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Abstract

This work investigates the feasibility of an interpolating approach to pipelined multi-step
analog-to-digital conversion. The proposed architecture aims to ease the severe constraints
imposed on amplifier design in standard pipelined multi-step architectures. By easing the
amplifier performance criteria, circuits for low voltage supply and low power operation
are feasible.

The design of a 10 bit, 20MSPS ADC is presented to illustrate the benefits of the pipelined
multi-step interpolating converter. The chosen architecture is a 4-residue interpolator with
a 5-stage pipeline. The first 4 stages resolve 3 bits each and the last stage resolves 2 bits.
The circuit functions are implemented in 0.6gm CMOS using primarily switched-
capacitor techniques. By taking advantage the reduced gain requirements of the
amplifiers, the circuitry can operate on a 2.5V supply. The analog circuitry dissipates a
simulated 65mW while achieving <1/2 LSB DNL performance at 10-bits.
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Chapter 1

Introduction

1.1 Motivation

Many techniques have been developed to perform analog-to-digital conversion. None of

these available techniques are suitable for all applications. Depending on speed, accuracy,

power requirements, and other considerations, various architectures present specific

advantages. This research concentrates on an architecture which is suitable for moderate

resolution (8 to 12 bits) and samples at rates beyond 20 mega-samples per second

(MSPS). Converters in this realm are typically needed for video applications at about

20MSPS or ultrasound/professional video applications at sampling rates of 40MSPS.

Most ADC architectures are similar in the respect that they require comparison,

amplification and/or digital-to-analog conversion. The performance required from these

circuit blocks depends largely on the selected A/D converter architecture. In CMOS

technologies, most high-speed / moderate resolution converters are based on a multi-step

approach. These architectures typically utilize inter-stage amplification cells that require

extreme accuracy. As supply voltages drop, the design of high-gain, wide-bandwidth

amplifiers can become extremely difficult, if not altogether impossible. This research

explores an alternative architecture which aims to relax the demanding performance

specifications on amplifiers. In addition to reducing the performance demands on the

amplifiers, it is important to minimize the overall power dissipation. Based on a 0.6gm

double-poly double-metal (DPDM) process, the feasibility of a 10 bit 20MSPS converter

is investigated. The design demonstrates achievable performance with 2.5V analog and

digital supplies, while dissipating less than 100mW.

1.2 Organization
Following the introduction, Chapter 2 provides an overview of many of the available

ADC architectures. The chapter is also intended to provide insight into the constraints

which ultimately limit the viability of various architectures. Chapter 2 makes clear the

various advantages each architecture presents. This background is useful because some of
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the desirable aspects of the various architectures are pulled into the architecture that is

ultimately presented.

Chapter 3 discusses the idea of multi-step interpolation. The particular advantages of

this architecture are analyzed. Specifics of implementation are discussed which ultimately

lead to the selection of a viable architecture. This chapter serves as the motivation for the

analysis done in later chapters.

The specific implementation of interpolation using CMOS technology is presented in

Chapter 4. The advantages of switched-capacitor approaches to interpolation in CMOS are

discussed. The effects of non-idealities on circuit performance are also analyzed in some

depth.

Chapter 5 illustrates the CMOS transistor level design of the amplifier topology used

in the switched-capacitor interpolation presented in Chapter 4. The reasons for selecting

the particularly amplifier topology are discussed and justified. The circuits' simulated

settling results are presented to demonstrate its viability.

In Chapter 6, all of the pieces from the previous chapters are pulled together into a

design example. Implementation specific issues and design issues are discussed. The ADC

achieves simulated performance of 10 bits at 2.5V supplies. The linearity performance is

simulated using a top-level behavioral model (given in appendix A).

Chapter 7 summarizes the conclusions of this work, and provides suggestions for

further research.
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Chapter 2

Nyquist-Rate A/D Architectures

2.1 Introduction
There are several architectures suitable for high-speed, moderate-resolution analog-to-

digital conversion. The particular data converter application will dictate the process

technology and architecture chosen. Further fine-tuning of the architecture will take place

based on the process selection. It is clear that there is no one optimal architecture for all

applications. All of the architectures have specific performance advantages which must be

weighed and traded off based on the desired performance goals.

This chapter surveys three classes of data converters. A flash converter is presented

first and is the most common and familiar class of A/D converters. Interpolating flash

converters are discussed next, and are an extension of the standard flash converter. Both

the flash and interpolating flash are characterized as one-step converters. A class of

converters known as multi-step converters will be illustrated using a pipelined multi-step

architecture. This overview of some available architectures will highlight the advantages

and drawbacks of each class of converter. The chapter will begin, however, with a

description of some of the performance metrics commonly used in the characterization of

A/D converters.

2.2 Performance Metrics
Several performance specifications are useful in determining the relative merit of

competing analog-to-digital converter architectures. The static and dynamic error

definitions [1] below are not a complete listing, but a sufficient sampling to describe

important performance characteristics of architectures discussed in this chapter.

* Differential nonlinearity (DNL) - Defined as the deviation of actual code width from
the ideal code width. Usually measured in least significant bits (LSBs).

* Integral nonlinearity (INL) - Defined as the deviation of the converter transfer
function from the ideal straight line. INL is typically measured with respect to the
"best fit" straight line so as not to capture overall converter gain errors which are not
considered nonlinearities. Again this is measured in LSBs.
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Figure 2.1. Flash architecture.

Offset - Defined as the amount (in LSBs) the converter transfer function is shifted
from the ideal converter transfer function. Offset is usually not a particularly important
specification because software or hardware following the converter can easily correct
for converter offset.

* Gain error - The variation of the slope of the converter transfer function from the
ideal. Gain error is typically specified as a percentage variation from the ideal. Again,
this is usually not a particularly important specification because it is easily correctable
with software or hardware calibration.

* Signal-to-noise ratio (SNR) - Defined as the ratio of the power of a full-scale
sinewave to the power of the noise of the converter. The SNR is limited in an ideal
converter by the quantization noise floor (given by SNR = 6.02N + 1.8dB for a N-bit
converter).

* Total harmonic distortion (THD) - The ratio of the power of all harmonics to the
power of the fundamental signal component.

2.3 Flash Architecture
Flash (or fully parallel) architectures take full advantage of parallelism to realize

extremely high conversion rates. A block diagram of a flash converter is shown in Figure

2.1.
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For a n-bit resolution converter, a flash converter requires 2n -1 comparators. Based on

this requirement, the power and area of this architectures grows exponentially with the

resolution of the converter. This architecture results in an extremely large input

capacitance which can create the need for a high-performance buffer amplifier at the input

of the converter. For these reasons, flash converters are generally restricted to less than 10-

bit applications. Also, timing differences between comparators can also create conversion

errors (for high frequency input signals) which are remedied by the addition of a high-

performance S/H amplifier.

Flash architectures are particularly undesirable in CMOS technologies. MOS

transistors exhibit poor matching properties and limited transconductance. Because

comparator offset translates directly into DNL errors, auto-zeroed comparators are

required. These preamplifiers can require considerable design effort and consume

additional power and area. Auto-zeroed preamplifiers tend to be slower than open loop

preamplifiers that can be used in a bipolar process. For these reasons, high-speed flash

converters are typically designed for bipolar processes (taking advantage of the excellent

matching properties and high-speeds attainable with bipolar devices). Using bipolar

technology, 8-bit performance has been obtained at 250MSPS [2] and 500MSPS [3]. The

need for integrated CMOS systems with data converters has driven several high-speed

CMOS flash designs (e.g. [4],[5], and [6]), in spite of the disadvantages of this technology.

2.4 Interpolating Flash Architecture
The interpolating flash converter is a direct modification of the flash converter. A section

of an interpolating flash with 4x interpolation is illustrated in Figure 2.2. Like the flash

converter, this is a one-step architecture. Figure 2.3 shows the transfer functions of two

preamplifiers in an interpolating flash. These signals are known as "residues," because

they are the residual of the input subtracted from the quantization level. Between these

transfer functions or "residues" are the interpolated signals. The latches following the pre-

amplifiers and their interpolated residues have decision thresholds at 0. This architecture

will produce the familiar "thermometer" code output that is seen in flash converters.

2.4.1 Offset Sensitivity

Interpolating converters are inherently desensitized to amplifier offset errors. Both

19
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Figure 2.2. Interpolating flash architecture.

Vou

Figure 2.3. Interpolated residues from interpolating flash.

capacitive [7] and resistive implementations [8] have taken advantage of this offset

insensitivity. Resistive interpolation provides an added benefit linearizing the amplifiers

by causing "error currents" to flow (from the preamplifiers to the resistive ladder) to

further correct amplifier offset beyond the benefit of interpolation [9].

Figure 2.4 illustrates the mechanism by which this architecture is desensitized to

preamplifier offset. The dark solid lines represent 4 preamplifier transfer functions

(amplifier saturation is left out for simplicity). In this figure, amplifier A2 has an input-

20
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Figure 2.4. Linearity errors caused by pre-amplifier offset.

referred offset of +1 LSB. The dashed transfer function represents the ideal transfer

function of amplifier A2 and the dots on the horizontal axis represent the ideal location of

the residue "zero-crossings." The location of zero-crossings is the important feature,

because their location determines the location of the latch transition. In this example, an 1

LSB offset error creates banks of codes that are 1/4 LSB wide and 1/4 LSB narrow. In a flash

converter, 1 LSB of offset creates a 1 LSB DNL error (a missing code). From Figure 2.4 it

can be seen that the offset's effect is spread evenly among the interpolated signals. If this

example were extended to 8x interpolation, the maximum DNL error would be further

reduced to 1/8 LSB. This architecture does not improve the INL performance over that of a

flash converter.

Practically, the maximum interpolation factor is limited by the linear range of the

preamplifier. Accurate interpolation will no longer be achieved as one of the amplifiers

nears its saturation region. This requirement limits the preamplifier gain that can be

realized in this implementation. If a gain is chosen to be too large, the adjacent amplifiers

21
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will not have sufficient overlap of their linear ranges to perform accurate interpolation.

The ultimate benefit that can be obtained through interpolation is limited by the size of the

amplifiers linear output range.

2.4.2 Gain Mismatch Sensitivity

Figure 2.5 illustrates the effect of a gain mismatch between adjacent amplifiers in an

interpolating flash. This particular example illustrates a -30% gain error in amplifier A2.

Even for this drastic mismatch, the worst-case INL and DNL performance is fairly

reasonable. The INL sensitivity to gain mismatch increases linearly with number of

quantization steps in-between the residues. The DNL performance is fairly independent of

the number of quantization steps being interpolated.

The nonlinearity performance is worse than that in a standard flash converter, where

gain mismatches do not affect the linearity of the converter. The interpolating architecture

is more insensitive to amplifier offsets that the flash converter. Interpolation essentially

trades off gain mismatch sensitivity for offset sensitivity.

22
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2.4.3 Summary

Interpolating flash converters present a number of advantages over a standard flash

architecture. The sensitivity to preamplifier offset is greatly reduced. In CMOS

technologies, this is particularly important. The inherent device matching in CMOS is

inferior to bipolar technologies. Interpolating flash converters also significantly reduce the

number of preamplifiers connected to the converter input; therefore, substantially reducing

the input capacitance of the converter. There is also the additional benefit of reducing the

area and possibly the power consumption of the converter. Even with these advantages, it

is probably not feasible to extend this technique beyond 10 bits of resolution. At these

resolutions, the required 2n-1 comparators is still extremely cumbersome to implement.

Interpolating techniques have been implemented successfully using bipolar technology to

obtain 10-bit 300MSPS performance [8].

2.5 Multi-step Pipelined Architectures
The obvious drawback of fully parallel or flash converters is that the number of circuit

components grows exponentially with converter resolution. Multi-step converters break

the conversion into a number of lower resolution conversions. Figure 2.6 shows a two-step

architecture. For a 2n-bit converter the number of comparators is reduced to

approximately 2n (as opposed to 22n for a full flash converter). A two-step architecture is a

specific example of a general class of converters known as multi-step converters.

The two-step converter's operation is fairly straightforward. First a "coarse"

conversion is made which best approximates the input signal. A D/A converter reproduces

the analog signal corresponding to this conversion and subtracts it from the signal path.

This "residue" is amplified to fill the full-scale range of the second or "fine" conversion.
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These two results are added digitally to get the output code. Often the coarse and fine

conversions have a 1 bit of overlap to allow for errors in the coarse quantization (overlap

range is discussed in more detail in section 2.5.2).

There are a number of important characteristics of multi-step converters. In general,

the n-bit quantizers need only be accurate (linear) to n-bits. The D/A converters and

subtraction circuitry must be accurate to the remaining accuracy of the converter. The

interstage gain must have gain accuracy better than the remaining resolution of the

converter. The constraints on the subtraction and interstage gain circuitry usually dictates

that a high-gain amplifier be used in a feedback configuration. The presence of a closed-

loop amplifier in the signal path typically limits the overall conversion rate.

2.5.1 Pipelining

Figure 2.7 shows a general multi-step architecture. This illustrates that the two-step

architecture can be extended to an arbitrary number of stages. The limiting example is a 1-

bit per stage architecture which requires only 1 comparator per bit of resolution desired

(e.g. [10]).

