
Multimedia Teleconferencing Control Gateway

by

Leo Shang-hua Chang

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment of the requirements for the degrees of

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

(c) Leo Shang-hua Chang, 1995

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part:.'

,1 a I /

Signature of Autn,,
Departmentf Electrical En ering and Computer Science

May 26, 1995A

Certified by
Joh9 Wroclawski, Research Scientist

/ MTLaboratory for Computer Science

Certified by
-- -- - .'.. . . a nsek , I %William Mansfield, Director

r7 I A I Bell Communications Research

Accepted by
F. R. Morgenthaler, Chair

. partment Committee on Graduate Students

ErIg&

L1inSrti:

· _

_ , .

-

_-

I.I

Multimedia Teleconferencing Control Gateway

by

Leo Shang-hua Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995 in partial fulfillment of the requirements for

the Degrees of Bachelor of Science and Master of Science
in Computer Science and Engineering

ABSTRACT

Many current systems have computers supporting human-to-human interaction in real-
time using multiple media. Such interaction can become complex, and multimedia tele-
conferencing control systems--or conferencing systems, for short--have been created to
control the complexity and promote the development of applications. These systems pro-
vide media transport, transport resource management, and session management services to
application developers.

Achieving interoperability between different conferencing environments is extremely dif-
ficult. One approach is to use a conferencing gateway, which is logically located between
two systems and communicates with both. Gateways have the potential to provide
interoperability between the systems without requiring modification to either and without
loss of functionality to either user community.

A conferencing gateway was created to provide interoperability between two systems with
very different environments--Bellcore's Touring Machine system and ISI's Multimedia
Conferencing Control (MMCC) program. The conferencing gateway operates at the
application level using a user proxy design. It processes control messages from both sys-
tems with cooperating sets of finite state machines.

The user proxy design was able to provide effective, though not complete, conferencing
interoperability. No functionality or performance was lost to users of either system. The
experiment revealed general conferencing system traits that benefit gateway solutions.
Further research can uncover the potential role of gateways in a global conferencing solu-
tion.

Thesis Supervisor: John Wroclawski
TItle: Research Scientist, Laboratory for Computer Science

3

4

Chapter 1

Introduction

Today's computing and telecommunications technologies have spawned research

and development in the area of multimedia communications. Computers are used to sup-

port human-to-human interaction and collaboration in real-time using multiple media.

Such interaction, which will be called teleconferencing, can become quite complex, and

many systems have been developed to control the complexity and promote the develop-

ment of useful applications. These systems must handle many tasks which can be sepa-

rated into some general categories; media transport, resource management, session

management, and application-level duties.

Media transport is the actual delivery of real-time media signals--e.g., video and

audio signals--from one user's devices to another's. Resource management refers to man-

agement of media transport resources--e.g., switches, bridges, cameras, and monitors.

Resource management includes such tasks as controlling transport resources, allocation of

resources to particular activities, and making routing decisions. A session, sometimes

called a "call," is the association of users and information involved in a conference.

Although a session often refers to transport connections as well, session management

deals only with the logical establishment, termination, and modification of sessions. That

is, session management handles manipulation of the relationships and shared information

among users in a session. Application-level duties include providing a user interface and

implementing the user end of conferencing protocols.

1.1. Conferencing Systems

To most easily provide real-time, multimedia teleconferencing to users, transport,

resource management and session management duties are handled by a multimedia tele-

conferencing control system--or conferencing system, for short. The conferencing system

serves as a platform for application writers to use. The interface between the conferencing

system and the applications allows application writers to easily use conferencing services.

The conferencing system hides the complexity of implementing those services and lets

different applications share the provided functionality.

5

Many conferencing systems have been created both for research and commercial

purposes. Each of these systems has its own software control architecture. Each has its

own set of control message protocols, session state management policies, and resource

control mechanisms. For example, some systems use a centralized approach for session

management[l,5,13]; others employ distributed methods.[3,10] Some provide other ser-

vices such as directory servers for applications to access public information.

1.2. Interoperability

Increase in the popularity of teleconferencing is a phenomenon which industry and

government efforts are anticipating. Providing functionality between all users--like

today's telephony service--will be in the best interests of both providers and users. The

existence of disparate conferencing systems leads to the question of how to provide con-

ferencing between users of different systems. Conferencing systems will need to interop-

erate.

Because of the differences between control architectures, achieving interoperabil-

ity between two conferencing systems appears difficult. Research-oriented conferencing

systems were most often developed to examine the concepts and techniques necessary to

provide useful communication. Each was designed with a specific semantic model of use

and operating environment in mind--without consideration of how to accommodate

interoperability with other systems1. Commercial systems are developed, of course, to

provide a marketable product. They usually have closed interfaces and proprietary proto-

cols, which makes even the possibility of studying interoperability with such systems very

difficult.

One approach for gaining interoperability is to develop general, flexible, and stan-

dard models and methods that all systems would have to be modified to use. This is a very

difficult problem and research in this area is still in its preliminary stages.[6,9]

1.3. Conferencing Gateways

The interoperability solution explored in this thesis is the construction of a confer-

encing control gateway that is logically situated between two systems. The gateway needs

1. Perhaps due to the fact that "other systems" were often only in design or prototype stages, as
well.

6

to reconcile the session and resource management styles and service provision mecha-

nisms of the different control architectures. In addition, it needs to manage resources that

connect the transport networks of the different systems.

The gateway is not a part of either system and neither system requires modification

to use it. Gateway solutions can preserve functionality and efficiency enjoyed by confer-

encing system users and provide interoperability for important conferencing functions

between different systems. Although gateway solutions cannot easily provide full interop-

erability for all conferencing functions, they do have the potential to part of an acceptable

interim solution.

1.4. Thesis Plan

Chapter 2 presents conferencing systems in more detail, explores the solutions to

the interoperability problem, and discusses the issues involved with developing design

goals for a conferencing gateway. Chapter 3 describes the design of the gateway that was

created for use between Bellcore's Touring Machine and Information Sciences Institute's

Multimedia Conference Control (ISI's MMCC) program. Chapter 4 describes implemen-

tation details that were not covered in chapter 3. Chapter 5 evaluates the design and effec-

tiveness of the resulting gateway, presents traits of conferencing systems in general that

benefit gateway design, and discusses future work.

