 .f(l) cosw T x eC- n(t- sin -Wd(t T)d (3.17)
" i , e sin d (

Combining Equations :3.12 anld 3.17. the transient vibration amplitude of a flex-
ible cvlinder excited by unlstealv wind can be expressed in terms of the wind speed
as follows.

x(t) , 2(. l..,,i '(T)) COS4n., X e- (t-) sin Wd(t - T)dr=(w - 2, I4
_ -, ' )) cos wia, x e-i't- ) sinwdo(t - )dT (3.18)

To calculate the transient vibrations by Equation 3.18 requires values of Amax and
f(V) as well as V'(t). A,,,.r is the maximum cross-flow vibration amplitude at the
critical wind speed Vcrzt. It depends on the values of the cross-flow lift force. the mass
ratio and the structural damping ratio. Various design methodologies in predicting
Amax exist in the literature [12" [61 29]. a nd t complete review of these prediction
methodologies is documented in 30]. As an example for the illustration purpose
the Brown & Root [29] response amplitude prediction methodology will be briefly
presented in the next section.

f(V) is the steady-state response function that relates the flow speed (expressed
in reduced velocity) to the steadv state anti-node vibration amplitude at this speed.
It was determined primarily from experiments. and varies under different test con-
ditions. Various experimentally determined values of f(Vr) are summarized in the
previous section.

V(t) is the instantaneous wind speed. It is often treated as a random process. A
realization of this random process can either be obtained from field measurements or
from numerical simulations. Since the wind speed cannot be expressed in analytical
form, the transient vibration predictions, or equivalently the convolution integral, has
to be implemented numerically. The cost of the numerical convolution in the time
domain increases linearly with the size of the wind speed sequence. which in turn is
determined b the total duration and the sampling frequency of the wind speed. For
compilation of long-term response statistics, the time domain numerical convolution
scheme is not attractive.

To expedite the prediction implementation process. the concepts of state variables
and state equations have been introduced. The current state of the SDOF system
is represented by a vector which contains the number of variables sufficient to allow
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the computation of future behavior of the system. These variables are called state
variables and the vector that contains the state variables is called the state vector. In
the case of a SDOF oscillator. for example. the state variables are x and . and the
state vector is x. x]. The main idea of introducing state variables and state vectors
is to replace the original second-order differential equation that governs the displace-
ment response of the SDOF oscillator under an arbitrary excitation, by a first order
differential equation (the so-called state equation) that contains the state vector. The
state equation is then solved analvtically using matrix manipulations and vector cal-
culus. After a considerable amount of algebraic operations which are presented in
Appendix A. the displacement response of the SDOF oscillator can be implemented
as the solution of the following equivalent linear difference equation

x(tk+2) - llI .(tk ) - 2 x(tk) = blu(tk+l) + b2U(tk) (3.19)

where

l (tk) = 2fa(tk)cos nWtk

= 2(Amax f( 4 (tk)) cosn tk

bl = 1-a( +-/)
Wd

a, = -20.3
a2 = (a2

a2

= e---(wnh

3 = COSW dh

? = sin wdh
tk = kxh
h = increment of time steps

The numerical implementation of the transient vibration prediction of a flexible
cylinder by a difference equation has computational advantages over that by numer-
ical convolutions. This scheme is numerically speedy since the calculation of the
response at the present time is explicit. z. e, only requires simple addition operations
of the response in the past and the excitation at the present and in the past. This
scheme is also accurate since the solution of the state equation is exact at sampling
points 3]. Details of the state equation and its solution derivation are presented in
Appendix A.
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Figure 3-1: A generic S - N curve

3.2.3 Assessment of fatigue damage
If the response is deterministic and cyclic, the response and the number of cycles to
fatigue failure can be defined as

NVSm = NO0 SO = c (3.20)

where S [kg-m-ls -2] is the stress range, for cyclic stresses. the stress range is
twice the amplitude of cyclic stresses. N is the number of cycles to fatigue failure at
the stress range S. So and A'o are the reference values of the stress range and the
number of cycles to fatigue damage respectively. m and c are positive constants that
are related to material properties. Equation 3.20 is known as an S - N curve, and it
can be graphically presented as in Figure 3-1.

When the stress range is not a constant, such as in the case of vorcex-induced os-
cillations of flexible cvlinders in unsteady wind. Equation 3.20 cannot be used without
additional assumptions. The Palmgren-Miner rule postulates that the accumulation
of fatigue damage is linear [211. Thus the fatigue damage due to the application of
n0, cycles at the stress range is
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A'7 .J(3.21)

where N, is the number of cycles to failure at the stress range ou(\V_ > n). Under
variable stress ranges. the total fatigue damage is

_k - E A,

all a

- >1 E i(3.22)

all a

The summation includes all variable stress ranges. Fatigue failure occurs when A
reaches unity. Substituting Equation 3.20 into Equation 3.22. we have

_ = C- 1 E nu m (3.23)
all a

In assessing the fatigue damage due to variable stress ranges in the time domain,
it is more convenient to acclmula- t re fatigue damage over different cycles, rather
than over different stress levels. Fatigue damage resulting from the ith stress cycle
at stress range i is

- i (3.24)

where Ni is the number of cycles to fatigue failure at the stress range ij. The
total fatigue damage that accumulates over the duration of applied stress cycles can
be expressed as follows:

n
iA = i

i=l
= .1

i=1 2T
n

c-1 C Z]r (3.25)
i=l

where n is the total number of applied stress cycles over the duration of the wind-
induced vibrations.
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Converting vibration amplitudes to stress ranges

For a flexible pinned-pinned clinder oscillating at the first mode in a sinusoidal mode
shape. the transient vibration amplitude of the cylinder at an anti-node of the cylin-
der can be rewritten from Equation 3.18 as follows:

X t ) = .4(t) sin (dt + o(t)) (3.26)

where A(t) is the envell), ,f the vibration amplitudes and o(t) is the instanta-
neous phase angle. The resi1ltii(- bending moment at the anti-node can be expressed
as follows:

A.lt.. = EIk2A(t) sin (dt + i)

where M(t) is the instantaneous bending moment at the anti-node. E is the
Young's modulus of the clindler. I is the moment of inertia of the cylinder. k = 
is the wave number at the first mode. The resulting stress range at the anti-node
occurring on the surface of the cylinder can be expressed as follows:

r(t) = 2 x x D
I 2

E7r2D
L2 x A(t) (3.27)

For a boundary condition other than pinned-pinned, the mode shape of oscilla-
tions is not sinusoidal. F, a strain response parameter. may be derived to define the
maximum strain as a function of the maximum deflection. Fi may be determined
from stress analysis, measurements or finite element models. For the simple case of
a pinned-pinned beam, F = ,' 9.87. The stress-deflection relationship shown in
Equation 3.27 can be generalized for different boundary conditions as follows:

EFijD
r(t)= L x A(t) (3.28)

L2

Table 3.1 presents computed values of Fi (at first mode) for typical boundary
conditions.

Combining Equations 3.25 and 3.28. the total damage over the duration of ap-
plied cyclic stresses can be expressed in terms of the envelope of transient vibration
amplitudes.
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EF D mn
A_-- =c-( EF D ) E A' (3.29)

where .4(t) is the envelope of the transient vibration amplitudes x(t) that were
derived from Equation 3.18. 4, is the discrete sequence of A(t) sampled at f. the
natural frequency of the member. b and c are real constants that are related to ma-
terial properties. These are the parameters necessary to define a specific S - N curve.

The fatigue damage rate. D. c(an be calculated as below.

D -- _.fn , -- -- ( L2 A (3.30)

3.3 Implementation of the prediction procedure
Based on the theory that was d(eveloped in the last section. the time domain VIV
prediction of a flexible cylinder can be implemented by the following step by step
procedure:

* Predicting the maximum vibration amplitude. To determine Am,,,, the
maximum steady state vibration amplitude for the flexible cylinder expressed
in diameters. we use the following formulation

Amazx (3.31)

D [1 + 0.19 (st2K ,)] 3.31

where y/i is a mode shape parameter that depends on the boundary conditions of
the cylinder. Values of -, for typical boundary conditions of a flexible cylinder
are listed in Table 3.2. CL is the root mean squared (r.m.s.) lift force coeffi-
cient based on stationary cylinders. and it depends on the Reynolds number.
The variation of the lift force coefficient with the Revnolds number is shown in
Figure 3-2. St is the Strouhal number. and it depends on the Reynolds num-
ber. St = 0.2 is usually a good first guess for most members in the subcritical
Reynolds number regime. K., is the stability parameter. or the reduced damp-
ing, and K, = 2 6

It is worth pointing out that the recommended lift force coefficient function
shown in Figure 3-2 is more conservative. particularly in the critical and su-
percritical regimes, than that was originally proposed b Brown & Root [29].
We [30] believe that there is insufficient evidence. at the present time, to warrant
the use of a lift coefficient as low as 0.1. as obtained from stationary cylinder
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Figure 3-2: ariation of the - .s. lift force coefficient with Reynolds number, from
Rudge & Fei (1991)

studies. The lift force coefficient in Figure 3-2 varies linearly for the Reynolds
number from 3 x 10 to 2 x 106. The effects of surface roughness and atmo-
spheric turbulence are also disregarded in this simple model. These parameters
have been shown on stationary cylinders to cause the transition from subcriti-
cal to supercritical flow to occur at a lower nominal Reynolds number, thereby
reducing the lift coefficient obtained at the velocity of interest. In the future. as
relevant data becomes available, we recommend that this lift coefficient function
be modified accordingly.

The aforementioned prediction formula for maximum steady state vibration
amplitude was first proposed by Brown & Root [29], and was recommended by
Rudge et al [30] [31].

Sampling the wind speed. in order to be able to catch the vibration cycles of
the cylinder accurately. the wind speed data need to be sampled at a sampling
frequency that is high enough compared to the natural frequency of the cylin-
der. The desired wind speed data can be achieved by resampling the original
wind data at a higher rate using lowpass interpolation. Lowpass interpolation
is done by the matlab built-in function interp [24]. In case re.l wind speed
data is not available, the desired wind speed samples mayv be simulated. A time
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history of a Gaussianlv distributed wind speed samples with a target windspeed
spectrum can be generated. by providing Gaussianly distributed white noise as
input to an optimum Auto Regressive Moving Average (ARMA) filter. which
best simulates the target spectrum [28]. This method consists of finding an
ARMA digital filter that matches the statistical properties of the wind speed
at the location where the cylinder is placed. The sequence of resampled or sim-
ulated wind speed samples is denoted by V(t).

· Constructing the equivalent excitation force. Once the time trace of the
desired wind speed data is obtained. the excitation force acting on the equiv-
alent SDOF oscillator (can be constructed through two steps. The first step is
to express the wind speed(( in terms of reduced velocity that corresponds to the
responding mode of the c(vlinder. The second step is to transform the dimen-
sionless windspeed to the amplitude of the periodic excitation force, through
Equation 3.12. In implementing the second step, the steady-state response
function. which relates the flow speed to the steady state vibration amplitude
excited by the flow at this wind speed. is required. Fei & Vandiver [13] proposed
the use of the following model in wind-induced vibration problems:

{ ° <2 .5.5 ,r •' > 6.5
f(Vr) -- .0 5.0 < ' < 6.0 (3.32)

2(6.5- VI) 6.0 < vI< 6.5

Figure 3-3 shows the model proposed by Fei & Vandiver. Models proposed by
other authors were listed in Section 3.2.

The time trace of the corresponding excitation force (per unit mass) which is
defined in Equation 3.19 can be expressed as follows:

nU(t) = fa(t)coswnt
- 2wC4,maf (Vr(t)) cos wnt (3.33)

· Calculating the transient vibration amplitudes. Once the time trace of
the excitation force is derived, the transient displacement response of the cylin-
der at an anti-node of the clinder can be solved from the linear difference
equation 3.19. In order to advance the solution in the time domain. proper
initial values of vibration amplitudes at two consecutive time intervals are re-
quired. For the cylinder that starts to vibrate from a stationary state, it is
convenient to set the initial conditions as follows:
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Figure 3-3: steady-state response function. proposed by Fei & Vanaiver

X(1) = 0

x(2) = 0

Assessing the resulting fatigue damage. Once the time trace of VIV am-
plitudes has been solved. the corresponding envelope of the transient motion
A(t) (where A(t) = {.A(t,). z = 1, n}) which consists of the peak values of the
transient vibration amplitudes x(t) can be collected. The total fatigue damage
over the duration of stress ccles can be calculated using Equation 3.29 for a
prescribed S-N curve. Fatigue failures are deemed to occur if the total damage
exceeds 1.

3.4 Examples
In this section. examples will be, given to evaluate the performance of the proposed
time domain VIV model on a 1.903 inch diameter carbon fiber tube., The tube is
pinned at both ends and is allowed to vibrate freely in between. The tube that pre-
sented is the same as the test cylinder that was built for our wind tunnel experiments
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Figure 3-4: Timhe trace of the measured windspeed in metric units

that were described in the previous chapter. The main parameters of the tube were
documented in Rudge & Fei [30] and Nicholls [26] and are summarized briefly as fol-
lows:

* Total length (L) = 2.0955 [m] or 82.5 [in]

* Outside diameter (D) = 0.0483 [mj or 1.903 [in]

*· Wall thickness (t) = 0.0023 [m] or 0.089 [in]

* Mass density (Pm) = 1597.674 [kg.m-3 ] or 3.100 slug.ft-3 ]

* Natural frequency (first mode fl) = 32.375 [s-1

* Structural damping ratio in air (() = 0.35%

* Young's modulus (E) = .7 x 106 [psi] or 5.3 x 104rMIPa].

The maximum steady state vibration amplitude is predicted first by using the
Brown & Root 29] prediction model. The solution sequence for predicting the maxi-
mum steady state vibration amplitude of the tube is listed step by step in Table 3.3.
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Four cases are presented to test the validity of various time domain VIV predic-
tion models. In case one, the transient vibrations of the test tube at its mid-span are
predicted following the step-by-step procedure in Table 3.3. Predictions are compared
with the wind tunnel measurements. The measured time histories of the instanta-
neous wind speed are used in predictions. Figure 3-4 shows the time trace of the in-
stantaneous wind speed. This wind speed sequence was sampled continuously for 246
seconds at a sampling frequency of 512 Hertz. In case two, the effect of using different
steady-state response functions is assessed. The predicted transient vibrations using
each of the steady-state response functions proposed by DnV. BS 8100, ESDU and
Fei & Vandiver with identical input wind speed sequences are compared with the
measured transient vibrations. In case three. the effect of downsampling the original
wind speed sequence on the accuracy of predictions is studied. The original wind
speed sequence is re-sampled at two lower frequencies. The predicted transient vi-
brations corresponding to the (lownsampled wind speed sequences are compared with
the measured transient vibrations. In case four. the effect of using the mean wind
speed to predict transient vibrations is studied. The predicted transient vibrations
based on the mean wind speed are compared with the wind-tunnel measurements.

3.4.1 Case one: predictions v.s. wind tunnel measurements
In this case. the transient vibrations of te Clch" : corresponding to the wind speed
shown in Figure 3-4 are predicted using the step-by-step implementation procedure
that was described in Section 3.3. The steady-state response function proposed by
Fei & Vandiver [13] is used in constructing the sequence of excitation force from the
sequence of the corresponding wind speed samples. The predictions will be shown to
have remarkable accuracy when compared with the wind tunnel measurements.

Figure 3-5 shows the time trace of the wind speed expressed in terms of reduced
velocities. The wind speed is seen to vary considerably with time but is within the
excitation range of the first mode of the cylinder.

Figure 3-6 shows the time trace of the equivalent excitation force derived from the
time trace of the corresponding windspeed by Equation 3.12. using the steady-state
response function proposed by Fei & Vandiver [13] in Equation 3.32.

Figure 3-7 shows the time trace of the predicted transient vibration amplitudes of
the test tube under the excitation force that was shown in Figure 3-6.

The envelope of the predicted transient vibrations, consisting of the peaks (local
minima and local maxima) of the transient vibration amplitudes. is shown in Fig-
ure 3-8. The envelope of the measured transient vibrations at the mid-span of the
test tube is also shown in the same figure for comparison. This comparison clearly
demonstrates the accuracy of the prediction.
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Figure 3-5: Time trace of the measured windspeed expressed in term-e-f reduced
velocities

3.4.2 Case two: effect of different steady-state response
functions

In this case, the effect of different steady-state response functions f (;) on transient
response predictions is studied for identical input sequences of the wind speed sam-
ples. Four different steady-state response functions are studied: DnV. BS 8100,
ESDU 85038/Brown & Root and Fei & Vandiver. For each proposed steady-
state response function. the time trace of the wind speed is chosen to be identical
to that shown in Figure 3-4; the corresponding excitation force and the transient
vibrations are predicted: and the envelope of predicted transient vibrations are then
compared with the envelope of measured transient vibrations.

Figure 3-9 shows the predicted transient vibration envelope using the steady-state
response function proposed by DnV. as well as the measured transient vibration en-
velope. The steady-state response function proposed by DnV was shown in Equa-
tion 3.2. DnV assumes a constant steady state vibration amplitude in the reduced
velocity range of 4.7 to 8.0, thus neglecting possible response reduction at off-critical
wind speeds. It is clear from Figure 3-9 that such an assumption over-predicts the
response magnitudes. and consequently leads to a conservative estimation in fatigue
damage rate. As a conclusion, any reasonable steady-state response function leading
to an acceptable vibration prediction should therefore allow for response reduction at
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Figure 3-6: 7 '; trace of tihe predicted excitation force acting on the SDOF oscillator,
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off-critical wind speeds.

Figure 3-10 shows the predicted transient vibration envelope using the steady-state
response function proposed bv BS 8100. as well as the measured transient vibration
envelope. The steady-state response function proposed by BS 8100 was shown in
Equation 3.3. Although BS 8100 allows for the steady state vibration amplitude to
vary with the reduced velocity when the reduced velocity is within 3.85 to 6.90. as
demonstrated by the predicted vibration amplitudes over time. the match in vibration
amplitudes between the prediction and the measurement at the corresponding time
is poor. Specifically, BS 8100 is not able to identify the exact locations of the peak
vibration amplitude; and BS 8100 is conservative since it shows much smaller de-
cay in vibration amplitudes when the wind speed moves out of the excitation range.
compared with the measurements. These two differences in predictions and mea-
surements reveal the two corresponding drawbacks of the BS 8100 model. First.
the proposed excitation range (3.85 < < 6.90) does not agree with the measure-
ments. Second. the tails of this response function are too broad. Conseouentlv. the
BS 8100 model will lead to an overly conservative estimation in fatigue damage rate.

Figure 3-11 shows the redicted transient vibration enveloIpe using the steady-
state response function propose(l t) ESDU 85038 and Brown & Root. as well
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Figure 3-7: Time trace of the prcdictec fr-lsient vibrations at the mid-span of the
cylinder, in diameters, from the proposed method

as the measured transient vibration envelope. The steady-state response function
proposed by ESDU 85038 was shown in Equation 3.4. The ESDU 85038 model
offers more flexibility. First, it allows the steady state vibration amplitudes to vary
with the reduced velocity when the reduced velocity is within 4.25 to 5.25. Second.
it allows the shape of the steady-state response function to vary with the KS value,
resulting in larger response for smaller Ks. The range of reduced velocity from 4.25
to 5.25 is too small. This results in inaccurate amplitude predictions and also a time
shift in amplitudes between the predictions and the measurements, reflecting that the
proposed excitation range (4.25 < < 5.25) does not agree with the measurements.
Figure 3-11 reveals that the flexibility offered by the ESDU 85038 model does not
improve the prediction, but mav rather lead to an under-predicted response which is
undesirable for design purposes.

Figure 3-12 shows the predicted transient vibration envelope using the steady-state
response function proposed by Fei & Vandiver, as well as the measured transient
vibration envelope. This is a reproduction of Figure 3-8 shown in Case one. Close
match in vibration amplitudes between the prediction and the measurement at the
corresponding time indicates the success of the simple Fei & Vandiver model. More
specifically, the proposed excitation range (5 < ' < 6.5) seems to agree well with
measurements since the prediction accurately captures the rise and decay cycles of
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tudes at the mid-span of the cylinder, in diameters

the measured transient vibrations; the shape of the steady-state response function
seems to be reasonable because of the close match in slopes of the rise and decay
amplitudes between the prediction and the measurement.

3.4.3 Case three: effect of downsampling the wind speed
In this case. the effect of downsampling the original wind speed sequence on transient
vibration predictions is studied. The original sequence of the wind speed (shown in
Figure 3-4) with the sampling frequency of 512 Hertz is downsampled at two much
lower sampling rates, 0.1 Hertz (period of 10 seconds) and 0.025 Hertz (period of 40
seconds). Corresponding transient vibrations are predicted for each of the two down-
sampled time traces of the wind speed and then compared with the measurements
originally sampled at 512 Hertz.

Suppose VIi[i] and 1 [j] are. respectively, the discrete-time representations of the
continuous-time signal '(t) with different sampling frequencies. Both discrete se-
quences can be related to the underlying continuous signal as follows:

I~[i] = l (iT) (3.34)
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Figur . --9: Comparison of the predicted and the measured transient vibration en-
velopes. Steady-state response function proposed by DnV is used for prediction.

I-.[j] = V(jT 2 ) (3.35)

where i and j are. respectively. integers that represent the indices of the sequences
1' ~[i] and V2 [j]. T1 and T2 are. respectively, the sampling periods (inverse of the sam-
pling frequency) of the sequences I; [i] and IV[j].

