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Abstract

Thermal deflections or thermal bending errors in precision machine tools subject to
evaporative cooling have been predicted analytically and numerically. Evaporative cooling
is provided using water. Solutions are provided for two cases: 1) no water flow (static)
across the machine tool surface and 2) water flow at a constant mass flow rate across the
tool surface. The effects of relative humidity (in the range: 0-100 %) and ambient
temperature (in the range: 15-35 °C) are examined in detail. In addition, the effect of the
average convective heat transfer coefficient of air (in the range: 5-25 W/m°C) across the
water surface is examined. The water level on the tool surface is maintained steady at
values typically on the order of 1 mm.

It was determined that maximum thermal deflections occur in the no flow case,
with deflections on the order of tens to hundreds of microns. Maximum deflections also
occur at lower ambient temperatures (relative to the temperature of the hot-side machine
tool surface) and high values of the average convective heat transfer coefficient.
Therefore, in the no flow case, it is desirable to avoid dry air conditions, and the average
convective heat transfer coefficient of air should be kept low. This means suppressing the
effects of free convection in the room housing the machine tool. In the flow case,
minimum deflections occur at high flow rates, as the machine tool is driven to an
isothermal state.

Thesis Supervisor: John H. Lienhard V
Title: Associate Professor

Department of Mechanical Engineering
Warren M. Rohsenow Heat and Mass Transfer Laboratory
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Chapter 1

1.1 Introduction

Thermal errors are a major source of the total system error budget in precision

machine tools. Thermal gradients in the system are the cause of thermal bending errors in

machine tool members. In an ideal system, the machine will warm up to a uniform

temperature during steady-state operation. However, due to the continuous operation of

motors, high-speed spindles, and other devices with moving parts (frictional heating), a

non-uniform temperature distribution results. Other sources that contribute to thermal

gradients in the system include friction in the material cutting process and the external

environment through incandescent lighting, radiation heating via a window, heating or

cooling ducts, the floor, and the operator's own body heat. The various heat transfer

mechanisms that allow for thermal gradients are conduction, convection, radiation, and

evaporation (Slocum, 1992).

In general, there are three common types of errors: 1) random, 2)systematic, and

3) hysteresis. Slocum (1992) categorizes thermal errors as a kind of quasi-static

mechanical error. Other error types include geometric, kinematic, external load-induced

(caused by gravity loads, accelerating axes, and cutting forces), machine assembly load-

induced, material instability, and instrumentation errors. These errors are considered to

occur relatively slowly, at a frequency much lower than the bandwidth of axes on the

machine that could be used to correct the errors.

Precision machine tools employing water hydrostatic bearings are often subject to

evaporative cooling as a result of leakage flow from the bearings. The HydroguideT M , a

hydrostatic, self-compensating water bearing is one such example. Evaporative cooling

serves to lower the temperature of the surface on which the water is in contact, resulting

in thermal deformation of the machine tool member. Water is preferred to oil due to its

relatively lower viscosity (resulting in lower viscous heat dissipation and temperature rise

at higher speeds) and its environmental acceptance (i.e. it is not a fire hazard). It also has

a higher heat capacity, which results in a lower temperature rise.
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1.2 Scope of Work

This thesis work concerns the analytic and numerical prediction of thermal

deflection of machine tool members subject to evaporative cooling. The machine tool

member, throughout this work, is modeled as a homogenous, isotropic, linearly elastic

beam. The relative effects of water mass flow rate (varied between 0 and 80 g/s) across

the beam surface, average convective heat transfer coefficient (5 and 25 W/m2 °C) of air

across the water layer, relative humidity (varied between 0 and 100%), ambient air

temperature (15, 25, and 35 C), and uniform hot-side surface temperature (25 and 35 °C)

are investigated. It is assumed that the machine tool designer has control of these

parameters. Three models are presented: 1) a hydrostatic model, 2) a 1-D hydrodynamic

model, and 3) a 2-D hydrodynamic model. Fig. 1.1 depicts the physical configuration

used throughout this study. This model, for example, simulates the thermal bending errors

in machine tool carriages employing linear hydrostatic opposed pad bearings (Slocum,

1992, pg. 552) with continous flow of water from the bearings. This model can also be

used to simulate thermal bending errors in shafts supported by linear hydrostatic journal

bearings provided the bearing gap is small compared to the shaft radius. For the

hydrostatic model (no water flow), a typical design algorithm is presented.

Throughout the hydrodynamic case study, the HydroguideTM dimensions (L=1.37

m and H=0.0635 m) and thermal properties (a'=6 .tm/m°C and kt=1.6 W/m°C for granite)

are used. This fixes the beam aspect ratio at L/H=21.57. Numerical results are presented

in the form of various dimensionless plots, temperature contours, and distributions of

temperature and thermal deflection along the beam. In addition, some analytic expressions

are presented for the hydrostatic case and the 1-D hydrodynamic case. For the 2-D

hydrodynamic case, the temperature distribution in the beam is calculated using the

standard 2-D equation for steady-state heat conduction in the absence of sinks or souces

(Laplace's equation), coupled with the differential equation for the temperature

distribution of the air-water interface (Ricatti's equation). This results in a nonlinear

boundary condition in the formulation of the 2-D model. The 2-D domain is discretized

using finite difference techniques and the resulting equations solved simultaneously.