The addition of a sample-and-hold amplifier allows the multi-step architecture to be

pipelined to increase the throughput rate of the converter. The sample-and-hold must have

linearity and offset performance that is commensurate with the accuracy of the remaining

24
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stages. Again, the subtraction circuitry and interstage gain must also meet accuracy

requirements equal to the remaining bits in the converter.

Multi-stage architectures have the added benefit of reducing the required accuracy in

later stages of the converter. All errors are reduced by the preceding interstage gain when

referred to input. By taking advantage of reduced accuracy requirements, power and area

savings can be realized in the amplifiers in the later stages. This feature strongly

influences the choice of how many bits to quantize in the first stage.

A number of converters have been realized utilizing a pipelined multi-step approach.

Using a BiCMOS process, 10-bit 20MSPS performances has been achieved [11]. Similar

performance has been realized in 0.9gm CMOS technology [12]. Lower power CMOS

converters with similar performance have since been developed [13].

2.5.2 Overlap Range

Digital error correction is almost universally used in multi-step architectures. This

technique reduces the accuracy requirement of each stage's quantizers to the number of

bits being resolved in that stage. Digital error correction is accomplished by providing

over- and under-range in the next stage [15]. This extra range is designed to be sufficient

to correct errors made by the preceding quantizer.

Figure 2.8 illustrates interstage coding of a converter with no overlap range (i.e. no

digital error correction). If the interstage A/D, D/A and subtracter are ideal, one
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Figure 2.10. Interstage coding with quantizer offset (with error correction).

quantization step of the first stage is amplified to exactly fill the full-scale range of the next

stage. Figure 2.9 illustrates the same interstage coding with offset added to 2 of the

quantization levels. Because of errors in the first stage A/D converter, the signal range

now falls outside of the next stage's full-scale input range. As illustrated, this results in a

region of overflow and a region of missing codes. By adding over- and under-range, the

converter will be desensitized to offset errors in the quantizers.
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Figure 2.11. Digital correction arithmetic for (a) over-range and (b) under-range.

Figure 2.10 shows one possible implementation of error-correction using over- and

under-range. Because the interstage gain has been reduced by half, the converter can now

tolerate 1/2 LSB errors in the quantizer. For signals that fall in the over-range, an over-

lapped add is performed to increment the previous stage's result by 1 LSB. Signals that

fall in the under-range subtract 1 LSB from the previous stage. Figure 2.11 illustrates the

digital arithmetic that must be done to perform the error correction. As mentioned above,

this technique greatly eases the constraints imposed on the interstage quantizers.

2.5.3 Summary

Pipelined multi-step converters offer several advantages over standard flash converters.

By breaking the conversion process into many steps, the area and power of the converter

can be significantly reduced. The input capacitance of the converter is reduced as well.

These factors make 10-bit and higher resolution converters feasible in CMOS. Also, by

pipelining the converter, the throughput rate can be increased significantly.

Multi-step converters are not without their drawbacks. The requirement of having

accurate gain and subtraction circuits makes design difficult. As mentioned above, these

circuits are generally implemented using closed-loop techniques. These closed loop

amplifiers impose a speed bottleneck on the conversion process. A multiplying digital-to-

analog converter (MDAC) approach in CMOS has been used to combine the subtraction,

gain and D/A functions [14]. The problem is reduced to one amplifier design per stage by

using a MDAC-based architecture. For high-speed conversion, the performance demands

on the amplifiers are extreme. They need extremely high gain for accurate MDAC

operation, and excellent settling performance. For conversion speed, these amplifiers

present the ultimate limit to performance.
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2.6 Summary
This chapter has served as a brief overview of several popular A/D conversion techniques.

It is clear from this examination that accurate subtraction and gain are the limiting factors

in multi-step architectures. Flash-type architectures do not suffer from these design

constraints; however, flash architectures are not efficient from a power or area standpoint.

For applications that do not require ultra-high conversion rates, but do need moderate

resolution (10b, <50MSPS), a flash architecture is probably not an appropriate choice.

The features of each of the above architectures which make them desirable are:

* No preamplifier gain-matching sensitivity in flash converters.

* Excellent conversion rate of full-parallel implementation.

* Reduced offset sensitivity of interpolating flash converters.

* No closed-loop amplifiers in interpolating architectures.

* Reduced power and area of multi-step approaches.

* Increased conversion rate gained through pipelining.

The approach of this research is to realize an architecture that takes advantage of the

best features of each of these architectures.

28



Chapter 3

Multi-step Interpolation

3.1 Introduction
Pipelined multi-step architectures discussed in Chapter 2 have achieved excellent

performance in CMOS [13]. These converters can be characterized as "single residue"

architectures. Their accuracy is determined, in part, by how well the reference range of the

each stage matches full-scale range of the single residue. The accuracy of the interstage

gain in a "standard" pipelined multi-step converter determines how well these ranges will

match. A small error in the interstage gain will cause the full-scale range of the residue to

mismatch the full-scale range of the next stage. Because of required closed-loop gain

accuracy, these architectures require extremely high-gain, wide-bandwidth amplifiers in

order to obtain good conversion accuracy and speed.

The problem created by interstage gain error is illustrated in Figure 3.1 In this

example, the interstage gain is too low. Because the gain is too low, the residue never

reaches the full-scale range of the second stage. This example illustrates the first stage

ADC transitioning before full-scale is reached in the second stage. Narrow or possibly

missing codes are possible at the first stage ADC transitions.

3.2 Multi-residue Architectures
Interstage gain dependency would be alleviated if the reference for the next stage were

passed through a unity gain amplifier with a percentage gain-error identical to the

interstage gain error. The reference range of the stage would then match the full-scale

range of the residue. Unfortunately, creating a matching gain error in a reference buffer

amplifier is not a feasible approach in CMOS (this approach has been used at the 8b level

in a bipolar technology [16]). An alternative, but equivalent, approach is to have the

residue carry the reference information. This approach would force the reference and

signal information to pass through the same interstage gain. Any gain error would affect

both the reference and signal path identically. Multi-residue interpolating converters

provide this advantage.
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Figure 3.1. Multi-step converter with interstage gain error.

3.3 Two-residue Architecture

A two-residue architecture has been shown to drastically reduce the gain-bandwidth

requirements of interstage amplifiers [17]. A conceptual diagram of this architecture is

shown in Figure 3.2. A first residue is defined by the difference between the analog input

and the closest quantization level. The second residue is the difference between the analog

input and the second closest quantization level. The interstage amplifiers are switched so

that input voltage occurs between their inverting inputs. This requirement guarantees that

bottom amplifier's output (Al) will be positive and the top amplifier's output (A2) will be

negative. By placing an interpolating ladder at the outputs of these two amplifiers and

resolving where the "zero-crossing" of the interpolated residues occurs, the value of the

input is quantized. As illustrated in Figure 3.2, this interpolation process can be continued

with more interstage amplifiers and interpolating ladders to resolve the signal with

increasing resolution. In each stage, the location of the zero-crossing is quantized. These
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Figure 3.2. Multi-step two-residue architecture.

results are added digitally at the end of the conversion process to produce the output code.

This digital addition is implemented in a similar fashion to a standard multi-step

architecture described in Section 2.5. The results of the first stage are weighted to have the

most significance, and each preceding stage is weighted with less significance.

3.3.1 Gain Matching Sensitivity

In this architecture, the difference between the two residues carries a scaled value of the

quantization step, so conceptually the residues self-define their reference range. This

desensitizes the architecture to variations in the residue amplifiers' gain. Figure 3.3

illustrates that the "zero-crossings" occur in identical locations regardless of the interstage

gain. The position of the zero-crossings determines the location of the code transitions.

The residues are conceptually identical to those seen in the interpolating flash

architecture Section 2.4). The difference arises from the fact that the residues are "folded"

by the switching action along the taps of the interpolating ladders. This folding is what

reduces the number of required comparators [18]. In essence, each comparator is used

several times over the conversion range.
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Figure 3.3. Two-residue architecture with varied interstage gain.

The gain matching between the two amplifiers is the important factor in determining

the DNL performance of the converter. Interestingly, if both amplifiers have linear settling

(i.e. no slewing), then complete settling isn't required in order to obtain converter linearity

[17]. First order settling can be represented by (3.1).

V(t) = A V ( 1 - et/ x) (3.1)

The exponential term is a constant factor if both amplifiers are sampled

simultaneously and have identical time-constants. As mentioned above, the nominal value

of the gain is not particularly important, just the gain matching. This concept holds for

multiple order settling as well, as long as it is linear. This property is in stark contrast to

standard multi-step architectures, where complete settling is paramount to the

performance of the converter. This feature significantly eases constraints on the amplifier

design (typically the most demanding specification of a multi-step architecture).

As illustrated in the discussion about the interpolating flash (Section 2.4), interpolating

architectures are fairly insensitive to gain mismatches. Figure 2.5 illustrated a -30% gain

mismatch that only resulted in 1/4 LSB DNL errors. The maximum DNL error due to a gain

mismatch is given by (3.2), where N is number of quantization levels between the residues

and a is the gain error. The maximum INL due to a gain mismatch is given by (3.3).
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2 (0.5 (a- 1) + 1 (33

3.3.2 Offset Sensitivity

Interpolating multi-step converters also have much less sensitivity to amplifier offset

errors. Again, this is a general property of interpolating converters which was

demonstrated for an interpolating flash in Section 2.4 (Figure 2.4). The maximum INL

error is equal to the value of the offset; However, the worst case DNL is given by (3.4).

Intuitively, (3.4) shows that offset errors are distributed evenly as DNL among each

quantization level between the two residues.

DNL-- off (LSBs) (3
N

3.3.3 DNL Degradation Due to Switching

The two-residue architecture illustrated in Figure 3.4 uses "sliding" switching to

implement residue folding. In a sliding implementation, the residue amplifiers slide up/

down one tap on the interpolation ladder when a comparator transition occurs. This

approach severely degrades the DNL performance of the converter, and negates the offset

insensitivity inherent in interpolating architectures. Also, since each amplifier must have a

switch attached to each interpolation tap, a sliding architecture requires extensive wiring.
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Figure 3.5. Amplifier residues for a sliding switching implementation.

Figure 3.4 illustrates the problem that occurs when a sliding switching implementation

is used. Assume the input signal shown is centered on the threshold of amplifier A2. If the

signal is incremented slightly, the associated comparator will trip and the amplifiers will

slide up. Now the input is at an amplifier with an offset voltage. For an infinitesimal

change in the input voltage, there is a step change in the output residue voltage (equal to

the offset voltage multiplied by the amplifier gain). This corresponds to a DNL spike.

The residues seen at the outputs of amplifiers Al and A2 for a ramp input are shown in

Figure 3.5. The discontinuities are created by the folding action of the amplifiers being

switched up and down along the interpolation ladder taps. This again illustrates the

problem with a sliding implementation of switching. The offset in amplifier Al shifts its

transfer function up. The offset illustrated in Figure 3.5 is sufficient to pull one of the

interpolated signals completely above the horizontal axis. This interpolated residue never

crosses zero, so the corresponding code is missing altogether.

3.3.4 Leap Frog Switching

Figure 3.6 illustrates the "leap-frog" method of switching. The signal remains centered

on the same amplifier threshold before and after the comparator transition. Figure 3.7

shows the amplifier residues for a leap-frog implementation. These residues are folded at
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Figure 3.7. Amplifier residues for leap-frog switching implementation.

half the frequency as those in a sliding implementation. This characteristic makes sense

because for a ramp input, each amplifier is moved half as often (as opposed to sliding both

amplifiers up at each comparator transition). Interpolated signals are illustrated to show

that no missing codes occur even for this drastic offset in amplifier A2. In fact, this

architecture is guaranteed to have no missing codes as long as the amplifier offsets are

smaller than the quantization steps on the interpolation ladder.

Some complications arise in the implementation of leap-frog switching in 2-residue

architectures with comparator offsets. The presence of comparators with different offsets

than the amplifiers creates the need for an overlap range to implement digital error
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Figure 3.8. Artificially generated over- and under-range for 2-residue architecture.

correction. The presence of an overlap range complicates the above analysis, and

ultimately encourages the design to 3- and 4-residue architectures.

3.3.5 Overlap Range

Over- and under-range must be created artificially in the 2-residue architecture [17].

Conceptually, over- and under-range is implemented by extending the interpolating

ladders above and below the residue amplifiers and biasing these legs so that the

quantization steps are appropriately sized. Figure 3.8 illustrates an artificially generated

overlap range scheme using current sources to bias the over- and under-range correctly. It

is unlikely that these artificially created over- and under-range quantization steps will

match the nominal range steps exactly. When there is a comparator offset, the signal will

occupy the over- or under-range. When a comparator transitions and brings the signal

back into the nominal range, the mismatch between the replicated range and the nominal

range will cause converter DNL. This problem can be remedied by using more than 2
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Figure 3.9. 3-residue interpolation with leap-frog switching.

residues. With 3 residues, the over- and under-range no longer need to be created

artificially [19].