[i] and V2[j] can then be related to each other through Equations 3.34 and 3.35
as below

152[n] = ] I(nT 2) (3.36)

Figure 3-13 shows the time traces of the original wind speed sequence Il [i] with
a sampling frequency of 512 Hertz (T = 1.95 x 10- 3 seconds) and the downsampled
wind speed sequence 2[j] with a sampling frequency of 0.1 Hertz (T2 = 10 seconds).
According to Equation 3.36, 2[j! can be derived from VI[i] through Equation 3.36 as
follows:
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Figure 3-10: Comparison of thc ;rdicted and the measured transient vibration en-
velopes. Steady-state response function proposed by BS 8100 is used for prediction.

jT2

-= 1[5120j] (3.37)

A total of 25 samples are taken in the downsampled wind speed sequence. and
the total length of the sequence is 240 seconds. The downsampled wind speed se-
quence is found to be a good approximation to the original wind speed sequence. as
shown in Figure 3-13. However a sampling frequency of 0.1 Hertz may not be the
optimal choice for natural winds as it was suggested by Figure 3-13, since the gen-
erated unsteady windspeed sequence does not resemble the behavior of natural winds.

Figure 3-14 shows the corresponding time traces of the envelopes of the predicted
transient vibrations and the measured transient vibrations. To assure the accuracy
of response predictions. the values of the windspeed between sampling points have
been inearly interpolated. Linear interpolation of the windspeed tends to smooth
the predicted response. but overall. the prediction seems to be a good approximation
of the measurement.

Figure 3-15 shows the time traces of the original wind speed sequence 1 '[i] with a
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Figure 3-11: Comparison of the predicted and the neasuid transient vibration en-
velopes. Steady-state response function proposed by ESDU 85038/Brown & Root
is used for prediction.

sampling frequency of 512 Hertz (T1 = 1.9 x 10- 3 seconds) and the downsampled wind
speed sequence 13[k] with a sampling frequency of 0.025 Hertz (T3 = 40 seconds). Ac-
cording to Equation 3.36, the values of V.[k] can be derived from the values of Vi[i]
as follows:

T1Y·[n] - IT[ ]
= V1 [20480ni (3.38)

A total of 7 samples are taken in the new sequence. and the total length of the
sequence is 240 seconds. Due to many fewer samples. the downsampled wind speed
sequence no longer approximates the original wind speed sequence. Consequently,
the transient response prediction based on downsampled wind speed sequence cannot
ue expected to resemble the measurement.

Figure 3-16 shows the corresponding time traces of the envelopes of the predicted
transient vibrations and the measured transient vibrations. Fewer numbers of samples
(caused by low sampling rates) remove the high-frequency components of the wind-
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Fi.ure 3-12: Comparison of the predicted and the measured transient vibration en-
velopes. Sceadv-state response function proposed by Fei & Vandiver is used for
prediction.

speed, and (in the mean time) increase the steadiness of the windspeed. Consequently,
the predicted transient vibrations show less transient effects and more tendency to-
wards steady state. The inconsistency between the prediction and the measurement,
caused by an inadequate sampling frequency of the wind speed. will inevitably result
in a poor fatigue assessment.

3.4.4 Case four: effect of using mean windspeed
In this case, the effect of using the mean windspeed on transient response predictions
is studied. The purpose of this study is to show why steady-state response predic-
tions based on the mean windspeed (such as hourly mean windspeed) could lead to
an unsatisfactory fatigue damage assessment.

A mean wind speed sequence is constructed. and the corresponding transient vi-
bration response is predicted based on the SDOF algorithm. This mean wind speed
sequence has the same length as the original wind speed sequence. The value of the
mean wind speed sequence at any time is a constant equal to the mean of the original
wind speed sequence over the entire 246 seconds. Figure 3-17 shows the time traces
of the original wind speed sequence and the mean wind speed sequence expressed in
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Figure 3-13: Time traces f the original wind speed (sampling frequency of 512 Hertz)
and the downsampled wind speed (sampling frequency of 0.1 Hertz)

terms of reduced velocities. The purpose of constructing the new wind speed sequence
is to simulate the consequence of using hourly mean windspeed in predicting the VIV
response and fatigue damage of real offshore structures.

Figure 3-18 shows the corresponding time traces of the envelopes of the predicted
transient vibrations based on the mean wind speed and the measured transient vibra-
tions. The predicted transient vibrations based on the mean wind speed are clearly
steady-state vibrations, except for the small rise time at the beginning. Compared
to the measurement with high-frequency resolution, the predicted steady-state vi-
brations are unrealistic. and could contribute to an overly conservative estimate in
fatigue damage rate. especially when the mean wind speed happens to be close to the
critical velocity of the structural member.

It is implied that a \VIV design methodology based on the hourly mean windspeed
could grossly over-calculate the occurrence of steady-state vibrations. Current design
prediction methods generally assume that when the critical velocity of a given struc-
tural member is located within a particular bin of the hourly mean Nwindspeed from
a mean windspeed scatter diagram. then it is adequate to compute the steady state
response of the member. The frequency of encountering that critical' windspeed is
equal to the probability of encountering that mean windspeed bin which brackets the
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Figure 3-14: Time traces of the envelopes of the mcaured transient vibrations (sam-
pling frequency of 512 Hertz) and the predicted transient vibrations (sampling fre-
quency of 0.1 Hertz)

critical velocity of the member. These methods will predict a fatigue damage rate
which depends on the size of the bin. resulting in a large value of fatigue damage for
a coarse discretization of the mean windspeed scatter diagram.

3.5 Summary
In this chapter, a time domain SDOF model for predicting VIV of structural members
in unsteady winds has been proposed. For a given time trace of the wind speed. the
model constructs the corresponding time trace of the excitation force which depends
on a particular steady-state response function. The transient vibrations are predicted
as the result of time domain convolution between the excitation force and the impulse
response function of the SDOF oscillator which has the resonant properties of the tar-
get structural member.

Four examples have been presented to illustrate the use of the proposed time do-
main SDOF model on V'IV prediction of a 1.903 inch diameter carbon-fiber tube. In
the first example. the proposed time domain VIV prediction model was implemented
by a step-by-step procedure: first. a time trace of the wind speed has been selected;
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Figure 3-15: Time traces of the original wind speed (sampling frequency of 512 e l;tz)
and the downsampled wind speed (sampling frequency of 0.025 Hertz)

second, the corresponding excitation force has been derived; third, the corresponding
transient vibrations of the target cylinder at its mid-span have been predicted. In
transforming the wind speed to the corresponding excitation force, the steady-state
response function proposed by Fei & andiver [13] has been used. The predicted
transient vibrations have shown remarkable accuracy as compared to the measured
transient vibrations.

In the second example, the effect of different steady-state response functions on
the accuracy of the proposed VIVN prediction model have been examined. The steady-
state response function proposed by DnV and BS 8100 have shown to overly pre-
dict the occurrence of steady state vibrations as compared to the measurements, and
consequently lead to an unrealistically high estimate in fatigue damage rate. The
steady-state response functions proposed by ESDU 85038 and Brown & Root have
allowed the flexibility of appreciable response reductions at off-critical windspeeds,
but have failed to identify an excitation range consistent with the measurements.
This failure may- Ultimatelv lead to a non-conservative estimate in fatigue damage
rate. The simple steady-state response function proposed by Fei & Vandiver has
shown remarkable success as compared to the measurements. First. it identifies the
excitation range consistent with the measurements. Second. it allows' for response
reductions at off-critical windspeeds which are also consistent with the measurements.
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Figure 3-16. Time try.ces of the envelopes of the measured transient vibrations (sam-
pling frequency of 512 Hertz) and the predicted transient vibrations (sampling fre-
quency of 0.025 Hertz)

In the third example. the effect of downsampling the wind speed sequence on the
accuracy of the proposed VIV prediction model has been studied. A downsampled
wind speed sequence Nwith a sampling frequency of 0.1 Hertz (sampling period of 10
seconds) has been found as a reasonable approximation to the original mean speed
with a much higher sampling frequency. Not surprisingly, the corresponding predicted
transient vibrations have also shown reasonable agreement with the measurements.
On the other hand, a downsampled wind speed sequence with a sampling frequency of
0.025 Hertz (sampling period of 40 seconds) has shown tremendous deviation from the
original wind speed. Consequently, the corresponding predicted transient vibrations
are totally inconsistent with the measurements. It is conclusive that a high sampling
frequency is necessary to ensure the resemblance between the sampled wind speed
sequence and the continuous-time wind speed signal, and consequently to ensure the
accuracy of response and fatigue damage assessment. It swill be shown in the next
chapter that the minimum sampling frequency is related to the dynamic rise time of
the oscillator.

In the fourth example, the effect of using the mean windspeed to predict the tran-
sient vibrations has been studied. The predicted response based on a 246-second mean
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of the original windspeed sequence is essentially steady-state vibrations. remarkably
inconsistent with the measured transient vibrations. It is implied that a VIV predic-
tion based on the hourly mean wind speed could grossly over-calculate the occurrence
of steady-state vibrations, and may lead to an overly conservative estimate in fatigue
damage rate, especially when the hourly mean wind speed coincides with the critical
velocity of the member.
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solid line: prediction based on mean wind speed
broken line: measurement based on original wind speed (f=512 Hertz.)
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Figure 3-18: Time traces of the envelopes of the measured transient vibrations (sam-
pling frequency of 512 Hertz) and the predicted transient vibrations corresponding to
the mean wind speed sequence

Boundary Conditions F
Free-Fixed 3.52
Pinned-Pinned 9.87
Fixed-Pinned 20.4
707 Fixity [16] 22.4
Fixed-Fixed 28.2

Table 3.1: Values of Fi for different boundary conditions, from Rudge & Fei (1991)

Boundary Conditions f
Free-Fixed 1.304
Pinned-Pinned 1.155
Fixed-Pinned 1.161
70%) Fixit- [16] 1.163

Fixed-Fixed 1.167

Table 3.2: Values of ^', for different boundary conditions, from Rudge & Fei (1991)
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Variable Name \Variable Symbol Variable Value I SI units
D outside diameter 0.0483 [ml
t [wall thickness 0.0023 ' im 
fl natural frequency ! 32.375 ' _l
Pm mass densitv 1597.674 [kg.m -3]
'Yi mode shape parameter 1.155

_______ damping coefficient 0.35% 

I/crit critical velocitv 7.82 1[ms-'3
Re Revnolds number 26.068 1
St Strouhal number 0.2
CL lift force coefficient 0.42
K, stability parameter 8.57 I

Anax maxiInum amplitude 0.0092 [m]

Amax/D maximum amplitude 0.19

Table 3.3: Prediction of the maximum vibration amplitude
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Chapter 4

Probabilistic Models for VIV
Predictions

4.1 Motivation
Natural wind-induced vibrations of structural members have been the source of fatigue
damage to offshore platforms during fabrication and transportation and to flarebooms
during in-service conditions. To avoid failures. it is important for designers to be able
to predict such vibrations as well as thle resulting fatigue damage.

Current response prediction methods generally assume that when the mean wind
speed is within the critical wind speed range for a given structural member, then it
is adequate to compute the steady state response of the member. However, practical
experience has revealed [16] that these methods over-predict the response, and. pre-
dict structural failures too frequently.

One explanation of the over-conservatism was suggested by Rudge et. al [31].
They found that the frequency of occurrence of steady state vibrations at the criti-
cal wind velocity is greatly over-estimated. since it is assumed that ideal conditions,
which require low turbulence and increasing wind speeds, allow lock-in to develop
to its fullest extent at which peak amplitudes are seen. This explanation was later
supported by the results of wind tunnel experiments described in Chapter 3.

Figures 3-5 and 3-8 showed, respectively. the time traces of the instantaneous
windspeed and the corresponding transient vibration peaks of a flexible cylinder from
a typical transient test described in Chapter 3. It is clear from the figures that. al-
though the mean wind speed was ideal for lock-in conditions. unsteady fluctuations
in the wind speed typically prevented vortex-excited vibrations from reaching steady
state amplitudes. The Brown & Root formula [29] predicted that the maximum
steady state vibration amplitude would be 0.193 diameters. 0.191 diameters was the
maximum measured vibration amplitude in a test where the windspeed vas increased
monotonically and steady state vibration amplitudes at different windspeeds were
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measured. In the transient test the duration of time that the wind speed stayed
within the critical velocity range for the member was less than the transient buildup
time for this lightly damped vibration mode, and maximum amplitude response rarely
occurred. Under ideal steady state lock-in conditions. mid-span vibration amplitudes
of 0.19 diameters were observed.

In this chapter and the next. a probabilistic model is proposed in which three
discount factors contributing to the fatigue damage reduction of structural members
in random winds are identified. The first factor is caused by the fluctuations of the
instantaneous windspeed around its mean. and can be determined bv the PDF of
the instantaneous windspeed and the critical velocity of the structural member. The
second factor is caused by the finite rise time of the structural response, and is pre-
dicted in terms of the ratio of the expected duration of a visit to the rise time of the
structural response. The third factor is the over estimation of response caused by dis-
cretizing the PDF of the mean windspeeds into rather broad bins. The conservative
assumption is often made that if the critical windspeed for a member coincides with
any part of a discrete bin then the probability of encountering that critical windspeed
is equal to the probability of encountering that bin. This fails to account for lower
off-critical response within a bin. The wider the bin the worse the error. The pro-
posed model is illustrated by worked examples. The results of the probabilistic model
are verified with the results of the time domain VIV model with the input of the raw
windspeed data.

4.2 Analysis of time scales
There are two time scales that determine the vibration amplitude and the fatigue
damage rate of a flexible cylinder in random winds. One is the duration of a visit
by the wind speed to the critical velocity interval. The other is the rise time of the
structural vibration response.

4.2.1 Duration of a visit by the wind speed to an interval
[a, b]

Duration of a visit by the wind speed to an interval :a, b] is defined as the undisrupted
length of time that wind speed spends between levels a and b. The definition of the
duration of a visit by wind speed to an interval can be illustrated in Figure 4-1. 7[a,b],

the duration of a visit to the interval [a, b], starts with either an upcrossing of the
windspeed at level a or a downcross:ng of windspeed at level b. and ends with either
an upcrossing at b or a downcrossing at a.

In the case of random winds, the duration of a visit bv the wind speed to an inter-
val is a random variable that depends on the mean rates of crossings by the wind speed
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Figure 4-1: Duration of a visit by the wind speed to an interval a. b]

at levels a and b. The exact distribution of the duration of a visit by wind speed to an
interval is not known except for very few processes [11]. However. the exact mean can
be calculated as follows. provided that the wind speed is a stationary random process:

Consider the successive times 7fa.b and Ta,b[ which a stationary random process
l'(t) spends, respectively, within [a, b] and outside [a, b]. To derive the mean value
E[Tfa.b], we need to apply a nonlinear transformation to the windspeed process V(t).
Let X(t) be a random process that can be derived from V(t) in the following way:

X(t) = - (t) - a)(V(t) - b) (4.1)
where y is an arbitrary positive real constant.

This transformation. as expressed in Equation 4.1, establishes a nonlinear map-
ping from V(t) to X(t). Specifically. the windspeed samples within the velocity
interval [a, b] are mapped to the samples of the process X(t) which have the values
greater or equal to y: whileas the windspeed samples outside the interval [a. b] are
mapped to the samples of the process N(t) which have the values less than y. There-
fore. calculating the mean duration of a visit by the windspeed to the interval [a. b] is
equivalent to calculating the mean length of stay by the process X(t) above the level y.
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Figure 4-2: Daration- o- stay above and below a fixed threshold y

Figure 4-2 shows the time history of the process X(t), which is derived from the
windspeed process V(t) shown in Figure 4-1. through the nonlinear transformation
expressed in Equation 4.1. T and T are. respectively, the successive times which
X(t) spends above and below the threshold y. Since a < < b corresponds to X > y,
thus Ty = Jfa.b]. In the following. we will derive ETy] in terms of the statistics of
X(t). then express E[7a,b]] in terms of the statistics of V(t).

E[Ty], the mean value of Tv, can be expressed as below for a stationary random
process X(t) [39] (this is true if the windspeed process V1(t) is stationary).

E[Ty] = (y ) (4.2)

where Fx-(y) is the CDF of the process X(t) evaluated at y. /uy is the mean rate
of crossing the level X(t) = y at positive slopes.

Since a < I - < b corresponds to X > y. the probability of the windspeed within
the critical velocity interval is equivalent to the probability that the derived process
X(t) exceeds the level y. Since each upcrossing at the level X(t) = corresponds to
either a simultaneous upcrossing at the level (t) = (r or a simultaneous downcross-
ing at the level (t) = b. the frequency of crossing the level X(t) = y at positive

86



slopes is equivalent to the frequency of crossing the level V(t) = a at positive slopes
and crossing the level 1V(t) = b at negative slopes. Therefore. Fx(y) and /y can be
related to the statistics of 1V(t) as follows.

1 - F (y) = F (b)- F -(a) (4.3)
ly = Va Vb

= i + (4.4)

where F(b) and Fv.(a) are. respectively, the CDFs of the windspeed process 1V(t)
evaluated at b and a. v is the mean rate of crossing the level V(t) = a at positive
slopes. vb and lo are the lcean rates of crossing the level V(t) = b at positive and
negative slopes respectively. Since every up-crossing is followed by a down-crossing,
vb = Vb. The mean rate of c(rossing the level V(t) = 0 can be expressed as follows [39].

Vo?= J + i p2v(0. i')di (4.5)

where pI. (v'. i') is the joint PDF of the random process V(t) and its time deriva-
tive process V(t).

Substituting Equations 4.3 and 4.4 into Equation 4.2. we arrive at the equation
for the mean duration of a visit b the windspeed to the critical interval [a, b].

E[fa,b]] = F()- Fv(a) (4.6)
w2 + 'b'

It is worth noticing that Equation 4.6 is exactly the same as the result by Ditlevsen [11],
where he analyzed the first outpassage time by a stationary, ergotic random process.

It is clear from Equation 4.6 that the mean duration of an undisrupted visit to a
velocity interval depends not only on the probability distribution of the wind speed
process V(t), but also on the properties of its time derivative process -(t), due to
the dependence of Equation 4.6 on the mean rates of crossings. If the windspeed can
be described as a Gaussian process, then closed-form expressions for F-(zx), v and
E[7 a,b] are available as below.

Fva (x) = / ep(- d (4.7)
r = 2lexp ( - 2c)2 )dr

+ L1 . exp( (4.8)t' -- 2 (T, - 2a4 .
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f exp ( - )dv

2r av exp( - - exp(-

Mean upcrossing rates of non-Gaussian random processes can be determined from
related Gaussian processes. through a univariate. nonlinear transformation [15] as
follows.

Suppose Fv,(v) and pi v(v) are the CDF and the PDF of the wind speed V(t) re-
spectively, and a- and a. are the standard deviations of the wind speed and the
time derivative of the wind speed respectively. Our objective is to derive the mean
upcrossing rate of the process I (t) in terms of the above quantities.

First, a Gaussian random process Y'(t) is derived from the wind speed process
V(t) through a non-linear transformation. The mean upcrossing rate of the process
V(t) at level VI(t) = 0 can be obtained from that of the derived Gaussian process Y(t)
at a corresponding level. Let ' be a Gaussian random process of the same sampling
rate and total length as V(t). which consists of random variables Yi of zero mean and
unit variance. Then there exists a real function h( ) such that

1 = h(Y) = FxT'(,(Yi)) (4.10)

where 'I is the CDF of and 1(Y) = f/ ! exp (-0.5 2)dy. Since both Fv and
41 are monotones, h is guaranteed to possess one to one mapping. The mean rate of
crossing the level 0 by the process V(t) can be obtained from the mean rate of crossing
the level y = h-l(0) by the Gaussian process Y'(t). since V(t) and ]?(t) upcross the
level c and respectively at the same instant. Thus the mean rate of crossing the
level 0 by V(t) can be expressed as the mean rate of crossing the level y = h-l(0) by
the Gaussian process Y(t)

+=- _ 6(h-1()) (4.11)

where o is the PDF of i, and (Yi) = f exp (-0.5Yi).

To calculate v- requires finding the value of H-.. Next ci. is expressed in terms
of the statistics of the original processes V(t) and I '(t). First a new random process
VI(t) is defined that can be derived from the process V(t) as follows

7(t) I/ (t) - E (4.12)
I'Mt)= (4.12)

where E'l ] and cr, are the mean and the standard deviation of the random process
17(t). The derived process If(t) has a zero mean and a unit variance. Furthermore,
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the following equations hold for V'(t):

F () = FV(v)

=- cvpv(v)

(4.13)

(4.14)

(4.15)1'
O-V

where F,(v) and p! ) ire the CDF and the PDF of the random process 1;(t),
and o-. is the standard d(,evltlon of the process V(t).

Combining the equiatlo,!!, . () and
process Y(t):

4.13. the process 17(t) can be related to the

I t= ((t)) = F'(D(Y)) (4.16)

Since Y(t) and Y(t) are independent. as stationary Gaussian processes. the process

IV(t) has zero mean and variance given as below

2 E F (d )
= FdYl

(4.17)

That yields a = r772 . where 77 is given by:
V V

q3 ()d 

(p [F-'(c(E)) 
(4.18)

Finally, the mean upcrossing rate by the wind speed process V(t) at level 0 can
be expressed more explicitly as

1 of, e_0.5t2
(4.19)

where J is given by:

(4.20)

ao- and ai, are. respectively. the standard deviations of the windspeed and the time
derivative of the windspeed. Both quantities are necessary to calculate the mean up-
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crossing rates of the windspeed. as indicated by Equation 4.19.

a, is a measure of the turbulence level and may be estimated in a rational way 2].
cr, is not commonly reported and a database needs to be established from high sam-
pling rate raw windspeed data. As part of this research, Ua, has been estimated from
a database measured at one marine site over a wide range of mean windspeeds and
turbulence levels. This is reported in Chapter 6.