7

8

Chapter 2

Conferencing System Interoperability

2.1. The Conferencing System Model

The term "multimedia teleconferencing control system" is used to refer to many

different kinds of systems. In this thesis, the abbreviated form--"conferencing system"--

refers to an infrastructure that is provided to conferencing application developers. The

interface to the conferencing system allows applications to easily provide real-time, multi-

media, human-to-human interaction. Much of the complexity of establishing and manipu-

lating such interaction is handled by the conferencing system. The conferencing system's

software implements the application interface. It also controls equipment that transports

media among users. A piece of such equipment is called a resource, and examples include

video capture cards, microphones, switches, and bridges. As shown in Figure 2.1, users

interact with applications and can communicate with other users via the media transport

resources. The environment of a conferencing system is often called its domain. That is,

Conferencing
System I

Users

Applications

Control Software

~~~~~~~~~~~Media Transport Resources~ ~.

Media Transport Resources .~~~~~~~~~~~~~~~ .
Figure 2.1. Logical location of a conferencing system

a system's domain includes itself, its users, and the resources it controls.

Conferencing systems have strategies for session management and resource man-

agement. A session is analogous to a telephone call. It is a temporary association of users

who can communicate with one another. Session management is the manipulation of

9



information associated with sessions--e.g., the participants and the media being used. The

most complex parts of session management are negotiating among users about what kind

of sessions to establish and ensuring that all participants are notified correctly about ses-

sion information. Thus, protocols that initiate, modify, and terminate sessions are the

heart of session management.

Resource management is the manipulation of transport resources. To realize the

logical association in a session, resources must be chosen and controlled to physically

transport media among users. Resource management translates logical media connections

into allocation, configuration, and physical activation of the necessary resources.

Since the conferencing system handles session and resource management duties,

applications can manipulate communication in the context of sessions. Applications can

control transport resources with logical notions such as "a video session in which Bob is

calling Chris." The conferencing system's session management handles negotiation and

synchronization with the applications about session state--e.g., Chris' acceptance of the

call. The system's resource management translates successful session establishment into

media transport between Bob's and Chris' video equipment.

The idea of separating the conferencing system from applications is important.

First, it allows for faster, easier development of different kinds of applications. The rea-

son is that the conferencing system infrastructure isolates application developers from the

complexities of handling all the details of multimedia communication.[1] Second, sepa-

rating the control system from applications allows different kinds of applications to share

the same set of hardware and control software. Application developers are given complete

flexibility to use the control system. For instance, switches and mixers can be shared by a

video conferencing application and a lecture application, or an application could provide

both capabilities to the user. A video conferencing application that is integrated with the

underlying control system would not allow for easy development of a lecture application

that shares the same resources. The lecture application would have to have its own ver-

sion of session and resource management. Third, even in a single application environ-

ment, separating the duties of the application and the control system provides easier

management and maintenance of transport resources. Since the application need only deal

with higher level notions of conferencing, transport resources can be updated or replaced

10



with modification only to the conferencing system's interface to those new resources.

The goal of conferencing gateways described herein is to provide interoperability

between different conferencing systems. This chapter describes more precisely what this

means. Section 2.2 gives some examples of conferencing system designs. Section 2.3

discusses tackling interoperability problems between systems--including the use of con-

ferencing gateways. Section 2.4 examines the issues involved with more concretely defin-

ing design goals of gateways. Finally section 2.5 describes work that is related to

conferencing gateway design.

2.2. Conferencing System Examples

There are some design principles that almost all conferencing systems follow. The

first is the recognition of session and resource management duties. The details of session

and resource management are always separated, but the implementation of session man-

agement must be linked to how resource information is gathered and reconciled.

The second characteristic that most systems share is the separation of "vertical"

and "horizontal" protocols.[6] Horizontal protocols are used between logically remote

entities--e.g., client-server, peer-peer. Session management depends heavily on the use of

horizontal protocols. Vertical protocols are used within the conferencing system, allow-

ing higher level parts of the system--e.g., session management--to communicate with

lower level ones--e.g., transport resources.

The third common trait is the design assumption that transport resources can be

replaced with more capable versions in the future. The resources themselves are most

often described as separate from the heart of the conferencing system. The system's lower

level interface to control the resources is separate from its session management and

resource management, allowing the control architecture to be stable even as it incorporates

improved transport technology.

Despite these shared design ideas, conferencing systems can differ in the structure

of their software control architectures and their intended conferencing environments.

Software architectures can range from being centralized and monolithic to distributed and

replicated. Communication among session management and resource management enti-

ties can be peer-to-peer or client-server. The choice of architecture is influenced by the

11



system's intended operating environment. For example, using a very centralized architec-

ture for conferencing among geographically separated users can lead to unreliable or slow

performance.

Conferencing systems also differ in terms of the set of conferencing functions each

offers. For example, systems have different kinds of servers that applications can query

for information. Also, the interfaces presented to the application by different systems can

have varying degrees of flexibility. For instance, some interfaces may allow description

of only symmetric audio and video sessions, while others may allow asymmetric audio,

video, and/or audiographics sessions.

The following sections present brief descriptions of several conferencing systems.

The first two systems, Touring Machine and MMCC, are discussed in more detail here

and in the next chapter since they are the systems involved in the control gateway that was

created. The point of presenting these examples is to demonstrate that several different

systems have been developed which fit the conferencing system definition used in this

thesis. The fact they exist and have their own user communities introduces the problem of

making them interoperate. Due to the differences among the systems' designs, developing

conferencing gateways can provide insight into what system characteristics most affect

the interoperability problem.

2.2.1. Touring Machine

The Touring Machine system consists of control software that is structured as a set

of objects working together to provide the services supported by its application program-

ming interface (API).[1] Touring Machine acts as a server, meant for a LAN environ-

ment, to application clients. It lets applications describe sessions in terms of connectors,