10
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Fig. 1.1 Physical model of machine tool member subject to evaporative
cooling.
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Chapter 2

Mathematical Modeling

2.1 Fundamentals of Evaporative Cooling

Evaporation is a process by which liquid molecules near a gas-liquid interface

experience collisions that increase their energy above that which is necessary to overcome

the surface binding energy. The required energy to sustain the evaporation process comes

from the internal energy of the liquid, which, as a result, lowers the temperature and

produces the cooling effect (Incropera and DeWitt, 1981). The energy associated with

this phase change is the latent heat of vaporization of the liquid, which represents the

amount of energy required to convert a unit mass of liquid to vapor.

In order to predict the amount of evaporation from a liquid surface, one must

understand the underlying physical mechanisms and begin to quantify the parameters

relevant to this phenomenon. Mass transfer is analogous to heat transfer in relation to

their respective driving forces. In heat transfer, temperature difference is the driving

force; in mass transfer, concentration difference is the driving force.

The evaporation rate or the total mass transfer rate to or from the liquid surface is

given by (Lienhard, 1987)

gn1 / =g1 B, (2.1.1)

where

B ( ,,, ) (2.1.2)

for a single species i transferred. Here, gi is the mass transfer coefficient, B is the mass

transfer driving factor, mik and mi, are the mass fractions of vapor far away in the free

12



stream and near the gas-liquid interface, respectively. The expressions for the mass

fractions of vapor are

Xh2° MmiM =h h2o (2.1.3)

" Xh" ' Mh + ( - X1!o)Mir

m. = h2 , h2 (2.1.4)

" Xho, Mh2o + (1 -Xoair,

for an air-water mixture. Xh ,a, and Xh ,, are the mole fractions of water vapor far away

in the free stream and near the air-water interface, respectively. Mho and M,, are the

molecular weights of water and air, given numerically as 18.02 and 28.97, respectively. In

addition, the mole fractions of vapor are expressed as

x , P(TXh2o,, = (2.1.5)
pas

X =p P,( (2.1.6)

where 4 is the relative humidity, P(Tr) is the saturation pressure of water vapor at the

atmospheric air temperature, P.(T.) is the saturation pressure of water vapor at the air-

water interface temperature, and P, is the local atmospheric pressure.

The mass transfer coefficient g is often approximated by a low-rate mass transfer

coefficient defined as (Lienhard, 1987)

13



hm
i I, //-O 9, (2.1.7)

Eqn. 2.1.7 is an excellent approximation when mass transfer rates are low (i.e. mass

transfer is dominated by the diffusion process). The relationship between g. and g*i is

derived as

* [ln (1 + B,)
g = g Bi

(2.1.8)

which, in the limit of small values of Bi, reduces to g _- g*i. As a result, Eqn. 2.1.1

becomes

m /t , g B
.11 .~~~~~~~

(2.1.9)

The low-rate mass transfer coefficient g*i is calculated using the heat and mass transfer

analogy, given by

(2.1.10)g i Le2/3
Cp

where h* is the heat transfer coefficient at zero net mass transfer, cp is specific heat of the

liquid, and Le is the Lewis number (Le=DJoc). D is the binary diffusion coefficient and

oc is the thermal diffusivity. For air-water systems, Le _ 1.18.

14



2.2 Fundamentals of Linear Elastic Beam Theory

Free beams subject to end bending moments, in the absence of other external

loads, undergo deflections according to (Johns, 1965)

dv
= C

dx 2
(2.2.1)

where v is the deflection normal to the beam neutral axis, x is the coordinate aligned along

the beam neutral axis, and c is the beam curvature. It is required that the net axial force

and moment on each cross-section be zero. Fig. 2.1 shows the beam cross-section and the

orientation of the coordinate axes.

H
z

W

Fig. 2.1 Beam cross-section; x-direction is normal to the page.
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In solving problems of this nature, it is assumed that "plane cross-sections remain plane

and perpendicular to the beam axis during the given loading and/or heating" and

"distortion of the cross-section due to Poisson's ratio effects is negligible." The curvature

that corresponds to deflections in the y-direction (Eqn. 2.2.1) is given by

C Z -(2.2.2)
EI1

Ei = f Ey2d (2.2.3)

where E is the modulus of elasticity, I,, is moment of inertia about the z-axis, dA is the

differential cross-sectional area, M= is the themo-elastic moment about the z-axis, where

for an arbitrary temperature distribution T(x,y,z), is expressed as

M,, = f EaT(y-y )dA (2.2.4)

where a' is the thermal expansion coefficient and y* is the y-coordinate of the position of

the elastic centroid. With reference to Fig. 2.1, the centroid is located at (y*,z*)=(O,O)

since this location corresponds to the origin of the coordinate axes.

Substituting Eqns. 2.2.2-2.2.4 into Eqn. 2.2.1, with the appropriate limits of

integration, results in the following:

H/2

- a' f T(x,y)ydy
d 2v = -H/2 (2.2.5)

d 2 H12

f y2dy
-H12 16



for constant material properties and a 2-D temperature distribution T(x,y). Eqn. 2.2.5 can

further be non-dimensionalized using the beam height H as follows:

x'=-- ,y= Y ,v = (2.2.6)
H H H

Upon introducing these non-dimensional quantities into Eqn. 2.2.5, the dimensionless

equation for the distribution of deflection in the y-direction, subject to an arbitrary 2-D

temperature distibution T(x',y'), is given as

1/2

. / af T(x',y )y'dy' 
d2v -1/2 (2.2.7)

dx /2 1/2

f ya2dy'
-1/2

where upon evaluating the integral in the denominator, Eqn. 2.2.7 reduces to

1/2

d v =- 12 'f T(x',v)y'dy' (2.2.8)
dx/2 -1/2

17



Chapter 3

Hydrostatic Model

3.1 Problem Formulation

Consider flooding the beam in Fig. 1.1 with water such that a steady layer of

height h results. The steady layer, typically on the order of 1 mm, is maintained by

constant replenishment of water. An energy balance on an elemental control volume of

the water layer yields the following Eqn.:

"hf - h(Ti-r T) =Th - T(3.1.1)/h' h(' H h
k t k w

where nm is the evaporation rate, hg is the latent heat of vaporization, h is the average

convective heat transfer coefficient of air across the water layer, T~ is the ambient air

temperature, T, is the air-water interface temperature, Th is the hot uniform surface

temperature on the bottom of the beam, k, is the thermal conductivity of the machine tool

member or beam, k is the thermal conductivity of the liquid water, H is the beam height,

and h is the steady water layer height.

The air-water interface temperature T, is a function of the saturation pressure of

the water vapor at the interface. Fig. 3.1 is a plot of saturation temperature versus

saturation pressure for water in the range 10 < T, 40 C, along with 1st and 2nd order

polynomial curve fits. As illustrated in the figure, the 2nd order polynomial is an excellent

fit to the actual data. Therefore, the polynomial Ps, = 5 T2 at 50.8 Ta t + 1282.1,

where P, is in units of Pascals (Pa) and T, is in units of degrees Celcius (°C), is used to

calculate the mole fractions and, hence, mass fractions of water vapor at the air-water

interface. This expedites the calculation of the evaporation rate via the mass transfer

driving factor.

18
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3.1.1 Iterative Solution

Eqn. 3.1.1 can be solved iteratively for the air-water interface temperature Ts, after which

the beam surface temperature T, is calculated from the conductive heat flux from the beam

into the water layer, given by

cond 7T) (3.1.2)H

where the conductive heat flux is calculated from the iterated value of the air-water

interface temperature, expressed as

./ _ Th -T,
@ =cond (3.1.3)

cond H h

k, kw

The beam thermal deflection is known to be proportional to the temperature

difference across the beam. For a linear temperature variation through the beam, again

referring to Fig. 2.1, given by

T(y) = T- (T h - T) (y/H) (3.1.4)

where T _ h is the average temperature in the beam. Eqn. 3.1.4 can also be
2

expressed in terms of the dimensionless y coordinate as

T(y') = T- (T- T) y' (3.1.5)

20



Substituting Eqn. 3.1.5 into Eqn. 2.2.8 yields the following equation for the dimensionless

distribution of thermal deflection:

v (x' = ( - (x )2 (3.1.6)
2

subject to the boundary conditions v '(x '=0) = v '(x '=L/H) =- . For a beam of finite

length L, the maximum deflection ocurrs at x=L/2 or x'=L/2H (=Ar/2), where Ar is the

beam aspect ratio L/H. This deflection is expressed as

= V'(x '=L/2T -) (L)2 (3.1.7)

This result is completely consistent with the result derived by Slocum (1992, Eqn. 2.3.44,

pg. 98). In fact, multiplying Eqn. 3.1.7 by the beam height H gives exactly the same

dimensional result as Slocum.

3.1.2 Graphical Solution

Fig. 3.2 is a dimensionless plot of the normalized thermal deflection versus the

a'AT product for various values of the beam aspect ratio L/H. As illustrated by the plot,

high aspect ratio beams are undesirable since they undergo higher thermal deflections.

Fig. 3.3 is another dimensionless plot showing the variation of the mass transfer

driving factor versus a dimensionless parameter involving the relative humidity, local

atmospheric pressure, and the free stream saturation pressure of water vapor at the local

air temperature.

21
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Fig. 3.2 Variation of normalized thermal deflection with the c'AT product for selected
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As shown in Fig. 3.3, the mass transfer driving factor consistently approaches an

asymptotic value as the dimensionless parameter P.m/P(T,) is increased, as most of the

changes in B occur for values of P/~P;,(TW) less than about 50. In fact, the mass

transfer driving factor approaches an asymptotic value of B - for each value of

the mass fraction of water vapor m, at the air-water interface.

If we divide Eqn. 3.1.1 by h(Tair T.), we arrive at another dimensionless equation

expressed as

Th -,e - Bi0tr - 1) (3.1.8)
T., - T.

where Biff is the effective Biot number given by

- ( H h
Biff- + h (3.1.9)

k )

and v is a dimensionless parameter written as

Le23 h B
= (3.1.10)

Cp(Tazr - T.)

Fig. 3.4 is a plot of the effective Biot number versus the dimensionless parameter W for

select values of the dimensionless temperature difference 0.
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3.1.3 Design Algorithm

In this section, a typical design algorithm is presented for a machine tool designer

as follows:

1. Select the allowable thermal error or deflection for the machine tool member;

extract the a'AT product and determine the required cool-side surface

temperature.

2. Now calculate the necessary air-water interface temperature.

3. With knowledge of the air-water interface temperature, calculate the mass fraction

of water vapor at the air-water interface.

4. Evaluate the dimensionless parameter PP,,/P(T ) and extract the mass transfer

driving factor B.

5. Calculate the dimensionless temperature difference 0 and the dimensionless

parameter AV; extract the effective Biot number.

6. With knowledge of the effective Biot number, calculate the required average

convective heat transfer coefficient of air across the water layer and the required

water layer height.

3.1.4 Illustrative Example

Usage of a combination of the iterative solution of section 3.1.2 and the design

algorithm of section 3.1.3 is illustrated in this section.