In absence of the database of local windspeed measurements. both ma. and a, can
be obtained alternatively by integrating a proper power spectral density function of
the wind speed Sv(f):

,7l = v f Sv-(f)f (4.21)

T = '2Vr j2Sv(f)df (4.22)

where S.-(f) is the power spectral density function of the wind speed. The wind-
speed spectrum can be either obtained from local windspeed measurements, or can
be adopted from a standard spectrum model wil imilar wind conditions. f is the
cut-off frequency beyond which the wind speed spectrum is not valid. For example,
the cut-off frequency could be half the sampling frequency of the windspeed measure-
ments on which the spectrum model is based. A word of caution to derive Ui by
integrating the windspeed spectrum is that f2 Sv(f) may not resemble the true spec-
trum for V to give an accurate estimate of uv. To be confident in using this approach,
one should compare the estimate with the true value of ear derived directly from raw
windspeed records. Derivations of ar, from high sampling rate raw windspeed data
will be presented in Chapter 6.

In summary, for a given PDF and wind statistics such as I a., and a~u, the cal-
culation of the mean upcrossing rate by the non-Gaussian process (t) involves the
following steps:

* The first step is to define a Gaussian process Y'(t) from the wind speed process
I -(t). through a non-linear transformation. Since the CDFs of both processes
are monotone. the transformation function h* is guaranteed to possess one to
one mapping. In general. h1' can only be derived numerically.

* The second step is to calculate r7 and y numerically by Equations 4.18 and 4.20.
Then the mean upcrossing rate can be calculated by Equation 4.19.
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The calculated mean upcrossing rates by the wind speed can be used directly to
calculate the mean duration of a visit by the wind speed to the critical velocity inter-
val. by Equation 4.6. The mean duration of a visit by the wind speed to the critical
velocitv interval will be shown later in this chapter to determine the fatigue damage
of a structure in random winds.

4.2.2 Rise time of structural response
As the excitation force is switched on. the structure needs a finite amount of time to
build up its vibration amplitude towards a steady state value. The transient response
envelope of a single degree of freedom oscillator with a constant sinusoidal excitation
at the natural frequency f,, is approximated by the following equation

.4(t) = A4 I - e-I e ~ (4.23)

where A(t) is the instantaneous vibration amplitude envelope at time t after the
excitation has begun and Arn,,ta is the steady state vibration amplitude. is the
structural damping ratio measured in still air. w1,n is the natural frequency of the n-th
mode in radians per second.

The rise time of structural response is defined as the duration required to build
up to (1 - e-1 ) of the steady state value. from an initial stationary state. From this
definition:

1 1
tr = In(-) (4.24)

1 T
=o- _ - (4.25)

where T is the undamped vibration period. Clearly. the rise time of structural
response depends on the structural damping ratio and the natural frequency of the
structure. For lightly damped structures. such as members on oil production plat-
forms, the rise time can exceed 100 or more periods of vibration.

4.3 Introduction of a Gaussian windspeed approx-
imation

In the analvsis of random winds, the Gaussian windspeed approximation is very at-
tractive because the PDF of the Gaussian windspeed p-(v) only depends on two
statistics. namely the mean windspeed f' and the standard deviation of the instanta-
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neous windspeed a,-:

pi (t) = exp ( 2e )
2uv

Before the Gaussian windspeed approximation is employed to develop the proba-
bilistic prediction methodology. it will be verified using real maritime wind data.

Raw wind data with varying mean windspeeds and turbulence levels are used.
These wind data are a produlct of a measurement program sponsored by the Sta-
toil Joint Industry Project on Maritime Turbulent Wind Field Measurements and
Models. Project members included: Amoco Norway Oil Company, Conoco Norway
Inc., Elf Aquitaine Norge A/S. Exxon Production Research Company, A/S Norske
Shell. Norsk Hvdro. Statoil and( Saga Petroleum A/S. The database consists of several
hundred hours of high quality wind data, obtained at exposed sites on the western
coast of Norwavy. The raw wind data were grouped in many 40-minute raw windspeed
records with a sampling frequency of 0.85 Hertz. The 40-minute mean windspeed
varies between 13 [m-s- '] and 31 [m-s-l], and the turbulence level varies between 7%
and 30%. A description of the wind measurement program and some wind data may
be found in OCld an Andersen and Jorgen Lovseth [2].

To verify this assumption. the mean duration of a visit by the windspeed into any
fixed critical velocity interval was calculated from the measured windspeed records
by the following two methods. For any 40-minute windspeed record, the first method
was to calculate the mean duration from the definition given by Equation 4.6: while
the second method was to calculate the sample wind statistics I, v and oi. from
the raw windspeed record, and to calculate the mean duration based on the Gaus-
sian windspeed assumption implied by Equation 4.9. To distinguish the two different
methods, let us denote the mean duration of a visit calculated by the first method
and the second method as the numerical duration and the Gaussian duration respec-
tively. Since the underlying instantaneous windspeed may not be a Gaussian process,
the numerical duration and the Gaussian duration are not the same in general. The
comparison between these two durations shall indicate the adequacy of the Gaussian
windspeed approximation.

The numerical duration was calculated in the following way. For each 40-minute
windspeed record, the cumulative distribution functions of the windspeed evaluated
at the lower and the upper bound of the critical velocity interval. F(a) and F.(b),
were estimated as the fraction of the windspeed samples less than or equ'l to a and
b respectively. The mean upcrossing rates at a and b, denoted as v and vb respec-
tively, were estimated as the number of the windspeed samples which up-crossed the
levels a and b per 40 minutes. One upcrossing at the level x was recorded at time
ti when 1V(t,) < x and VI(t1,l) > x, where t, and t,-l are the two adjacent sampling

92



points. The numerical duration was estimated by Equation 4.6 for known quantities
of Fv(a), Fv(b), v [s-' and vs rs-.

The Gaussian duration was calculated in the following way. Let {I ,} be the wind-
speed samples in one 40-minurte record. Then V and oav were calculated as follows.

1N" -2, : (4.26)V 7

" \. _ (17 - V) (4.27)

where N = 2048 is tle to)tl tllllber of windspeed samples in one 40-minute wind-
speed record.

To calculate a,.. a seqlilence of I; was derived from the windspeed sequence Vi
using the central difference scleme:

'-_2 Vi
(4.28)2At

where A/t is the sampling period. or the time increment of the windspeed sequence.
The central difference scheme is a numerical difference scheme with high order of ac-
curacy. The truncation error is second order, compared to first order by forward
difference scheme.

Once {Vi} was derived from Equation 4.28, ai,y was calculated as follows.

I

1 -2
= ' NV -3 EZ 2 (4.29)

N\N-3 i= 1

After wind statistics X, ( 1- and cr- were derived from windspeed samples using
Equations 4.27, 4.28 and 4.29. the Gaussian duration E[Ta,b]] was calculated using
Equation 4.9.

A systematic implementation of the verification process is as follows. A set of
critical velocities was selected to represent typical offshore structural members. The
critical velocities range from 3 [m-s-l] to 45 [m.s-i]. Three groups of windspeed
records were also selected. The first group (group 1) consisted of the windspeed
records for which the 40-minute mean windspeeds fell between 14.5 [m.s- '] and 15.5
[mins-], the second group (group two) consisted of the windspeed records with 40-
minute mean windspeeds which fell between 19.5 [m.s- ' ] and 20.5 [m-s-1]. and the
third group (group three) consisted of the windspeed records for which the 40-minute
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Figure 4-3: Variation of average numerical and Gaussian duratior. wi.-th critical ve-
locities, from the 12 windspeed records in group 1 with large turbulence (17%)

mean windspeeds fell between 24 [m.s-l] and 26 [m.s-l]. For each individual wind-
speed record, the wind statistics (!', aov and al.) and the numerical duration were
calculated.

In each group with the same mean windspeed. the calculated turbulence intensity
values for different records varied due to different thermal stability conditions. The
wind records were therefore divided into two or three sub-groups according to their
turbulence levels. In each sub-group, the wind statistics and the numerical dura-
tion were averaged, and the Gaussian duration was calculated from the average wind
statistics.

For example. in group 1. there were a total of 15 windspeed records. each with the
40-minute mean windspeed within (14.5, 15.5) [m-s-l]. 12 windspeed records have
the turbulence intensity values greater than 13c%. representing unstable atmospheric
thermal conditions. The average turbulence intensity value for these 12 records is
17%. Te other 3 windspeed records had turbulence intensity values less than 10%,
representing stable thermal conditions. The average turbulence intensity value for
these 3 records is 8%. Figure 4-3 shows the average numerical durations and the
average Gaussian durations as functions of critical velocities from the i2 windspeed
records in group 1 with large turbulence (average turbulence intensity 17%). Fig-
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Figure 4A4- Variation of average numerical and Gaussian durations with critical ve-
locities, from the 3 windspeed records in group 1 with small turbulence (8%)

ure 4-4 shows the average numerical durations and the average Gaussian durations
as functions of critical velocities from the 3 windspeed records in group 1 with small
turbulence (average turbulence intensity 8%).

Both figures show that the maximum values of the mean duration occurs at the
critical velocity approximately equal to the average mean windspeed, which is about
15 [ms-1]. The values of the mean duration decay quickly as the critical velocity
moves away from the average mean windspeed. A long duration of a visit in the
critical velocity interval would allow the structural response to develop towards the
maximum. This is entirely consistent with the fact that the maximum vibration
amplitude occurs when the critical velocity equals the mean windspeed. Smaller tur-
bulence results in a bigger but narrower peak in the duration vs. critical velocity
curve. This is because a smaller magnitude of velocity fluctuations increases the
chance for the windspeed to stay within the critical velocity interval when the critical
velocity is equal to the mean windspeed. It decreases the chance for the windspeed
to cross into the critical velocity interval when the critical velocity far from the mean
windspeed.

Both figures also show that the Gaussian duration is consistently larger than the
average numerical duration at all values of critical velocities. In Figures 4-3 and 4-
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4, the maximum Gaussian duration is 275%c and 35% larger than the corresponding
average numerical duration. Analysis of group 2 and group 3 reveals the similar re-
sults. Since a conservative estimate in the expected duration leads to a conservative
estimate in fatigue damage rate. the Gaussian windspeed model is a useful and con-
servative predictor of fatigue damage rate.

4.4 Development of probabilistic prediction method-
ology

Let us denote D(/') as the fatigue damage rate of a structural member with real wind
conditions and finite rise time: DD, . as the fatigue damage rate of a structural member
with a constant windspeed at I ;,,t and instant rise time: D0o( ) as the fatigue damage
rate of a structural member with real wind conditions and instant rise time. Among
all these three fatigue damage rates. D(') is the one that a real structural member
experiences and that we are trying to predict: D.5 is the maximum damage rate that
arises from steady-state vibrations at the critical velocity. and it can be predicted
using standard design methodology such as Brown & Root: Do(V) is introduced to
isolate the effects of real wind conditions and finite rise time. The expected fatigue
damage rate can be expressed b'!:w. as functions of both D.,. and Do(V)

E[V(V)]
E[-D(V)] = DT.s. x [ i (4.30)

DS. x. E[DX( ! (4.31)

= D.s. x xo X 1 (4.32)

where E[x] denotes the expected value of a random variable x. %y = E[Vo(I
is a discount factor to account for instantaneous fluctuations of windspeed alone.

= E[()l is a discount factor to account for finite rise time of structural response
alone.

To predict the expected fatigue damage rate requires the values of TD,.. and the
two discount factor yo and Eyl. D,.. can be calculated using standard methods once
Arnax has been estimated. Probabilistic predictions for both o and 'YI will be pre-
sented next.
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4.4.1 Predicting yo, the fatigue damage discount factor due
to instantaneous fluctuations of windspeed

Let V (t) be the time trace of the instantaneous wind speed normal to the cylinder
and Ao(t) be the time trace of the corresponding instant rise vibration amplitudes
in cross-flow direction. In other words. the value of the continuous-time series Ao(t)
at any instant t. .An(t). is the steady state vibration amplitude corresponding to
the instantaneous wind spee(l '(t,). By definition. .40 (ti) can be derived from the
corresponding V(t, ) as expresse(d below. where we define A'(t,) as the ratio of Ao(ti),
the steadv state vibration ampllitude at a particular reduced velocity 1 ;(t,) Vt,
tO Arnax, the maximum stea(lxv state vibration amplitude at the critical wind speed
aVcrzt:

t _t , =) = =f(Cl(t)) (4.33)An axr
= f((D) (4.34)

where V(ti) and I (t,) are random variables that denote the instantaneous wind
speed and the corresponding reduced velocity at time t,. Ao(ti) is a random variable
that denotes the instant rise vibration amplitude at the instantaneous wind speed
V(ti). Amax is the maximum steady state vibration amplitude, occurring at the criti-
cal wind speed Vcr,t. Amax can be predicted using various VIV design methodologies,
such as DnV, BS 8100, ESDU 85038 and Brown & Root, etc. A complete
review of these methodologies was documented in [30]. D is the diameter of the
structural member and f,, is the natural frequency of the cylinder in Hertz. f(Vr) is
the steady-state response function. It is a real function that relates the reduced veloc-
ity to the corresponding steady state vibration amplitude of the structural member.
It can be determined based on experimental evidence [31] [12]. Different expressions
of this function resulting from the models proposed by various authors were given in
Chapter 3.

Equation 4.33 shows the relationship between the random variable I ;(ti) and the
derived random variable Ao(ti). Next. the probability distribution and resulting fa-
tigue damage of instant rise vibration amplitudes will be derived from the probability
distribution of the wind speed. For simplicity, upper case letters are used to denote
random variables, while lower case letters are used to denote values of random vari-
ables. such as arguments of PDF's. For example, V and Vr are used to denote the
random variables Vl(ti) and V;(ti) respectively, and v is used to denote the value of
the random variable V.
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Probability density function of response amplitude

Let us denote pv(v) as the PDF of the wind speed; pv (vr) as the PDF of the wind
speed expressed in terms of reduced velocity: p 0 (ao) as the PDF of instant rise vibra-
tion amplitudes: pA;(a*) as the PDF of normalized instant rise vibration amplitudes.
Our immediate goal is to derive p..(a*) from plVr(vr). Such a derivation is possible
if the steady-state vibration response function, f(vr), possesses one-to-one mapping.
Consider:

' = -f-(a;) = g(a*) (4.35)
where g(a*) is the inverse function of f(tr).

Based on the theory of randon variables. the probability distribution function of
instant rise vibration amplitll(les c(an be derived from that of the wind speed as follows:

p.-(u) =pi;(g(ao)) d(a ] (4.36)
0 0 da*

If f(vr) is not a monotone. the range of variations of vr can be partitioned into
cgments within each of which the function is a monotone and

P'4 (a) = E Pvr (g (a*)) d (4.37)0 da(

where gl(a*) is the inverse mapping in the l-th segment. For the model of f(vr) in
Equation 3.5 proposed by Fei & Vandiver (Equation 3.5), there are two such non-zero
monotonic segments.

Fatigue damage assessment

If the response is deterministic and cyclic, the response and the number of cycles to
fatigue failure can be defined by an S - N curve

rSSm = c (4.38)

where S is the stress range, for cyclic stresses. S is twice the amplitude of cyclic
stresses. is the number of cycles to fatigue failure at the stress range S. m and c
are positive constants that are related to material properties.

Let V(t) denote the fraction of damage accumulated per unit time due to a random
stress S(t). According to Lin 21]. the expectation of D(t) can be expressed as follows:
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E[D(t)] = 2rnc-E.lIT(t)] j om pE (a, t)du (4.39)

where u(t) is the peak of the random stress S(t), p (a. t) is the probability density
function of stress peaks at time t. E[.lIT(t)] is the expected number of peaks of the
stress per unit time.

If the random stress S(t) is a stationary. narrow-band process, then the number
of positive stress peaks per unit time is the center frequency of the stress spectrum, ft.

E[MIT(t)] = f (4.40)

And the expected fatigue damage rate is

E[DI =- 21,.,- am pE(u)du (4.41)

For a flexible cylinder vibrating at its first mode with an amplitude A. the re-
sponse amplitude spectrum will be narrow band with a peak at the natural frequency.
Therefore. f = f. Furthermore. the maximum bending stress can be related to the
maximum displacement resnonse .4 as follows:

v = Exe

L 2 D
= ED, A (4.42)
= 2 xA (4.42)2L2

where E is the Young's Modulus of the material. is the maximum bending
strain. F, is the strain response parameter which relates the maximum deflection to
the maximum strain. It varies with different boundary conditions [30], as shown in
Table 3.1. For a pinned-pinned beam, F, = Ir2 = 9.87. D and L are, respectively, the
diameter and the total length of the member.

Because they are linearly related, the PDF of the peaks of random stresses, pE(a),
can be calculated from the PDF of the peaks of the displacement response, pA(a),
through Equation 4.42.