each of which represent transport connections in a single medium between multiple end-

points. Endpoints are logical ports and are typed by medium, direction of flow, and

owner. This scheme lets applications specify a variety of sessions. Sessions can have any

number of participants because connectors can have any number of endpoints. Since end-

points are typed by direction of flow, asymmetric sessions of any configuration are

allowed. For instance, an application can request an audio session with three participants

who can speak and listen and two others who can only listen. Also, users can own an

unlimited number of endpoints, so users can participant in simultaneous sessions using the

12



same media or even in one session with, for instance, multiple cameras.

Before using any of Touring Machine's services, an application must register at a

station, which represents a client's workspace. Endpoints are also registered by the appli-

cation. This registration information is made available to other applications by being

stored in Touring Machine's name server database. The name server is actually an inter-

face to a database that holds many types of user and session information. Applications

and Touring Machine objects can all query the name server for information. In addition to

audio and video media, Touring Machine also provides application-interpreted data

streams and an inter-application text-message passing service.

Session management is handled in a centralized fashion by a session object. One

session object is created for every active session. The single resource manager has infor-

mation about the configuration of all transport resources in the environment. Resource

objects--e.g., A/V switch objects and bridge objects--isolate the resource manager from

the particular details of the hardware. The current implementation of Touring Machine

has an analog transport network for audio and video. Vertical protocols are used com-

pletely within Touring Machine--e.g., between the session objects and the resource man-

ager, between the resource manager and the resource objects, and between the resource

objects and the actual resources. Station objects, which are the interface point for applica-

tions, use horizontal protocols to communicate with Touring Machine.

2.2.2. MMCC

MMCC actually includes an application-level user interface as well as session and

resource management mechanisms.[1 1] Currently, both the application-level and control

system duties are integrated into one program, but the separation between the two is docu-

mented and evident in the organization of the code. Applications can describe sessions

primarily using participant lists and mechanisms for describing resource configurations in

terms of media agents and their parameters. MMCC's media agents are tools that provide

Internet media transport for a particular medium. MMCC's current version allows only

symmetric audio and video conferencing and has no directory service analogous to Tour-

ing Machine's name server.1

1. A symmetric "whiteboard" functionality with has not yet been added.

13



MMCC's session and resource management are completely distributed and rely on

the Connection Control Protocol (CCP). CCP uses a peer-to-peer model for communica-

tion among distributed entities. MMCC instances send CCP messages (horizontal proto-

col) to one another to handle both session management and resource management issues.

MMCC instances also send control messages locally to media agents (vertical protocol)

which handle media transport. MMCC's distributed nature and its Internet-based media

agents are tuned for WAN use.

2.2.3. Other systems

Hewlett-Packard's multimedia call system is a conferencing system with an API

based on procedure calls.[5] It lets applications describe sessions in terms of Call objects,

Party objects, MediaLines, and MediaPorts, which are almost semantically identical to

Touring Machine's session objects, application instances, connectors, and endpoints,

respectively. However, the call system's resource management is not as centralized as

that of Touring Machine. The Call objects do communicate vertically with lower layers

that control network resources; however, in addition, each Party has an associated

Resource Manager--using vertical protocols to manipulate resources. Call objects com-

municate with Resource Managers and Parties with horizontal protocols. The call system

has been implemented to control a local network of analog audio and video devices.

Xerox PARC's Etherphone conferencing system has application-level agents

which reside at users' workstations communicating with horizontal protocols with a cen-

tral session manager (called a connection manager).[13] As in Touring Machine, the con-

nection manager communicates vertically with lower level agents which handle transport

and resource management issues. Etherphone's conference model protocol has states that

are semantically very similar to the session establishment protocols of Touring Machine

and CCP--see section 4.3. Etherphone is also implemented on a LAN of workstations that

control an analog audio and video network.

A conferencing system effort in the telephony environment is the work of Interna-

tional Telecommunications Union (ITU) Study Group 8. This group is in the process of

making standards recommendations--the T.120 series of documents--for conference con-

trol.[8] T. 120 is targeted at a specific network architecture--that of the telephone net-

work.1 Effectually, T. 120 outlines a conferencing control system that uses the public

14



telephone network not only for media transport, but also for transport of control signals.

Unfortunately, it does not accommodate the type of computer environments used by the

other systems in this section--e.g., TCP/IP over LANs.

Vat and nv (which are MMCC's current media agents) are conferencing tools that

manage audio and video communication, respectively. These popular tools can be used

for conferencing by themselves; however, such conferencing does not incorporate a con-

ferencing system as in Figure 2.1. Vat and nv do not provide an interface for other appli-

cations to use, and they do not work together for proper multimedia session management

without higher-level coordination. They do, however, serve well as lower-level compo-

nents of a conferencing system (such as MMCC) because they manage such duties as for-

matting media packets and controlling video capture cards and microphones.

Sd is an application that coordinates the use of conferencing tools such as vat and

nv. It provides session management functionality by providing a dynamic list of adver-

tised sessions to users who can join or advertise new sessions. Users can choose specific

media for their sessions, and sd instantiates the appropriate conferencing tool(s). Sd is

also does not fit the conferencing system model in Figure 2.1. Its session management

scheme and user interface are closely coupled, and it does not provide an infrastructure for

other applications to use.

2.3. The Role of Gateways

Because each conferencing system has its own protocols and models of operation,

problems clearly exist for users of one system who want to conference with users of

another. Even users of two systems that are very similar cannot interoperate. The most

straight-forward solution to this problem is not to have interoperability among systems at

all, but rather to have only one system used by everyone. The problem with this approach

is designing such a system--or, at least, an appropriate set of rules that all systems must

follow.

2.3.1. Standards Efforts

To address this problem, there are efforts underway to achieve interoperability by

1. For example, it can use the transport infrastructure outlined in the H.200 series of ITU docu-
ments.

15



defining standards to which all conferencing systems must conform. Unfortunately, it is

difficult to design a model of conferencing--as well as a set of protocols and interfaces,

etc.--that is both powerful and flexible enough for the variety of user needs and environ-

ments that exist today. Indeed, if a standard is too flexible in terms of implementation

options, it loses its usefulness of being a standard. Consequently, current standards efforts

either produce a system that is unaccommodating to many environments--see T. 120 in