Suppose the specifications of a machine tool calls for a linear carriage bearing

length of 60" (1.524 m), of height 3" (0.0762 m), giving an aspect ratio of 20. The

specifications also calls for a maximum thermal bending error of 0lm. This results in

26



§/H=1.31x104 . Since the resolution of 8/H in Fig. 3.1.2 is not fine enough, Eqn. 3.1.7 is

used, giving an o'AT product of2.62x10 6. Therefore, with a beam material of granite

(a'=6nm/m/°C), the required temperature drop across the beam is 0.436 °C. If the motor

generates heat such that a uniform hot-side surface temperature of 35 °C results, the

corresponding cool-side uniform surface temperature is required to be 34.564 C. The

resulting heat flux from the beam into the water layer is calculated by Eqn. 3.1.2 (with

k-=1.6 W/m°C for granite) to be 9.15 W/m2. With a steady water layer height of 1 mm

and k,=0.67 W/m"C, this heat flux results in an air-water interface temperature of (Eqn.

3.1.3) 34.55 C. Obviously, the thermal resistance of the water layer is quite small and

approximately negligible. At this temperature, the saturation pressure of the water vapor

at the air-water interface is (Fig. 3.1) 5.5 kPa, which results in a mole fraction (Eqn. 2.1.6)

of 0.054, with the local atmospheric pressure at 101 kPa. The corresponding mass

fraction of water vapor at the interface is calculated from Eqn. 2.1.4 to be 0.0343. If the

local ambient air temperature in the room housing the machine tool is 15 °C

(corresponding to a local saturation pressure of water vapor of 1.7 kPa) and the relative

humidity is measured to be 50%, then the mole fraction of water vapor far away in the free

stream is calculated by Eqn. 2.1.5 to be 0.008415. Using Eqn. 2.1.3, the mass fractioin of

water vapor far away in the free stream is given numerically as 0.005251, which results in

a mass transfer driving factor of (Eqn. 2.1.2) 0.0301. The parameter W in Eqn. 3.1.10 is

calculated to be 1.0036, with h-2440 kJ/kg and cp=4. 18 kJ/kg°C for water. Eqn. 3.1.8 is

used to calculate the dimensionless temperature difference. Its numerical value in this

example is calculated to be 0.023, resulting in an effective Biot number of (also Eqn.

3.1.8) 6.38. Finally, Eqn. 3.1.9 requires the maximum average convective heat transfer

coefficient of air across the water layer to be 129.89 W/m2 C. This can be achieved

simply by carefully blowing air across the machine tool.
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Chapter 4

Hydrodynamic Model

4.1 Problem Formulation

Again, consider the beam in Fig. 1.1, of length L and height H, subject to a hot-

side uniform surface temperature of Th, uniform water flow across the cool-side surface at

flow rate an with steady layer height h and inlet temperature Th, and no heat loss

(adiabatic) from either end of the beam. The local ambient air temperature is T, with

relative humidity 4. In addition, air flows across the water layer such that an average

convective heat transfer coefficient h results. The local pressure in the room housing the

machine tool is P.

4.2 1-D Analytic Model and Solution

In the steady-state 1-D analytic model, it is assumed that there is no axial variation

in the conductive heat flux from the beam into the water layer. As such, there exists a

linear variation of temperature through the beam at any axial location. On the cool-side of

the beam, with water flow, one must account for change in enthalpy of the water as it

flows along the beam in the axial direction. This, along with the effects of convective

cooling and evaporative cooling, causes a temperature drop along the beam in the axial

direction. Again, considering an energy balance on an elemental control volume of the

water layer, the ordinary differential equation governing the temperature of the air-water

interface is derived as

dTl p 
c + . (T - T) + ---- (T - T + Pi h = 0 (4.2.1)

dx RCOnd COv
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where P is the surface heat transfer perimeter, T, is the temperature of the air-water

interface, Rd is the conduction resistance of the beam and water layer, and R, is the

convective resistance of the air flow across the water layer. These resistances are defined

as

Rod = k h (4.2.2)

R = -(4.2.3)
h

In Eqn. 4.2.1, T, is taken approximately as the bulk fluid temperature Tbuk and the 2nd

term on the righ-hand side of Eqn. 4.2.2 is essentially negligible. Note that all other

variables in Eqn. 4.2.1 have been defined previously. In addition, the water mass flow rate

*, specific heat cp, and latent heat of vaporization hfg are all assumed constant. In Eqn.

4.2.1, the 1st term represents the net change in enthalpy through the control volume

element. The 2nd and 3rd terms represent heat conduction into the water layer and

convective heat loss from the water layer, respectively. The last term represents

evaporative cooling.

Assuming the low rate approximation to be valid, Eqn. 2.1.9 represents the

evaporation rate m ' of the water and Eqns. 2.1.2-2.1.6 and Eqn. 2.1.10 remains valid. If

the mass fraction of water vapor at the air-water interface m, is much less than unity, then

Eqn. 2.1.2 reduces to

Bi = nmi, - mi, (4.2.4)
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Eqn. 2.1.3 remains unchanged under this assumption; however, in Eqn. 2.1.4, this

assumption implies that the mole fraction of water vapor at the air-water interface X O is

also much less than unity since the molecular weights of air and water are not greatly

different. This in turn implies that the saturation pressure of water vapor at the air-water

interface temperature P,(T,) is much less than the local atmospheric pressure P. As a

result, Eqn. 2.1.4 reduces to

wher t- m (4.2.5)

where

Pa(T,) 5 T,2 -50.8 T, + 1282.1 (4.2.6)

Note that Eqn. 4.2.6 is a valid approximation since, in the range 10 T., < 40 °C, the air-

water interface temperature (T, ) is equivalent to the saturation temperature (T ) of

water vapor at the air-water interface. The units of T, and P,. are C and Pa, respectively.