1 0r

pG() = FDF.PA(EDF )
2L2 2L2
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2L2 2L 2a
~~~PA( ~(4.43)EDF, EDF

Combining Equations 4.41 and 4.43. the fatigue damage rate can be expressed in
terms of the distribution of the peaks of the displacement response:

E[D] = 2"ffnc - j a Mp(o)do

EDF, 
.fc-i ( L--j A amp.4 (a)da

-( EDF, .4m mp(a)da 
EDF (-m -171 P (a)da (4.44)

The expected fatigue daniage rate assuming instant rise time. E[Do], can be ex-
pressed as follows after replacing random variable A by .40 and changing variables
from A0 to .4:

E[Do] = f ( E2 ) j 4 (ao)dao

fnC- (EDF (Amaa)m (a)d

(EDFzA m Ax )mp.4;(ao)da (4.45)

E[Do] can be further expressed in terms of the PDF of the wind speed expressed
in terms of reduced velocityv. after using Equation 4.37 in evaluating Equation 4.45:

EDF m' fo(a1 )
E[)0 ] = fn(c-'( -4m ) j (a)m pr(gl(a*)) Ida (4.46)

Equation 4.46 is used to calculate the expected fatigue damage rate of a struc-
tural member assuming instant rise to steady state amplitudes. for a given PDF of
the instantaneous wind speed.

Since unsteadiness of the wind speed has been considered. the fatigue damage
rate predicted by Equation 4.46 is expected to be smaller than the fatigue damage
rate resulting from steady state vibrations at the critical velocity of the member Vl't.
Next we shall compare E[Do] against D,S,, the fatigue damage rate resulting from
steadv state vibrations.

Let us denote D.s,. as the fatigue damage rate resulting from steady state vibra-
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tions with a constant amplitude Arax . Steady state vibrations with amplitude Amax
is the worst scenario in terms of fatigue damage accumulations. Therefore DS.. is the
largest value of fatigue damage rates among all possible wind conditions. In case of
steadv state vibrations. the probability distribution of vibration amplitudes consists
of an impulse at Amax with a linit area and zero elsewhere. Consequently Dss. can
be calculated from Equation -1 44 with proper modifications.

0EF s - '' ( ( l2) l a pA(a)da

1 , EDFi ,m 472 (4.47)
L2 -ax

Now we are ready to (ali('lliJ,(itl ,. the ratio of the fatigue damage rate assuming
instant rise time of structural i pI)Ose t the fatigue damage rate with steady state
vibrations at the critical velOu Itv. hIv combining Equations 4.45 and 4.47:

-4*nz fAn (a') mp.4; (a)da
4m
-max

-;( ()p) m , (ga)) d( 9 (a ) I da; (4.48)

From Equation 4.48, the determinants of yo include: m, the exponent of the S-N
curve, which depends on the material properties of the structural member; f(vr) or
g1(a*), the steady-state response function or its inverse function. which depends on
selection of one of many different models proposed by various authors. p;. (vr), which
in turn depends on pv(v) and Ir;.,t, the PDF of the wind speed and the critical wind
speed respectively. Among the three determinants. p,; (v,) can change considerably
with different PDF's of wind speed and different critical wind speeds resulting from
different structural members. Consequently, for any arbitrarily specified distribution
of the wind speed. 'o can only be calculated numerically by Equation 4.48. yo does
not depend on the exact vibration mode shape and therefore does not depend on the
particular boundary conditions or fixity of the member. It does depend indirectly on
these quantities because the value of the reduced velocity 1V, depends on the natural
frequency.

However. for the case that the wind speed distribution can be fully specified by
a few parameters. such as the mean and the variance for Gaussian PDF's. then it is
possible to present graphically the values of %,0 as functions of these parameters for
the whole class of windspeed distributions. For example, if the wind speed distribu-
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Figure 4-5: Values of ,o0 as functions of nean w;n.! speed VI and the critical wind
speed of the structural member ;.rit for Gaussianly-distributed windspeed and the
turbulence intensity of 10%.

tion is Gaussian. then the value of -o can be determined by values of m, f(v,), V,
0v and Vcrt. If we further fix the values of m and f(Lr). then o only depends on

the following three parameters: I . oly and r,t. Therefore, in the case that the wind
speed distribution is Gaussian. %I'o can be presented in the form of a 3-dimensional
contour plot for different values of lV'. a and I crit.

Figure 4-5 shows a 2-dimensional contour plot for values of yo as functions of V
and V'rt. In this Figure. the wind speed distribution is assumed to be Gaussian. and
the standard deviation of the wind speed a- is assumed to be 10% of the mean wind
speed m is assigned to a value of 3.74. a typical value for steel members; The model
proposed by Fei & Vandiver (Equation 3.5) is used for f(r).

The mean windspeed is itself a random variable and it is not always right at the
critical velocity of the member. Even though there are instances when the mean
windspeed happens to be at the critical velocity of the member. fluctuations of the
instantaneous windspeed would allow the member to develop critical responses as
well as off-critical responses. Off-critical response amplitudes are less than critical
response amplitudes, thus making smaller contributions to fatigue darhage accumu-
lations than critical responses do. Therefore. -,0 is always less than 1. As shown in
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Figure 4-5 for a 10% turbulence level, the maximum value of Yo is less than 0.25,
indicating that an estimate of fatigue damage rate based on conservative maximum
steady state vibrations is four times as big as the fatigue damage rate based on instant
rise time model.

Values of yo decay quickly as the mean windspeed moves away from the critical
velocity, indicating the wind conditions are not favorable in developing VIV. Values
of yO also varies with the standard deviation of the windspeed. The smaller the stan-
dard deviation, the more that the windspeed looks like steady-state. and the larger
will be the value of o.

Figure 4-6 shows the variations of yo with mean windspeeds at turbulence inten-
sity levels (v) of .5%, 10% and 15% respectively. In this figure, the instantaneous
windspeed was assumed to be Gaussian. The mean windspeeds were normalized by
an arbitrary chosen value of I ,,t. As we will show later in this chapter when the prob-
abilistic model was verified using real maritime wind data, for Gaussianlv-distributed
instantaneous windspeeds, -O depends only on - and the turbulence intensity level

In current design codes. the conservative assumption is often made that if the
critical windspeed for a member coincides with any part of a discrete windspeed bin
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then the probability of encountering that critical windspeed is equal to the probabil-
ity of encountering that bin. The effect of a finite bin size will be studied in Chapter 5.

4.4.2 Predicting FyI, the fatigue damage discount factor due
to structural response rise time

The natural fluctuation of the wind speed often does not allow fully developed vi-
brations. The actual fatigue damage rate of structural members in natural winds,
therefore, depends on the relative length of the duration of visit to the rise time of
a structural response mode. To model the effect of finite rise time, it is postulated
that 1i, the fatigue damage d(iscount factor caused by the finite rise time of structural
response, is a function that has the following form:

1 (m, (nE[a .b]]) (4.49)
where [a, b] is defined as the critical velocity interval of a structural member. Val-

ues of a and b are determined by I ,rt. 7T.ab] is the duration of a visit by the windspeed
to the interval [a, b]. (';nE[Ta,b]] is the ratio of E[7Ta,b]], the mean duration of a visit
by the wind s,;peed to the critical velocity interval [a, b], to i-, the structural rise
time. This ratio is defined as r. D is the correct fatigue damage rate of the structural
member excited by random winds accounting for finite rise time. Do is the fatigue
damage rate assuming instant rise time. q(m, r) is a real function that relates the
fatigue damage reduction factor ^i/ to r. the ratio of the duration of a visit by the
wind speed to rise time. m, is the exponent from the S - .N curve expression in
Equation 4.38.

The function q can be estimated by Monte Carlo simulations using the following
steps:

* Generating Wind Speed. A time history of a Gaussianlv distributed wind speed
with a specified spectrum can be generated by providing Gaussianlv dis-
tributed white noise, as input to an optimum AutoRegressive MovingAverage

'The windspeed spectrum was defined as [27]:

320 x (0.1lo) 2 x (O.1Z)0 4 ( )
St,(f) = (4.50)

(1 + fn)3

Nwhere f = 172 x f x (0.1Z)3 x (0.1']o)0)-0 75: n = 0.468; Sv(f) is the power spectral density at
frequency f in Hertz; Z is the height above sea level in meters; Vois the 1 hour mean g-ind speed at 10
meters above sea level. This formula results from extensive windspeed measurements at Sletringen,
Norway. and has been proposed as a model spectrum for design of North Sea structures [27].
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filter, which best simulates the target spectrum [28]. The generated wind speed
is denoted by V(t). This simulation may of course be replaced by using real
wind data.

Calculating the Excztathon Force and Response. Due to single mode dominance
of VINV response. the vibration of the cylinder is regarded as the same as that of
an equivalent single deyuree of freedom oscillator which has been obtained using
the techniques of mno(al iallahsis.

,- 2' . + 2t2X = f cosw ut (4.51)

where x(t) is the mid(l-iii vibration response amplitude of the cylinder to the
given excitation. C i- hel iieasulred structural damping ratio of the cylinder.
.n is the natural freqllirl( v ,t the nth mode in radians per second and fa is the
amplitude of the nmoial exa Itlation force per unit modal mass of the oscillator
and is to be determlledl li,Ii the generated wind speed. Assuming that the
wind speed is held at t (onstant value of IV(ti), the vibration of the cylinder
would eventuallv reach a steady state given by

1
x(t,) = .it,) siin , = .2 f f(ti) sinw,t (4.52)

where A(t2 ) is the steady state vibration amplitude. and is given by

fa(tz)A(ti) = (4.53)

The sin wnt term accounts for the periodicitv' of the lift force and is assumed
to be independent and uncoupled from the amplitude modulation caused by
variations in V(t,). At any given time t. the amplitude of the excitation force.
fa(t,), can be derived from the value of the instantaneous wind speed V(ti) in a
wav such that the corresponding steady state vibration amplitude at the wind-
speed lt'(ti) could be predicted in terms of the steady-state response function
as follows:

2-(t) = .naxf = 4mv f(V;(ti)) (4.54)

or. equivalently

f,(t,) = 2-4m,,.f( (t,)) (.55)
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At this point an important approximation is necessary which has proven to be
quite accurate. The excitation fa(ti) evaluated above is derived from the the
steady state magnitude of the periodic lift force which would be required to
drive the cylinder to the steady state response amplitude corresponding to the
reduced velocity. Since the lift coefficient changes with response amplitudes,
the approximation is made here that as the cylinder vibration rises toward the
steady state value. the periodic excitation force magnitude stays constant. In
other words. during finite rise time. the lift coefficient is assumed to be con-
stant at the value which would correspond to the final steady state response
amplitude. W\ith this alproximation we may estimate the excitation which cor-
responds to any wind seed IV(t).

Due to changes in wind speed l'(t,) and therefore changes in reduced velocity
I (t,), the vibration res)ponse will be modulated in amplitude. These modula-
tions in response may he( estimated b a standard convolution integral of the
time varying excitation force..f,it,). and the impulse response function for the
oscillator, as follows.

x(t) f,() COS (,7)e-Cn(t-T)
Wd

x sin (Wd(t - r))dr (4.56)

where wd is the damped natural frequency and >'d = W'nV -- 

Calculating the fatigue damage rates. Vibrations of an elastic cylinder cause
cyclic bending stresses, which result in fatigue damage. The fatigue damage,
_., resulting from the ith cycle of stresses. can be expressed as below.

A = -I (4.57)

where NVi is the number of cvycles to fatigue failure at the stress range vi, for
cyclic stresses. a, is twice the amplitude of cyclic stresses. The total fatigue
damage accumulated over the duration of stresses. . could be expressed as the
sum of Ai over the total number of the applied cyclic stresses, n, as follows.

n

. = Ei (4.58)

n 1

(4 59)
7=:-~

106



n
C-l Eam (4.60)

2=1

where c and m are the constants of the S - NV curve that were shown in Equa-
tion 4.38. By virtue of the relationship between the peaks of vibrations and the
peaks of stresses shown in Equation 4.42. could be further expressed in terms
of the peaks of vibrations as follows

EDF i
_ = ( EDF) m (4.61)

where X(t) is the envelope of the transient vibration x(t) that was derived from
Equation 4.56. X, is the discrete sequence of X(t) sampled at f,, the natural
frequency of the member. E is the Young's modulus of the material. F, is the
strain response parameter. It varies with different boundary conditions (see
Table 3.1). For a pinned-pinned beam. F, = 9.87. D and L are. respectively,
the diameter and the total length of the member.

The fatigue damage rate. D. can be calculated as below.

fn EDF n
D7 =-En =- -n _( E )m E Xm (4.62)n nc L =

The fatigue damage rate assuming instant rise time, Do. can also be calculated
as below.

Do = fEDF)m(-4o)m (4.63)
2=1

where (A0) is the steady state vibration amplitude at the wind speed Vi.

The ratio of the fatigue damage rates between finite rise time and instant rise
time can be expressed as follows.

D _ N
Do L=( A ) (4.64)

Calculating the Time Scales.

A time history of a Gaussianlv distributed wind speed with a target spectrum
was created as the output of an ARMA filter. as previously described. The
mean duration of a visit b the wind speed to the critical velocity interval and
the rise time of the natural mode were also calculated from Equations 4.6 and
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4.25 respectively. based on the wind statistics derived from the simulated wind
speed record. The ratio between the two time scales as defined previously as
r = wnEtn[b ,] was computed.

For each simulated time history of Gaussianlv distributed wind speed. a single
pair of values ( r) as formed. This pair relates the ratio of actual fatigue
damage rate to that assuming instant rise. to r, the ratio of the mean duration of a
visit bv the windspeed (to the critical velocity interval) to rise time.

The above steps were repeated to generate wind speed records with different hourly
means, to calculate the fatigulle damage rates of a single structural member. and to
find the durations of a visit }) the wind speed to the critical velocity interval, until
a considerable number of such pairs H r) were formed. An empirical relationship
between AD and r was identified as the curve which minimizes the least square error
to the results of the Mlfonte Carlo simulations.

The following empirical expressions were identified as the best fit to the results of
the Monte Carlo simulations based on the least square error technique.

ED1 (1 - exp (-0.9359r °' 2541) m = 3.0
0'i = -,-, = - exp (-0.7093r02859 ) m = 3.74 (4.65)

1 - exp (-0.5718r ° 30 85 ) m = 4.38

where r = (WnE[Ta.bij. Equation 4.65 is plotted in Figure 4-7 with the results of
the numerical simulations.

Figure 4-7 shows that ^l increases as r increases, but decreases as m increases. It
means that the effect of finite rise on fatigue damage diminishes for long durations of
visit to the critical windspeed interval (steady state vibrations at constant winds are
an extreme example) or for members with short rise times (large structural damping
ratio. for example). Values of 'Yl corresponding to values of m different from 3.0, 3.74
or 4.38 can be either interpolated from Figure 4-7 when m is between 3.0 and 4.38, or
calculated based on the same technique of Monte Carlo simulations described above
for other values of m.

The reason why , is insensitive to the ratio is illustrated by Figure 4-

8. Figure 4-8 shows the normalized values of both yo and 0'l as functions of ,
where yo was predicted bv the probabilistic model assuming Gaussian windspeed and

= 0.09. To find the variation of with the variation of the Gaussian duration
with l',,it were taken from Figure 4-4. where the Gaussian durations were calculated
based on the average wind statistics derived from the raw windspeed records. These
records exhibit a mean windspeed close to 15 [ms - ] and 8 turbulence intensity.
The maximum Gaussian duration was 23 seconds. Two values of structural rise time
were selected so that r. the ratio of the mean duration to the rise time could be
formed and - 1 could be calculated. One rise time was 100 seconds, and the maximum
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Figure 4-7: Variation of A,: with r. the ratio of the mca: dJuration of a visit to
structural response rise time

value of r was 0.23. The second rise time was 10 seconds, and the maximum value
of r was 2.3. According to Figure 4-11, 0.23 and 2.3 represent the small and large
extreme values of r. The two different r versus /crit curves corresponding to different
values of the rise time were formed. Values of r were further translated into values of
7Y based on the following equation:

', = 1 - exp(-0.7093r ®0 2 8 59) (4.66)

This equation was from the results of Monte Carlo numerical simulations shown
in Equation 4.65. assuming a S - N curve with m = 3.74.

For each of the two rise times. ( wa)max was the maximum value of ^Y. Values of
71 were plotted against , inl Figure 4-8. where l = 15 [m.s-l

(Y )max

Figure 4-8 reveals that -,, is far more sensitive to the values of than , is.
It means that the shape of ('/0 x 'l) versus -i; curve is controlled by .o This
fact considerably simplifies the development of a model which corrects the prediction
error caused by discretizing the mean windspeed. Such a model will be discussed in
Chapter 5.
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4.5 Examples

4.5.1 Implementing the probabilistic model
An example is given to demonstrate the implementation of the proposed probabilis-
tic model. The fatigue damage rate of a flexible cylinder is predicted based on the
probabilistic model. The cylinder. a tube made of carbon-fiber, is assumed to have
pinned-pinned ends. Structural parameters of the cylinder. such as the total length,
diameter and the natural frequency. are described in Table 4.1.

For the purpose of illustrating the use of the proposed probabilistic model, we
assume that both the PDF and the power spectral density function of the wind speed
are given. The PDF of the wind speed is assumed to be Gaussian with a PDF pv(v),
a mean V and a variance a. The Gaussian assumption was shown to be a conserva-
tive and useful approximation to natural winds.

(4.67)V() = i ep (-( 2)p,(,)= /_~ , ep i' )

where V' is the hourly mean wind speed. and or- is the standard deviation of the
wind speed. Values of both quantities will be assigned below in Step 1.
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The wind speed spectrum is defined b Equation 4.50. Reiterating

320 x (0.1Wo 2 x (O.1Z)0 4 5

Sv(.f) = 5
(1 ) 3n

where = 172 x f x (O.1Z): x (0.1lo)- 3 5: n = 0.468: Sv-(f) [m2 s-1] is the
power spectral density function at frequency f s-l]; Z [m] is the height above sea
level: lo0 is the hourly mean wind speed at 10 meters above sea level. The member
is assumed to be at 10 meters above sea level. thus Z=10 meters and l-W0 = /V.

It is important to recognize that wind speeds may behave quite differently in dif-
ferent geographic areas. The use of the wind speed spectrum defined by Equation 4.50
may not generalize to all environments.

Step 1: to estimate a- and orl>
To assess the fatigue damate discount factor ^1 requires calculating the mean dura-
tion of a visit by the wind %'peed to te critical velocity interval. from wind statistics.
The required wind statistics are the standard deviations of the wind speed, V, and its
time derivative, 1V. In this example, we assume that a database of local wind statistics
from which the values of both standard deviations can be derived is not available. but
that the power spectral density function of the windspeed given in Equation 4.50 is
adequate to describe the local wind environment. Consequently we have to estimate
the values of both standard deviations from the given power spectral density function
of the windspeed, after a value of Vlo is assigned.

The hourly mean wind speed is assumed to be at the critical velocity of the mem-
ber. The critical velocity lrt is defined to correspond to a reduced velocity value of
6, at which the maximum steady state vibration of the tube would be achieved based
on the observation of the results from the wind tunnel experiments.

VI = l-o = 6.0f,D = 9.38 [m.s- l] (4.68)

The standard deviation of the wind speed, cr. and the standard deviation of the
wind acceleration, cur. are calculated using Equations 4.21 and 4.22. The cut-off fre-
quenc is chosen to be 0.425 Hertz, half of the sampling frequency of the windspeed
measurements from which the wvindspeed spectrum was derived.

After the cut-off frequency is defined. both ar- and - can be calculated as follows.
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71 = •/ J Sv (f)df = 0.8880 [nms-li

,- = 27 ./f f 2 Sv(f)df = 0.5001 [m s-2].

The above integrations were implemented numerically using Szmpsons rule. 1000
frequency intervals were evenly divided between 0 and 0.45 Hertz. which corresponds
to a frequency resolution of 4.5 x 10- 4 Hertz.

The critical reduced velocity interval was defined as 5. 6.5]. consistent with re-
sults of our wind tunnel experiments. The corresponding lower and upper bounds of
the critical velocity interval were .82 and 10.16 meters per second respectively. The
cumulative distribution function of the windspeed at the lower and upper bounds
of the critical velocity interval was calculated to be 0.03931 and 0.8114 respectively,
based on the assumption of Gaussianly-distributed windspeed and using the PDF
from Equation 4.67.

Step 2: to calculate E[[a.b]] and 1

To calculate E[7a.b. the mean duration of a visit by the wind speed to the critical
velocity interval, requires the values of the mean upcrossing rates by the wind speed
at levels a = 7.82 [m.s-1] and b = 10.16 [ms - 1] respectively. Since the wind speed is
assumed to be Gaussian, the mean upcrossing rate at a level 0 is known as follows:

1 av e x p ((0-V')2zve = 2 X exp(- 22 ) (4.69)

Using the above equation and the values of 0 v and ua.. the mean upcrossing rates
at levels a and b are 0.0191 and 0.0607 per second respectively.

Having obtained all of its determinants, the mean duration of a visit by the wind
speed to the critical velocity interval can be calculated as follows.

E[T. =:] Flv(b) - F.(a)
" + +

0.8114 - 0.0393

0.0191 + 0.0607
= 9.6753 [s]

Another key time scale is the rise time of the structural response. and it can be
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calculated directly from the structural parameters as follows.

1 1

f(in' (0.0035 x 2 x 3.1416 x 32.375
= .-4045 s

The ratio of the two till ('asles is r = (wnE[7a,b] = 9.6753/1.4045 = 6.8885.
In other words the mean (liration of visit is 6.9 times the rise time of the structural
member.

Step 3: to predict ^
To predict the combined fatit (l dailrlage discount factor q/, or the ratio of the fatigue
damage rate with real winl ( llitlons to the fatigue damage rate with steady state
conditions. we need to calciite the following two quantities. The first quantity is
o0, or the ratio of the fatigue dilanage rate assuming instant rise time to the fatigue

damage rate with steady state (onditions. %^ accounts for the effect of instantaneous
windspeed fluctuations on structural fatigue damage alone, and it can be calculated
using Equation 4.48, Reiterating as follows:

%Q = A0 ((Z()) 5sr(i, |gg ((*) ) da* (4.70)da* d
where f(vr) is the steady-state response function. g(a*) is the inverse mapping

of the function f(v,) in the -til segment. and it is only defined when 0 < a < 1.
For the model of f(vr) proposed by Fei & Vandiver [13] there are two such non-zero
monotonic segments, namely gyl(cza) and g2 (a*). In this example, functions f(vr),