section 2.2.3--or have trouble producing any guidelines at all. For example, the Internet

Engineering Task Force (IETF) has chartered the Multiparty Multimedia Session Control

Working Group (MMusic) to design and specify a protocol to perform the general session

management for Internet multimedia teleconferencing. [6] The MMusic group has gath-

ered much information about existing multimedia communication systems, but it has not

been able to make significant progress toward its goal.

2.3.2. Gateway Solutions

If any of the current conferencing systems or a standard like T. 120 becomes the

dominant system for ubiquitous use, many existing systems would require major modifi-

cation or replacement to be compatible. The users of those systems could lose many local

conferencing services that they previously enjoyed.

A conferencing gateway sits logically between two systems and provides interop-

erability of many conferencing functions without requiring replacement or modification of

existing hardware or control software. In addition, gateway solutions can provide interop-

erability while preserving local functionality and optimizations.

As will be discussed in section 2.4.2, gateway solutions can result in different lev-

els of interoperability for different conferencing functions. In the long run, if multimedia

teleconferencing becomes much more popular (as telephony is today), a solution involv-

ing gateways interconnecting many systems (much like electronic mail is today) may be

satisfactory. Most likely, only basic functions will be interoperable between most sys-

tems--e.g., simple session establishment and termination. If full interoperability for all

functions is important, gateway solutions will be an option for an interim solution. As

such, they can help provide insight into conferencing among dissimilar environments

which will help standards efforts.

16



2.4. Gateway Design

Gateway design goals focus on conferencing functions provided to applications.

Inter-applications issues must also be considered. On a single system, users often run the

same application to communicate with one another, and application interaction is avoided.

However, in the inter-system case, each system already has its own set of applications, so

interaction between different applications becomes more relevant. Also, when dealing

with more than one system, the aforementioned inter-application issues are exacerbated by

inter-system problems.

Interoperation models for gateway solutions are described in section 2.4.1. Sec-

tion 2.4.2 presents a method for describing interoperability in terms of conferencing func-

tion behavior. Gateway design goals are specified in section 2.4.3, and section 2.4.4

describes how gateways must depend on applications.

2.4.1. Models of Interoperation

A gateway can be designed with two models of interoperation in mind. In the

model used in this thesis, which will be called the existing-application model, the gateway

can provide some interoperability between different applications residing on the two sys-

tems. This model has shortcomings. Applications can only use the conferencing func-

tions common to both systems--i.e., only the intersection of the two systems' conferencing

functions can be provided. Also, some services, such as application-to-application mes-

saging, do not make sense, even if both systems provide them, because they involve appli-

cation-level protocols.

A second interoperation model can address these weaknesses. The new-applica-

tion model has application writers using the functionality provided by the gateway to cre-

ate new applications that can be used across both systems. Services such as application-

to-application messaging can be used. The problem of providing only common confer-

encing functions persists, but an adaptor that complements the gateway can be used on the

deficient system, as in Figure 2.2.

Nonetheless, this second model has its own set of disadvantages. First, even if the

scheme in Figure 2.2 were effective, having to create the adaptor eliminates a major

advantage of building the gateway in the first place--the lack of modification to the con-

17



System A provides System B does not
the service. provide the service.

Figure 2.2. An adaptor in the new-application interoperation model.

ferencing systems. Further, it is not clear what kinds of services are feasible or even pos-

sible using adaptors. Second, this model does not apply to existing applications, only for

applications that are written with the knowledge that the gateway has or will be imple-

mented. Third, two versions of a new application must be written to work across both sys-

tems--one for each system's application interface.1 Fourth, the conferencing system-

application interface is not always as open and well-defined as is required for the new-

application model to be effective. Some conferencing systems do not have a well-docu-

mented interface, and some were built for one or more very specific applications. Some

systems have a clean separation between infrastructure and applications in principle (and,

sometimes, in documentation, as well), but their implementations do not exhibit a clear

interface. All of these factors make an implementation of the new-application model

more difficult to realize. Finally, interoperability issues can be more fully explored with

the existing-applications model because application interaction plays an important role.

When the implementations of applications and conferencing systems are not cleanly sepa-

rated, inter-application issues become an unavoidable part of the interoperability problem.

1. Note that two versions of a new application can still be written to work with a gateway even
though it was implemented with the existing-application model in mind.

18



2.4.2. Functional Levels of Interoperability

Conferencing function behavior can be described with levels of interoperability.

More precisely, a certain functionality in a conferencing system is described by its behav-

ior--as exhibited to applications--when interacting with another conferencing system.

Such behavior can be classified into three categories. Interoperability Level 1 (IL1) refers

to successful behavior that is transparent to the application in terms of correctness.

Interoperability Level 2 (IL2) refers to behavior that invokes an error notification from the

conferencing system to the application. Applications can gracefully handle such errors

and notify users of the lack of functionality. Interoperability Level 3 (IL3) refers to unex-

pected behavior--i.e., behavior that differs from what is specified in the conferencing sys-

tem's application interface. IL3 behavior, of course, is to be avoided as much as possible.

It can include behavior as harmless as a lack of response to a request or as drastic as caus-

ing system or application software to crash.

Interoperability levels are defined only in terms of correctness of a conferencing

function--e.g., not in terms of function speed--as seen by applications. The interoperabil-

ity between two systems can be described with the interoperability levels of various func-

tions. Also, interoperability levels apply only in the context of multiple systems

interacting. It makes no sense to describe a function as having ILl behavior in a single

conferencing system. How well a service performs in the local domain is independent of

its interactive behavior with another system.

2.4.3. Gateway Design Goals

With above issues in mind, the design goals of a conferencing gateway, using the

existing-applications model, can be more precisely stated. The first goal, stated earlier, is

not having to modify either conferencing system. Second, the gateway solution should

not cause loss of any functionality--i.e., conferencing between users in the same domain

should not be affected. Third, the gateway should provide ILl interoperability for as

many conferencing functions as possible, and IL2 behavior for all others. If there must be

IL3 behavior, it can only be tolerated if it occurs very infrequently. For the gateway to be

useful, ILl behavior must be provided for at least those conferencing functions which are

used frequently by users. Finally, users should be notified when to expect possible non-

ILl behavior--i.e., users should be made aware when they are requesting inter-domain

19



conferencing services.

2.4.4. Dependence on Applications