Figure 3.9 illustrates a 3-residue architecture with leap-frog switching. For this

architecture, the comparator thresholds are set in-between the amplifier thresholds (as

opposed to at the amplifier thresholds for a 2-residue architecture). An input which is

centered on a comparator transition remains "between" the same two amplifiers and

utilizes the identical interpolation network regardless of which direction the comparator

flips. For an infinitesimal change in the input which flips a comparator, the signal path

remains identical before and after the comparator transition. The combination of "leap-

frog" switching and the presence of 3-residues makes this possible. Having 3 residues

eliminates the need to create the overlap range artificially. As shown in figure 3.9, the

over-range before a comparator transition is identical to the nominal range after the

comparator transition. There is now no mismatch between the two ranges as was seen

when they are artificially created.

Figure 3.10 illustrates the problem that occurs with a sliding approach to switching for

a 3-residue architecture. A signal in the over-range before a comparator transition is

mapped into the nominal range after a comparator transition. Because the over-range and
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Figure 3.10. Three-residue architecture with sliding switching.

nominal range are created by different pairs of amplifiers (with different offsets) the two

ranges do not match. A signal that has its interpolated zero-crossing at the 1/4

interpolation point before switching should have its zero-crossing at the same point after

switching. In Figure 3.10, the zero-crossing points do not line up and a DNL error results.

Leap-frogging ensures that zero-crossing occurs between the same pair of amplifiers

before and after a comparator transitions. Note that Matsuzawa in [19] does not utilize

leap-frog switching; Instead, a "sliding" implementation is utilized which is feasible

because of the superior offset matching of bipolar transistors. Better DNL performance

might have been achieved by utilizing a leap-frog switching scheme to implement the

folding.

Error correction for this architecture can be accomplished in an identical manner as

seen in pipelined multi-step architectures. The digital coding for the over- and under-range

can be implemented as shown in Figure 2.10. Again, the overlap range eases the

constraints on the comparators as mentioned in the error correction discussion in Chapter

2.

3.4 Four-residue Architecture
A four-residue architecture is a direct extension of a three-residue architecture. Figure
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3.11 illustrates a four-residue architecture with leap-frogged switching. The middle two

amplifiers generate the nominal input range. The outer two amplifiers generate the under-

and over-range. It is apparent from Figure 3.11 that some of the signal range is wasted, as

compared to a 3-residue implementation. The wasted signal range above and below the

over- and under-range amounts to 1/4 of the total signal range. The wasted range indicates

that one of the 4 amplifiers should be removed - which returns us to a 3-residue

implementation. The reasons for using a 4-residue implementation are discussed in

Section 3.4.2, and are based on implementation issues.

The benefit of leap-frog switching can be seen in Figure 3.11. Due to a comparator

offset, the signal is occupying the over-range (between amplifiers A2 and A3). Assuming

the signal is at the comparator transition, if it is incremented slightly then amplifier AO

will leap-frog above amplifier A3. The input signal remains between amplifiers A2 and

A3 before and after the leap-frog switching occurs. Leap-frog switching provides the

property where the signal path remains identical before and after the comparator
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Figure 3.12. Four-residue architecture with leap-frog switching.

transition. As we have seen earlier, a sliding approach changes the amplifiers which

"surround" the input signal (and also changes the interpolation ladder).

3.4.1 4-Residue Example

The first stage of a four-residue architecture is shown in Figure 3.12. Amplifiers A0 1-

A31 create the first four residues by subtracting the input from four equally spaced

quantization steps. These amplifiers are followed by a resistive interpolation ladder which

is used to interpolate the location of the zero-crossing more finely. (Again, the location of

the residues' interpolated zero-crossing indicates the value of the input.) Comparators are

placed at the taps of the interpolation ladder. The comparators produce the familiar
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Figure 3.13. Transfer functions of second stage amplifiers in 4-residue architecture.

"thermometer" code which indicates the location of the zero crossing by a 1 -> 0

transition.

Based on the comparators' thermometer code, the next stage is switched to the

interpolation taps so the zero crossing occurs in the next stage's nominal range. The next

stage amplifies the four residues and performs interpolation to resolve the value of the

input signal more finely. In Figure 3.12, the nominal range occurs between A12-A22 for

Vin0 . For Vin1, the nominal range now occurs between amplifiers A22-A32. With a leap-

frog architecture, the nominal range is not constrained to occur between any two particular

amplifiers. It is for this reason that the interpolation ladder must be circular in the second

stage. This is in contrast to a sliding approach to switching, where the nominal range

always occurs between the same two amplifiers.

As Figure 3.12 shows, leap-frog switching is used to implement signal folding. Figure

3.13 illustrates the transfer functions seen at the outputs of amplifiers A02-A32. Because

of the leap-frog switching implementation, these signals are folded at 1/4 of the frequency

than would be seen in a sliding implementation of switching. The folding frequency can

understood by realizing that for a ramp input, each amplifier is only leap-frogged upwards

one out of every four comparator transitions.

Figure 3.13 also illustrates the effect of a positive offset in amplifier A12. Amplifier

A12's transfer function is shifted upwards by an amount equal to its offset. By inspecting

the interpolated crossing, it is can be seen that the leap-frog switching does not produce
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Figure 3.14. 3-bit interpolation stage with leap-frog switching.

DNL spikes. The interpolated signals shown have the same properties as those seen in the

interpolating flash (Section 2.4). An offset error creates banks of uniformly wide/narrow

codes. Offsets do not create DNL "spikes" at the switching transitions of the first stage

flash. A sliding approach to switching would have introduced such spikes.

Figure 3.14 shows a more general implementation of a four residue stage. This

architecture is closest to the actual implementation that will be presented in Chapter 6.

Each stage has two banks of 4 amplifiers. Each bank of amplifiers drives its own

interpolation ladder. The first amplifier bank drives the interpolation ladder for the

quantizer. The second bank of amplifiers drives the interpolation ladder for the next stage.
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The primary purpose of the second bank of amplifiers is to provide a pipeline delay. The

delay is used so that the next stage can switch into place after the quantization takes place.

By having two separate interpolation ladders, the number of required amplifiers per stage

is reduced. If only one ladder were used, the second amplifier bank would require 16

buffer amplifiers to buffer the interpolation taps. Also, since the actual implementation

uses a capacitive ladder, the quantizer and the amplifiers can not share the same ladder.

As mentioned earlier, all of the interpolation ladders must be circular due to the leap-

frogged switching. The nominal range is not constrained to occur between any two

specific amplifiers. Because of uncertainty about the nominal range's location, the

interpolated zero-crossing can occur at any point along the circular ladder. This

architecture requires 16 comparators per 3-bit stage instead of the usual 7 comparators.

Note also, the comparator decisions in Figure 3.14 indicate two zero-crossings. One of

these crossings corresponds to the zero-crossing we are interested in, the other is due fact

that the interpolation ladder must wrap around to the "bottom" amplifier. The location of

the "wrap-around" moves as the amplifiers are leap-frogged. The zero-crossing we are

interested in is indicated by the 10O transition as we move upwards along the ladder.

3.4.2 Leap-frog Switching in 4-residue 3-bit Stage

Notice that with the leap-frog implementation in Figure 3.12, each amplifier is always

connected to the same interpolation ratio. As drawn in Figure 3.12, amplifier A02 is

always connected to the "no interpolation" point, amplifier A 12 is always connected to the

3/4 interpolation point, etc. This property is unique to architectures that have the same

number of residue amplifiers as the number of interpolation points. This property only

holds when the architecture uses leap-frog switching. This feature of a 4-residue 3-bit

stage is useful particularly from an implementation standpoint.

Instead of attaching the output buffers permanently to the interpolation network (as

shown in Figure 3.14), the input amplifiers of the next stage each have their own

interpolation network. Essentially, each input amplifier has its own interpolation network,

which remains unchanged. In capacitive switched-capacitor interpolation, this greatly

simplifies circuit design.
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3.5 Summary
Pipelined multi-step interpolation has the benefits of standard pipelined multi-step

architectures. The number of required comparators are reduced drastically. The accuracy

requirements of the comparators can be reduced through the implementation of an analog

overlap region. By pipelining the architecture, the throughput can be increased

dramatically.

By using a multi-residue interpolating architecture, several additional benefits are

gained. Most importantly, the gain requirements of the amplifiers are reduced significantly

over the requirements of amplifiers in single-residue architecture. As seen in this chapter,

the interpolating architecture is not very sensitive to inter-stage gain errors. Also, offsets

in this architecture do not create significant DNL errors when leap-frogged switching is

used. These characteristics ease the constraints on the amplifier design.

The drawback of these architectures is that many more amplifiers are required. In a

standard MDAC multi-step converter, only 1 MDAC is required per stage. For a pipelined

multi-step architecture with 4-residues, 8 amplifiers are required per stage. The accuracy

requirements of these amplifiers is greatly reduced, but this is still a large number.

From a preliminary investigation, it appears that these architectures have several

potential benefits. The most important of which is the ability to achieve excellent

converter DNL performance with lower gain-bandwidth amplifiers.
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Chapter 4

Switched Capacitor Interpolation

4.1 Introduction
Up to this point, interpolation has been demonstrated exclusively using resistors.

Although extremely simple to implement, a resistive ladder is not always the best option.

The current supplied to interpolation ladder from the amplifier creates an error in the

amplifier's output (due to the amplifiers' finite output impedance). In some

implementations, this amplifier error actually helps matters by partially correcting

amplifier offsets [9]. In a multi-step converter with a circular resistive ladder (as

demonstrated in Section 3.4.1), these errors are not desirable. As the amplifiers leap-frog,

the amount of ladder current each amplifier is supplying varies. Assuming the amplifiers

have a finite output impedance, the leap-frogged switching will create a signal dependant

error-voltage. A solution is to design the amplifiers to have an extremely low output

impedance. This approach is a costly solution, especially in CMOS due to the poor

transconductance of the devices. Switched-capacitor circuits alleviate this concern in

CMOS circuits by taking advantage of the infinite DC impedance of capacitors.

The pipelined multi-step interpolating converter needs several switched capacitor

functions. First, the architecture requires a cell that implements interpolation. Also, each

stage in the interpolating architecture has a nominal gain of 4 (in a 3 bit per stage

architecture). Because each stage is pipelined, it is necessary to break each stage into two

gain stages. From a gain-bandwidth perspective it is desirable to break the stage into two

gain of 2 stages. However, from a circuit standpoint it turns out that it is desirable to break

the architecture into a gain of 4 stage followed by a gain of 1 stage. The gain of 4 stage

will perform interpolation in addition to amplification. The gain of 1 stage only serves as a

unity-gain pipeline delay.

The multi-step interpolating converter also requires an interpolating quantizer.

Typically, a resistive ladder is used in a multi-step architecture. As mentioned above, we

would like to avoid having a finite DC impedance attached to the outputs of the residue

amplifiers. In this chapter, a capacitive alternative to a resistive ladder is discussed.
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Figure 4.1. Unity-gain switched capacitor amplifier.

It is worth mentioning at this point that the switched-capacitor circuits discussed in

this chapter are all fully differential. Until now, all of the converter examples have been

demonstrated using a single-ended signal path. The single-ended implementation is much

easier to present and retains many of the important features of the differential

implementation. The actual converter implementation discussed in Chapter 6 has a fully

differential signal path.

4.2 Switched Capacitor Unity-Gain Cell

The operation of a unity-gain switched capacitor cell is a natural place to begin the

explanation of the switched capacitor circuits. Figure 4.1 shows a unity-gain switched

capacitor buffer. This circuit is clocked using a standard 2-phase non-overlapped clocking

scheme.

On 41, the amplifier resets and samples the input signal. In addition to acquiring the

input signal on the bottom plates (the curved plates in the schematic) of the capacitors, the

amplifier also auto-zeros itself by storing the amplifier offset on the top plates (the straight

plates in the schematic) of the sampling capacitors. The offset is stored on the top plates

by placing the amplifier in a unity-gain feedback configuration. In unity-gain feedback,

the amplifier balances its input pair, which causes the amplifier offset to appear at the
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inputs (assuming infinite amplifier gain). The input is sampled on a pre-edge of {1 by

opening the unity-gain connection, this captures a charge on the capacitors equal to the

input minus the amplifier offset voltage. Because of the almost infinite input impedance

seen at the input to a CMOS amplifier, the charge on the sampling capacitors does not

decay significantly.

The input signal appears at the output during the second clock phase by flipping the

two unit capacitors around the amplifier in a feedback configuration. The voltage across

the capacitors remains identical, because the stored charge is the same. As a result, the

output voltage during {2 is equal to the input voltage at ¢ 1. This 2-phase operation makes

this a viable unity-gain buffer to implement an analog pipeline delay.

4.2.1 Finite Amplifier Gain Effects - Offset Cancellation

In reality, the CMOS operational amplifier has finite gain, and this influences the

performance of the unity-gain buffer illustrated above. Because of finite amplifier gain,

when the amplifier is connected in unity-gain during reset mode, the exact value of the

offset does not appear at the inputs. The voltage that actually appears at the input to the

amplifier is given by (4.1). The exact value of the amplifier offset is not stored on the top

plates of the sampling capacitors. Because of this, the amplifier offset is not nulled exactly.