gl(a*) and g2(a*) that were proposed by Fei & Vandiver are used:

v - 5.0 5.0 < t, < 6.0
f(Vr) = 2(6.5 - L,) 6.0 < v, < 6.5 (4.71)

0 otherwise

g1(a*) = 5.0 +a (4.72)

92(a0) = 6.5 - 0.a (4.73)

pv;(,) is the PDF of the windspeed expressed. in terms of reduced velocities.
Based on the theory of random variables. pr, (r,) can be expressed directly in terms
of p-(tL). the PDF of the windspeed:
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pv,;(V) = f,D x pi,(fAD x vr)

6 X pv( 6 x V) (4.74)
6 6

Equation 4.70 for calculating the value of 7o can be re-organized as follows after
the substitutions of Equations 4.72. 4.73. 4.74:

O = 1 C7t (a*)' {p((5- + -o) 0.5pv((6.5 - 0.5a*) } dao (4.75)

Since the PDF of the winldspeed is assumed to be Gaussian, -0 can be calculated
numerically for any given value of rn (exponent of S - N curve). In this example,
Integration in Equation 4.75 is implemented numerically using the Trapezoidal's rule.
The value of the exponent of the S - .\ curve is chosen to be 3.74. 1000 uniformly-
distributed intervals are divided b,)tween the lower and upper limit of the integration.
The corresponding value of ^,( from the numerical integration is 0.2116.

The second quantity needed for the combined fatigue damage discount factor is Il,
or the ratio of th,- arigue damage rates between the probabilistic model and instant
rise time model. which takes into account of the finite rise time of structural response.
This ratio was assumed to depend only on r. the ratio of the mean duration to rise
time, and can be calculated by Equation 4.65. Assuming the exponent of the S - N
curve to be 3.74 (this is a typical value for steel, not carbon fiber. but is used here
for example purposes only), the ratio of fatigue damage rates may be calculated as
follows.

y1 = 1 - exp (-0.7093r2 85 9 )
= 1 - exp (-0.7093 x 6.88850.2859)

- 0.7082

The combined fatigue damage discount factor, ^,. is the product of %o and yl:

= 0.2116 x 0.7082

= 0.15

The result shows that the combined fatigue damage discount factor is 0.15 or
equivalently, the increase in fatigue life of structural members in real wind conditions
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is about times as that based on conservative steadv state vibrations. Between the
two factors contributing to the fatigue damage rate reduction factor, the effect of
the instantaneous windspeed fluctuations alone seems to be a dominant factor in this
example. because of a large value of r. But the effect of finite rise time could be
important when the duration to rise time ratio is small, as in the case when the mean
windspeed does not coincide with the critical velocity of the member.

Table 4.1 summaries the use of the three step implementation of the probabilistic
model on the worked example.

section variable name [ variable symbol I variable value SI units
input L total length 2.0955 [m]

D outside diameter 0.0483 [m]
t wall thickness 0.0023 [ml
fl t natural frequency 32.375 [s- 1l

Icrit critical velocity 9.38 [ms-
structural damping ratio 0.35%

Z height above sea level 10 [mj
step 1 Vi mean windspeed 9.38 [ms-'l

lv standard deviation of windspeed 0.8880 [m.s- ' l
f, . standard deviation of V 0.5001 [m s- 2

a lower bound of the critical i 7.82
vel citv i+*r,'-l

b upper bound of the critical 10.16
velocitS interval

Fv (a) CDF of windspeed at a 1 0.0393
, Fv(b) CDF of windspeed at b 0.8114

step 2 71 non-normality factor 1 1.00
u+ _ mean upcrossing rate at a 0.0191 [s-

mean upcrossing rate at b 0.0607 [s - ]

E[7[a,b]] mean duration of visit i 9.6753 [s]
to interval [a. b 

~wl E[7,b]] ratio of mean duration
of visit to rise time 6.8885

step 3 m exponent of S - curve 3.74
= fatigue damage discount factor caused b I 0.2116

instantaneous windspeed fluctuations i
l1 = ElD]7 fatigue damage discount factor caused by i 0.7082

finite rise time of structural response

... combined fatigue damage discount factor 1 0.15
_ E'I . increase in fatigue life 6.67
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4.5.2 Using the probabilistic model based on wind statistics
from raw wind data

In this example, the fatigue damage of a structural member of Exxon's Harmony
and Heritage platforms during transpacific tow is evaluated using both the proba-
bilistic model and the time domain VIV model. Our confidence in the probabilistic
model will be increased if the fatigue damage predicted by both models is comparable.

A real structural member of Exxon's Harmony and Heritage platforms is selected
from Grundmeier et al. 161. The structural parameters of the member is given below.

* Diameter = 0.51 [in] (20 inl).

* Natural Frequency = 4.2.5 s - ' .

* Critical Velocity = 12.96 [m.s- .

· Length = 24.38 [m] (80 [ft]).

* Structural Damping = 0.1.5 c.

Figure 4-9 shows a time trace of the instantaneous windspeed at approximately
375 feet above the water during a transpacific tow [7]. The record is 30 minutes long
and is sampled at 2 Hertz. This windspeed record will be input for both prediction
models. The sample statistics of this record are as follows:

* V = 12.64 [m.s- 1] (28.27 mph]).

* av = 0.90 [ms- l] (2.01 [mph]).

a = 0.34 [ms-2].

* kurtosis = 2.95 (close to the Gaussian value of 3.0).

Table 4.2 shows the values of l predicted from both the probabilistic model and
the time domain V\IV model. Since ^ was defined as the fatigue discount factor (the
ratio of the fatigue damage rate with real conditions to the fatigue damage rate with
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Figire 4-0- Time trace of the windspeed from transpacific tow, from Campbell (1992)

steady-state conditions at a mean windspeed equal to Vcrit), is the effective increase
in fatigue life compared to the estimate based on maximum steady-state vibrations.
The values of ¼ (increase in fatigue life) predicted by the time domain model are
4.90. 6.83 and 8.93, depending on the values of the exponent of the S - N\ curve.
These values are relatively low because the mean windspeed happens to be close to
the critical velocity of the member. which increases the probability of large-amplitude
vibrations. It is expected that the values of - increase significantly as the critical ve-
locitv of individual members moves awav from the mean windspeed.

It is apparent that the predictions from the probabilistic model agree well with

D00

Table 4.2: Results of
probabilistic model

the predictions from both time domain VIV nodel and the
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time domain VIV model probabilistic model
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the predictions from the time domain VIV model. thus giving confidence to the pre-
diction model. However, a single record is not sufficient to validate the approach.
This is done in the next section using an extensive data base.

4.6 Verification of probabilistic prediction method-
ology using high sampling rate real wind data

In this section. the fatigue dalllage of a real structural member exposed in a marine
site is predicted using both the probabilistic model and the time domain VIV model.
Wind data with varying nmeran windspeeds and turbulence levels will be used.

A real structural member i. selected from Harmony and Heritage platforms [16].
The structural parameters of tihe member is given below.

* Diameter = 0.91 [m] (36 i).

* Total length = 33.53 [rnm 110 ft]).

* Natural frequency = 4.13 s-'].

* Critical velocity = 22.64 m.s- l]

* Structural damping = 0.15%Cc.

The wind data are utilized in the following way. For each 40-minute long wind-
speed record, the time domain VIV model developed in Chapter 3 was used to calcu-
late the corresponding time series of transient vibrations. %'0 was calculated directly
from the raw windspeed data through the steady-state response function f(vr). Es-
timates of -yl were calculated from the transient vibrations. For comparison, wind
statistics were calculated directly from the time series of each 40-minute windspeed
record. These wind statistics include the 40-minute mean windspeed, 17. the standard
deviation of the windspeed a-. and the standard deviation of the time derivative of
the windspeed. o(ry. Based on these wind statistics. the probabilistic model proposed
in this chapter was used to predict the values of ,0O and T1. These predicted values of
'0O and ty were then compared with the results from the time domain model.

In order to improve the time domain statistics of the estimates, 2 hour long wind-
speed records were created by grouping together 3 similar 40-minute records. The
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values of , predicted by both the probabilistic model and the time domain model
were compared based on the procedure described in the previous paragraph.

An important assumption was made in the predictions using the probabilistic
model. The instantaneous windspeed is assumed to be a Gaussian process. This as-
sumption enables closed-form solutions to the probabilistic model for both %y0 and l
that only depend on a limited number of parameters. The Gaussian assumption for
the instantaneous windspeed greatly simplifies the design process for fatigue-resistant
structural members caused by vortex-induced vibrations. This assumption was proven
to be useful and conservative from the analysis of raw windspeed data earlier in this
chapter.

4.6.1 Verifying yo
By definition from Equation -1.48:

E[Do]

/° aD)'vs( ~s.dg,(c)
(a*)) daO (4.76)

where E[Do] is the expected fatigue damage rate assuming instant (zero) struc-
tural rise time. D. is the fatigue damage rate resulting from steady state vibrations
at the critical velocity of the member. Pv,(x) is the PDF of the instantaneous wind-
speed expressed in terms of the reduced velocity. gl(a') is the inverse mapping of the
steady-state response function (f(v,)) in the I-th segment. For the model of f(tr)
proposed by Fei & Vandiver (Equation 3.5) there are two such non-zero monotonic
segments. namely gl(a*) and g2 (a*). They are given as follows:

g1(a*) = 5.0 + a (4.77)

92(a*) = 6.5 - 0.5a (4.78)

Since V = f and V are linearly related, the PDF of the windspeed expressed
in terms of the reduced velocitv can be expressed directly in terms of the PDF of the
windspeed as follows.

pv;(vr) = f.D x pv(fnD x ,r)
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citx P" ci x r) (4.79)
6 6

where pv(x) is the PDF of the instantaneous windspeed.

Equation 4.76 can be re-written in the following form after the corresponding
terms in the equation are replaced by Equations 4.77. 4.78 and 4.79.

I O.,., fo j),~ {p(vj) 0. 5p,-(L2)} da,*
O0 6 (a-) m {9)}d (4.80)

where

(3 + a*) ,rt

6
( 6.5 - 0.5a) lcrzt

i,2 6

Since the PDF of the windspeed is assumed to be Gaussian with a mean V and
a standard deviation of ao;. then pl(x) = exp(- )(- . After algebraic ma-
nipuiations, the value of %yo can be shown to only depend on three dimensionless
parameters given as below.

rv I^. 0 - .o( m)v, Vit'
V

-= (T., .m) (4.81)

where T, = ~ is the turbulence intensity level.

Equations 4.80 and 4.81 show that for given values of the turbulence intensity
level, the ratio of the mean windspeed to the critical velocity of the member and the
slope of the S - A' curve, yo of the probabilistic model can be calculated by means of
numerical integration. While the critical velocity of the member is a known quantity
for a given structural member, values of V and a need to be specified. These two
wind statistics can be calculated directly from the windspeed samples.

To test the Gaussian assumption for the estimation of ^io, a series of 40-minute
continuous windspeed samples was used. Let {1 } be the windspeed samples of a
40-minute record but re-sampled at the natural frequency of the member. Let {Ai}
be the envelope of the transient vibration amplitudes assuming instant structural rise
time. Ai was calculated directly from the instantaneous windspeed as follows:
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4, f ( ) x Amax (4.82)

where f(vr) is the steadv-state response function. A model for f(vr) proposed by
Fei & Vandiver [13] is recomnlmlnde d and is given below.

;.- 5.0 .. 0 < < 6.0
( (6.5 - 1,;.) 6.0 < lr < 6.5 (4.83)

otherwise

where Aax is the maxli\llllil steady state vibration amplitude at the critical ve-
locitv of the member. . sho,,vn later. .0 is independent of the value of Amax, there
is no need to calculate the vtiell of Am,,, at this point.

By definition. %-o was cai( iiret( as follows.

E[Do]

D. .

i= = max
Ein (f( )) m

f,,fn~ D ~(4.84)
n

where n is the total number of natural vibration periods in 40 minutes.

Figure 4-10 shows the values of -,0 calculated from Equation 4.84 as a function
of the ratio of the mean windspeed to the critical velocity of the member. These
raw wind records have turbulence intensity between 9% to 11%. The values of yo
predicted by the probabilistic model, as shown in Equation 4.80, are also plotted as
a function of the ratio of the mean windspeed to the critical velocity of the member
at the turbulence intensity of 9% and 11%. The predictions are shown to agree well
with the true values of %Yo directly calculated from the windspeed records.

4.6.2 Verifying -/l
By definition in Equation 4.49:

E[D]
~ = E[D0] (4.85)

The probabilistic model states that ^,1 is determined by the ratio of the mean du-
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ratio of te mean -windspeed to the critical

ration of a visit by the windspeed into the critical velocity interval to the structural
rise time. This relationship was established by the empirical formula given below as
a result from Monte Carlo numerical simulations.

r = (wE[T,
1 - e)

Y = 1 - e>

- e

z.b]]

,p (-0.9359r ° 2541)
cp (-0.7093r ° 28 5 9 )

.p (-0.5718r °30 85)

where E[7Ta.bl is the mean duration of a visit by the windspeed into the critical ve-
locity interval [a. b]. E[T7,b]] is given helow for any given PDF of the windspeed pv(x).

(4.87), ,I F (b) - F -(a)
v= t + 1C

where Fx-(x) is the CDF of the windspeed evaluated at x. v: is the mean rate of
crossing the level I' = x at positive slopes. If the instantaneous windspeed is a Gaus-
sian process. then E[7a,b]] can be expressed explicitly in terms of the wind statistics
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such as V. av and oa., and the values of a and b as follows

E[fa.b ] = 2ep (- 2 (41.88)
2r o'v a- . 2a

After simplifications. E[~T.b]l can be shown to depend only on three quantities:
v: a and . These will significantly simplify the implementation of the proba-

bilistic model since this model only requires input of few wind statistics such as V,
auv or TE, and al..

To validate the empirical formula for predicting 'yl from the ratio of the mean du-
ration to the structural rise time. the time domain VIV model developed in Chapter 3
was used to calculate the values of -'v from a series a 40-minute windspeed records.
For each windspeed record, the transient vibrations of the member were calculated.
The value of %il is the ratio of the fatigue damage rate resulting from transient vi-
brations to the fatigue damage rate assuming the instant structural rise time. Let
Xi be the envelope of the transient vibration amplitudes sampled at the vibration
frequency over a period of 40 minutes. Xi was the output of the time domain VIV
model. Let Ai be the envelope of the vibrations assuming instant structural rise time.
Ai was calculated directly from the windspeed record by Equation 4.82. Thn l ,an
be calculated as follows.

E[DI
E [DO!

nL Xn

L=l - t (4.89)

where n is the total number of vibration cycles in 40 minutes.

To estimate the value of E[T7a,b]] which corresponded to the value of 'y, from Equa-
tion 4.89, wind statistics were calculated from the same 40-minute windspeed records
which were used to calculate -l. These wind statistics included the 40-minute mean
windspeed, V, the standard deviation of the w-indspeed. oa-. and the standard de-
viation of the time derivative of the windspeed. a,. The value of E[7ja,b]] was then
calculated using Equation 4.88. This value of ELTa,bl] was an estimate of the mean
duration of a visit using a Gaussianlv-distributed windspeed model. This Gaussian
windspeed had the identical values of V'. ao- and a. as those of the true windspeed
(which may not have been Gaussian). The estimated mean duration for the Gaussian
windspeed model was consistently longer than that of the actual windspeed record,
as was shown when the Gaussian assumption was introduced earlier in this chapter.
Therefore, Equation 4.88 will give a conservative estimate of E[Ta,b]].
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Figure 4-11: 'ariatl,,, ,.f 'l with the ratio of the mean duration to the rise time

Figure 4-11 shows the variation of ^l with the ratio of the mean duration to the
rise time as computed by the empirical formula in Equation 4.86. and compared to
the pairs ((WnE[7a,b]],^l) calculated from the time domain VrIV model using Equa-
tions 4.88 and 4.89. The empirical formula is seen to provide a conservative prediction
of lYI

4.6.3 Verifying the predictions based on longer-term wind
data

In this section, 2 hour long stationary windspeed records have been assembled from
the wind data base. 6 such files have been constructed, each consisting of 3 selected
40-minute single files. These six files have (2 hour) mean windspeeds ranging from
14 [m.s- '] to 29 [m.s-l]. For each of the 6 files. values of n, are calculated for the
selected structural member using both the time domain model and the probabilistic
model. In using the probabilistic model. the wind statistics such as T and Oal are
estimated directly from the 2 hour long windspeed records.

Figure 4-12 shows the values of , calculated from both models as a function of
X~" assuming the slope of S - X curve is 3.74. The results from the probabilistic
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Figure 4-12: Values of ^, as a function of ~i Lazz' on the time domain model and
the probabilistic model. slope of S - ¥ curve = 3.74. Reduced velocity range is from
3.8 to .7

model are consistently higher than those from the time domain model. which shows
the conservative nature of the probabilistic model. Never the less, the peak value of
? from the probabilistic model is less than 0.1. which would give a greater than 10
increase in the fatigue life of the member compared to the steady state estimate.

4.7 Summary
A probabilistic model is proposed to predict the fatigue damage of an offshore struc-
tural member caused by natural winds. This model assumes that natural wind is a
Gaussianly-distributed random process with a given mean windspeed and standard
deviation. After analyzing relevant wind statistics and structural parameters. this
model identifies two factors which would significantly improve the fatigue damage
estimate. The probabilistic model is illustrated through worked examples.

The probabilistic model is verified against the time domain model using high
sampling rate real windspeed data. These wind data were recorded. in a typical
maritime wind environment. For a typical offshore structural member and a given
windspeed record, the time domain predictions were based on the raw windspeed
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records, while the probabilistic predictions were carried out based on the sample
wind statistics that are derived from the raw Nwindspeed records. Results revealed
that the assumption of Gaussianlv-distributed natural windspeeds leads to a slightly
conservative estimate of fatigue damage. but nonetheless yields a factor of more than
10 increase in fatigue life when compared to conventional fatigue damage estimates
based on steadv state vibrations at the critical windspeed.
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Chapter 5

Effects of Discretizing the PDF of
Mean Windspeeds

5.1 Fatigue damage of a structural member when
the mean windspeed is a random variable

The annual estimated fatigue damage rate should take into account the PDF of the
mean windspeed. Suppose that the mean windspeed is a continuous random variable
with a pecified PDF. p 4(v). as shown in Figure 5-1. The expected value of the fa-
tigue damage discount factor can be expressed in terms of pf-(v) as follows:

rx
E[] = ()p ( ~)d ~

/o 0 (D) ̂  ()pf-, l!de (5.1)

where 'y(V) = 7'(v) x yl(/J) is the fatigue damage discount factor at a constant
mean windspeed , where -/(v) was defined earlier in Chapter 4 as the ratio of the
"true" fatigue damage rate to the fatigue damage rate calculated assuming steady
state vibrations at the critical velocity. (v) can be calculated numerically based on
the probabilistic model that was proposed in Chapter 4. However, Equation 5.1 is
not directly useful because p (v) is rarely known in functional forms.

5.2 The scatter diagram of the mean windspeed
and the effect of finite bin sizes

In practice. the probability of the mean windspeed is often expressed in a form known
as a scatter diagram. In a scatter diagram. the mean windspeed axis is evenly divided
into a certain number of intervals. known as velocity bins. Each velocity bin has a
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width called the bin size, and is assigned with a probability value equal to the fraction
of time that the windspeed occurs within that bin. The sum of the probabilities over
all the bins is equal to 1. Within each velocity bin. the mean windspeed is assumed to
be uniformly distributed. Figure 5-2 shows a typical scatter diagram with 9 velocity
bins. The bin size is 5 [ms - 11].

Equation 5.1 must be modified to allow the probability of the mean windspeed to
be expressed in terms of a scatter diagram. Assume that there are n velocity bins,
each with a bin size . Let I- and Vj+l be the lower and the upper bound of the
j-th velocity bin, where j is an integer between 1 and n, and ; -- = V; + Az. Let
P3 the probability associated with the j-th bin. Then, Equation 3.1 can be rewritten
as follows.

J= 1

I=1

= =1

" ,(v)P1 (0)dJ

J I

128

rt An

D



0 5 10 15 20 25 30 35 40 45 50
mean windspeed [m/s]

Figure 5-2: A scatter diagram of mean wir.dspee.

n

3= EP^,j (5.2)
-= 1

where yj = Si ;- (.i ^()dv is the average value of ^, in the j-th velocity bin.

Equation 5.2 shows that E[N] can be calculated as follows. ? is calculated numer-
ically as a function of the mean windspeed, using the probabilistic model proposed in
Chapter 4; then the integral is evaluated within each velocity bin to calculate %. E[y]
is then the probability-weighted sum of the T; over all possible velocity bins. E[y]
accounts for the effect of the discretization of this scatter diagram on the ratio of the
"true" fatigue damage rate to the fatigue damage rate from steady state vibrations
at the critical velocity of the member.

Since y decays quickly as the mean windspeed moves away from the critical ve-
locity of the member. as shown in the contour plot (Figure 4-5) for values of Y,0 in
Chapter 4, the summation in Equation 5.2 needs to be carried out only over those
velocity bins near 'r,,,t where 2-. is not small. A numerically efficient method to calcu-
late E[^y] is to identify the velocity bin which brackets Vcrzt (call it the k-th bin) and
start calculating lk at the k-th velocity bin. The next two velocitv bins for which the
;, is to be calculated and added to the sum are the (k - 1)-th bin and fthe k + )-th
bin. The summation continues independently in both directions as the velocity bins
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move progressively more distant from Vrit, until velocity bins are reached where the
'1j is below a pre-determined level. The evaluation is considered to be finished when

the summation stops in both directions.

5.2.1 Approximating E[y]

To calculate the exact value of E[A,'] requires an appreciable amount of numerical
computation. A simple but cru(de estimate of E[y] is as follows.

[6-,- \= (V = rit) Pk
- >maz X Pk (5.3)

where E[?] denotes an apI)roximiation to Ef[P-. Pk is the probability of the velocity
bin which brackets the critical v-elocity of the member. ,,ax = (l'crzt) is the value of
^ when the mean windspee eal to the critical velocity of the member.

By definition. E['y] and E- i are related through the following equation:

E[?] = E] x E[i]

/bin X k[ ]

where Ybn, is defined as the ratio of E[-y] to E[y]. It is clear that abin, is a factor
which corrects the approximation of Equation .3 to the "true" fatigue damage re-
duction factor.

To see whether Ek[] is a good approximation to E[7], let us look at %Ybin when the
scatter diagram is assumed flat. .e., all Pj are equal.

E[^,]'bzn -

imax Pk

_ z= 1 3
2 nax

- Zi:1 (3.4)
:n'=-130 A
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bn becomes easier to interpret through Figure 5-3. which shows the values of 7