The last design goal is made possible by not only the gateway, but also by applica-

tion writers. Direct communication with the user is the responsibility of the application.

(Section 3.2.2 presents a simple way to reduce the gateway's reliance on applications for

the Touring Machine/MMCC gateway.) L2 behavior relies similarly on application writ-

ers. IL2 behavior is useless if a poorly written application does not handle errors in a way

that is useful to users.

In addition, gateway solutions depend on applications following each conferencing

system's application interface--in terms of both syntax and semantics. The interface

description includes rules on how to use procedures or messages, what functions should

be performed locally in association with each procedure or message, etc. Although inter-

face specification documents may not be absolutely complete in this respect, the intended

use of the interface is made clear.

Still, a little flexibility provided to the application can lead to misuse of the inter-

face. For example, an application writer could choose to use an application-level messag-

ing service, session names, or other text strings that can be passed between applications as

a way to communicate session establishment information. For instance, an application

could format its session names to convey some kind of participant information that signals

other application instances to add other participants. In other words, although this appli-

cation has not broken any syntactic rules of the interface, it is not using the conferencing

system's standard method for session establishment.

A conferencing gateway's design goals and performance are based on the assump-

tion that applications do not use such non-standard methods. That is, the gateway's design

cannot be held responsible for interoperability problems that are caused by nonconform-

ing applications.

2.5. Related Work

Conferencing systems like those described in section 2.2 form an important basis

of work for conferencing gateways. The design similarities and differences among such

systems form the basis of the conferencing interoperability problem and gateway design.

20



Protocol conversion is another important body of related work. A large part of

conferencing gateway design involves reconciling disparate session management proto-

cols. Protocol conversion work has included converter designs between specific protocols

and attempts at developing general, automatable methods.[4,8,14] Network protocol con-

verters often deal with lower level protocols relative to those handled by a conferencing

control gateway. For example, many converters take approaches that involve attaching

and detaching appropriate header material to convert between network formats. 1[4] Such

approaches are not easily extended to conferencing gateway design because session man-

agement protocol messages have semantics that involve more than delivering data pay-

loads.

Nevertheless, some ideas resulting from protocol conversion research are useful

for the construction of the conferencing control gateway. Analysis from a service view-

point leads naturally to the discussion of adaptors and provision of only common services

in section 2.3.1.[2] In addition, such analysis resulted in the mapping of protocol mes-

sages between finite state machines (FSMs) much like a conferencing gateway's message

processing described in section 3.3 and 4.3.

Approaches for automation of protocol conversion require protocols to be first

described in terms of formally specified FSMs.[8,14] A method for describing the func-

tionality of conferencing systems in terms of an appropriate formal specification language

does not appear straight-forward. However, as both protocol conversion and conferencing

gateways are better understood, gateway design may be able to benefit from general proto-

col conversion methods.

1. Electronic mail gateways use such an approach.

21



22



Chapter 3

Touring Machine/MMCC Gateway Design

This chapter describes a conferencing gateway design that attempts to meet the

aforesaid design goals. The gateway was designed for Bellcore's Touring Machine and

ISI's MMCC conferencing systems. The next section presents an overview of the gate-

way and gives a road map of the other sections, each of which describe a portion of the

design. Implementation details of this design are presented in chapter 4.

3.1. Overview--the User Proxy Idea

The logical location of the conferencing gateway is pictured in Figure 3.1. It pro-

Figure 3.1. Gateway layout.

vides interoperability between the two systems without modification to either. The gate-

way communicates with each system at its application interface. Resources that provide

media transport between the two conferencing domains are controlled by the gateway.

The key design idea for the gateway is the employment of a user proxy approach.

From each system's viewpoint, the gateway looks like users of the other system. In other

words, in one domain, the gateway is a proxy for those users that belong to the other

domain. Consider Figure 3.2. Let X be the set of users in the original Touring Machine

domain and Y be the set of users in the original MMCC domain. With the user proxy

approach, each system is "fooled into believing" that it has the set X u Y in its domain.

23



- -- -- - - -- -- -- -- -- -- -- - - - ' - -- -- - -- - -- -- -- -- -- -- -- -- -

Touring Machine domain MMCC domain ,

I a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a
Gateway 

* I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(TM User 1) / MMCC User 1 ~ ! TM User 1 M

.~ ~ , _- - _ _.-- , _
Qj T M User 2 MMCC User 2 TM User 2 

* . g~~~~~~M~~~MCC User2

Original members of Touring Machine domain X = { TM User 1, TM User 2 }
Original members of MMCC domain Y = { MMCC User 1, MMCC User 2 }

Figure 3.2. User proxy approach.

Users of Touring Machine see the MMCC users as if they have actually been added to the

Touring Machine domain, and vice versa.

To implement the user proxy design, the gateway is divided into five parts: a CCP

message interface, a Touring Machine message interface, a CCP message processing unit

(MPU), a Touring Machine MPU, and an inter-domain resource manager. The message

interfaces intercept control messages that are normally meant for applications. Message

interception is presented in section 3.2. Each message is parsed in order to discover the

intended recipient and passed to the associated MPU. The MPUs contain finite-state-

machines (FSMs) that play the principal roles as proxies. The MPUs are the heart of the

gateway and are described in section 3.3. Finally, the gateway must play a role in realiz-

ing media transport between the domains. This is the responsibility of the gateway's

inter-domain resource management, described in section 3.4.

3.2. Message Interception

In order to serve as a user proxy, the gateway needs a strategy to pose as a set of

users in each domain. In the cases of both Touring Machine and MMCC, the gateway

intercepts messages that are meant for represented users. This kind of interception

involves manipulation of user information in each domain.

24



3.2.1. User Information

Both MMCC and Touring Machine provide mechanisms for an application to

access information about users in the domain. Touring Machine has its name server data-

base which applications can query. MMCC currently has an awkward scheme in which

each instance has a copy of an initialization file. Future plans include incorporation of

user directory services that would provide information about other users.

The gateway solution involves expanding the domain of each system to include the

users from both domains. Therefore, information about MMCC users must be added to

Touring Machine's user information, and vice versa. This information can include names,

login names, electronic mail address, phone numbers, etc. Most important is the user's

network address because each conferencing system uses this information to send and

receive control messages. In order for the gateway to act as a user proxy, addresses for

each newly added user must be modified to match that of the gateway. Thus, messages

intended for users that are actually in the remote domain can be intercepted and processed

by the gateway.

3.2.2. Naming

The names of users added from a different conferencing system can be modified in