The actual input-referred offset is given by (4.2).

- (lA? V0 (4.1)input 1 + A Os

VV V - Os ~~~~~~~~~~~~~~(4.2)
offset 1 + A (4.2

4.2.2 Finite Amplifier Gain Effects - Gain Error

Ideally, the gain of this switched-capacitor amplifier configuration should be 1, but due to

the finite amplifier gain it is actually slightly less. For a given differential output, there

must be a slight voltage difference at the input to the amplifier. This difference is equal to

the output voltage divided by the open-loop amplifier gain. The amplifier outputs must

provide this extra voltage difference at the inputs and this degrades the closed-loop gain of

this configuration slightly. The actual gain of the amplifier is easily derived from Black's

feedback expression and is given by (4.3).
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4.2.3 Finite Amplifier Gain Effects - Parasitic Capacitance

The presence of parasitic capacitance at the input to the amplifier degrades the gain

accuracy even further. As before, a non-zero output voltage implies that the input

terminals must have a voltage across them. A parasitic capacitance at the amplifier input

must be charged to this voltage. This parasitic charge is supplied by the sampling

capacitors and acts to decrease the voltage stored on the sampling capacitors. Therefore,

the parasitic capacitance reduces the closed-loop gain. Expression (4.4) gives the gain

expression with the addition of a parasitic capacitance (this reduces to (4.3) by setting Cp

to zero).

Vout A
-- (4.4)

V. C
In (1 +A) + P

C

4.3 Switched Capacitor Gain of 4
Figure 4.2 illustrates the switched capacitor implementation of a gain of 4. All of the

capacitors are of equal unit size. The operation of this circuit is similar to the unity-gain

amplifier illustrated above. On the first clock phase the input is sampled on each of the 4
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pairs of sampling capacitors. During this phase, the amplifier is configured in unity-gain in

order to null the offset. As before, the input voltage minus the amplifier offset is sampled

on all of the sampling capacitors by opening the unity-gain feedback switch (on Alp). The

charge on the sampling capacitors is now trapped by the large input impedance of the

amplifier inputs. During the second clock phase, one pair of the unit capacitors is "flipped"

around the amplifier in feedback. The bottom plates of the other 3 pairs of capacitors are

shorted differentially (a differential ground). By differentially shorting these capacitors,

their differential charge corresponding to the input voltage is forced onto the feedback

capacitors. The charge on the feedback capacitors is now equal to 4 times the charge that

was initially stored on each sampling capacitor. The output during the second clock phase

must be 4 times the input voltage.

4.3.1 Finite Amplifier Gain Effects

The gain of 4 switched capacitor amplifier is subject to the same finite amplifier gain

effects that created limitations in the unity-gain amplifier. Again, the due to the finite

amplifier gain, the exact value of the offset is not stored on the top plates of the sampling

capacitors. The referred to input offset expression for the switched capacitor gain of four

circuit is given by (4.5). As before, the finite amplifier gain also limits the overall gain

accuracy of the amplifier. Expression (4.6) gives the actual gain realized using a finite gain

CMOS operational amplifier. Finally, the presence of parasitic capacitance at the input of

the operational amplifier also degrades the gain performance. Equation (4.7) gives the

degradation in gain performance (again, this reduces to (4.6) by setting Cp to zero).

V
-- OS 45

offset 1+A (4.5)

Vout 4
- 4 (4.6)

V. 4in 1 +-
A

Vout 4A
V = C(4.7)
in (4+ +C(4+A) + P

C
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Figure 4.3. Single-ended switched capacitor amplifier in amplify phase.

4.3.2 Capacitor Matching

The unity-gain buffer was insensitive to the capacitor matching of the 2 sampling

capacitors. The gain of 4 architecture is sensitive to the matching between the capacitor

elements. It is simpler to analyze the effects of capacitor mismatch using a single-ended

architecture. Figure 4.3 shows a single-ended switched capacitor gain of 4 amplifier

during amplify phase. With an ideal operational amplifier, the gain of this structure is

given by (4.8). A mismatch in any of the capacitors creates a gain error. From (4.8) it is

obvious that this structure is most sensitive to capacitor C1 (the feedback capacitor). For a

capacitor mismatch in C1 of AC the change in gain is given by (4.9).

Vout C1 + C2 + C3 + C4-= ~c C(4.8)V. C1in

AG 3AC
G4C (4.9)G 4C

4.4 Switched Capacitor Interpolation
Switched capacitor interpolation can be implemented by making simple modifications to

the gain of 4 circuit shown in Figure 4.2. Circuits that interpolate 1/4, 1/2 and 3/4 points are

shown in Figure 4.4. These circuits are essentially identical to the switched capacitor gain

of 4 circuit discussed earlier. To realize interpolation, some fraction of the input capacitors

are charged to a different input voltage. As expected, these circuits also realize a gain of 4

in addition to performing interpolation.

The 1/2 point interpolation is accomplished by sampling V1 on 2 pairs of the sampling

capacitors and sampling V2 on the other two pairs of input capacitors. The total charge on

the capacitors is given by expression (4.10). As before, the charge from the other 3 pairs of
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Figure 4.4. Switched capacitor interpolation (1/4, l/2 and 3/4).

sampling capacitors is transferred to the feedback capacitors during the amplify phase.

Therefore, the charge on the feedback capacitor corresponds to the voltage given by

(4.11). This configuration implements the desired function of interpolating the 1/2 point of

the two input signals and amplifying the result by 4.

Qtotal = C(2. V1 + 2. V2) (4.10)

Vut = 2. V1 + 2- V2 (4.11)

The 1/4 and 3/4 point interpolation is performed using a similar method to the one used

to accomplish 1/2 point interpolation. Note that the only difference between 1/4 and 34 point

interpolation is the order which the inputs are applied to the circuit. This simplification is

allowed because the 1/4 and 3/4 points are symmetric with respect to the 1/2 point. For 1/4

point interpolation, V1 is sampled on 1 pair of the input capacitors and V2 is sampled on

the other 3 pairs of sampling capacitors. As before, all of the charge is transferred to the

feedback capacitor during the amplify phase of operation. Depending on the order V1 and

V2 are connected to the input to the circuit, the function in equation (4.12) or (4.13) will

be performed.

Vut = 1 V1 +3. V2 (4.12)
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Vout = 3 V1 + 1 V2 (4.13)

The sources of error in the interpolating gain of 4 circuit are identical to those seen in

the switched capacitor gain of four circuit. The offset is given by (4.5), the gain error due

to finite operational amplifier gain is given by equation (4.6) and the gain error due to the

presence of parasitic input capacitance is given by (4.7).

4.4.1 Capacitor Matching

The capacitor matching ultimately determines the accuracy of the interpolation. By

analyzing the circuit from a single-ended perspective, the interpolation functions are given

by equations (4.14) and (4.15), where C1-C4 are the four sampling capacitors. An error of

AC in any of these capacitors gives a interpolation error which is approximately AC/c. The

interpolation accuracy is not dependant on the open-loop gain of the operational amplifier.

The finite open-loop gain of the amplifier only contributes to an error in the gain of the

interpolation cell, not an error in the interpolation.

poin C1
Poilnt(1/4) C1 + C2 + C3 + C4 (4.14)

C +C2
Point( 1 /2 ) = C1 + C2 + C3 + C4 (4.15

4.5 Switched Capacitor Quantization
As mentioned in the introduction, it is also important to have a method of performing

interpolation for the input to a quantizer. Again, capacitive interpolation is necessary

because a resistive interpolation ladder loads the residue amplifiers in a multi-step

interpolation architecture. The technique for performing switched capacitor interpolation

for a comparator is extremely similar to the techniques used to perform interpolated

amplification.

Figure 4.5 illustrates an "interpolating comparator" which performs 1/4 point

interpolation. On the first clock phase (shown in figure), the inputs are sampled on the

input capacitors. The sampling is performed by grounding the top plate of all of the

capacitors and applying the input signal to the bottom plates of the capacitors. In this

example, V 1 is sampled on 3 unit capacitors and V2 is sampled on 1 unit capacitor. On the
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Figure 4.5. Interpolating comparator at 1/4 point.

second clock phase, the ground connection is removed from the top plates on a pre-edge.

Next, the bottom plates of all of the capacitors are grounded. All of the capacitor charge is

forced to redistribute evenly among the four capacitors. The voltage at all of the top plates

after this redistribution is given by (4.16). It is clear that this arrangement provides the

desired interpolation function.

V _V1 (C1 + C2 + C3) + V2 (C4) 3. V + 1 V2 (4.16

top C1 + C2 + C3 + C4 4
The 1/2 point can be generated by using 2 unit sampling capacitors. In this case, V1

would be sampled on one of the unit capacitors and V2 on the other. When the bottom

plates are shorted, the charge is forced to redistribute. The voltage at the top plates is given

by (4.17).

V _V1 (C1) + V2 (C2) _V1 + V2 (417
top C1 + C2 2

The interpolation circuit was shown using a single-ended implementation for

simplicity. The differential implementation is shown in figure 4.6. Instead of grounding

the bottom-plates, they are differentially shorted (a differential ground). The top plates are

connected to the common-mode level during the sampling phase.

4.5.1 Parasitic Input Capacitance

The presence of a parasitic input capacitance does not alter the interpolation accuracy of

the circuit. A capacitance at the input to the comparator only acts as a capacitive

attenuator. The ratio of the total sampling capacitance to the sampling capacitance plus the
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Figure 4.6. Differential implementation of interpolating comparator at 1/4 point.

parasitic input capacitance determines the attenuation factor. An attenuation from the

input to the interpolator to the comparator will increase the input-referred offset of the

interpolating comparator. For most designs this effect will not be particularly important.

4.5.2 Capacitor Mismatch

The effect of capacitor mismatch is similar to the effect seen in the interpolating

amplifiers. As shown earlier, expressions (4.14) and (4.15) give the interpolation ratio. It

is clear that a AC mismatch will create an error on the order of AC/c at the input to the

comparator. Typically, this is not an important source of error. The comparator offset will

be the dominant source of error in this circuit.

4.6 Conclusion
Using switched capacitor techniques, it is possible to realize accurate interpolation. The

ability to use capacitors in lieu of a resistive approach is desirable in CMOS. The design

of the amplifiers will be dictated by AC settling performance as opposed to DC drive

characteristics.

The sources of accuracy limitation in these circuits are due to finite amplifier gain,

amplifier offset voltage, parasitic capacitance and capacitor mismatch. The interpolating

ADC architecture is largely insensitive to errors in nominal gain and amplifier offset.
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From this standpoint, the amplifier offset and capacitor matching accuracy are not

extremely important. The accuracy of the interpolation ratio is not terribly important in the

multi-step interpolating architecture either. The interpolation ratio accuracy is limited by

the capacitor matching, which is fairly good in CMOS technology [20]. Component

matching does not effect the DNL performance of an interpolating ADC significantly,

however poor matching can seriously degrade the converter INL performance.

Finally, it is important to note that these capacitive interpolation circuits require an

exponential growth in circuit area to realize more interpolation points. In addition to the

number of capacitors increasing exponentially, the number of amplifiers increases linearly.

A resistive approach, on the other hand, has a ladder that grows linearly and the number of

amplifiers remains constant. This trade-off ultimately limits the number of desirable levels

of interpolation using a CMOS switched-capacitor approach.
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Chapter 5

Low-Voltage / High-Speed Amplifier Design

5.1 General Considerations
Because of the migration to smaller geometry CMOS processes, many system supply

voltages have dropped to 3.3V and below. Lower supplies are used in part to protect the

CMOS transistors from catastrophic and non-catastrophic failures. More benign effects

such as impact ionization can degrade circuit performance. More serious issues such as

device breakdown can permanently damage a part. Lowering the supply voltage also has

the benefit of reducing power dissipation; however, the loss of dynamic range often

encountered by lowering the supply voltage can potentially negate this benefit in analog

circuitry.

The switched capacitor circuits discussed in Chapter 4 require high-speed amplifiers to

realize fast settling times. Lower supply voltages make the design of high-gain / high-

bandwidth amplifiers difficult. It is difficult to add gain-boosting cascode transistors

without sacrificing the output dynamic range of the amplifier. As discussed in Chapter 3,

the multi-step interpolating architecture does not require the extreme gain accuracy

needed in typical multi-step architectures. The decreased gain requirements of the

amplifier allow the implementation of a single-stage gain architecture, with a minimum of

stacked cascode devices.

5.2 Cascode Amplifier
The cascode amplifier is illustrated in Figure 5.1 is chosen as the amplifier architecture.

Cascode devices are only used on the input pair of the amplifier. This configuration allows

the input pair to have minimum channel length to maximize the gm. The output impedance

of the input pair is boosted by the addition of the cascode. The cascode has the added

benefit of eliminating Miller multiplication of the Cgd of the input pair. We can save some

dynamic range by not cascoding the pMOS current source loads. Instead, pMOS load

devices can be designed to have a longer channel length to lower their gds
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Figure 5.1. Cascode gain stage.