as a function of mean windspeed. In this figure. j-th velocity bin is denoted by the
interval [I? X§+1]. The numerator of ^'bzn shown in Equation 5.4 is the area under the
y curve; while the denominator is the area of the rectangle with the height equal to
Ymax and width equal to the bin size.

As an example, the values of Ybin for a typical structural member have been calcu-
lated for different values of bin size and turbulence intensity levels. Figure 5-4 shows
the values of %Ybin as a function of the bin size to critical velocity ratio for a particular
structural member with the following characteristics.

* critical velocity (Wr/t) = 12.96 [ms-!l.

* natural frequency (f) = 4.25 s- ].

* structural damping ((0) = 0.15Cc.

The following assumptions were made:
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1. The instantaneous windspeed was assumed Gaussian with a specified mean and
turbulence intensity.

2. The scatter diagram of mean windspeeds was assumed to be flat. i.e., the mean
windspeed was equally likely over the significant width of the y vs. V curve
(see Figure 5-3).

3. Although v may vary with mean windspeed. for this example, - was 0.38

[]4 .The exponent of S curve (m) was fixed. For this example, was 3.74.

4. The exponent of S - N curve (m) was fixed. For this example, m was 3.74.

Fixing the above parameters left bi,n dependent only on the bin size and the tur-
hulence intensity level. As the bin size was changed, the numerator in Equation .4
did not change, but the denominator changed in proportion to the bin size. Hence
%7b, is inversely proportional to the bin size AV'. Increasing turbulence increases %bin,
because it increases the off-critical response found outside of the central bin.
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There is a bin size for which ,,ln = 1.0. This particular choice of the bin size,
called the critical bin size. occurs when E[V], the simple approximation. is equal to
the true" fatigue damage reduction factor, E[V]. For a bin size smaller than the
critical bin size, ,i'bn is greater than 1. meaning that the approximation E[] under-
estimates the real fatigue damiage. For a bin size greater than the critical bin size,
%zn is less than 1. meaning that the approximation. E[^], is conservative. For the
above example, the critical alues of the ratio of bin size to the critical velocity are
0.07.0.15 and 0.27 for turbullel e intensity levels of 1%. 5% and 10Cc respectively.
In other words, for i,,t f 12.96 ir.s-l]. then the critical values of the bin size are
0.91. 1.95 and 3.51 rn-s --'' It respective turbulence levels. These values may vary
depending on different values of ii. and also on " 'o, l and structural parameters.
Hence, a task remaining is t(l iiiinate the dependence of b,n on so many parameters.

5.2.2 A model for i
Since E[^/] (approximate fatigule dlamage discount factor) is much easier to calculate
than E[-y] (the "true" fatigue diamage discount factor). it is of practical significance
to find an expression for 'b,,, which depends only on the bin size to critical velocity
ratio. turbulence intensity and the slope of the S - N curve. However. -'bin may also
depend on yl, which is determined by the ratio of the mean duration of visit to rise

r-- e. It may be expected that quantities such as the wind statistics a,-. c,- and the
structural rise time could also be important. However. Figure 4-8 shows that the
shape of the -y versus T - curve is insensitive to y1 and is controlled by ^. Since only
the shape of the fy curve matters in determining the value of %b,n, the development of
a model for Ybzn can be considerably simplified. A model for bin thus looks like the
following.

/bLn = (m, V (5.5)
crit

where m is the exponent of the S - N curve, Tu is the turbulence intensity.

The function ~. can be estimated by numerical experiments using the following
steps.

* Calculate %io as a function of mean windspeed. Using the steady-state
response function presented in Equation 3.5, the value of /o can be calculated
by Equation 4.75. Reiterating:

0 J= (°) Ct (+ ±)Lrit) +O 3((6..5 - 0.5a*)1 }rit
G 66 6
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where Vr,,t is the critical velocity of the member. pv(x) = exp (- 2

is the PDF of the instantaneous windspeed. IV and a- are. respectively, the
mean and the standard deviation of the instantaneous windspeed.

After simplification. the value of %;O is found to depend on the following param-
eters:

-= ot ( I -i m)

-o ( Tu .crtm)
\ crzt

where T, is the turbulence intensity.

* Calculate l as a function of mean windspeed.
duration of a visit by the windspeed to the critical
the structural rise time.

ly depends upon the mean
velocity interval and upon

The mean duration of a visit by he windspeed to the critical velocity interval,
E[Ta.bl], was expressed in Equation 4.6. Reiterating:

E 7 a,bj] =
F, (b)- Fv (a)

I, + Vb

where Fg -(x) is the CDF of the instantaneous windspeed evaluated at x. a and
b are. respectively, the lower and upper bounds of the critical velocity interval,
a = Vcrit and b = 6'1r,,t. v is the mean rate of crossing the level V(t) = x
at positive slopes. If the instantaneous windspeed is assumed to be a Gaussian
process, then v+ = 2 exp (-. 2 where fi; is the standard deviation of
the time derivative of the instantaneous windspeed. The mean duration of visit
can be further expressed as follows.

.f},' 1 exp (-.2
E[T, ab v e 2;p( aI 2 (5.6)

2! al {exp( ,a-, )ep (b-O)2 }2:7 c/v· ''c 2o
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The above equation for E[Ta,b shows that for given values of a and b. the mean
duration of a visit to [a. b] depends not only on the mean windspeed 1' and the
standard deviation av through the PDF of the windspeed. but also on the ratio
~_t through upcrossing rates.

To implement the probabilistic model. it is necessary to be able to estimate a¢
and av from knowledge of prevailing weather conditions. av is a measure of
the turbulence level and may be estimated in a rational way. a-- is not com-
monly reported and a database needs to be established from high sampling rate
raw windspeed data. As part of this research. r-g- has been estimated from a
database measured at one marine site over a wide range of mean indspeeds
and turbulence levels. Tlis is reported in Chapter 6.

For illustrative purposes. a constant value of as (=0.38 [s-']) is used here to
calculate the mean duration of a visit to the critical interval at different mean
windspeeds. e. mav vary with mean Nwindspeed. More complete analysis on a;
from raw windspeed data is given in Chapter 6.

Equation .5.6 showed that E[T7.bl] only depends on A, - and .. After
E[7 [a,b]] is found. 'lY can be calculated based -,, the empirical formulae shown
in Equation 4.65. These empirical formalae x,; the best fit to the results of
Monte Carlo numerical simulations based on the least square error technique
(see Chapter 4 for details).

r = (nE[fab]
ED] 1 - exp (-0.9359r 2541) m = 3.00
E[/) = 1 - exp (-0.7093r0 2 8 5 9 ) m= 3.74

Elo [Z] - exp (-0.571r °0. 3085) m = 4.38

where and ow, are, respectively, the structural damping coefficient and the
natural frequency of the structural member in radians per second.

* Calculate 7'bin. Values of y at different mean windspeeds are calculated as the
product of ,0o and 'yl. The y vs. mean windspeeds curve is then constructed for
fixed values of the turbulence intensity and m.. the exponent of the S - N curve.

Next, for a given bin size AV. the mean windspeed bins are constructed. yj
is calculated numerically at each bin as the average value of -, within that bin.
The actual integration of or within each bin may be approximated using the
rectangular scheme. After the values of ',' are calculated over all velocity bins,
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%ybin is calculated as follows.

:bzn (57)
maz

where ?/max = /(V/r,t) is the value of at the mean windspeed equal to Vrit.

Since %v decays quickly as the mean windspeed moves away from Vrt, the actual
summation in Equation 5.7 is confined to a limited range of mean windspeeds.

Equation 5.7 provides a value of 'b,71 for a given structural member at fixed values
of the bin size, turbulence intensity and the exponent of the S - A' curve. In order
to account for different values of bin size and the turbulence level. a model for ?bin is
proposed as follows:

bzn = F(m T)

= .-m (T.) (5.8)
where Fm(Tu) is a real function of T, the turbulence intensity. The subscript m

indicates that the functional form of .Fm depends on the choice of a particular S - N
curve. The fact that Ybzn is inversely proportional to A is clear in Equation 5.4,
where the denominator is proportional to AI while the numerator does not change
with A\V.

Next we will show how the functional form of .Fr(Tu) for a specified S - N curve
was derived based on the numerical values of c bin which were calculated from Equa-
tion 5.7. Without loss of generality. let us assume that m = 3.74.

First, a set of turbulence intensity levels were specified at which the values of /bin
were to be evaluated. This set covered the range of turbulence intensity levels that
might occur in maritime winds. In this example. the turbulence intensity levels were
set at 1%. 5%, 10%. 15% and 20%.

At turbulence intensity equal to 1%, the bin size was varied from 0.25 [m.s-l] to
15 [m.s- 1] (corresponding to a ~AV value from 0.02 to 1.16 at I'rt = 12.96 [m.s-'1)
and 'Ybn was calculated using Equation 5.7 at each bin size. The variation of %Ybin with
different values of (i" )- i was found to fit well by a straight line through the origin
using the least square error technique. The slope of this line was the value of Em at
a fixed turbulence level.
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solution v.s. model prediction. m = 3.74

The above process was repeated to calculate the values of Fm at turbulence inten-
sity equal to 5%, 10'7c. 15% and 209%. The variation of YFm with turbulence intensity
level was found to be well represented b a third-order polynomial expressed below.

Ym=3 = T + 1.98Tu + 0.04 (5.9)

where Tu = ? is the turbulence intensity level.

Combining Equations .8 and .9. a model for Ybin can be expressed as below for
m = 3.74.

bn =- ( (TI, + 1.98T,, 0.04) (5.10)

Figure 5-5 shows for the example, the values of %ybn (calculated from Equation 5.7)
as a function of the bin size to the critical velocity ratio at 10% turbulence intensity.
The values of Ybin from this example are compared with the values of b,n predicted
by the model in Equation 5.10.
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m 1'm
T.=1_i T T,,=5% T = 0% T, = 15 Tu = 20%

m = 3.00 0.074 0.143 0.237 0.336 0.436
rn = 3.74 0.06.5 0.143 0.254 0.370 0.488
m = 4.38 0.059 0.140 0.250 0.366 0.483

Table 5.1: Values of Fm at different values of turbulence and the exponent of the
S - .\ curve

The functional form of ,,, is different for different values of rn (from different
S - -¥ curves). To derive a functional form of F7n at a different value of m. values
of /bt need to be calculated using Equation 5.7 for different values of ' and T,.
Then .Fm at different turbulence( intensity levels can be calculated from the values of
Y using Equation 5.8. Tiable -).1 shows the v-alues of FTm as functions of turbulence
intensity levels at m = 3.00. i = 3.74 and m = 4.38 respectively. These values of
m span the values recommendle(i by the U.K. Department of Energy [38] for most
welded joints and the American Petroleum Institute [1].

The numerical values of F,,, in Table 5.1 for m = 3.00 and m = 4.38 were also
found to be fit well by third-order polynomials expressed as follonws.

.,F=3.0 = T,2 + 1.73Tu + 0.06 (5.11)
rmn=4-.38 = 3T,2 + 1.84T + 0.04 (5.12)

As a summary to Equations 5.10. 5.11 and 5.12, a model for ybin for m = 3.00.
m = 3.74 and m = 4.38 can be expressed as follows.

J (vt )-'(T 2 + 1.73TU + 0.06) m = 3.00

Ybin = ( ct)- (T, + 1.98T + 0.04) m = 3.74 (5.13)
( , )-(3T,2 + 1.84T, + 0.04) m = 4.38

Equation 5.13 is able to model Yibin as a function of the ratio of the bin size to
the critical velocity of a member. turbulence intensity and different S - N curves. It
is strictlyx valid when all the underlying assumptions hold. These assumptions include:

* The scatter diagram of mean windspeeds is flat locally over the significant width
of the -/ vs. curve.

* The instantaneous windspeed is a Gaussian random process.
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Figure -6: Variations of 'Ybon rwith Gil at T, = 10% for different values f structural
damping, m = 3.74

* A constant A', at all mean windspeeds.U'/

* A constant structural damping ratio = 0.15%.

The insensitivity of yl to Ybin is further demonstrated by a numerical example.
Consider three cases with identical values of structural parameters and wind statistics
except for different values of structural damping coefficients. The values of structural
damping coefficients for the three cases are (1 = 0.01%. (2 = 0.15% and (3 = 1.0%
respectively. For each case, turbulence intensity level was fixed at 10% and m was
fixed at 3.74. -,bin was calculated from Equation 5.7 at different bin sizes so that Ybin

vs. v-7 curve at turbulence intensity level of 10% can be plotted in Figure 5-6.

Figure 5-6 shows that values of ,"bin are insensitive to the structural damping.
Since structural damping only influences the value of -bin through the ratio of the
mean duration to the rise time. this figure frther supports that the shape of the 'y
vs. V curve is controlled by -,/.

As a summary. the model for ^'bin shown in Equation 5.13 is robust and applicable
to the situations when the scatter diagram of mean windspeeds is flat locally at Vcrit
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and when the instantaneous windspeed is approximately Gaussian.

5.3 Summary
Since the mean windspeed is a random process typically specified by a scatter dia-
gram. estimated fatigue damage of structural members must account for the width
of the wind velocity bins. The expected value of fatigue damage is a probability (of
occurrence) weighted integral of the predicted fatigue damage over all possible wind
velocity bins. However. to find the exact fatigue damage based on integration is not
practically attractive because of excessive amount of numerical computations.

A simple but crude estilmate of the exact fatigue damage has been found to be the
product of the fatigue damage when the mean windspeed is at the critical velocity of
the member and the probability of the wind velocity bin which brackets the critical
velocity of the member. A model is proposed to correct the crude estimate to the exact
fatigue damage using a correction factor. Exact values of fatigue damage based on
numerical integrations over various wind velocity bin sizes suggest that this correction
factor depends on the ratio of the velocity bin size to the critical velocity of the
structural member, the turbulence intensity level and the slopes of the S - N curve.
This mode! correctly shows that a large ratio of the velocity bin size to the critical
velocity or a small turbulence intensity level leads to a small factor, or a small expected
fatigue damage. The model yields satisfactory predictions as compared to the results
of numerical integrations.
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Chapter 6

Characteristics of Natural Winds

It was shown in Chapter :i t lt lnstea(li fluctuations of the instantaneous windspeed
typically prevent vortex-ex(r1ilt vibrations from reaching steady state amplitudes.
Natural winds exhibit randol, variations in both amplitudes and directions, which
make impact on fatigue pro)lells of offshore structural members. Reliable predictions
of their fatigue lives. therefore. require thorough understanding of how natural winds
behave.

In this chapter, characteristics of natural winds are studied. Review of existing
knowledge on natural winds iLveale1l bl.ck in the quantitative understanding of the
wind statistics which determine the duration of a *visit by the windspeed to an interval.
This led us to estimate these wind statistics from high sampling rate raw windspeed
data. These new wind statistics enable us to assess fatigue damage of wind sensitive
offshore structural members based on the probabilistic model proposed in Chapter 4.

6.1 Review of existing knowledge on natural winds
The wind is a movement of free air caused by large-scale thermal currents in the
atmosphere above the earth's surface. The wind speed in the atmosphere varies
stochastically in time and geographic distribution. To study random variations of
winds in both magnitude and direction requires analytical tools such as probability
and statistics.

Let V(x, y, z. t) = {U(x. y, z. t). I (x, y, z, t). I W(x, y, z, t)} be a vector representing
the instantaneous windspeed at time t and at location (x. y. z). Here x. y and z are
the three orthogonal axes of Cartesian coordinate system. where denotes the verti-
cal direction (to the earth surface). x and y denotes the longitudinal and transverse
direction yet to be specified in the horizontal plane. U(x. y,z.t). I (x. y,z,t) and
Il'(x y, z, t) are. respectively. the corresponding instantaneous velocity components
in longitudinal. transverse and vertical directions.
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At any location (x. y. z). the instantaneous windspeed {U(t), I'(t), W(t)} is de-
fined as the sum of two subsequent three-dimensional random processes {C(t), -(t), W(t)}

and { u(t), v(t), w(t)}. where { U7(t). V (t). IT (t)} is the average windspeed over a spec-
ified time period, and {u(t). (t). wu(t)} is the fluctuating windspeed. or turbulence.

I'(t) = U(t) + u(t) (6.1)
X (t) = V(t) + v(t) (6.2)

Il(t) = wT(t) + w(t) (6.3)

where bar denotes timne-averaging.

The average windspeed( c(al bet interpreted as a moving average over a specified
time period (for example. 1-hollr period). The average windspeed could change over
time, but the change of the average windspeed with time is much slower than that of
the fluctuating windspeed.

The average windspeed could also vary with the length of the averaging period.
It is conventional to define a mean windspeed as the average over one hour. Conse-
quently. the corresponding average windspeed is called the hourly average windspeed.
The hourly mean convention is chosen because the period of 1 holl- coincides with a
minimum in the windspeed spectrum [32]. The low spectral value implies that the
rate of energy change from hour to hour is slow. which corroborates the choice of one
hour as a good statistical period.

However, the hourly average windspeed may not be appropriate to use directly
for VIV predictions. In Chapter 3. we investigated the effect of using the mean wind-
speed on the accuracy of VIV predictions. NWe concluded that use of mean windspeed
grossly over-predicts the occurrence of steady state vibrations.

The following is a review of the existing knowledge of the characteristics of the
mean (time-average) and the fluctuating windspeed. Most material that is presented
below can be found in Lawson [19], Sachs [32] and Liu [22].

6.1.1 Hourly average windspeed
Windspeed profile

Hourly average Nwindspeed varies with height in a form which can be described by
either a logarithmic law or a power law.
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* Logarithmic law

U(z) = -Il- (6.4)
,K zo

* Power law
T(z) = U(Zr)t) (6.5)

where U (z) is the hourly average windspeed at height z above ground; U, is the
shear velocity or friction velocity. which by definition is equal to /. where m0 is the

V P'

stress of wind at ground level and p is the air density: is the von Karman constant
equal to 0.4 approximately: z( is the roughness of ground. which is an effective height
of ground roughness elements: UC(zr) is the wind speed at any reference height. z,,
which is conventionally defined at 10 meters above ground: and a is the power-law
exponent. which depends on roughness and other conditions.

The logarithmic law is based on physical principles. assuming the shear stress is
constant. The Power law only approximates the variation (of windspeed) over part
of the height range. but nevertheless is more popular in engineering applications due
to its easy use.

Probability distribution functions

As it varies with time, the hourly average windspeed at any location is a random
variable which can be best described by probability density functions (PDF) or cu-
mulative distribution functions (CDF). The following three functions are commonly
used:

* Rayleigh distribution

lry2

Fr (y) 1- exp (- 2 (6.6)4(EU])2)

* Gaussian distribution

1 (y - E[U])2
PC(Y) = C exp (- [ 2 ) (6.7)CT~;; 2uU

* Weibull distribution
F(y) = 1 - exp (() (6.8)

where p (y) and F,(y) are the PDF and the CDF of the hourly average wind-
speed, where pr,(y) = dF.(y). C is the hourly average windspeed: E£U] is the ensembledy s the standard d
average of the hourly average windspeed U; , is the standard deviation of the hourly
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average windspeed: c and k are the mode and the slope of the Weibull distribution
respectively.

The Rayleigh distribution is rather simple because it depends only on one param-
eter. the mean of the hourly average windspeed. but it is only a crude approximation.
Gaussian and Weibull distributions are two-parameter (both mean and standard de-
viation of the hourly average windspeed) probability models that yield better results.

6.1.2 Turbulence
Sachs [32] described the fluc(tllating windspeed as follows:

Quantitatively. however. the wind variations over a short period ( 1
hour) are entirely randomn al)out the mean speed over that period. Further.
the random pattern is thile same. at all times, for any wind-measurement
site where conditions remain the same.

Probability distribution functions of turbulence

According to he remarks by Sachs. it is reasonable to model the fluctuating wind-
speed as a stationary Gaussian random process. Its PDF is Gaussian with an ensemble
mean of zero and a variance of 7' :

1 Y2
P(Y) = 1 exp (-2) (6.9)

Autocorrelation functions of turbulence

R,,(r), R,(T) and R,.(7) are the three autocorrelation functions of turbulence corre-
sponding to the longitudinal, transverse, and vertical components of the fluctuating
velocity, u(t), v(t), and w(t) respectively.

Mathematically, R,(r), R,,(r) and Rw(r) are defined as

R,,(r) = E[u(t)u(t + )] (6.10)
Rv(-) = E[v(t)v(t + )] (6.11)
R,,!() = E[w(t)w(t + T)] (6.12)

where E[x] denotes the ensemble average of a random process x. 7- is the time
lag between the same signal. R,(T). R,,(T) and R (7) are called the longitudinal,
transverse and vertical autocorrelation function of turbulence. Notice that the above
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defined autocorrelation functions depend only on the time lag T because the fluctu-
ating windspeed u(t), r(t). wi(t) are assumed to be stationary random processes. In
general. the autocorrelation functions depend on both the instantaneous time t and
the time lag r.

Power spectral density functions of turbulence

The power spectral density i(ction represents variations of wind energy with dif-
ferent frequencies. Tere a(e, tllree power spectral density functions of turbulence,
Su(f), S(f) and S,,(f. (, lltr(')onding to the longitudinal. transverse and vertical
components of the fluctallrtl! ve(iocitv. u(t). E'(t) and w(t) respectively.

NMathematically. S,,[f). ' .e and S,,(f) are defined as

,e- , .2.ftRu(T)d (6.13)

rOC

S,(f) = J e-' 2 rftRv(r)dr (6.14)
roe

S,,l f) = I e-'2 f t R ,(r)dT (6.15)

where R(-F), Rv(r) and R,,.(7) are longitudinal, transverse and vertical autocor-
relation functions of turbulence defined in Equations 6.10, 6.11 and 6.12. f [Hertz]
is frequency in Hertz. i is the unit of imaginary numbers, and i = -1. S(f), S,(f)
and Sw(f) are called the longitudinal, transverse and vertical power spectral density
functions of turbulence.

Different longitudinal wind spectrum formulae proposed by various investigators
are presented as follows:

* Davenport spectrum 23]

fSU(f) 4x2
-SU~u)= 4 4Xa (6.16)

U2 (1 + x2) 4 /3 (6.16)

* Von Karman spectrum 34]

f S [(f) + 1 (S -U (6.17)
[1 + 7o0.8( i)2
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* Kareem spectrum [18]

fS(f) 335 L'f S ( f U(10) (6.18)
(1 + 71 v(~0

* North Sea spectrum [27]

S21 (f) = 320 x (O.1I 0 )2 x (O.1Z) 0 4 5 (6.19)

( + here

where f [s-'l is the frequerc'v. U. [m.s - 1] is friction velocity. x = (f where

U(10) is the hourly average windspeed at 10 meters above ground. 3 is a parameter
determined by surface roughness and has a value ranging from 4.0 to 6.5. it decreases