the local name space. The purpose of the modifications is to indicate that these users are

not in actually in the domain. For instance, MMCC users could have "(MMCC)"

appended to their names in Touring Machine's nameserver, and Touring Machine users

could have "(TM)" appended to their names in the MMCC initialization files. Applica-

tions then have a transparent method for informing users when they are invoking inter-

domain conferencing functions. This is important to users because they can experience

inter-domain conferencing behavior that differs from that of local conferencing--see

section 5.1. Furthermore, this naming scheme solves the problem of users in each domain

with identical names.

3.3. Message Processing

When a message is parsed by the gateway, it is passed to the associated MPU. The

message is actually passed to one of several finite state machines (FSMs) contained in the

MPU. These FSMs can send messages to the corresponding conferencing system, and

25



internal messages can be passed among FSMs between the MPUs. Each MPU instantiates

an FSM for a represented user for every active session in which he or she is involved.

The FSMs used in the MPUs of the gateway are based on those that applications

use to implement their part of session management protocols. CCP's specification docu-

ment describes its session establishment protocol with FSMs that applications should use.

Touring Machine does not explicitly use FSM's in its API document, but FSMs can be

designed to describe its session establishment protocol as well. These FSMs can be modi-

fied to communicate with one another within the gateway to allow the two protocols to

interwork properly.

3.3.1. Session Establishment

The CCP and Touring Machine session establishment protocols have some simi-

larities. Both are based on a two-phase commit scheme. Both have a stage in which an

initiator constructs a session description which is communicated to all the callees. Both

allow callees to accept or deny the request to join the session, and both have a second

stage in which all parties are notified of the result.1

Nonetheless, there are significant differences between the protocols. Because of

Touring Machine's centralized control architecture, it has access to all resource informa-

tion--e.g., network topology--and is able to perform resource management via internal

vertical communication with media transport resources. In contrast, CCP uses horizontal

control messages that deal with resource management issues. It employs messages that let

callees communicate information about their media transport capabilities. Other messages

are needed to deal with the distributed nature of MMCC's media agents.

Consequently, Touring Machine can process all data relevant to session establish-

ment--callee consent, resource availability, etc.--and sends one positive or negative mes-

sage to all pertinent users. CCP users, on the other hand, discover resource capabilities

information, callee responses, and the success of media transport realization in separate

stages of control message exchanges.

3.3.1.1. Message Semantics

Due to these protocol differences, CCP control messages do not always have a

1. See sections 4.3.1 and 4.3.2 for details about both protocols.

26



semantically equivalent Touring Machine counterpart. Table 1 shows a summary of

important CCP and Touring Machine messages that have related semantics. The "signifi-

Table 1: Control Message Semantic Relationships

Touring Machine message CCP message Significant meaning

Request Caller sends this message to begin ses-
sion establishment--check if transport

sessionCreate resources exist for this session

Connect Caller sends this message to query
callees for their approval

Request Callee receives this message as notifica-
tion that the caller is initiating a session

sessionActionRequest
Connect When a callee receives this message, the

application should be queried for
approval

sessionActionAccepted/ Connectr (positive/ Callee sends this message to indicate
sessionActionDenied negative) approval/disapproval of the session

*Connectr(positive/ Caller receives this message to indicate
.sincie . . negative) that callees approve/disapprove with

sessionActionCommit/ses- sessionsession
sionActionAbort

*Statusr(positive/ Caller receives this message when
negative) media transport has begun/cannot begin

sessionActionCommit Status (second one) Callee receives this message when
media transport has begun

sessionActionAbort Disconnect Callee receives this message when there
are problems with media transport or
callee acceptance

cant meanings" listed in the table are significant for designing inter-MPU behavior. Note

that several Touring Machine messages are semantically related to more than one CCP

message. For example, when a Touring Machine caller receives a sessionActionCommit

message, he knows not only that all callees have accepted the session, but also that the

associated media transport was successfully realized. A CCP caller receives two separate

sets of messages that carry these two pieces of information.

3.3.1.2. Inter-MPU Design Choices

This kind of multiple semantic mapping between Touring Machine and CCP mes-

27



sages provides both flexibility and ambiguity when designing how FSMs will interact

across MPUs. For instance, the designer of the gateway must choose to map Touring

Machine's sessionActionCommit message to either CCP's Connectr or Statusr message.

If it is mapped to the Connectr message, correctness can be sacrificed because a session

may be established in the Touring Machine domain even if media agents are unsuccessful

in the MMCC domain. Such IL3 behavior should be avoided. On the other hand, ILl

behavior can be achieved if sessionActionCommit is mapped to Statusr. Unfortunately, in

this case, the amount of time for callee responses to reach the caller is lengthened. This

added delay is especially costly because media agents are usually successful. The best

solution--one that has faster ILA behavior--is the mapping of sessionActionCommit to

Connectr combined with session termination in the case of media agent failure. A detailed

description of this scenario and its associated design choices are presented in section

4.3.3.

3.3.2. Session Termination

Both systems implement session termination by having each participant of the ses-

sion remove itself until the number of participants falls below a meaningful value.1 The

gateway is involved only in inter-domain sessions--i.e., session with at least one partici-

pant from each domain. Therefore, if all of the session participants from either domain

remove themselves, then the gateway deletes all of its FSM instances involved with that

session.

The gateway FSM design for participant self-removal is straight-forward and

described in section 4.4. However, IL3 behavior can occur in rare situations because of a

particular policy in Touring Machine's participant self-removal protocol. Like Touring

Machine's session establishment protocol, its participant self-removal protocol has a two-

phase commit structure. If an error occurs while a client is trying to remove itself from a

session--e.g., Touring Machine has an internal resource communication problem--Touring

Machine leaves the client in the session. Because of this, if there is a problem with Tour-

ing Machine or the transport network, a client could conceivably be left in a session with

no way of removing itself. This scenario occurs rarely. Still, this kind of policy for a con-

1. For Touring Machine, that value is one; for MMCC, it is two.

28



ferencing system not only introduces interoperability problems, but it also present clients

in the single domain environment with a undesirable error-handling behavior. Certainly,

if Touring Machine were deployed for public use, customers would not agree to be billed

for calls that they could not leave.

The gateway depends on client self-removal for achieving simple, efficient, and

proper session establishment and participant invitation (see section 3.3.3). It might be

argued that it is poor gateway design to have these functions depend on a procedure that

can "hang" clients. By that reasoning, though, it is poor design to ever establish a session

in the first place because Touring Machine sessions may never be terminated. It is more