Substituting Eqns. 4.2.4-4.2.6 into Eqn. 4.2.1 results in the following nonlinear differential

equation for the air-water interface temperature:

dT
= T + T+ bO (4.2.7)

dx

where
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Eqn. 4.2.7 is known in the literature as Ricatti's equation, which, fortunately, lends itself to

an analytic solution technique.

The solution to Ricatti's Equation is such that if one solution T. = T* is known,

then by making the change of variable T. = T, * - c, / u with cl an arbitrary constant, Eqn.

4.2.7 is transformed to

du + ( 1
+ 2qrT,*)u = c,a2

dx
(4.2.11)

which is a 1st order linear differential equation. Since q2, q,, and qO are all constants, a

solution that satifies Eqn. 4.2.7 is a constant solution found by setting the right-hand side

of Eqn. 4.2.7 to zero as follows:

q2T,*2 + qT, * + q = 0 (4.2.12)

The solution to this quadratic equation is
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* 2q2- - ( ( I
2q2 2q 2 ) q2

(4.2.13)

Now, with one known solution T,*, Eqn. 4.2.11 is solved by multiplying by the integrating

factor ePx, where f3 = q + 2q2T*, and integrating to get the general solution, expressed as

clq2
P

(4.2.14)

where c 2 is a constant. Substituting Eqn. 4.2.14 into the equation for the change of

variable, the general solution to Eqn. 4.2.7 is given by

1T = -

2 + ce

(4.2.15)

where c = c2 / cl is a constant to be determined from application of the boundary

condition. The appropriate boundary condition is T, (x=O) = Th. Therefore, the particular

solution to Eqn. 4.2.7 is

(4.2.16)
1

T,(x) = T * -

q2 + ePX
P

(4.2.17)1 q 2

a = T * - Th p
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Eqn. 4.2.16 is the temperature distribution of the air-water interface. Recall that since the

steady water layer height h is small (on the order of a millimeter), the thermal resistance of

the water layer can be neglected and the approximation T =- Ts can be made, where T is

the temperature distribution of the cool-side surface of the machine tool.

The distribution of thermal deflection is calculated by performing the integration in

Eqn. 2.2.8 and subsequently integrating as follows:

l(x V = a f fA T(s)ds dt' (4.2.18)
0 0

where AT = Th - T o is the temperature difference across the beam, which varies axially.

The boundary conditions are taken as 6/(xC'0) - d (x/=O) = 0 Eqn. 4.2.18 is solved
dx

by first plotting AT(s') versus s' and fitting a curve through it, then performing the

integrations accordingly.

It turns out that the distribution of temperature on the cool-side surface of the

beam can be very closely approximated by a 3rd order polynomial, expressed as

T(x) = a (x')3 + b () 2 + C () + d' (4.2.19)

where a,b,c,and d' are all constants determined from the curve fit of the plot of Ts(x')

versus x'. The polynomial approximation of the temperature difference across the beam is

given by

AT(x ) = -a (x) 3 - b (X) 2 - C (x') + d (4.2.20)
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where AT(x') is defined as AT(x') = Th - T,(x') and d = Th - d'.

Figs. 4.1-4.5 are comparisons of the iterative and low-rate approximate solutions

for the air-water interface temperature for the static case with h - 5 W/m 2 °C and several

hot-side surface and ambient air temperatures as a function of relative humidity.

The low-rate approximation is an overestimation of the air-water interface

temperature since the evaporation rate is effectly suppressed. This overestimation can

lead to significant errors in the calculation of the thermal deflection, which is unacceptable

for precision machine tool applications. In fact, thermal deflections are underestimated

since, as shown in Figs. 4.1-4.5, the iterative solutions consistently result in lower air-

water interface temperatures, which leads to higher thermal deflections. Therefore, the

errors shown in Figs. 4.1-4.5 should be used to correct the low-rate approximate solutions

and, subsequently, increase the accuracy in the calculation of the thermal deflections.

For the hydrodynamic case, it is assumed that other dynamic effects are effectively

dominant and the effects of the low-rate approximation are essentially miniscule. This is

especially true at higher water mass flow rates.
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Fig. 4.1 Comparison of the iterative solution and low-rate approximate solution for the

air-water interface temperature as a function of relative humidity (static case).
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Th=35 °C and Tar=25 °C
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Fig. 4.2 Comparison of the iterative solution and low-rate approximate solution for the

air-water interface temperature as a function of relative humidity resulting from a higher

ambient air temperature (static case).
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Fig. 4.3 Comparison of the iterative solution and low-rate approximate solution for the

air-water interface temperature as a function of relative humidity resulting from equivalent

hot-side surface and ambient air temperatures (static case).
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Fig. 4.4 Comparison of the iterative solution and low-rate approximate solution for the

air-water interface temperature as a function of relative humidity resulting from a lower

hot-side surface temperature (static case).
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Fig. 4.5 Comparison of the iterative solution and low-rate approximate solution for the

air-water interfiace temperature as a function of relative humidity resulting from equivalent

lower hot-side surface and ambient air temperatures (static case).
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Table 4.1 is a comparison of the extremal relative errors corresponding to the solutions

illustrated in Figs. 4.1-4.5. The minimum and maximum errors occur at 100 and 0 percent

relative humidity, respectively.