as surface roughness increases. L is the longitudinal length scale of longitudinal
turbulence which will be defined later. f = 172 x f x (O.1Z)3 x (0.1l 1 o)-0

° 75. where
n = 0.468 and Z m] is the height above sea level.

The Davenport spectrum model is commonly used for land-based structures. The
Von Karman spectrum model can be used in applications in which the effect of the
low-frequency component could be important. The Kareem spectrum and the North
Sea spectrum were proposed for sea-based structures. Various spectrum formulae
tend to agree in that they approach the Kolmogorov limit at high frequencies, but
they differ at low frequencies.

Turbulence intensity

Turbulence intensity measures the amplitude of the fluctuating windspeed. It is de-
fined as follows:

TE [u] I(z)

TU(Z) = (z)

(6.20)
(Z)

where u'(z) = 2fj ](z) is the r.ni.s. value of the fluctuating windspeed in longi-
tudinal direction. Again, E[x] denotes the ensemble average of a random process x.

Turbulence intensity varies with height and temperature gradient along the height.
Due to the presence of the earth's boundary layer, the shear gradient in the veloc-
ity profile is the largest close to the ground. Large shear near the ground generates
high turbulence. Strong negative temperature gradients (lower temperature at higher
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height) create strong atmospheric convection which generates large velocity fluctua-
tions. thus creating large turbulence.

Integral scales of turbulence

Integral scales of turbulence are measures of the average size of the turbulent eddies
of the flow. There are altogether nine integral scales of turbulence. corresponding to
the three dimensions of the eddies associated with the longitudinal, transverse. and
vertical components of the fluctuating velocity. . . and w. For example. Lx, LY and
L, are. respectively, measures of the average longitudinal. transverse, and vertical
size of the eddies associated with the longitudinal fluctuating windspeed.

Mathematically. L, is defined as

L = R]i ,,xu )d (6.21)

where R,,,, 2 (z) is the spatial cross-correlation function of the longitudinal velocity
components ul - u(xl, yl. z, t) and u2 - u(1 Y l, zl, t). and RuU2 = E[ulu 2],
where E[x] denotes the ensemble average of a random process x. Similar definitions
ap:)lv o the other integral turbulence scales.

6.1.3 Wind directionality effects
Wind effects on structural members depend not only on the magnitude of the wind-
speeds, but on the associated wind directions as well. Wind directionality is impor-
tant in both aerodynamic and structural perspectives. For example, wind-induced
vibrations of a flexible cylinder depend on the direction of instantaneous winds. Con-
siderable change in the wind direction in a short period alone could effectively disrupt
established vibrations in one direction. Therefore it is important to study wind di-
rectionalitv effects.

Most of the existing knowledge on wind directionality effects is in the context
of structural reliability, where extreme wind speeds and directions are of primary
concern. Continuous joint probability distributions of extreme wind speeds and di-
rections have been studied. but so far no credible models have been proposed in the
literature, according to Simiu & Scanlan 34].

For applications to wind-induced vibrations. distribution functions of wind speed
and direction are valuable. However to obtain such wind statistics could be a formidable
task since the instantaneous windspeed in any direction is a derived random process
that depends on both the instantaneous wind speed and direction. both being random
processes.
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We shall make the assumption that when estimating the response of a particular
member, the direction of the windspeed does not change with time. If we define
the direction of the windspeed as longitudinal, then the uni-directional assumption
implies V(t) = W(t) = 0. Such an assumption would significantly reduce the degree
of difficulty in dealing with two random variables at the same time and allow us to
concentrate on the random characteristics of the wind speed alone. However, the
consequence of this assumption on fatigue damage estimation remains to be studied.

6.2 Estimating desirable wind statistics from raw
windspeed data

Fluctuations of the instantaneous windspeed typically prevent the structure from
reaching steady-state vibrations by not allowing the windspeed to stay sufficiently
long in the critical velocitv internal. To understand the impact of the instantaneous
windspeed on the fatigue damage acumulation of wind sensitive structural members
requires wind statistics which determine the duration of a visit into an interval. Such
wind statistics include:

* pu(u), PDF of the instanta neous wvidspeed.

* Tu = EL, the turbulence intensity, where au is the standard deviation of the
instantaneous windspeed and U is the mean windspeed.

* a0, the standard deviation of the time derivative of the instantaneous wind-
speed.

The PDF of the instantaneous windspeed, which carries the values of the mean
windspeed U and the standard deviation au, explains why in real winds. steady-state
vibrations at Ucrit do not happen frequently. This PDF, along with Uit, is used to
calculate the value of -o. au and al: determine the mean duration and ultimately
the value of /l. These wind statistics can only be estimated from high-frequency
windspeed measurements over a wide range of velocities and elevations above the sea
surface.

In the following sections, a database, which contains high sampling frequency
wind data, measured at a typical maritime environment, is briefly described. Wind
statistics estimated from the database are analyzed and presented.
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6.2.1 The wind database
The wind database describei hlere contains high sampling frequency wind data rep-
resentative of typical maritime conditions [2]. The database includes wind speed
measurements at different clevations. WVindspeed samples were recorded with a fre-
quency of 0.85 Hertz. and were grouped into 40 minute long records. Each record
contains 2048 samples.

6.2.2 pu(u)

A short-term windspeed '(r( (an be decomposed into a mean(time-average over
the entire record length) w.ll(isl)(eed and fluctuating windspeed. Since the mean wind-
speed and the fluctuatinl Wl(slwl)((,ed appear to be uncorrelated 32]. instantaneous
windspeed may be modeledi al. ,, (;ilGassian random process with the PDF given below:

1 exp -(U )2
p-()= /2o expir 2 ) (6.22)

where UC is the average windspeed over the entire record length. In this case. U
denotes the 40-minute mean windspeed. au is the standard deviation of the wind-
speed.

In Chapter 4, analysis of raw windspeed has revealed that the assumption of
GaussianlS-distributed instantaneous windspeed leads to a satisfactory prediction of
0yo and a conservative prediction of . Therefore, it is safe to predict the fatigue
damage of offshore structural members based on the Gaussian windspeed assumption.

6.2.3 Tu

The turbulence intensity is defined here as follows:

T = au (6.23)

where T, is the turbulence intensity. at- is the standard deviation of the 40-minute
windspeed. CT is the 40-minute mean windspeed.

Figure 6-1 shows T,, as a function of UC at three different elevations. Each pair of
(U. T,,) was calculated numerically from a 40-minute windspeed record as follows.

1 20-18

2048 E
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Figure 6-1: Variation of Tu with U7 at three different elevations, from high sampling
rate raw windspeed data
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The observed turbulence levels range from 7% to 33X. and show poor correlation
with the mean Nwindspeeds. The scatter of the turbulence is caused by differences in
the atmospheric stability. When the atmosphere is stable. the turbulence is generated
only by the shear gradient in the velocity profile, resulting in a low turbulence inten-
sity. \,Vhen the atmosphere is unstable. the turbulence is generated not only by the
shear gradient in the velocity profile. but also by unstable atmospheric convection.
resulting in a large turbulence intensity. strong atmospheric instability is charac-
terized b a strong negative temperature gradient in the vertical direction (higher
temperature close to ground).

Turbulence intensity depends on the mean windspeed U. the elevation and the
temperature gradient. Large mean windspeeds increase the turbulence production.
thus increasing the turbulence intensity. Velocity fluctuations are the largest close
to the surface due to large shear gradients in the windspeed profile. Negative tem-
perature gradients cause atmospheric instability and result in a large turbulence level.
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rate raw windspeed data

with U at three different elevations. from high sampling

6.2.4 r;v-

Oa is an important parameter to determine the upcrossing statistics, which in turn
determine the mean duration of a visit by the windspeed to the critical velocity in-
terval of a structural member. A sequence of bT can be obtained by taking the time
derivative of the corresponding windspeed sequence U.

Since the differentiation operation on the digitized windspeed sequence is entirely
numerical. the accuracy of the numerical differentiation scheme is of great concern.
A good numerical differentiation scheme is one which has minimum round-off error
as the number of samples increases. For example, the central difference scheme is
superior to the forward difference scheme, since, as the number of samples increases.
the round-off error of the central difference scheme decreases quadratically while the
round-off error of the forward difference scheme decreases linearlyv.

For any 40-minute windspeed record, a; can be calculated as the sample standard
deviation of the sequence U. Figure 6-2 shows the observed ,-- as a function of C
at three different elevations. Every pair, (. ry). w as derived numerically from a
40-minute raw windspeed record using the method described above. A total of 83
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40-minute records were evaluated.

At a given elevation. Figure 6-2 shows that a t. is highly correlated with U. a
increases with U. suggesting higher rates of turbulence production at higher wind-
speeds. At a constant value of U. a- decreases as elevation increases. This is because
the presence of the earth's boundary layer causes a larger shear gradient in the veloc-
ity profile near the surface, which in turn generates more turbulence and contributes
to a larger a.

Based on the wind data that was presented in Figure 6-2. the relationship between
aoy and U at different elevations can be approximated by the following empirical for-
mula:

o.0649 - 0.2648 z = 5 [ml
a. -- = 0.0608C - 0.3725 = 10 [m] (6.24)

0.0347T' - 0.2206 - = 46 [m]

Readers should be cautious in applying the above empirical formulae since they
depend on data from a single maritime site. It may not be applicable to land-based
wind environments.

6.3 Summary
Existing knowledge on wind statistics have been reviewed. Most of the available wind
statistics are based on the hourly average windspeed. which is found inappropriate
to use directly for predicting \'IV and fatigue damage of wind sensitive structural
members.

Wind statistics as input to the proposed probabilistic model were estimated from
a high sampling frequency wind database measured at one marine site over a wide
range of mean windspeeds and turbulence levels. The windspeed database consists of
many 40-minute windspeed records with a sampling frequency of 0.85 Hertz.

The observed turbulence intensity depends on the mean windspeed. the elevation
and the temperature gradient. Difference in temperature gradients causes poor cor-
relation between the turbulence intensity and the mean windspeed.

The observed values of at,. show high correlation with the mean windspeed which
is insensitive to atmosphere stability. At a given elevation, a increases with the
mean windspeed. a,. decreases as elevation increases.
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Chapter 7

The Design of Fatigue Resistant
Structural Members Excited by
Natural Winds

In this chapter. a design rieth(itlogy for fatigue resistant structural members excited
by natural winds is proposed })ased on the probabilistic model. The proposed design
methodology is illustratedl h (xamples.

7.1 Design procedure
A procedure is recommended to estimate the fatigue damage rate for a structural
member exposed in natural winids. The prediction procedure consists of the following
four steps:

Step 1: Predict Do . D,. is the fatigue damage rate of a structural mem-
ler due to steady state vibrations at the critical velocity. It is the maximum
fatigue damage rate that the member could experience among all possible wind
conditions. D, is pred(icted based on the following steps.

1. Calculate Ama .- lrmna the maximum amplitude of steady state vibrations,
is predicted by the Brown & Root formula [29] as follows.

A-m'ax 3 .82 -'zCL

D 1+ 0.19 ( Is)

where D [ml is the diameter of the cylinder. , is the mode shape param-
eter that depends on the boundary conditions of the cvlinder vibrating in
the lowest mode. \'alues of -, for tpical boundary conditions of a flexible
cylinder are listed in Table 7.1 [31. CL is the root mean squared (r.m.s.)
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lift force coefficient based on stationary cylinder measurements. and it de-
pends on the Reynolds number. The variation of the lift force coefficient
with the Reynolds number is shown in Figure 7-1 [29]. S is the Strouhal
number. and it depends on the Reynoids number. St = 0.2 is usually
a good first guess for most members in the subcritical Revnolds number
regime. K, is the stability parameter. or the reduced damping. KIs 2mpD2

where m [kg.m'l1 is the mass per unit length of the cylinder. = 27(
where ( is the structural damping ratio measured in still air. p kg-m-3 ] is
the density of the air.

It is worth poinitllg olt that the recommended lift force coefficient func-
tion shown in Figiire 7-1 is more conservative. particularly in the critical
and supercritical reclgims. than that was originally proposed by Brown &
Root 29]. We [30()i believe that there is insufficient evidence. at the present
time. to warrant tile s,e of a lift coefficient as low as 0.1. as obtained from
stationary cylinder studlies. The lift force coefficient in Figure -1 varies
linearly for the Revn-olds number from 3 x 105 to 2 x 106. The effects of

surface roughness and atmospheric turbulence are also disregarded in this
simple model. These parameters have been shown on stationary cylinders
to cause the transitioni from subcritical to supercritical flow to occur at a
lower .cminal Reynolds number. thereby reducing the lift coefficient ob-
tainea at the velocitv of interest. In the future. as relevant data becomes
available. we recommend that this lift coefficient function be modified ac-
cordingly.

Boundarv C'onditions -, F,
Free-Fixed 1.304 3.52
Pinned-Pinned 1.155 o 9.87
Fixed-Pinned 1.161 20.4

70% Fixitv 16] 1.163 22.4
Fixed-Fixed 1.167 28.2

Table 7.1: Values of '7, and F, for different boundary conditions

2. Calculate D,.s. D,, [s-1] is the fatigue damage rate assuming steady state
vibrations. Its inverse is the number of seconds to fatigue failure. DS.S. is
calculated from 4,,,,, and a specified S - A curve as follows.

2ss = f,C-l(E x F, x - x x SCF)m

= ' r x E D 2 x,naxx F, x x SCFT
-V\f SD _ D
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Figure 7-1: Variation of the r.m.s. lift fo:--^ oefficient with Reynolds number. from
Rudge & Fei (1991)

where f [s-']. D [m] and L [m] are, respectively. the natural frequency. the
diameter and the total length of the structural member. E [kg.m-l's -2 ] is
the Young's modulus. Fi is the strain response parameter. It defines the
maximum strain as a function of the maximum deflection and the cylinder
boundary conditions [30]. V\alues of Fi with different boundary conditions
are shown in Table 7.1. For a pinned-pinned beam. Fi = r2 = 9.87. SCF
is the stress concentration factor. A typical SCF = 2.0 to 4.0. c and m are
positive constants that are defined by the S - - curve as follows.

NVSm= So = 

where S [kg.m- 1 s-2] is the stress range. for cyclic stresses, the stress range
is twice the amplitude of cyclic stresses. N is the number of cycles to fa-
tigue failure at the stress range S. So and NV0 are the reference stress range
and the number of cycles to fatigue failure at the reference stress range.
m and c are positive constants that are related to material properties. m
is usuallv between 3 and 4.
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* Step 2: Predict ^,'max. ?Tmax is the value of (=o x i) evaluated with the
mean windspeed equal to the critical velocity of the member. where ,, is a fa-
tigue discount factor which includes the effect of natural fluctuations of the
windspeed around a constant mean windspeed and the effect of the structural
rise time. ,ma. can be calculated as follows.

IrCt = 6f,,D

6

fi12T, ) I (7.2)h=
,,, ± {exp ( }

rmax= (&n EI",a ] (7 3)

(^O)max - crzt J (aO) m {e ia;) + 0.5e X2(K 3>*daO (7.4)

-,1(a~) - (~i Crit - 1XrMt)

x, (a*) 6 C c)) -

1 -{exp (-0.9359ri_ 41) r 3.00(im)rna = E7 (-0.7093b 9 ) 3.7 (7.3)(r)maz = ( ~m (a -max (7.4)

where D(x) is the CDF of the normal Gaussian distribution. and (x)
ji0 / exp(-_ x 2)dx. alues of ((x) are tabulated in most elementary prob-

ability books. a is the durnmy variable representing the vibration amplitude
normalized by6 Amact

The integral in Equation 7.4 can only be carried out numerically since m is
usually not an integer.

To ealrulate nax reoquires the normales of Gaussian Chapdistributioner 6. andthe alues of
cr;- and u(T,- wore derived upon analyzing high samnpling ate rate w wind data in
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a typical maritime environment. Results demonstrate the following character-
istics of . and cr-.

aw, depends on he mean windspeed. the height above the sea level and the
stability of the atlosphere. High windspeed and low elevation generally con-
tribute to a high vale (of' l (or turbulence intensity T,). However. atmospheric
instability, which is i flic('tlion of the vertical temperature gradient. could dras-
tically change the value of' turbulence intensity. Stability varies with weather
patterns. nstab)le (- ( (,iitionIs increase the turbulence level. It is therefore at
the designer's discretrl, to( sp)ecify a turbulence intensity level appropriate at
a given mean win.ciit){'( rclial to the critical windspeed of the member. at a
given height above TrIl( >. l('vel. However. 5%c is recommended as a conservative
low estimate of the tll l hi1i(ie ntensity level. Low turbulence results in greater
damage rates.

Unlike oa-. oA. is f)ln(l }illliv (orrelated with V. Equation 6.24 showed an em-
pirical relationship between rTI and 1- at different elevations. This relationship
was derived directly froinm high sampling rate raw wind data in a typical mar-
itime environment. It is valid when the mean windspeed is between 10 [m-s- l]
and 30 [m-s-']. anrid when the elevation is between .5 [m] and 46 [m] above the
sea level. Reiterating Equation 6.24:

0.0649f- - 0.2648 z = .5 [mI
(T. -- = 0.06081 - 0.3725 z = 10 [ml

0.0347' - 0.2206 = 46 [nii

Readers should be aware of the limitations of the above prediction model for
ad... It may not be applicable to a land-based wind environment, and mav not
be appropriate to use when the windspeed or the elevation are outside of the
ranges specified above. However. 0.20 [ms - 2] is recommended as a conservative
estimate of at,. Damage rate increases as rrf, decreases.

The calculation of ,~,n.a can also be implemented graphically through three fig-
ures. Figure 7-2 shows the value of (0)m,, as a function of turbulence intensities
at three different values of the slope of S - N curves. This value of (^O)max is
calculated using Equation 7.4. Since in real wind environments. turbulence in-
tensitv is almost always greater than 5c, the value of (O),jmo is almost alwavs
less than 0.-4. resulting in a factor of 2.5 increase in real fatigue life.

To calculate (^')l,,, requ(lires the value of E[Ta.,b] evaluated at V equal to I rzt,
the expected duration of a visit by the windspeed into the critical velocity inter-
val of the structural member. Figure 7-3 shows a contour plot of the expected
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duration (expressed in seconds) as a function of the critical windspeed and the
turbulence intensity level. This plot of the expected duration, as denoted by T
[s], is calculated using Equation 7.2 but with the value of al, fixed at 1.0 [ m-s-2].
Since the expected duration of visit is inversely proportional to ah, the value of
E[Ta,b]] s] at other values of <.. can be obtained by dividing T by vi as follows:

E[Tab]]= (7.7)

where oa- should be expressed in metric units im.s-2]. The value of ui can be
obtained either from a prediction model such as Equation 6.24, or from meteoro-
logical sources. Note that T shown in Figure 7-3 is not a conservative estimate
of the actual expected duration of visit. E[1T.b: . E[T[.b]] can be as high as 5
times the value of , when 0.20 [ms -2] is used as a conservative estimate of ao.

Once ET.ib]] is derived from Figure 7-3 and Equation 7.7. ()max can be cal-
culated using Equations 7.3 and 7.5. or Figure 7-4. ,'r,, can be calculated
using Equation 7.6; that is taking the product of (')maz and (i)max.
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Figure 7-3: Variation of 7- [s] with Vcrt and turbulence inte.?;ft- at a," - 1.0 [ms- l]

· Step 3: Predict '"bin. 'bn is a factor which corrects the expected value of
the fatigue damage rate E[D] for errors introduced by discretizing the PDF of
the mean wind velocity into finite width velocity bins. bin is given below for
various values of m. as a function of turbulence level.

( Vcr'l )(T 2 + 1.73TU + 0.06) m = 3.00

'Ybin av )-(T2 t 1.98Tu + 0.04) m = 3.74

)-1 (3T2 + 1.84T, + 0.04) n = 4.38

where AVf [m.s- 1] is the velocity bin size of the scatter diagram. T, is the
turbulence intensity level. The above empirical formula can also be shown in
the forms of contour plots by Figures 7-5. 7-6 and 7-7. Each of these figures
corresponds to a different S - N curve.

· Step 4: Predict E[D]. E[D], the fatigue damage rate of a structural member
exposed in natural winds. is predicted as follows.
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ED] = 'D.s. X 7ma X %,bzn X Pk

where Pk is the probability of occurrence of the velocity bin which brackets the
critical velocity of the member.

7.2 Examples

7.2.1 A worked example to illustrate the design procedure
The design procedure described above is illustrated in the following example.

A typical offshore structural member is selected from Grundmeier et all [16]. The
structural parameters of the member are summarized as follows:

* Diameter (D) = 0.6096 [Im] or 24 [in]
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Figure 7-5: Contour plo, -' t.n as functions of velocity bin size and turbulence
intensity, slope of S - A (urve (m) = 3.00

* Length (L) 24.38 ni] or 80 [ft]

· Thickness (t) = 0.0127 [rll or 0.5 in]

* Fundamental natural frequency (fA) = 3.37 [s- ]

* Critical velocity (I rt) = 19.62 [ms-s ]

* Structural damping ratio (() = 0.002'

* Height above sea level (z) = 46 [In

An S- N curve typical for class T welded nodal joints [38] is selected. This S- N
curve has the following claracteristics:

IThis is the value the author recommends for welded steel members. Also see [30].
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.S3 = :%S = C (7.8)

where So = 90 x 106 [Pa] or kgm- s-2] is the reference stress range. No0 = 2 x 106
is the number of cycles to fatigue failure at the reference stress range. This S - N
curve will be assumed throughout the rest of this chapter.

To carry out the design calculation for this particular member. the wind statis-
tics such as al-. al, and a scatter diagram which describes the long-term probability
distribution of hourly mean windspeeds are desired. At the mean windspeed equal
to V,,it, the turbulence intensity (T,) level is assumed to be 10%C7. a value typical for
maritime wind environments. Therefore

at = 'rt X Tu
= 19.62 x 0.1

= 1.96 [m.s- l]

af, is assumed to depend on the mean windspeed by virtue of the empirical rela-
tionship that was derived directly from high sampling rate raw wind data. Applying
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Equation 6.24.

¢J;t = 0.03471 ,,t - 0.2206