5.2.1 Circuit Description

The cascode devices are biased using a nMOS diode (M5) connected to the sources of

the input pair in order to track the input common-mode. By sizing this device, and scaling

its drain current, the cascode bias voltage can be set. The bias point is chosen so that the

MOS input pair will remain in saturation regardless of reasonable process, temperature

and supply variations (this is typically guaranteed by providing 250mV of VDS above

VDSAT). The gm of the bias diode must also be sufficiently large so that the bias node has

fairly quick transient settling.

The DC gain of this amplifier is given approximately by expression (5.1). The cascode

raises the effective output impedance of the input pair by a factor of gml / gdsl Because

the gain is essentially determined by a gm/ gds ratio, increasing the current in the pair

actually reduces the gain of the stage. This effect occurs because a MOS gm increases with

the root of the current, as seen in (5.2). However, the output impedance falls linearly with

increasing input current, as seen in (5.3). The net effect is that amplifier's gain falls as the

root of a bias current increase.
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gm2
A ~~~~~~~~~~~~~~~~~~(5.1)

gml + Wj

gm = 2 CoxID (5.2)

9 ~~~~~~~~~~~~~~~(5.3)gds = (53)

The tail current device (M6) is used to control the common-mode output voltage of the

amplifier. By sensing the common-mode voltage, a control signal can be used to modulate

the gate of M6 to set an appropriate common-mode level.

The circuit is auto-zeroed by connecting the gates of the input devices to the drains of

the cascode devices (Vg2 to Vdl and Vg3 to Vd4). Auto-zeroing serves to null the offset of

the amplifier during the reset / auto-zero phase of the switched capacitor circuit. The two

cascode devices have plenty of headroom to remain in saturation during the auto-zero

phase.

5.2.2 Dual-Follower Output Stage

Figure 5.2 shows the complete amplifier with the output stage. An output-buffered
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approach was chosen over a single-stage transconductance amplifier due to the capacitive

loading the amplifier must drive. Typically, the capacitive output load can be used in a

transconductance amplifier to stabilize the amplifier by setting the location of the

dominant pole. In the multi-step interpolating architecture, the capacitive load can vary

with the input signal by +100%/-50%. This variance in load capacitance creates a large

fluctuation in the circuit bandwidth. When the capacitive loading is small, the bandwidth

may be too large, creating a stability problem. When the capacitive loading is large, the

amplifier will be extremely stable, but the settling will be much too slow.

By using a single gain stage with a source-follower, the load capacitance determines

the non-dominant pole. The non-dominant pole's location determines the phase margin of

the amplifier, but has much less effect on the settling time. By designing the amplifier to

be stable under worst case conditions, the amplifier will be stable at all other corners of

operation. Equation (5.4) gives the loop transmission of the amplifier when it is connected

in an unity gain configuration. The crossover frequency (c) of this expression is given by

(5.6). The crossover frequency is defined as the frequency where the magnitude if the loop

transmission falls to unity. In order to maintain a comfortable phase marge the non-

dominant pole must be set sufficiently far from the crossover frequency. This is

guaranteed by meeting the requirement in (5.7). Adding a feedback network or parasitic

input capacitance to the amplifier will act to attenuate the loop-transmission (5.4), this will

lower the cross-over frequency of the amplifier (and increase the phase margin).

gm2ro 1LT(s) = (rCl +1) CFB (5.4)
( rO C S + 1 ) CF

smllgm17

1 gds gds2
+ gds9 (5.5)

ro gl

gm2
(0c- C (5.6)c-C1
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gm2 CFB
<< 1 (5.7)

C1 gml7

This amplifier topology has the added benefit of having a fairly constant phase margin

over process, temperature and bias variations. The location of the crossover frequency and

the non-dominant pole are both determined by the nMOS gm and the poly-poly

capacitance of the CMOS process. Any variations will affect the location of the crossover

frequency and the non-dominant pole identically. The relative distance between non-

dominant pole and crossover will remain constant, so the phase margin will remain

constant to first order. This advantage is realized by purposely adding poly-poly

compensation capacitance (C1 in figure 5.2). If the gate capacitance of the source-

followers is used to compensate the circuit, the non-dominant pole will no longer track the

crossover frequency over process, temperature and bias variations. The non-dominant

pole and crossover tracking is lost because the poly-poly capacitance will not track gate

capacitance variations.

Each of the amplifier's outputs has a pair of matching source followers. Because the

non-dominant pole is set by the source-follower gm and the load capacitance, it is

desirable to minimize the capacitance loading the source follower. One of the followers

will be used to drive the feedback capacitor in the switched capacitor circuitry. The other

follower will drive the load capacitance of the next stage. Typically, the feedback

capacitance is a factor of 10 smaller than the total load capacitance. Incidently, a gain of 4

interpolation circuit was chosen because it minimizes the number of unit feedback

capacitors (a gain of 2 interpolation circuit requires 2 unit feedback capacitors as opposed

to 1 unit feedback capacitor required for the gain of 4 interpolation circuit). Because the

loop is not closed around followers M16 and M12 (which are driving the large load

capacitance), they do not contribute a pole to the circuit operation. This configuration

allows the source-follower to have a much lower gm, which ultimately saves power and

area. Practically, the amount of capacitance at the sources of M17 and M13 is dominated

by device parasitics. The device parasitics ultimately set the upper-bound on the device

size that can be used for the followers.
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5.2.3 Matching Considerations

The dual source-follower configuration introduces a much larger offset sensitivity to

device matching. During the amplify phase, the feedback capacitor is connected to a

different source-follower than the output is taken from. The offset of the output source-

follower is not nulled by the feedback. This means that we are relying on the "open-loop"

matching of the two source followers. For two followers operating at identical current, the

offset seen at their sources is given by (5.8). The contribution from VT mismatch can be

reduced by increasing the overall device area (the WL product). The matching is improved

further by making W as large as possible. Increasing the channel length (L) does not

provide as much benefit because the Vgs - VT terms grows as the square root of any

increase in L. Any gains made by reducing AL/L are partially negated by the increasing Vgs

- VT term. Note that in a typical design, the mismatch of the source-follower devices

dominate the matching performance.

Vo = AVT+ (Vgs- VT) (W A) (5.8)

There is also an offset term due to any mismatch in the current sources biasing the

followers. The current mismatch is given by (5.9). The offset voltage due to the current

mismatch is given by (5.10). The sizing strategy is slightly different for the currents

sources to minimize their current offset. It is desirable to use long channel devices. Not

only do longer channels reduce the AL/L term, but they increase the Vgs - VT term in (5.9).

Again, it is desirable to increase the device area (WL product) to reduce the VT mismatch.

AI AW AL AVT
+ - -_ (5.9)

'7I = W L + AL (Vgs - VT )

Osox Lsf

5.2.4 Compensation

If the circuit is not designed for unity gain amplification, it will need additional

compensation during its auto-zero phase. During the auto-zero phase, the amplifier is

operating in a unity-gain configuration. If the amplifier is designed for a gain of 4 during
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Figure 5.4. Switched capacitor CMFB circuit.

the amplify phase, the bandwidth will be increased by approximately a factor of 4 during

the auto-zero phase. This large bandwidth will typically create a stability problem due to

parasitic poles present in the circuit.

To alleviate this problem extra compensation capacitance is added to the drains of M1

and M4 during the auto-zero phase. The capacitance can be switched in using a nMOS

switch as shown in Figure 5.3. An appropriate amount of added capacitance will lower the

crossover frequency of the circuit. The crossover frequency can be adjusted so that a

comfortable phase margin is attained during the auto-zero phase of operation.

5.3 Switched Capacitor CMFB
As mentioned in Section 5.2.1, the gate of M6 (Figure 5.2) provides a common-mode

control for the circuit. Figure 5.4 illustrates the common-mode feedback circuitry. The
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Figure 5.5. Equivalent CMFB circuit using switched capacitor resistors.

nMOS switches are clocked on non-overlapping clock phases. Capacitors C5 and C6 can

actually be thought of as switched capacitor resistors as shown in Figure 5.5. By this

analogy, the DC path to the CMFB node is biased to Vreplica. Voltage Vreplica is set so that

M6 (in Figure 5.2) is biased to sink a current equal to the three pMOS current sources

(M7, M8, and M9). Capacitors C7 and C8 form the AC path which controls the gate of M6

(in Figure 5.2). If the common-mode level of the output is too high (higher than CML), the

gate of M6 will be raised which will lower the common-mode level of the outputs. This

negative feedback acts to stabilize the common-mode level of the outputs.

5.3.1 CMFB Settling

The crossover frequency of the CMFB loop is given by (5.11). The capacitive attenuation

term is due to the capacitive divider formed by the gate of M6 and common-mode

feedback capacitors. The gm of M6 is chosen in order to set the crossover frequency of the

loop. The crossover frequency is targeted based on settling speed and stability

requirements. The size of M6 also controls the loop gain of the common-mode feedback.

C+C 8 9
7 + 8 )m6(.1..... J (5.11)0 c =7+C 8 + Cgs6 ~ C1I

5.4 Simulated Performance
The performance of this amplifier topology was simulated using a gain of 4 switched

capacitor circuit. These simulation results are equally applicable to the gain of 4

interpolation circuits discussed in Chapter 4. Table 5.1 summarizes the conditions the
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Plot Bias Current Temperature Process Corner

1 +40% 700 C slow p/nMOS - large C

2 +40% 0°C fast p/nMOS - small C

3 +40% 0°C fast p/nMOS - large C

4 -40% 700 C slow p/nMOS - large C

5 nominal 27°C nominal

Table 5.1. Key to amplifier settling plots.

amplifier settling was simulated under. The circuit was simulated using 2.5V analog and

digital supplies. At nominal bias the circuit draws 740gA from the analog supply. With

2.5V supplies, the amplifier dissipates - 1.8mW of power. The process corners in Table 5.1

are selected to demonstrate the robustness of the amplifier over wide variations of process,

temperature and bias current. The bias current variation described in Table 5.1 is the

variation from the nominal bias current of 740pA. Finally, the amplifier is designed to

have 1Vp-p differential output drive capability.

Figure 5.6 illustrates the settling for a 1/2 FS step input. The amplifier settles

comfortably to 0.15% in 20ns over all process, temperature and supply current variations

(the solid vertical bars are separated by 20ns). Note that percentage settling to the final

value is important, not settling to a defined absolute voltage (this feature is specific to the

interpolating architecture the amplifiers are being designed for). Plot 4 corresponds to the

slowest settling time, due to fact it is simulated at the slow corner at -30% bias current and

high temperature. Plot 2 has the fastest settling time and is simulated at the fast process

corner at +40% supply current and low temperature. Note that although the settling times

vary, the phase margin corresponding to each response is nearly identical. This result was

expected by using an amplifier with the crossover frequency and the non-dominant pole

set by the nMOS gm and the poly-poly capacitance. As predicted, the non-dominant pole

tracks variations in the crossover, resulting in a fairly constant phase margin.

Figure 5.7 shows the reset mode settling of the gain of 4 amplifier. Again, over all

corners, the amplifier resets comfortably to <1/10 LSB in 20nS. Note that in the first stage

of a multi-step converter with an 1V full-scale, 1 LSB corresponds to -lmV. As

mentioned in Section 5.2.4, during the reset phase, additional compensation capacitance
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Figure 5.6. Gain of 4 amplifier settling over process, temperature and bias variation.

must be added to maintain a comfortable phase margin. As can be seen in Figures 5.6 and

5.7, this technique is effective and produces well behaved settling in both amplify and

reset phases.

The performance of the amplifier configured for a closed-loop gain of 4 is summarized

in Table 5.2. As discussed earlier, the phase margin remains fairly constant over a wide

range of process, temperature and bias levels. Based on the simulated slew rate, this
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Figure 5.7. Reset mode settling over process, temperature and bias variation.

amplifier should have fairly linear settling for a full-scale step response. Linear settling is

expected because the derivative of a full-scale step response is equal to VFS/X when

evaluated at time = 0 (this is the initial transient slope). For these amplifiers, the initial

transient slope is fairly close to the slew rate performance of the amplifiers. Finally, the

output dynamic range safely meets the design goal of 1.OVp p over process corners.
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Nominal Fast Slow
Corner Corner

open-loop amplifier gain 39.5dB 41.3dB 35.7dB

loop gain (1/4 feedback) 22.8dB 23.4dB 19.7dB

crossover frequency 70MHz 120MHz 32MHz

phase margin 830 820 860

settling time (0.15%) 12.5ns 6.5ns 20.1 ns

slew rate 180V/gs 270V/4ts 110V/s

output swing range 1.7V 13V 1..4Vpp

power supply voltage 2.5V 2.5V 2.5V

power consumption 1.84mW 2.58mW 1.31mW

temperature 270C 0°C 700C

process corner nominal fast p/nMOS slow p/nMOS
small C large C

Table 5.2. Summary of amplifier performance.