Table 4.1 Comparison of extremal relative errors in the iterative and low-rate

approximate solutions for the air-water interface temperature.

In what follows, an example of the utility of Eqn. 4.2.16 and Eqns. 4.2.18-4.2.20 is

illustrated graphically. Fig. 4.6 is a plot of the distribution of temperature and thermal

deflection of a machine tool member, of length 1.37 m and height 0.0635 m, subject to

evaporative cooling. A unit perimeter is assumed and the thermal expansion coefficient is

taken as 6 gm/m°C for granite. The dimensions and thermal properties used are taken

from specifications of the HydroguideM self-compensating hydrostatic water bearing.

The effect of variation of the average convective heat transfer coefficient is also shown.

As one can see, an increase in the heat transfer coefficient significantly lowers the surface

temperature and increases the thermal deflection. Note that the minimum temperature and

maximum thermal deflection ocurrs at the right side of the beam where the water exits. In

fact, the lower average convective heat transfer coefficient yields a smaller end deflection

of approximately 152 microns. In Fig. 4.7, the ambient air temperature is increased to

40

Relative Error (%)

Th (°C) Ta (C) Minimum Maximum

35 15 5.40 5.85

35 25 5.19 5.73

35 35 4.46 5.50

25 15 7.63 8.13

25 25 6.49 7.53



25 °C, which results in (not suprisingly) smaller variations of temperature and thermal

deflection along the beam. Again, the lower average convective heat transfer coefficient

results in a smaller end deflection of about 127 microns. Fig. 4.8 shows the effect of

increasing the flow rate of water across the beam. As one would expect, increasing the

water flow rate tends to drive the beam isothermal. This happens because the residence

time of the water flowing along the beam is smaller at higher flow rates, which means that

there's not enough time for the convective and evaporative cooling processes to take

place. Of course, an isothermal beam results in no thermal deflection since the deflection

is proportional to the temperature difference across the beam. However, at 80 g/s, the

smallest end deflection is approximately 25 microns. Lastly, Fig. 4.9 illustrates that

convective and evaporative cooling takes place even when the ambient air temperature and

hot-side beam temperature are equal. As noted before, increasing the water flow rate

tends to drive the beam to an isothermal state. In this case, the smallest end deflection of

about 12 microns occurs at 80 g/s.
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Fig. 4.6 Distribution of cool-side surface temperature and beam thermal deflection as a

function of average convective heat transfer coefficient (1-D).
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Fig. 4.7 Distribution of cool-side surface temperature and beam thermal deflection as a

result of an increase in the ambient temperature (1-D).
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Fig. 4.8 Distribution of cool-side surface temperature and

function of water mass flow rate (-D).
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Fig. 4.9 Distribution of cool-side surface temperature and beam thermal deflection as a
function of water mass flow rate when the hot-side surface temperature and the ambient
air temperature are equal (-D).
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4.3 2-D Numerical Model

As the water flows along the beam, the mechanisms of convective cooling and

evaporative cooling causes a temperature drop in that direction. This temperature

variation causes an axial gradient in the conductive heat flux from the beam into the water

layer. This axial gradient must be taken into account when solving for the temperature

distribution of the air-water interface (Ricatti's equation). This essentially couples the

solution for the temperature distribution in the beam to the temperature distribution of the

air-water interface. In the 1-D model, they were completely decoupled.

4.3.1 Discretization of the Governing Equations

The equation governing 2-D, steady-state, constant property heat conduction in

the beam in the absence of sinks or sources is Laplace's equation given by

a2T a2T
02T + 2 0 (4.3.1)
ax 2 ay 2

Consider the 2-D control volume shown in Fig. 4.10 (Patankar, 1980). The derivatives in

Eqn. 4.3.1 are approximated by 3-point central differences as follows:

02T T - 2Tp + Tw 4.3.2)
a2 (4.3.2)

Ox2 (Ax) 2

a2T TN - 2Tp + T(4.3.3)
y (4.3.3)

ay2 (y) 2
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Upon substituting Eqns. 4.3.2 and 4.3.3 into Eqn. 4.3.1, the discretization equation for the

temperature distribution in the beam is derived as follows:

apTp = aETE + awTw + aNTN + asTs (4.3.4)

where aE = aw = Ay / Ax, aN= as = Ax/ Ay, and a = a + a + aN+ as.

Y

x,

Fig. 4.10 Typical cell in the discretized domain of the 2-D model (from Patankar, 1980).

For the 2-D model, Eqn. 4.2.1 is modified to account for the axial variation in the

conductive heat flux from the beam into the water layer as follows:

-dT + Ph(T - T + Pk[ T ]

? dx id
+ Pni f = Ofg
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where the evaporation rate * ' is approximated as in the 1-D model as

mag [M- · (ST - 50.8T7 + 12821) - (4.3.6)

The derivative in the 1st term in Eqn. 4.3.5 is approximated by a two-point central

difference scheme whereas the derivative in the 3rd term in Eqn. 4.3.5 is approximated by

a two-point forward difference scheme.

As in the 1-D model, temperature variations through the water layer are neglected

since the water layer thermal resistance is negligibly small. As such, the temperature

distribution of the air-water interface is approximately equal to the temperature

distribution of the cool-side surface of the beam. Upon substituting Eqn. 4.3.6 into Eqn.