= 0.0347 x 19.62 - 0.'2206

0.46 [m.s- 2]

For the purpose of example only, the long-term hourly- mean windspeed is assumed
to be a stationary random process which can be described b- the Rayleigh distribu-
tion with the following CDF and PDF:

.' (y)

PH ()

2

= 1 - e>;TXp( -7 2
4E2[jy])

dF ()
dy 'Xp (- 4E2

[E2 y'i 

-
X E2y

2E' []
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where Fy(y) and p(y) are. respectively, the CDF and the PDF of the Rayleigh
distribution. E[y] is the ensemble average of the hourly mean windspeed. In this
example. E[y] is fixed at 10 [rns-']. The scatter diagram of the hourly mean wind-
speed shows the probability distribution of the hourly mean windspeed discretized by
a finite number of mean velocitv bins. Figure 7-8 shows the scatter diagram of the
hourly mean windspeed when the hourly mean windspeed is a Ravleigh-distributed
random process with an overall mean of 10 [ms-1]. In this figure. the size of each
velocity bin is 5 [m.s-1], and the sum of probabilities over the entire group of velocity
bins is equal to unity. This scatter diagram of the hourly mean windspeed will be
assumed throughout the rest of this chapter. For this example -crit = 19.62 [m.s- l]
which falls into the bin between 15 and 20 [ms -'1. Pk the probability of this bin is
0.13.

Based on the information provided above, the design calculation can be carried
out step by step in Table 7.2. presented at the end of this chapter.

Table 7.2 shows that for this particular example, when the instantaneous fluc-
tuations of the windspeed and the effect of finite bin size of mean windspeeds are
considered. the estimated increase in fatigue life of a typical structural member could
be more than 6 (= D.[)]P;) as compared to that due to steady-state'vibrations at
the critical velocity.
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7.2.2 The effect of different values of turbulence intensity
As mentioned in Chapter 6. the turbulence intensity level above the surface could
vary significantly (from t5i) to over 30% based on raw wind data, see Figure 6-1)
with different degrees of atimospheric instability. Also. it is not uncommon that some
structural members are expo)se(l to high turbulent flows when placed in the wake of
other structural members. 'FTlerefore. it is of practical interest to study how turbu-
lence level affects the -alue i tile fatigue damage discount factor.

In this section. the ('slzll (.al(ulation will be carried out for a typical structural
member at various turbllll(l levels. The resultant combined fatigue damage dis-
count factors are compare(i

A typical offshore stru(ctlllal ieIlle)er is selected from Grundmeier et al [161 with
the following kev structural !larameters:

* Diameter (D) = 0.6096 i[m] or 24 [in]

* Length (L) = 30.48 [ni] or 100 ft]

* Thickness (t) = 0.0127 [in] or 0.5 [in]

* Fundamental natural frequency (f,) = 3.43 [s- ']

* Critical velocity (1 rt) = 12.56 I[ms-1]

* Structural damping ratio (() = 0.002

* Height above sea level (z) = 46 [m]

Four different values of turbulence intensity, namely 5c/. 10%, 20% and 30%, are
selected. However, the values of a-. are assumed to only depend on the mean wind-
speed by virtue of Zquation 6.24. At each of the four turbulence intensities. the design
calculation is carried out in a similar step by step fashion illustrated in Table 7.2, and
the kev results are summarized in Table 7.3.
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The results in Table 7.3 show that although high turbulence significantly reduces
the fatigue damage rate when the mean windspeed equals the critical velocity of the
member. the difference tends to diminish when the mean windspeed is considered as
a random process described by a scatter diagram. This is because high turbulence
actually increases the chance for the instantaneous windspeed to cross into the critical
velocity interval when the mean windspeed is close but outside of the interval. This
effect is accounted for by 'b,,, -bll increases with turbulence level. All factors consid-
ered. an increase in turbulence level is accompanied by a slight decrease in damage
rate.

7.2.3 The effect of different values of r;
In Chapter 6. the statistical ntroperties of natural winds in a typical maritime envi-
ronment were studied. The value of vi. was observed to be highly correlated with the
mean windspeed. Furthermore. an empirical formula (Equation 6.24) was proposed
to estimate the value of ~. from the mean windspeed at different elevations. How-
ever, it is unknown if that relationship is also applicable to land-based or other wind
environments. Therefore. it is of practical interest to investigate how the result of the
proposed design calculation would vary as the value of cu. changes.

In this section, a typical structural member is selected from Grandme;,, et al [16!,
and the proposed design calculation is carried out at three different values of ao,. The
selected structural member has the following key structural parameters:

* Diameter (D) = 0.6096 [m, or 24 [in]

* Length (L) = 24.38 [m] or 80 [ft]

* Thickness (t) = 0.0127 [n or 0.5 [in]

* Fundamental natural frequency (f) = .37 [s- 1]

* Critical velocity (rt) = 19.62 [m.s- ']

* Structilral damping ratio (() = 0.002

* Height above sea level (z) = 46 [m]
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Three cases are considered, each with a different value of cr,. These three different
values of 0+, are 0.20 [m.s- 2], 0.46 [ms-' 21 and 1.0 [m.s - 2]. 0.46 [m.s- 2] is a value of
0r+ implied by the empirical formula shown by Equation 6.24 at the mean windspeed
equal to the critical velocity, while 0.20 m s- 2] and 1.0 [ms - 2] are respectively, the
lower (conservative) and higher estimates of cro . For all three cases. the turbulence
intensity level is fixed at 10(). a typical value observed in maritime wind environments.

For each of the three cases with different values of o-. the proposed design calcula-
tion is carried out in a step by step fashion identical to the worked example illustrated
in Table 7.2. Table 7.4 summlarizes the kev results.

Table 7.4 confirms that tile value of orfl only affects the value of >,ma. through the
expected duration of a visit. \ smrnall value of leads to a long duration of a visit.
which consequently leads to a, lrge value of ,ma, or a small increase in fatigue life.
Howe-ver. the dependence of ,,,,,,( on r!,- is not very sensitive, as shown in Table 7.4.
A 50%, increase in the value of' (T- only results in a 10'i reduction in ",'a. Therefore
by choosing a conservative value of' rT = 0.2 the predictions of fatigue damage rate
in other wind environments may be reasonably good.

7.2.4 Tihe effect of different values of Vczt
At a given wind site where the scatter diagram of mean windspeeds is known, one
may identify a number of structural members susceptible to fatigue failure caused
by VIV. Since structural members generally have different values of critical veloci-
ties. the probability of occurrence of the critical velocity bin (or the mean velocity
bin which brackets the critical velocity) will vary. It is anticipated that the member
associated with the highest probability of occurrence of the critical velocity bin mav
suffer substantial fatigue damage due to significant exposure to the critical velocity.
The probability of occurrence of the critical velocity bin. Pk, accounts for the extent
of exposure.

For any given member Ik must take into consideration not only the occurrence
of the mean windspeed, but also the direction of the wind. Wind direction has not
been explicitly discussed in this thesis due to limitations of time. However. it is
straight forward to estimate the Pk of a critical velocity bin including the effects
of wind direction if such direction information is available. One would sum up the
probabilities of occurrence of mean windspeed bins so as to include all mean wind
velocitv and direction combinations which resulted in a vector component of the wind
normal to the member which was at the critical windspeed. Such refinements are left
to future work.
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7.3 Summary
A design methodology for fatigue resistant structural members excited bv natural
winds is proposed based on probabilistic models. The design procedure consists of
four steps. Step one predicts the fatigue damage rate of a structural member due to
steadv state vibrations at the critical velocity. Step two predicts the fatigue damage
discount factors caused by the natural fluctuations of the windspeed and the finite
rise time based on the input of relevant wind statistics. Step three predicts a factor
which corrects the expected valtue of the fatigue damage rate for errors introduced by
discretizing the PDF of the mean wind velocity into finite width velocitv bins. Step
four predicts the fatigue damage rate of a structural member caused by natural winds
as the product of the factors from the previous three steps.

The design procedure lhas been illustrated b step by step examples using typical
offshore structural member> and realistic values of relevant wind statistics. Effects
of different values of wind ,tatistics on the resulits of design calculations have been
presented by numeric(al examples.
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Step Number i Symbol \Variable 11 Value Units
0 I D member diameter 1 0.6096 [m]

L mIeinctuber length 24.38 [ml
Sf I Ile mber natural frequency 5.37 [s- 1]

I; lil ileeitmber critical velocity 19.62 [m.s-']
(1 ,Illellber structural clamping 0.002

1 Imlo(de shape 1.163
Re 1i¾vnoldlts number 8.2 x 106
CUI i !:.1s. lift coefficienr 0.3

S, ;I rtmlial mlumber 0.2

Ix, m((il( (' ed damping 10.5
iaxiniIurl amplitude 0.0.5
t() (liallter ratio

E o(uiny's modulus 209 x 109 [Pa]
F, .-strain response parameter 22.4
SCF stress concentration factor 3.0
So0 reference sress range 90 x 106 [Pa]
Ao rnumber of stress ccles to failure 2 10
m slope of S - curve 3.0
I 7 ! rnmaximum fatigue damage rate 3.1 x 10- [s-1]

2 [ TT, Turbulence intensity 0.1

(, na. fatigue discount factor 1 0.24
T (iuration of visit 10 [s]
cq, s.t.d. of acceleration 0.46 [m.s-2]

E[ T b expected duration of visit 21.73 I [s]
tr rise time 14.82 [s]
rmax duration to rise time ratio 1.47
( mal)n,,1 a fatigue discount factor 2 0.64

,,_ _ 'a fatigue discount factor 1 & 2 0.15
3 RA velocity bin size [m s-1 1

,'n b bin size correction factor 0.95
4 P.- probability of occurrence 0.13

D- Pk combined fatigue discount factor 0.14
^, : P increase in fatigue life 6.9

_ED_ I fatigue damage rate 9.8 x 10- 9 [s- ]

Table 7.2: Step bx step implementation of the design procedure
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T ' _5 i O1C7C 20% 30% i

~-[m - : '- I |0.63 1.26 2.51 3.77 

aow [m ' 0.215 0.215 0.215 0.215 

(7o)r_ |0.4 0.24 0.13 0.08
l . l

('1),,,a.r 0.71 0.63 0.60 0.59

^irnax ' 0.28 0.1.5 0.08 0.05
'btn 0.37 0.61 1.12 1.68

Pk ! 0.29 0.29 0.29 0.29

0.10 0.09 0.09 0.08:.9s.1', ___ I
Table 7.3: Variation of fatimgue damage discount factor with turbulence intensity

T. I 10% i 10% I 10%

a- m.s- 2 ] 0.20 !0.46 1.0

(%O)max 0.24 1 0.24 0.24

('t)max 0.72 10.64 0.57
'max 0.17 0.15 0.14

bIzn 0.95 i 0.95 0.95
Pk 0.13, 0.13 0.13

E x' 0.16 0.14 0.13

Table 7.4: Variation of fatigue damage discount factor with ar,
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Chapter 8

Conclusions and
Recommendations

8.1 Conclusions
The following key conclusions can be drawn based on the work of this thesis.

* Free-stream turbulence up to 10%c does not drastically disrupt the vortex shed-
ding or reduce the magn ' "- of vibrations on a flexible cylinder. However, low-
frequency variation in windspeed typically prevents VIV response from reaching
steady state. thus increasing the fatigue life of the structural member exposed
in natural winds.

* A time domain model for predicting VIV of structural members in unsteady
winds has been proposed. The transient vibrations are predicted as the re-
sult of time domain convolution between the excitation force which is derived
from the time trace of the windspeed and the impulse response function of the
single degree of freedom oscillator which has the resonant properties of the tar-
get structural member. The predicted transient vibrations by the time domain
model have shown remarkable accuracy as compared to the wind tunnel mea-
surements.

* A probabilistic model has been proposed for predicting fatigue damage of a
flexible cylinder excited b natural winds directly from the relevant wind statis-
tics. These wind statistics include the mean windspeed. the turbulence intensity
level, the standard deviation of the wind acceleration. and the scatter diagram
of the mean windspeed. After analyzing the wind statistics and structural pa-
rameters. this model identifies three fatigue damage discount factors to account
for the fluctuations of the natural winds, the expected duration' of a visit by
the windspeed to the critical velocity interval of the structural member and
the finite structural response rise time. and the error caused b discretizing
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the PDF of the mean windspeed into finite velocity bins. The probabilistic
model is verified against the time domain model using high sampling rate real
windspeed data. The results from the probabilistic model are consistently more
conservative than those from the time domain model. but still show a factor
of 10 increase in fatigue life as compared to conventional estimates based on
steady state vibrations when the mean windspeed equals the critical velocity of
a structural member.

* Required wind statistics which determine the duration of a visit by the wind-
speed to the critical velocity interval have been extracted from high sampling
rate raw windspeed data which were measured in a typical maritime environ-
ment. The observed turbulence intensity (T) depends on the mean windspeed.
the elevation and the stability of the atmosphere. Difference in temperature
gradients causes poor c(orrelation between the turbulence and the mean wind-
speed. The observed values of the standard deviation of the wind acceleration
(a.i') show high correlation with the mean windspeed. It increases with the
mean windspeed at a given elevation. and decreases as elevation increases.

· A design methodology for fatigue resistant structural members excited by nat-
ural winds has been proposed. This design methocoiogy is based on the proba-
bilistic model and the wind statistics derived from high sampling rate maritime
wind data. It can be implemented conveniently through series of figures.

8.2 Recommendations
The proposed design methodology for fatigue resistant structural members excited
by natural winds relates certain wind statistics to the structural fatigue damage rate.
Since there was no relevant literature providing data on a.. estimates were made
based on high sampling rate raw windspeed data measured at one maritime site.
Statistics such as (7v, ua,, mean windspeed and direction need to be acquired for a
variety of environments.

8.2.1 Wind directionality
In evaluating the wind statistics for input to the probabilistic model. the direction of
the wind has been alwavs assumed to be normal to any structural member, so that
only the magnitude of the windspeed was considered. This assumption greatly sim-
plified the description of the wind statistics. Instead of decomposing the windspeed
into different normal directions which depended on the orientation of each member.
only the statistics of the windspeed magnitude were studied. However. this simplified
description of wind statistics was achieved at a certain price. Since the information
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of the wind directionality was ignored. its effect on fatigue damage rate remains to
be determined.

8.2.2 Dependence of c(- on V
aX. is an important paramrneter which determines the upcrossing statistics of the wind-
speed. which in turn deterlmine the expected duration of a visit by the windspeed to
the critical velocity interval of ilany structural member. Based on the raw windspeed
data measured at one II.Inlle' site. (Ty was found to be highly correlated with the
mean windspeed. Furtheornle. the relationship between al. and the mean windspeed
l' can be described by) the flling empirical formula:

).()6491 - 0.2648 .- = 5 ml
cy~. = /.00608' - 0.3725 = 10 m]

0().(3471T - 0.2206 = 46 mn]

Readers should be aware that the above formula is based on the maritime wind
data with the mean windspeeds between 10 [m.s-] and 30 [m-s- '] and the elevations
between 5 [m] to 46 im]. It mIlay not be applicable to land-based wind environmen,s,
and may not be appropriate to use when the windspeed or the elevation is outside of
the ranges specified above. In order to obtain a reliable estimate of real fatigue dam-
age of structural members in a wind environment where the assumptions underlying
the above empirical formula for v<- are violated, high sampling rate raw windspeed
data should be measured in that particular wind environment. Statistics of v with
wind conditions different froim the maritime environment should be compiled.
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Appendix A

State Equations and Input-Output
Models for a Linear System

In this Chapter. state equationls will be introduced to describe a generic linear sys-
tem which is governed by linlear differential equations. Analytical solutions to state
equations are derived and implemented by an equivalent linear difference equation.
The whole solution procedure 1 will be illustrated through an example.

A.1 State equations and analytical solutions
Consider a generic continuous-time system shown in Figure A-1. This system is
associated with a set of input variables u, u2 ... .. , ur and a set of output variables
yl, Y2, .yp. For convenience . nwe let the input variables ul, u2,..., ur be represented
by an input vector

71 =[l U2 ... Ur ]T (A.1)

The output vector y is likewise defined as an p x 1 column vector

= [ 1 Y2 ... ] (A.2)

The input and the output vectors are assumed to be functions of time t. To indi-
cate this explicitly, we write u(t) and y(t), denoting, respectively, the value of u and
y at timne t.

The system itself is assumed to be linear and time-invariant. and can be described
bv an nth-order linear differential equation. A minimum number of n variables which
contain sufficient information about the history of the system are required to allow
computation of future behavior. These variables are called state variables. which can
be represented b an n x 1 column vector
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Figure A-1: A generic cc-ntinuc_ ime system

. = [ XI (A.3)

This vector is defined as state vector [37], and is assumed to be a function of time
t, or explicitly. x(t).

Then, instead of linear differential equations. this linear and time-invariant system
can also be described by the following state equations

= Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t)

(A.4)

(A.5)

where A, B. C. D are n x n, n x r. p x n. p x r matrices respectively. u(t) and y(t)
are, once again. the input and the output vectors of the system.

Suppose the continuous-time system is sampled at a sampling period of h: then
the input signal ti(t) can be represented b a discrete sequence {u(tk) : tk = k x h, k =
0, 1, 2,. .}. From Astr6m and Wittenmark [3], x and y at the sampling instants can
be solved analytically by the following set of linear difference equations:
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x(tk+l) = i(tk+l )(tk)(tk) F(tk+l, tk)U(tk) (A.6)
y(tk) = CX(tk) D(tk) (A.7)

where

( 1 (tk±l, tk) = e. 4 (tk-i- k) (A.8)

t/ t)+ -t; AsF(tk-, tk) = eSdsB (A.9)

,It is worth noticing that Equations A.6 and A.7 do not involve any approxima-
tions. They give the exact values of the state variables and the output variables at
the sampling instants [3].

Since tk = k x h. the aforementioned difference equations A.6 and A.7 can be fur-
ther simplified by replacing the continuous-time series of the input vector, the state
vector and the output vector at the sampling instants by their equivalent discrete
sequences

x[k +] = xz[k] - ru[k] (A.10)
y[k] = Cz[k] + Du[k] (A.11)

where

{I) = e4h (A.12)

r= Jhe-4dsB (A.13)

The derived analytic solutions of state equations require to evaluate matrix ex-
ponential and integration of a matrix exponential. One way of evaluating a matrix
exponential is to utilize the Laplace transform [31:

C(e At)= f/ ete-Stdt

= (sI- A)- 1

and the inverse Laplace transform:
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(sI - A)-letds

Therefore. and F (an be evaluated as

(I) = I'

_ -' (iI- A)-llt=h-- -1 (vB

- £_ Cf'((sl - A)')t=vdvB

(A.14)

(A.15)

A.2 Input-output relationship for a linear system
The relationship between the input and the output sequences of a sampled linear
system can be determined by applying operator calculus on the solutions of state
equation,. Defin- as the forward-shift operator. From equation A.10. we have

.rk t- 1 = qx[k]

= 4x[k] + Fu[k] (A.16)

Hence

(qI - 4)x[k] = ru[k] (A.17)

or

From Equation A.11 and

y[k]

.r k]

A. 18

= (qI - 4)-lru[k]

= Cl[k] + Du[k]
= {C(qI - )-'r + D}l[k]
= H(q),L[k]
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where

H(q) = C(qI - b)-r + D (A.20)

Equation A.19 defines the relationship between the output and the input sequences
of a linear system through a properly defined transfer function H(q). For the given
input sequence of a linear system. the output sequence can be determined by Equa-
tion A.19. The transfer function involves forward shift operators in both the numer-
ator and the denominator. so Equation A.19 is often a difference equation.

In the following section. a example will be given to illustrate the step by step pro-
cedure of how to derive the corresponding difference equation that relates the input
and the output of the given conltinuous-time system. The system that we are going
to stud- is an SDOF oscillator. It is a second order continuous-time system with a
single scalar input (excitation force) and a single scalar output (amplitude response).

A.3 An example
Consider the response of the following SDOF oscillator excited by a general forcing
term 42u (t):

Y+ 2'c4n. + Lwy(t) = ,w2u(t) (A.21)

Our goal is to derive the equivalent difference equation to solve for the response.

Step one: state equations and analytical solutions
The state vector that corresponds to Equation A.21 is

x = [ y(t) y(t) ]T (A.22)

The state equations are

2 x= [+ 0 W 

The Laplace transform method gives
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Step two: input-output relationship
From Equation A.23:

q+ _S2 CS ,
- I - 'S '

-I S I 2

I-- I2

_ 1 F
q2 + alq +- a2 L

s eS2t

1 -2
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where
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(A.24)
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al = -es1h _ es2h

- -2e- (-,hCOS(WdLh)

S1S2 2s1h S12 2s2h , S + S2 (s1+s2 )h
a2 = - _ _ -

(, - (Si - 82)2 (S1 - 2) 

= e- 2 (Cnh + 0(h2)

- wd = n I

(A.26)

(A.27)

Plugging Equations A.25 and A.26 into Equation A.20. we obtain the expression
of the transfer function H(q) which relates the input and the output sequences as
follows:

H(q) = C(ql - r)- r
_ sL eslh .s'2 ssih 1 sh 1 s2h

q + a + h + 2h + 2 eSlh _ s eS2[102 _ a lq + a2 - S1-S2 SI-S2 sI-S2 S9 -S
+; 1 9+ SZ2 e sh s_ s eS2L

1S S2 S -- S2 1
(A.:

1w ;7 (ee1) .2

]

28)

1 ~ [q - S2 eslh + s .eh

q2 + alq + a2 s

bl I 82 es 1h St es2 h

S1 - S2 S1 - 2

= 1-e- (wnh (coswdh + sin wdh)
Wd

b2 = b - sl es' h 2 S-- s2h +
( S1 - 82 S 1 -- 8

S1-Sh2 1 e2h 

(A.29)

(A.30)

,2 1
n (eSlh _ eS2h) ( 1 eSlh

(51- 52) S1 - s82

= e- 2C,h + e-C nh (:"n sin wdh
~"d

- cosI dh) (A.32)

Following Equation A.19. the relationship between the input sequence u[k] and
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(A.31)
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the output sequence y[k] can be expressed as follows:

yk] q= bq + jk (A.33)q2 + aq -t-a2
or equivalently.

(q2 (I, q + 2 )y[k] = (b1q + b)u[k] (A.34)

By the definition of slift-foirward operator. we arrive at the following linear differ-
ence equation that relates tile in)put and the output sequences of the sampled SDOF
oscillator:

y[k +- 2 + ; i/ + + a2y[k] = blui- + 1] + b2 uzk] (A.35)

where u[k] is the input seqllence representing the excitation force. y[k] is the
corresponding output sequence representing the vibration response of the SDOF os-
cillator. a, a2. b and b are coefficients of the difference equation and they were
defined in Equations A.26. A.27. A.31 and A.32 respectively.
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