5.5 Conclusion

Using a single-gain stage, it is possible to achieve the gain performance required in the

multi-step interpolating architecture. By adding a source-follower output stage, the

architecture's settling characteristic is made independent of the load capacitance. By

modifying this further to a matched dual-follower output stage, the requirements on the

output impedance of the follower are reduced greatly. This results in a significant power

and area savings. The amplifier power is kept under 2mW, but the amplifier still gives the

desired settling performance when used in 20MHz clock-rate switched capacitor

amplifiers and interpolators.

The drawback of the chosen architecture is the increased offset added by relying on

the open-loop matching of the source-followers. The interpolating multi-step architecture

has a low sensitivity to amplifier offset. Trading off some offset performance for large

power savings is a reasonable decision based on the constraints of this architecture.
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Chapter 6

A/D Converter Design

6.1 Overview

Using the building blocks described in the previous chapters, this chapter outlines the

design of a 10-bit, 2MSPS pipelined multi-step interpolating ADC. This design is

intended for implementation in CMOS with 2.5V analog and digital supply voltages. The

circuit blocks discussed in Chapters 4 and 5 are all designed for 2.5V operation. This

chapter will begin with a top-level description of the architecture. The top-level

description will be followed by a closer look at the individual blocks. Using predicted

performance from the individual circuit blocks, a top-level behavioral simulation is

performed. The top-level simulation is intended to predict the linearity performance of the

converter.

This converter is targeted for video applications, where DNL performance is

emphasized over INL performance. Also, the ability to design at low supply voltages with

small power dissipation is extremely important for portable applications. The chosen

architecture presents advantages that make it desirable for low voltage design and possibly

low power design.

6.2 ADC Architecture
The top-level block diagram of the 10-bit pipelined multi-step converter is shown in

Figure 6.1. This is a 3-3-3-3-2 architecture (3 bits per stage in the first four stages and 2

bits in the last stage). This multi-step pipeline is analogous to a standard pipelined multi-

step converter (as discussed in Section 2.5). The primary difference is that the residues in

this architecture self-define their reference range. This difference is due to the

interpolating techniques that are employed.

There are only a few important circuit blocks in Figure 6.1. The input block converts

the input signal into a four-residue representation. The signal path is handled by 4

interpolation blocks along the top of the figure. The signal path is represented by the four
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Figure 6.2. Description of 3-bit interpolator input/output terminal.

residues propagated from block to block. Figure 6.2 clarifies the input/output terminals on

the 3-bit interpolating blocks.

As shown in Figure 6.2, each interpolation block has two sets of 4-residue outputs.

The residues that are sent to the inter-stage quantizer are available on 42 of the system

clock. The 4-residue signal sent to the next interpolation stage is available on 1 of the

system clock. This two phase operation in necessary so that the next interpolation stage

has the previous stage's quantization result in time to switch its interpolation network into

place. Although all of the figures are drawn with a single-ended implementation, the

actual converter is implemented using a fully differential signal path.

6.2.1 Input Stage

The input stage to the converter is shown in Figure 6.3. The primary purpose of this

stage is to generate the four residues that will be used for subsequent interpolation. The

reference ladder provides equally spaced tap voltages which are brought to the inverting

inputs of the residue amplifiers. The input range only extends from halfway between input
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Figure 6.3. Input stage for 4-residue interpolating converter.

taps for amplifiers AO and Al to halfway between amplifiers A2 and A3. The reference

servo amplifiers bias the ladder so that VREFT and VREFB represent the full-scale input

range. The reference servo is not required in the actual implementation. The actual

implementation is fully differential, so the required voltages can be generated easily using

a differential voltage ladder.

The first stage is also connected to a 3-bit flash converter. This flash performs the first

or "coarse" conversion. As can be seen from Figure 6.1, the result from this flash

conversion is used for two purposes. First, the result is passed to a bank of delay elements

which time-aligns each stage's converted result. Time-alignment is necessary because the

pipelined architecture is operating on several data samples simultaneously. Also, the result

from the first stage flash is passed to the logic that will control the leap-frog switching in

the next stage's interpolation.
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6.2.2 3-bit Interpolation Stage

A functional diagram of the 3-bit interpolation stage is shown in Figure 6.4. Using the

result of the previous stage's conversion, this stage will switch its interpolating residue

amplifiers to the appropriate residue taps from the previous stage. As mentioned in

Section 3.4.2, in a leap-frogged 4-residue system with 4 levels of interpolation, the

interpolation network can be permanently connected to each input amplifiers. In other

words, each amplifier always performs the same interpolation function. Each amplifier is

switched to the two residues that it will be interpolating between. The previous stage
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informs the leap-frog control logic where the interpolated zero crossing occurs. Based on

this information, the switching matrix is controlled so that this residues are interpolated

and amplified in the region of the zero-crossing.

Notice that the stage illustrated in Figure 6.4 has its outputs available on both clock

phases because of the addition of the unity gain buffer. The 42 residue outputs are used by

the interpolating quantizer. The )1 residue outputs are used to drive the interpolating

amplifiers in the next stage. This two phase operation is necessary to allow the inter-stage

interpolating quantizer time to make its decision. The inter-stage quantizer needs the

residue outputs one phase early so that it can switch the leap-frog switching for the next

stage. The next stage must be switched into place before the unity gain buffer amplifiers

go into their amplify phase. By utilizing this two-phase timing the architecture can be

pipelined to increase the throughput of the converter.

6.2.3 Circular Quantizer

As mentioned above, the residue outputs on 2 are used to drive the circular

interpolating quantizer. The function of this quantizer is to resolve (to 3 bits) the location

of the interpolated zero-crossing. Conceptually, this function is illustrated in Figure 6.5.

Because leap-frog switching is utilized (discussion in Chapter 3), the nominal, under- and

over-range are not constrained to occur between any two particular amplifiers. Because of

the uncertain location of the nominal range, a circular quantizer is required that can locate

a zero-crossing between any two amplifiers. In the example shown in Figure 6.5, the zero-

crossing is indicated by the 1-O0 transition as you move upwards along the "thermometer"

code. The 0->1 transition also indicates a zero-crossing, but this zero-crossing occurs

wherever the quantization ladder wraps back around to the "bottom." The location of this

wrap-around changes as the interpolating residue amplifiers are leap-frogged up and

down.

The implementation of the circular interpolating quantizer is shown in Figure 6.6.

Each comparator has its own interpolation network associated with it. (The circuit

implementation of the interpolating comparator is discussed in Section 4.5.) The residue

inputs to this circular quantizers are taken from the 42 outputs of the interpolation stage.

As mentioned earlier, this allows time for the result of this quantization to be used to
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Figure 6.5. Conceptual diagram of 3-bit circular ADC.

switch the next interpolating stage into place. The outputs from this quantizer are also sent

to the digital encode logic.

6.2.4 Time Alignment

As shown in Figure 6.1, the outputs from each stage's quantizer are passed though a delay

stage. Because this converter is pipelined, it is necessary to time-align the outputs of each

quantizer. This is performed so that each stage's quantized result for a given input signal

will reach the decode logic on the same clock phase.

6.3 Simulated Performance
The primary circuit effects that are liable to degrade the performance of this converter are

the capacitor matching, residue amplifier offset, residue amplifier settling and comparator
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offset. The capacitor mismatch contributes to create gain mismatch between inter-stage

amplifiers. Gain mismatch creates INL and DNL as discussed in Section 3.3.1. Capacitor

mismatch also creates an interpolation error. Interpolation errors can also degrade

converter INL and DNL. Amplifier offset contributes to both the DNL and INL of the

converter as discussed in Section 3.3.2. Comparator offset is typically corrected for in

multi-step converters by the addition of an overlap range. Amplifier settling errors appear

as a gain error and affect the converter performance in a similar manner to a gain error.

In Chapter 5, the amplifier settling was tested at 2.5V supplies and settled to 0.15% in

20ns over bias, supply and temperature variations. Based on calculations, the amplifier

settling will contribute negligible errors to the architecture. As mentioned in Section 3.3.1,

if the settling of the amplifiers are matched then they do not contribute to converter error.

With 0.15% settling we are guaranteed 1/10o LSB performance at 10-bits even with

mismatched settling. Based on these results, settling errors were left out of the behavioral

simulation.

Table 6.1 gives the performance expectations of the offset and capacitor matching in a

Parameter a

comparator offset <0mV

amplifier offset <10mV

capacitor matching <0.1%

Table 6.1. CMOS process characteristics.

typical CMOS process. Using the predicted distribution of these values, a top-level

behavioral model was constructed. According to a normal distribution, with the given 1-

sigma value, component values are assigned to each capacitor, amplifier and comparator

in the converter. The behavioral model performs a "DC sweep" of the converter's transfer

function. The sweep speed is set such that each code will be "hit" 100 times nominally.

Based on a code hit density analysis, the width of each code can be calculated. The code

widths correspond to the simulated DNL performance of the converter. The integrated

DNL plot gives the INL performance of the converter. Figure 6.7 shows the DNL and INL
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Figure 6.7. Behavioral simulation of converter linearity (DNL and INL).

plots for a randomly generated converter. This plot is fairly typical of those seen after

performing several simulations with the given distribution of component values.

The DNL performance shown in Figure 6.7 is within the design goals. The simulated

INL performance would be unacceptable for many applications (such as communications)
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Figure 6.8. Monte-Carlo analysis of worst case linearity error (DNL).

that require good distortion performance. The primary effect which causes the INL

degradation is the poor offset performance of the residue amplifiers. By using an amplifier

topology with better offset performance the INL could be significantly improved. As an

added benefit, the DNL performance would be improved further.
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Figure 6.8 was generated by doing 2 sets of monte-carlo analysis using different

component mismatch distributions. For each histogram, 100 converters were generated

based on the labeled -sigma values. The DNL of each converter was extracted. From

each converter, the code with the worst DNL was selected and logged. Even for fairly

dramatic component errors, the DNL performance remains well within /2 LSB at 10-bits.

The limiting factor in the DNL performance is the amplifier offset performance. A factor

of 2 improvement in the amplifier offset results in a corresponding factor of 2

improvement in the DNL performance.

6.4 Conclusion

The 10-bit implementation of a pipelined multi-step interpolating converter appears

promising from a number of aspects. The most notable feature is the ability to use low-

gain amplifiers (30-40dB) and still maintain excellent DNL performance. The amplifiers

are able to operate at 2.5V analog and digital supplies, and do not encounter headroom

problems over temperature, bias and process variation. Also, with extremely poor offset

performance from the amplifiers, /2 LSB DNL performance is attainable. The offset

performance of the amplifiers is the effect which most limits the linearity performance of

the converter.

The converter operates at 20MSPS with supplies down to 2.5V. Table 6.2 gives the

POWER (2.5V)

Amplifiers 32 1.84mW

Comparators 63 100pW

TOTAL 65mW

Table 6.2. Power accounting for 20MSPS ADC.

power accounting for the analog portion of the proposed converter. The expected power

dissipation of the analog portion of the converter is 65mW at nominal bias conditions. The

excellent DNL performance and operation at low voltage supplies indicates strong

potential for portable video applications.
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Chapter 7

Conclusion and Suggestions

7.1 Conclusion

Pipelined multi-step converters in CMOS have achieved 10-bit performance at 20MSPS

[12] and [13]. Many of these designs rely on high-gain / wide-bandwidth amplifiers to

achieve accurate interstage gain performance. These amplifiers typically require a large

design effort and consume a fair amount of power. As portable video and other consumer

applications require lower supply voltages, it is anticipated that a standard approach to

multi-step conversion (such as a MDAC approach which is used in CMOS technologies)

will become cumbersome, if not impossible to implement. As this research has presented,

through the use of an alternative architecture it is possible to lower the performance

requirements on amplifiers.

A multi-residue approach to conversion has been shown in this research to ease

amplifier requirements in converter design. This work has demonstrated that the required

circuits can be designed in the constraints of a 2.5V system supply. The amplifiers only

require 30-40dB of gain performance which can be easily obtained in a single gain stage.

This research shows that the required amplifiers are able to settle to the required accuracy

in 20ns without using excessive power.

In design, when the demands on one circuit block are reduced, typically the demands

on other circuit components are increased to offset this. In the interpolating multi-residue

approach this does not seem to be the case. As well as reduced amplifier performance, the

architecture can tolerate moderate component matching. The accuracy requirements of the

comparators are the same as those in a standard CMOS pipelined converter. The reduced

accuracy of the amplifiers and component matching degrades the INL performance, but

has little effect on DNL.

The DNL performance of this converter remains excellent for moderate component

matching and single-stage amplifiers. The INL performance is degraded moderately due to

the component non-idealities. As discussed in Chapter 6, amplifier offset accounts for the

majority of linearity loss. This work has emphasized DNL performance over INL

81



performance. The DNL performance is a much more important than INL for video

applications, where display units have limited linearity to begin with.

In order to demonstrate the advantages of the pipelined multi-step interpolating

converter, a potential circuit implementation was presented. Using a combination of

circuit simulation and top-level behavioral simulation, the feasibility of this architecture

was demonstrated. With predicted component matching, this implementation is expected

to achieve 1/2 LSB DNL performance at 10-bits. The INL performance is not quite as

outstanding and appears to be +4 LSB typically. The INL is degraded primarily because of

offset in the residue amplifiers. Any improvements here would significantly improve the

INL (and as a side benefit, further improve the already excellent DNL). The suggested

converter implementation appears to achieve 10-bit 20MSPS performance at 2.5V supply

voltages. The analog circuitry is expected to dissipate 65mW.