proper to argue that the conferencing system's design is the real reason for the lack of

interoperability.

3.3.3. Invitation of new participants

Both systems allow session participants to invite new ones into the session. The

process is very similar to session establishment in most respects. However, from the gate-

way's viewpoint, participant invitation is fundamentally different from session establish-

ment. Unlike session termination, which the gateway can perform in either domain to

cancel the effects of session establishment, removing a recently invited participant can be

problematic. It is a reasonable policy for a conferencing system (such as MMCC) to pro-

hibit participants from removing others from a session. Even if a system provides a mech-

anism for removal of other participants (as Touring Machine does), the participant being

removed is queried to accept such an action. Thus, it can be impossible for the gateway to

unilaterally reverse participant invitation. Therefore, gateway strategy for participant

invitation has the added requirement of being unable to cancel the effects of a successful

invitation.

The Touring Machine/MMCC gateway handles this requirement except in rare sit-

uations of a particular scenario. The problem stems from Touring Machine's policy of

notifying uninvolved participants--i.e., participants of the original session except for the

inviter--after an invitation has already successfully completed. If a Touring Machine cli-

ent, who is already in session with at least one MMCC user, invites another Touring

Machine client, the gateway represents at least one such uninvolved participant. There-

fore, the gateway cannot take action in the MMCC domain until the invitation has already

29



occurred in the Touring Machine domain. If there is an error in the MMCC domain

(which is extremely rare for reasons discussed in section 4.5.6), IL3 behavior results

because the gateway cannot unilaterally remove the recently invited Touring Machine par-

ticipant.

There is no possibility of IL3 behavior in the opposite scenario--when an MMCC

user, who is already in session with at least one Touring Machine client, invites another

MMCC user. The reason is CCP's distributed approach to resource management. The

gateway must be notified of the invitation in order for the inviter to gather resource infor-

mation before the invitation is finalized. Details of all participant invitation scenarios are

presented in section 4.5.

3.4. Inter-domain Resources

Since the gateway represents users at the application level, it has access only to the

limited amount of resource control that each system provides to applications. In the Tour-

ing Machine domain, the gateway can assign logical notions of media endpoints to partic-

ular physical ports. In the MMCC domain, the gateway controls software media agents

which can be configured to use particular ports, as well. The gateway manipulates how

endpoints and media agents share ports in order to realize inter-domain transport.

3.4.1. Touring Machine Endpoints

Touring Machine realizes media transport among clients by centrally controlling

network resources--e.g., switches, bridges, and mixers.[l] When a session is established,

Touring Machine connects endpoints owned by clients involved in the session. Applica-

tions can control which of its devices (Touring Machine sees each device as a physical

port.) are assigned to each endpoint. For example, Figure 3.3 shows a client that has a sta-

tion--Touring Machine's notion of a desk or workspace--with two different cameras. The

client can control which of its cameras should be used for any particular video session.

The endpoints in Figure 3.3 are logical notions used by Touring Machine's resource man-

ager. The lines connecting each endpoint to a physical device represent assignments made

by the application.

3.4.2. MMCC Media Agents

MMCC users invoke media agents which isolate the applications from the trans-

30



Station 

(
Video ource

Cameral endpoint

Camera2 a

Touring Machine control
software

/ xO_ __"/ 

t Transport

Monitor network >
I I Video sink . I

endpoint /
. , ~~~_

Figure 3.3. Touring Machine station video set up.

port details--see Figure 3.4.[ 11] To control multiple devices, a user can have several

MMCC instance
a.~~~~~~~~~~ ~- ... .....

a~~~~ _
. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~',v 

I / I .a. a ,\
Video media agent /l

.I. < Transport I
a ~ ~ ~ ~ t / ~~~network / :IVid

Video input Video output network id
management management . I I

I a~1" / ...
, /I -

MCC instance 

e

eo media agentI

......... . . . . . ,i

Figure 3.4. MMCC video media agent control set up.

media agents in use simultaneously. For example, to control two cameras and monitors,

one user can invoke two video media agents to control each set of camera and monitor.

When each media agent is invoked, it is assigned to a particular set of devices by the

application.

3.4.3. Gateway Resource Duties

The gateway has an associated Touring Machine station which owns its set of end-

points, and it can invoke MMCC media agents. To realize media transport across the two

domains, the gateway assigns Touring Machine endpoints to ports that can be controlled

by MMCC media agents. Figure 3.5 shows how the gateway can connect the video trans-

31

'.,ttirnn

w

C

.

I

I

I

I

I

I

I

IW11"UW1I

./-I
%

II

I

; 

- - I



port networks of the two conferencing systems.
, . . . . . .. . . .... . q

:9 Gateway
l . I

Video media agent
I ~~~~~~~~~~~~~~~~~~~~~~~~~~I

~- | | Video input Video output
./ ". Ymanaaement management / I ,I _' _ IIX

MMCC 
/( transport

network > 

, \ I 
_ "- ! I

/ \1` 
Touring Machine

transport

/network >
. -I, I

endpoint -
I I
*. ..... ..........

Figure 3.5. The gateway's inter-domain video resources.

The gateway does not perform any media bridging or mixing. Those tasks are

handled by each conferencing system. The gateway simply transports already bridged or

mixed signals between domains. For instance, suppose Figure 3.5 involves several

MMCC users in a session with several Touring Machine clients. The signal at the gate-

way's video sink endpoint--the same signal that is transmitted to the MMCC transport net-

work--is mixed or bridged by Touring Machine's resources. Similarly, the signal coming

from the MMCC transport network into the gateway's video media agent is mixed or

bridged by MMCC's media agents before being sent through the video source endpoint.

To simultaneously provide transport for more than one inter-domain session, the

gateway must own multiple sets of Touring Machine endpoints and be capable of invok-

ing multiple instances of media agents. Figure 3.6 shows how the gateway handles video

transport for two simultaneous sessions. The gateway acts as a sort of simple software

switch. The hardware associated with the gateway does not need configuring or any hard-

ware switching because both Touring Machine and MMCC allow assignment of logical

connections to physical devices during session establishment. The number of requested

inter-domain sessions can exhaust the resource capabilities of the gateway--e.g., all audio/

video ports are in use. Subsequent session establishment attempts can be simply aborted

with negative Requestr and sessionActionDenied messages until resources are freed.

32



| ~ Gateway

Video media agent

Videe sink
endpoints

o . i

Figure 3.6. Simultaneous inter-domain video sessions.

33

/
!

/

. _!

MMCC
transport
network

-

I Machine

nsport
twork

I

/

/'

I

a
I

- - - - - - - - - - - - - - - - - - - - - - - -



34



Chapter 4

Touring Machine/MMCC Gateway Implementation

This chapter describes implementation details of the Touring Machine/MMCC

gateway design that was described in chapter 3.

4.1 Message Interception

Touring Machine initializes its nameserver database with user information from a

special file. In addition to names, login names, electronic mail addresses, phone numbers,

etc., the file contains information about each user's station. The nameserver's station

information includes a machine address and a list of media ports and types. When the

gateway is deployed, each user in the MMCC domain is entered into the initialization file

along with his or her office address, phone number, etc. Each MMCC user is assigned a

special station--that of the gateway. The gateway's station information has the address of