4.3.5 with the appropriate difference approximations, the discretized form of Eqn. 4.3.5 is

written in quadratic form as

a T 2 + b Tp + c =0 (4.3.7)

where a = 5Phfgg*w, b = Ph - 50.8 Phg*Wy + Pk/Ay, and c = (mcpTE - mcpTw)/2Ax

+ PhT,, + Phg*(1282.1 - mi,) - PktTs/Ay, where xv = Mh2J(MP.). Of course there

are two solutions that satisfy Eqn. 4.3.7; however, a trial and error process reveals that the

only physically realizable solution is

Tp 2a a(4.3.8)

48



Note that Eqn. 4.3.8 only applies to the nodes on the cool-side surface of the beam in the

discretized domain whereas Eqn. 4.3.4 applies only to the interior nodes of the beam. On

the adiabatic boundaries at x0 and x=L we impose the condition Tw=Tp and TE=Tp,

respectively, for all y. Of course, on the hot-side surface of the beam we require that

Tp=Th, for all x.

The distribution of thermal deflection is calculated as in section 4.2, where in Eqn.

4.2.18, AT(s') is replaced by

1/2

= -12 a Jf(x'py')y'dy (4.3.9)
-1/2

The integral in Eqn. 4.3.9 is calculated using the Composite Simpson's Rule found in

Maron (1987, pg. 353). Also, as in section 4.2, the distribution of is approximated by a

3rd order polynomial and the integrations carried out accordingly.

4.3.2 Solution Algorithm

The numerical solution of the discretized equations of section 4.3.1 is carried out

using the Gauss-Seidel iterative scheme with relaxation. The relaxation parameter co, in

the range 0 < o < 2, allows for rapid convergence of the iterative scheme. The iterative

scheme, with relaxation, is carried out with the following equation:

Ti l = T + O)(T - T) (4.3.10)

where with co=lthe scheme reduces to the Gauss-Seidel iterative scheme. In Eqn. 4.3.10,

Tp is given by Eqn. 4.3.4, after dividing by ap of course. Generally, there is an optimal

value for o, which depends on the particular problem under study. However, in the
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present study, an optimal value is not sought, and underrelaxation (to < 1) is used to

achieve convergence. Convergence is achieved when the absolute difference between T +

and T in Eqn. 4.3.10 is less than or equal to some pre-established criterion. This criterion

is specified in section 4.3.3.

The following is the algorithm used to solve the discretized equations by the

iterative scheme:

1. Specify constants including imposed boundary conditions.

2. Provide initial guess values for the solution vector (temperature in this case).

3. Calculate new solution vector and compare with solution vector from previous

iteration.

4. If the difference in step 3 is less than or equal to some pre-established convergence

criterion for all components of the solution vector, then output the converged

solution vector. Otherwise, set the new unconverged solution vector equal to the

initial guess solution vector and repeat step 3 until a converged solution vector is

reached.

4.3.3 Convergence Criteria and Grid Independency

The chosen convergence criterion in the iterative solution for the nodal

temperatures is s= 10 5. The convergence criterion is such that the variation in the nodal

temperatures are less than or equal to s from one iteration to the next for all nodes.

Grid independency occurs when changing the grid size produces no significant

difference in the solution for the nodal temperatures. The average temperature of the

cool-side surface is used to establish grid independency. Grid independency is established

when the variation of the average temperature of the cool-side surface is less than 5%
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when varying the grid size. The average temperature is calculated using the Composite

Simpson's Rule of Maron (1987, pg. 353).

In the present study, a grid size of 87x29 was found to establish grid independent

results. However, a grid size of 105x35 was used to ensure increased accuracy in the

solution for the nodal temperatures.

4.3.4 Numerical Results

The numerical results contained in this section are presented based on the

HydroguideTM dimensions and thermophysical properties. They are reiterated as follows:

L=1.37 m

H=0.0635 m

P=l m

a'=6 gm/m °C

k1=1.6 W/m °C

c=4. 18 kJ/kg °C

hfg2 .4 4 MJ/kg

The resulting fixed beam aspect ratio is L/H=21.57 and the thermophysical properties are

taken at 20 °C, which do not vary significantly over the temperature ranges encountered in

this study.

A note regarding the adiabatic assumption is warranted. The adiabatic assumption

essentially places a lower bound on the thermal deflection (at the liquid supply end) since

any heat loss from the ends would effectively lead to higher temperature drops through the

beam. In a practical sense, a beam made adiabatic on its ends would result in lower

thermal deflections than a beam made perfectly conducting at its ends.

Fig. 4.11 is a plot of the distribution of cool-side surface temperature and thermal

deflection as a function of water mass flow rate. As expected, increasing the flow rate

tends to drive the beam to an isothermal state, which results in minimal thermal deflection.
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Note that the maximum deflection occurs at the right end of the beam where the water

exits. The smallest end deflection is estimated to be about 23 microns, which occurs at