A concern with a new architecture is the ease of implementation. The switching

involved in the implementation of this architecture is extensive; however, it is not

significantly more complicated than the switching used in MDAC-based pipelined

architectures. The digital encoding for this architecture is also different than a standard

MDAC approach. These digital issues should not present a significant impediment to

architecture implementation.

7.2 Future Work
In the course of the research, many ideas have surfaced which may merit further research:

- Amplifier offset creates the largest source of performance degradation in this
architecture. In the presented implementation, the dual-follower output stage is
dominant source of offset. The architecture relies on the open-loop matching of MOS
source-followers. By implementing this architecture in BiCMOS, bipolar devices
could be used for the matched dual-followers. Because the expected VBE matching of
bipolar devices is typically better than lmV, this could potentially improve the INL
and DNL performance by a factor of 10. In addition, the bipolar device can achieve the
required gm with half the current. This savings would cut the power consumption of
the amplifiers by roughly half - and by extension almost halve the power of the
converter.

* Another method of reducing the amplifier offset is to use an amplifier without the
dual-follower. A single-stage transconductance amplifier could be implemented (e.g.
folded cascode). To keep the amplifier stable, dummy capacitors would have to
switched to the outputs of the amplifier whenever interpolating capacitors are switched
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off the output.

* As seen in [17], if the settling in the residue amplifiers matches, they do not need to
settle completely. An interesting experiment to run would be to cut the current by half
to slow the settling. The performance of the converter should remain largely
unchanged.

* Trading off resolution for speed in this architecture should be relatively
straightforward. Investigation of extremely fast, lower resolution (8 bits) converters
would be worthwhile.
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Appendix A

Behavioral Simulation of Multi-Step Interpolation
Architecture

A.1 Introduction
The following C code was written to test the architecture's sensitivity to component

mismatches. Each run of the simulation assigns a random value to all components in the

architecture. The values are based on a normal distribution with sigma values chosen

before compilation. The behavioral simulation of the converter is run with a ramp input.

The ramp "speed" is chosen that that each code is hit 100 times nominally. Based on a

code hit density analysis, DNL and INL data is generated for each code. This text file can

be imported into most data analysis programs to be viewed.

A.2 Behavioral Model
/ ************************************************************/

/** Multi-step Interpolating ADC -Behavioral Simulation **/

/** **/
/** ACTION: simulates ramp input, with 100 hit/code. **/

/** based on code hit density analysis, DNL and **/

/** INL are computed and written to 'dnl.dat' and **/

/** 'inl.dat' respectively. **/

/** *-/
/** component values are assigned according to a **/

/** normal distribution with sigma assigned **/

/** by user. **/

/** **/
/ ************************************************************/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define STAGES 5

#define ARCH 33332 /* 3-3-3-3-2 architecture - do not alter */

#define MAX_LEVELS 16

#define SIG_LAD 0.01 /* ladder resistor sigma - mean = 1 */
#define SIG_COMPOFF 0.01 /* comparator offset sigma - volts */
#define SIG_AMPOFF 0.005 /* amplifier offset sigma - volts */
#define SIG_CAP 0.01 /* capacitor mismatch sigma - delta_C/C */
#define REFT 1 /* input range 0-lV */

#define REFB 0

/** CONSTANTS FOR UNIFORM DEVIATE **/
#define M 259200

#define IA1 7141
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#define IC1 54773

#define RM1 (1.0/M1)

#define M2 134456

#define IA2 8121

#define IC2 28411

#define RM2 (1.0/M2)

#define M3 243000

#define IA3 4561

#define IC3 51349

/** END CONSTANTS FOR UNIFORM DEVIATE **/

double normal(double, double);

float gasdev(int *);

float ranl(int *);

void initialize(int *, double *,double [][], double [][], double [][], double [][], \

double [][], double *, double [][], double [[]);

int convert(double, int *, double [][], double [][], double [][], double []H[], \

double [][], double [], double [][], double [][]);

void captaps(int, int, double *, double *, double [][]);

void interpol(int, int, double *, double [][]);

void resistaps(double *, double *, double);

void bin2dnl(double *);

int decode(int *, int *);

int adjust(int, int *, int);

void simout(double *);

double ampl(double, double, double);

double amp2(double, double, double);

int flash(int, int, double [[], double *);

main()

{
int bits[STAGES],code;

double amploff[STAGES][4];

double amp2off[STAGES][4];

double compoff[STAGES][MAX_LEVELS];

double gainl[STAGES][4];

double gain2[STAGES][4];

double ladder[MAXLEVELS];

double capsl[STAGES][MAX_LEVELS*MAX_LEVELS/4];

double caps2[STAGES][MAXLEVELS];

double bins[1024];

double vin;

initialize(bits,bins,amploff,amp2off,compoff,gainl,gain2,1adder,capsl,caps2);

for (vin = -0.5; vin < 0.5; vin = vin + 1.0/102400.0) {

code = convert(vin,bits,amploff,amp2off,compoff,gainl,gain2,1adder,capsl,caps2);

if ((code >= 0) && (code < 1024))

++bins[code];

}
bin2dnl(bins);

simout(bins);

}

int convert(double vin, int *bits, double amploff[STAGES][4], \

double amp2off[STAGES][4], \

double compoff[STAGES][MAX_LEVELS], \

double gainl[STAGES] [4], \

double gain2[STAGES] [4], \

double ladder[MAXLEVELS], \
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double capsl[STAGES][MAXLEVELS*MAXLEVELS/4], \
double caps2[STAGES][MAXLEVELS])

double res[4];

double taps[MAX_LEVELS];

int code[STAGES],stage,result;

resistaps(taps,ladder,vin);

res[O] = amp2(taps[0],gain2[0] [0],amp2off[0][0]);
res[l] = amp2(taps[4],gain2[0] [1],amp2off[0][1]);
res[2] = amp2(taps[8],gain2[0] [2],amp2off[0] [2]);
res[3] = amp2(taps[12],gain2[0][3],amp2off[0][3]);
code[0] = flash(bits[0],0,compoff,taps); /* put catch in for code out of range */
for (stage = 1; stage < STAGES; stage++) {

interpol(code[stage-l],stage,res,caps2);

res[0] = ampl(res[0],gainl[stage] [0],amploff[stage][0]);
res[l] = ampl(res[ll,gainl[stage][1],amploff[stage] [1]);
res[2] = ampl(res[2],gainl[stage] [2],amploff[stage][2]);
res[3] = ampl(res[3],gainl[stage] [3],amploff[stage][3]);

captaps(stage,bits[stage],res,taps,capsl);

code[stage] = flash(bits[stage],stage,compoff,taps);
res[0] = amp2(res[0],gain2[stage][0],amp2off[stage] [0]);
res[l] = amp2(res[1],gain2[stage][1],amp2off[stage][1);

res[2] = amp2(res[2],gain2[stage][2],amp2off[stage][2]);

res[3] = amp2(res[3],gain2[stage][3],amp2off[stage][3]);

}
result = decode(bits,code);

return result;

}

int decode(int *bits, int *code)

{
int loop,weight,result;

result = 0;

weight = 1024;

weight = weight / ldexp(l,bits[0]);

result = result + (code[O] - 2)*weight;
for (loop = 1; loop < STAGES; ++loop) {

weight = weight / ldexp(l,bits[loop]-l);

result = result + \

(adjust(loop,code,bits[loop])-ldexp(l,bits[loop]-2))*weight;

}

return result;

}

int adjust(int stage, int *code, int bits)

{
int levels,shift,leap,current;

levels = ldexp(l,bits+l);

shift = ldexp(l,bits-2);

leap = ldexp(l,bits-l);

current = code[stage];
if ((code[stage-l] % 4) == 0) current = (current - shift + levels) % levels;
if ((code[stage-l] % 4) == 1) current = (current - shift - leap + levels) % levels;
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if ((code[stage-l] % 4) == 2) current = (current - shift - 2*leap + levels) % levels;

if ((code[stage-l] % 4) == 3) current = (current - shift - 3*leap + levels) % levels;

return current;

}

void captaps(int stage, int bits, double *res, double *taps, \

double capsl[STAGES][MAX_LEVELS*MAX_LEVELS/4])

{
int loop,point;

int intfactor,intfactorsq,clloop,c2loop;

double a[MAXLEVELS*MAXLEVELS/4];

double b[MAX_LEVELS*MAX_LEVELS/4];

double cl,c2;

intfactor = ldexp(l,bits-l);

intfactorsq = intfactor*intfactor;

for (loop = 0; loop < 4; ++loop) {

for (point = 0; point < intfactor; ++point) {

cl = 0;
c2 = 0;

for (clloop = 0; clloop < point; ++clloop)

cl = cl + capsl[stage][loop*intfactorsq+point*intfactor+clloop];

for (c2loop = clloop; c2loop < intfactor; ++c2loop)

c2 = c2 + capsl[stage][loop*intfactorsq+point*intfactor+c2loop];

taps[loop*intfactor+point] = (c2*res[loop]+cl*res[(loop+l)%4])/(cl+c2);

}

}

void resistaps(double *taps, double *ladder, double vin)

{
int loop;

double ladtot,cumsum;

double rtaps[MAXLEVELS];

ladtot = 0;

cumsum = 0;

for (loop = 0; loop < 16; ++loop)

ladtot = ladtot + ladder[loop];

for (loop = 0; loop < 16; ++loop) {

cumsum = cumsum + ladder[loop];

rtaps[loop] = cumsum/ladtot*(REFT-REFB)+REFB;

}
taps[0] = vin+rtaps[l]-rtaps[13];

taps[l] = vin+rtaps[2]-rtaps[12];

taps[2] = vin+rtaps[3]-rtaps[ll];

taps[3] = vin+rtaps[4]-rtaps[10];

taps[4] = vin+rtaps[5]-rtaps[9];

taps[5] = vin+rtaps[6]-rtaps[8];

taps[6] = vin+rtaps[7]-rtaps[7];

taps[7] = vin+rtaps[8]-rtaps[6];

taps[8] = vin+rtaps[9]-rtaps[5];

taps[9] = vin+rtaps[10]-rtaps[4];

taps[10] = vin+rtaps[ll]-rtaps[3];

taps[ll] = vin+rtaps[12]-rtaps[2];

taps[12] = vin+rtaps[13]-rtaps[l];

taps[13] = le6;

taps[14] = le6;
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taps[15] = e6;

}

void interpol(int code, int stage, double *res, double caps2[STAGES] [MAXLEVELS])

{
double resO,resl,res2,res3;

switch (code) {

case 0 :

resl = res[0];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[0] + \

caps2[stage] [11]*res[l])/(caps2[stage][8]+caps2[stage] [9] + \

caps2[stage] [10]+caps2[stage] [11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[0] + \

(caps2[stage] [14]+caps2[stage] [15])*res[l]) / \

(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14]+caps2[stage] [15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage] [2])*res[0] + \

caps2[stage][3]*res[3])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2 [stage] [3]);

break;

case 1 :

resl = res[0];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[0] + \

caps2[stage] [11]*res[l])/(caps2[stage][8]+caps2[stage][9] + \

caps2[stage] [10]+caps2[stage] [11);

res3 = ((caps2[stage][12]+caps2[stage] [13])*res[0] + \

(caps2[stage][14]+caps2[stage][15])*res[l]) / \

(caps2[stage] [12]+caps2[stage][13 + \

caps2[stage] [14]+caps2[stage] [15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage] [2])*res[l] + \

caps2[stage][3]*res[0])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage][3]);

break;

case 2 :

resl = res[l];

res2 = ((caps2[stage][8]+caps2[stage] [9]+caps2[stage] [10])*res[0] + \

caps2[stage] [11]*res[1])/(caps2[stage][8]+caps2[stage][9] + \

caps2[stage] [10]+caps2[stage][11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[0] + \

(caps2[stage] [14]+caps2[stage][15])*res[l]) / \

(caps2[stage][12]+caps2[stage] [13] + \

caps2[stage] [14]+caps2[stage][15]);

resO = ((caps2[stage] [0]+caps2[stage] [1]+caps2[stage][2])*res[l] + \

caps2[stage][3]*res[0])/(caps2[stage][0 +caps2[stage][1] + \

caps2[stage] [2]+caps2[stage][3]);

break;

case 3 :

resl = res[l];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[l] + \

caps2[stage] [ll]*res[2])/(caps2[stage][8]+caps2[stage][9] + \

caps2[stage] [10]+caps2[stage] [11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[0] + \

(caps2[stage] [14]+caps2[stage] [15])*res[l]) / \

(caps2[stage] [12]+caps2[stage] [13] + \

caps2 [stage] [14]+caps2[stage] [15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage][2])*res[l] + \

caps2[stage][3]*res[0])/(caps2[stage] [0]+caps2[stage] [1] + \

caps2 [stage][2]+caps2[stage][3]);
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break;

case 4 :

resl = res[l];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[1] + \

caps2[stage] [11]*res[2])/(caps2[stage] [8]+caps2[stage][9] + \

caps2[stage] [10] +caps2[stage][11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[1] + \

(caps2[stage][14]+caps2[stage][15])*res[2]) / \

(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14] +caps2[stage][15]);

resO = ((caps2[stage][0]+caps2[stage][1]+caps2[stage][2])*res[1] + \

caps2[stage][3]*res[0])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage] [3]);

break;

case 5 :

resl = res[l];

res2 = ((caps2[stage][8]+caps2[stage] [9]+caps2[stage] [10])*res[1] + \

caps2[stage] [11]*res[2])/(caps2[stage] [8]+caps2[stage] [9] + \

caps2[stage] [10] +caps2[stage] [11]);

res3 = ((caps2[stage][12]+caps2[stage] [13])*res[1] + \

(caps2[stage] [14]+caps2[stage][15])*res[2]) / \

(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14] +caps2[stage][15]);

resO = ((caps2[stage][0]+caps2[stage][1]+caps2[stage] [2])*res[2] + \

caps2[stage][3]*res[1])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage] [3]);

break;

case 6 :

resl = res[2];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage][10])*res[1] + \

caps2[stage][11]*res[2])/(caps2[stage] [8]+caps2[stage][9] + \

caps2[stage][10] +caps2 [stage][11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[1] + \

(caps2[stage] [14]+caps2[stage][15])*res[2]) / \

(caps2[stage] [12]+caps2[stage] [13] + \

caps2[stage] [14]+caps2[stage][15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage][2])*res[2] + \

caps2[stage][3]*res[1])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage][3]);

break;

case 7 :

resl = res[2];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[2] + \

caps2 [stage] [11]*res[3])/(caps2[stage] [8]+caps2[stage][9] + \

caps2[stage] [10] +caps2[stage][11]);

res3 = ((caps2[stage][12]+caps2[stage] [13])*res[1] + \

(caps2[stage] [14]+caps2[stage] [15])*res[2]) / \

(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14] +caps2[stage][15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage][2])*res[2] + \

caps2[stage][3]*res[1])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage] [2]+caps2[stage][3]);

break;

case 8 :

resl = res[2];

res2 = ((caps2[stage] [8]+caps2[stage][9]+caps2[stage][10])*res[2] + \

caps2[stage][11]*res[3])/(caps2[stage][8]+caps2[stage] [9] + \

caps2[stage] [10] +caps2 [stage][11]);

res3 = ((caps2[stage] [12]+caps2[stage] [13])*res[2] + \

90



(caps2[stage] [14]+caps2[stage][15])*res[3]) / \

(caps2[stage] [12]+caps2[stage] 13 + \
caps2[stage][14]+caps2[stage] [15]);

resO = ((caps2[stage][0]+caps2[stage] [1]+caps2[stage][2])*res[2] + \
caps2[stage][3]*res[1])/(caps2[stage][0]+caps2[stage][1] + \
caps2[stage][2]+caps2[stage][3]);

break;

case 9 :

resl = res[2];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage][10])*res[2] + \
caps2[stage][11]*res[3])/(caps2[stage] [8]+caps2[stage][9] + \
caps2[stage] [10] +caps2[stage] 11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[2] + \

(caps2[stage] [14]+caps2[stage] [15])*res[3]) / \

(caps2[stage][12]+caps2[stage] 13] + \

caps2[stage][14]+caps2[stage][15]);

resO = ((caps2[stage][0]+caps2[stage][1]+caps2[stage][2])*res[3] + \
caps2[stage][3]*res[2])/(caps2[stage][0]+caps2[stage])(1] + \

caps2[stage][2]+caps2[stage][3]);

break;

case 10 :

resl = res[3];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] 10])*res[2] + \
caps2[stage] [11]*res[3])/(caps2[stage] [8]+caps2[stage][9] + \

caps2[stage] [10]+caps2[stage][11]);

res3 = ((caps2[stage]([12]+caps2[stage][13])*res[2] + \
(caps2[stage][14]+caps2[stage]([15])*res[3]) / \
(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14]+caps2[stage] [15]);
resO = ((caps2[stage][0]+caps2[stage][1]+caps2[stage][2])*res[3] + \

caps2[stage] [3]*res[2])/(caps2[stage] [0]+caps2[stage][1] + \
caps2[stage][2]+caps2[stage][3]);

break;

case 11 :

resl = res[3];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage][10])*res[3] + \
caps2[stage][11]*res[0])/(caps2[stage][8]+caps2[stage][9] + \

caps2[stage] [10] +caps2[stage][11]);

res3 = ((caps2[stage] [12]+caps2[stage][13])*res[2] + \

(caps2[stage] [14]+caps2[stage][15])*res[3]) / \

(caps2[stage][12]+caps2[stage][13] + \

caps2[stage] [14]+caps2[stage] [15]);

resO = ((caps2[stage][0]+caps2[stage][1]+caps2[stage][2])*res[3] + \

caps2[stage][3]*res[2])/(caps2[stage] [0]+caps2[stage][1] + \
caps2[stage][2]+caps2[stage] [3]);

break;

case 12 :

resl = res[3];

res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[3] + \

caps2[stage] [11]*res[0])/(caps2[stage][8]+caps2[stage] [9] + \

caps2[stage] [10]+caps2[stage] (11]);
res3 = ((caps2[stage]([12]+caps2[stage][13])*res[3] + \

(caps2[stage] [14]+caps2[stage] [15])*res[0]) / \

(caps2[stage] [12]+caps2[stage][13] + \

caps2[stage] [14]+caps2[stage][15]);

resO = ((caps2[stage] [0]+caps2[stage] [1]+caps2[stage][2])*res[3] + \
caps2[stage][3]*res[2])/(caps2[stage] [0]+caps2[stage][1] + \
caps2[stage][2]+caps2 stage] 3]);

break;
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case 13 :

resl = res[3];
res2 = ((caps2[stage][8]+caps2[stage] [9]+caps2[stage][10])*res[3] + \

caps2[stage] [11]*res[0])/(caps2[stage][8+caps2[stage] [9] + \

caps2[stage] [10]+caps2[stage] [11]);

res3 = ((caps2[stage][12]+caps2[stage] [13])*res[3] + \

(caps2[stage] [14]+caps2[stage] [15])*res[0]) / \

(caps2[stage][12]+caps2[stage] [13] + \
caps2[stage][14]+caps2[stage][15]);

resO = ((caps2[stage] [0]+caps2[stage][1]+caps2[stage][2])*res[0] + \

caps2[stage][3]*res[3])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage][3]);

break;

case 14:
resl = res[O];
res2 = ((caps2[stage][8]+caps2[stage][9]+caps2[stage] [10])*res[3] + \

caps2[stage] [ll]*res[0])/(caps2[stage] [8]+caps2[stage] [9] + \

caps2[stage] [10]+caps2[stage][11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[3] + \

(caps2[stage] [14]+caps2[stage] [15])*res[0]) / \

(caps2[stage] [12]+caps2[stage] [13] + \

caps2[stage][14]+caps2[stage][15]);

resO = ((caps2[stage] [O]+caps2[stage][1]+caps2[stage][2])*res[0] + \

caps2[stage][3]*res[3])/(caps2[stage][0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage] [3]);

break;

case 15:
resl = res[O];
res2 = ((caps2[stage] [8]+caps2[stage] [9]+caps2[stage] [10])*res[0] + \

caps2[stage][11]*res[1])/(caps2[stage] [8]+caps2[stage][9] + \

caps2[stage] [10] +caps2[stage][11]);

res3 = ((caps2[stage][12]+caps2[stage][13])*res[3] + \

(caps2[stage][14]+caps2[stage] [15])*res[0]) / \

(caps2[stage] [12]+caps2 [stage][13] + \

caps2[stage] [14]+caps2[stage][15]);

resO = ((caps2[stage] [0]+caps2[stage] [1]+caps2[stage] [2])*res[0] + \

caps2[stage][3]*res[3])/(caps2[stage] [0]+caps2[stage][1] + \

caps2[stage][2]+caps2[stage][3]);

break;

default : printf("\nERROR: code out of range.\n");

res[}] = resO;

res[O] = res0;res[l] = resl;
res[2] = res2;
res[3] = res3;

int flash(int bits, int stage, double compoff[STAGES][MAX_LEVELS], double *taps)

int code,loop;

code = -1;

for (loop = 0; loop < ldexp(1,bits+)-l; ++loop) {
if ((taps[loop] <= compoff[stage][loop]) && \

(taps[loop+l] > compoff[stage][loop+l]) && (code == -1))

code = loop;

}
if (code == -1)

code = loop;
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return code;

}

double ampil(double ain, double gain, double offset)

{
double result;

result = (ain + offset) * gain;

return result;

}

double amp2(double ain, double gain, double offset)

{
double result;

result = (ain + offset) * gain;

return result;

}

void initialize(int *bits, double *bins, double amploff[STAGES][4], \

double amp2off[STAGES][4], \

double compoff[STAGES][MAX_LEVELS], \

double gainl[STAGES][4], \

double gain2[STAGES][4], \

double ladder[MAXLEVELS], \

double capsl[STAGES][MAX_LEVELS*MAX_LEVELS/4], \

double caps2[STAGES][MAX_LEVELS])

{
int loop,arch,index,levels,inner,idum;

time_t now;

time(&now);

arch = ARCH;

index = 0;

idum = -now;

gasdev(&idum);

for (loop = STAGES; loop > 0; --loop) {

bits[index] = arch/pow(10,loop - 1);
arch -= bits[index] * pow(10,loop - 1);

++index;

}
for (loop = 0; loop < STAGES; ++loop) {

levels = ldexp(l,bits[loop]+l);

for (inner = 0; inner < 4; ++inner) {

gainl[loop][inner] = 4 * normal(l,SIG_GAIN);

gain2[loop][inner] = normal(1,SIG-GAIN);

amploff[loop][inner] = normal(0,SIGAMPOFF)/gainl[loop][inner];

amp2off[loop][inner] = normal(0,SIG_AMPOFF)/gain2[loop][inner];

}
for (inner = 0; inner < levels; ++inner)

compoff[loop][inner] = normal(0,SIGCOMPOFF);

for (inner = 0; inner < levels * levels / 4; ++inner)
capsl[loop][inner] = normal(l,SIG_CAP);

for (inner = 0; inner < MAXLEVELS; ++inner)
caps2[loop][inner] = normal(l,SIG_CAP);

}
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for (loop = 0; loop < 1024; ++loop)

bins[loop] = 0;

for (loop = 0; loop < ldexp(l,bits[0]+l); ++loop)

ladder[loop] = normal(1,SIG_LAD);

double normal(double mean, double sigma)

{
int idum;

double result;

result = (gasdev(&idum) * sigma) + mean;

return result;

}

float gasdev(int *idum)

{
static int iset = 0;

static float gset;

float fac,r,vl,v2;

if (iset == 0) {

do {

vl = 2.0*ranl(idum)-1.0;

v2 = 2.0*ranl(idum)-l.0;

r = vl*vl+v2*v2;

} while (r >= 1.0);

fac = sqrt(-2.0*log(r)/r);

gset = vl*fac;

iset = 1;

return v2*fac;

} else {

iset = 0;

return gset;

}

float ranl(int *idum)

{
static long ixl,ix2,ix3;

static float r[98];

float temp;

static int iff=0;

int j;

if (*idum < 0 | iff == 0) {

iff = 1;

ixl = (ICl - (*idum)) % M1;

ixl = (IAl*ixl+ICl) % M1;

ix2 = ixl % M2;

ixl = (IAl*ixl+ICl) % M1;

ix3 = ixl % M3;

for (j = 1; j <= 97; j++) {

ixl = (IA1 * ixl + IC1) % M1;

ix2 = (IA2 * ix2 + IC2) % M2;

r[j] = (ixl + ix2*RM2) * RM1;

*id} = 1;
*idum = 1;
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ixl = (IAl*ixl + IC1) % M1;

ix2 = (IA2*ix2 + IC2) % M2;

ix3 = (IA3*ix3 + IC3) % M3;

j = 1 + ((97*ix3) / M3);

if (j > 97 I I < 1) printf("RANl: This cannot happen.\n");

temp = r[j];

r[j] = (ixl+ix2*RM2)*RM1;

return temp;

void bin2dnl(double *bins)

{
int loop;

for (loop = 0; loop < 1024; ++loop)

bins[loop] = bins[loop]/100 - 1.0;

void simout(double *bins)

{
FILE *fpl, *fp2;

int loop;

double cumsum;

fpl = fopen("dnl.dat","w");

fp2 = fopen("inl.dat","w");

cumsum = 0;

for (loop = 0; loop < 1024; ++loop) {

if ((loop < 15) jI (loop > 1007))
bins[loop] = 0;

cumsum += bins[loop];

fprintf(fpl,"%f\n",bins[loop]);

fprintf(fp2,"%f\n",cumsum);

fclose(fpl);

fclose(fp2);
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