80 g/s. Fig. 4.12 illustrates the distribution of isotherms as a function of water mass flow

rate. In each case, the isotherm distribution is approximately 0.3 °C/isotherm with uniform

hot-side surface temperature Th distributed on the bottom of the beam. Note also the two-

dimensional nature of the heat flow as the water flow rate is increased and the one-

dimensional nature of the heat flow in the static case. However, in the flow case, as the

water travels "downstream" of the beam entrance, a transition occurs whereby 2-D effects

are essentially negligible. Fig. 4.13 shows the effect of varying the average convective

heat transfer coefficient. As expected, an increase in the average convective heat transfer

coefficient tends to drive the cool-side surface temperature closer to the ambient air

temperature, which leads to higher thermal deflections. According to this figure, the

smallest end deflection is approximately 150 microns. In Fig. 4.14, the distribution of

isotherms as a function of average convective heat transfer coefficient is shown. Note that

the closer the isotherm spacing, the more heat transfer that takes place. Also note that at

higher values of the average convective heat transfer coefficient, the cooling effect takes

place earlier, closer to the water entrance to the beam. Fig. 4.15 illustrates the effect of

increasing the ambient air temperature and water mass flow rate. Again, as one would

expect, smaller thermal deflections are realized since the potential for heat transfer

between the hot-side surface of the beam and the ambient air is effectly reduced. At 40

g/s, the smallest end thermal deflection occurs, estimated to be about 32 microns, and, as

noted before, increasing the water mass flow rate reduces the temperature gradient

through the beam and minimizes thermal deflection. In Fig. 4.16, the hot-side surface

temperature is reduced to 25 °C and the effects of varying the water mass flow rate is

illustrated. In this case, the smallest end thermal deflection, which occurs at 40 g/s, is

approximately 25 microns. A comparison of the effect of ambient air temperature is

shown in Fig. 4.17. The smallest end deflection, estimated to be about 102 microns,
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occurs for an ambient air temperature of 25 °C, compared to an end deflection of about

150 microns for an ambient air temperature of 15 °C.

4.3.5 Maximum Thermal Deflection

The maximum cooling effect occurs at zero water mass flow rate, which results in

maximum thermal deflection. Fig. 4.18 is plot of the maximum thermal deflection of the

Hydroguide TM bearing as a function of relative humidity. As expected, bone dry air,

corresponding to a relative humidity of 4 = 0, results in a maximum possible thermal

deflection of approximately 395 microns. It should be pointed out that maximum thermal

deflection also occurs when the difference between the hot-side surface temperature and

ambient air temperature is also a maximum.
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Fig. 4.11 Distribution of cool-side surface temperature and beam thermal deflection as a

function of water mass flow rate (2-D).
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Fig. 4.12 Distribution of isotherms as a function of water mass flow rate (2-D).
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Fig. 4.13 Distribution of cool-side surface temperature and beam thermal deflection as a

function of average convective heat transfer coefficient (2-D).
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Fig. 4.14 Distribution of isotherms as a function of average convective heat transfer

coefficient (2-D).
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Fig. 4.15 Distribution of cool-side surface temperature and beam thermal deflection as a
function of water mass flow rate resulting from higher ambient air temperature (2-D).
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Fig. 4.16 Distribution of cool-side surface temperature and beam thermal deflection as a

function of water mass flow rate resulting from lower hot-side surface temperature (2-D).
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Fig. 4.17 Distribution of cool-side surface temperature

function of ambient air temperature (2-D).
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Fig. 4.18 Uniform cool-side surface temperature and maximum beam thermal deflection

as a function of relative humidity.
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Chapter 5

5.1 Conclusions and Design Implications

Analytic and numerical solutions have been presented for the thermal bending

errors of precision machine tool members subject to evaporative cooling. Three models

have been presented: 1) a hydrostatic model, 2) a -D hydrodynamic model, and 3) a 2-D

hydrodynamic model. The HydroguideTM self-compensating, hydrostatic water bearing

dimensions and thermophysical properties were used in the results presented for the two

hydrodynamic models. The relative effects of the average convective heat transfer

coefficient of air across the water layer (5 and 25 W/m2 °C), water mass flow rate (in the

range: 0 to 80 g/s), ambient air temperature (15, 25, and 35 °C), relative humidity (in the

range: 0 to 100 %), and hot-side surface temperature (25 and 35 °C) were studied. The

following concluding remarks can made regarding the results contained herein:

1. Maximum thermal deflections occur in the no flow (static) case.

2. Maximum thermal deflections also occur when the ambient air surrounding the

machine tool is bone dry (i.e. zero percent relative humidity).

3. Minimum thermal deflections occur when the water mass flow rate is sufficiently

high and the machine tool is driven to an isothermal state.

4. High values of the average convective heat transfer coefficient of air results in

increased thermal deflection; therefore, free convection effects in the room housing

the machine tool should be suppressed.

5. Minimum thermal deflections occur when the difference between the hot-side

surface temperature and ambient air temperature is a minimum.
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The precision machine tool designer has a monumental task in controlling the

environment surrounding the machine tool in order to minimize thermal bending errors.

Machine tools should be housed such that wind effects are suppressed and the relative

humidity is sufficiently high (greater than about 50%). In addition, the machine tool

should be continously flooded at high flow rates in order to drive it to an isothermal state.

However, care should be taken not to allow flow leakage along the adiabatic ends since

evaporation would tend to cool these surfaces as well. Linear carriages, for example,

employing hydrostatic water bearings should be designed such that there is no heat loss

from the ends.

5.2 Recommendations for Future Work

The following is a list of recommendations that should be implemented in order to

increase the understanding of thermal bending errors in precision machine tools:

1. Extend the models contained herein to three dimensions, including the effects of

beam length to height aspect ratio (L/H) and width to height aspect ratio (W/H).

2. Perform analyses with an assortment of boundary conditions, including various

inlet water temperatures.

3. Perform analyses for a range of beam materials and clamping conditions.

4. Quantify the relative importance of evaporative cooling at high flow rates as a

function of relative humidity.

5. Perform experiments so that analytic and numerical results can be varified.
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