the machine on which the gateway will be running, and it will list all media ports that are

controlled by the gateway. With this scheme, when Touring Machine sends a message to

an MMCC user, it will use the information in the nameserver and actually send the mes-

sage to the gateway's machine. The gateway's MPUs process messages based on the

intended recipient. The gateway can identify whose message is being intercepted because

each Touring Machine message lists the recipient's name in the message.

Currently, MMCC instances have an initialization file that lists each user's name,

login name, machine address and communication port. Control messages are sent to the

listed machine address and port associated with each user. All MMCC users must have

identical initialization files, so insuring consistency when modifying these files is not an

elegant process. On the other hand, the files are very simple, and initialization informa-

tion does not change very often.

To have the gateway intercept MMCC messages meant for Touring Machine

users, such users are simply listed in MMCC initialization files with the gateway's

machine address. The gateway also has its own initialization file which is consistent with

that of all MMCC users. Because MMCC's current version uses messages that do not

contain the recipient's name, each Touring Machine user must be designated a unique port

35



on the gateway's machine. Otherwise, there is no way for the gateway to tell who is the

intended recipient of an intercepted message. Having to assign these unique port numbers

makes an inelegant process even less elegant. However, it is unavoidable due to the

nature of MMCC's current initialization process.

After all of the above changes have been made, Touring Machine's nameserver,

the gateway's initialization file, and each MMCC's initialization file contain data for all

users in both conferencing domains.

4.2. Clients and Users in Touring Machine

As mentioned earlier, Touring Machine refers to application instances as clients.

Active clients must register with Touring Machine before taking any other action.[6] A

client's name consists of the concatenation of the user's name and the application's name.

It is valid only if the user's name has already been entered into the nameserver's database.

As a result of this distinction between a user and a client, at any time, there can be more

users than clients--i.e., some users are not using Touring Machine--or more clients than

users--i.e., some users have more than one application that has registered with Touring

Machine. So, to be more precise about the user proxy approach in the Touring Machine/

MMCC case, the gateway serves as client proxies for MMCC users in the Touring

Machine domain and as user proxies for Touring Machine clients in the MMCC domain.

Since Touring Machine messages are addressed to clients, not users, the gateway

instantiates FSMs representing clients in the Touring Machine domain. More precisely, in

the Touring Machine MPU, one FSM exists per client per active session, and, in the CCP

MPU, one FSM exists per user per active session.

Clients are not recognized until they register with Touring Machine. Applications

can query the nameserver for information about which clients are active at any given time.

In this fashion, Touring Machine provides an "active user" server to applications.

Since Touring Machine applications cannot communicate with users who are not

registered as clients, the gateway must register clients that represent MMCC users. In

order to register and subsequently intercept messages, the gateway must use not only the

MMCC users' names, but also some application's name. The gateway handles this prob-

lem by querying the database, searching for all active clients, and storing every unique

36



application name. The gateway then registers every MMCC user under every unique

application name that it found. For instance, if there are three MMCC users--Bob, Chris,

and Dave--and two active Touring Machine applications--Appl and App2--then the gate-

way would register the following clients: "Bob:Appl ," "Bob:App2," "Chris:Appl ,"

"Chris:App2," "Dave:Appl," and "Dave:Appl." The gateway can use the nameserver to

discover when clients register using previously unregistered applications. It can then reg-

ister each MMCC user as a new client using the new application name.

The use of the nameserver as an "active user" server for MMCC users is lost. The

gateway could deregister all clients associated with an MMCC user if that user fails to

respond to CCP messages. In such cases, the gateway can assume that the user has termi-

nated his MMCC instance. However, when the user restarts his instance, MMCC pro-

vides no way to notify the gateway. Consequently, the gateway does not deregister clients

that are associated with MMCC users, and Touring Machine users see perpetually active

MMCC users.

4.3. Session Establishment

4.3.1. Touring Machine Session Establishment

Figure 4.1 shows FSMs that correspond to Touring Machine's basic session estab-

lishment protocol for a calling and a called party. [6] The initiating application begins by

sending a sessionCreate message, which contains a desired session name and description.

Touring Machine confirms receipt of the message by sending a sessionRequestReceived

message. It then sends a sessionActionRequest message describing the requested action to

each client, including the initiator, involved in the initial sessionCreate message. Clients

then respond positively with a sessionActionAccepted message or negatively with a ses-

sionActionDenied message. Touring Machine processes these responses from the

involved clients and sends them all either a sessionActionCommit message if the session

is successfully established (including all resource management and physical transport

operations) or a sessionActionAbort message if someone declined to enter the session or if

something else goes wrong. Notice that Touring Machine employs the policy that the ses-

sion is aborted if even one callee responds with a sessionActionDenied message.

Touring Machine handles all resource management and physical transport func-

37



Calling Party

sessionActionAbort

Idle

Initiating

C

-C Acceptec

( Connected

sessionCreate

J

sessionRequestDenied

sessionRequestReceived

sessionActionRequest

sessionActionAccepted

sessionActionCommitsessionActionCommit

)

ICalled Party

Incoming message (from TM)

Outgoing message (to TM)

…AA-A A A:&.A A --_
OV3OlI IDrLIJI ILUeVI I

Idle

Rin!(negative response)

sessionActionDenied

sessionActionRequest

(ask user)

ling )
(positive response)

sessionActionAccepted

A AA N& 

sessionActionAbort

( Connected

sessionActionCommit

)

Figure 4.1. Touring Machine's session establishment protocol FSMs

tionality. It processes any feedback from resource objects during the session establish-

ment procedure. Clients are isolated from everything except their end of the session

protocol and any error messages that are sent to them in the form of sessionActionAbort or

sessionRequestDenied messages.

38

I

) -

�---- f

r - - - ir

| -

w i.i

!!._

-

._

.I

L'UUU IL r · ~ nl Irln.. . lw.- n

r

w--------

. ~r

! ,

v

Ir

lnitiating2

I! 

"`J ~J "l~B J 
sV r-s SLVU J



4.3.2. CCP Session Establishment

Figure 4.2 shows CCP's basic protocol for successful session establishment for a

calling and a called party.[l2] Since CCP is meant for a completely distributed environ-

Calling Party Called Party

Idle ) Idle )

( Negotiating

*Request

)

*Requestr+

*Connect

Initiating )

Request

r (check capabilities)

Notified )

( Negotiated

.(
C

*Connectr+

*Status
(start media agents)

( Connecting )

Kin,

capabilities match)

Requestr+

)
Connect

(ask user)

;ing

(positive response)

Connectr+

Status

(start media agents)

C Accepted )

( Connecting

Synchronizing

F

Connected

(successful start)

(

*Statusr+

*Status

)

Synchronizing

C Connected

(successful start)

Statusr+

)
Status

Statusr+

)

Incoming message

Outgoing message

+ indicates a positive response inside the message.
* indicates communication with all callees

Figure 4.2. CCP's session establishment protocol FSMs.

ment, messages are not sent to a central server, but rather between distributed instances of

connection managers at each user's machine. The caller begins the sequence by sending a

39

(

(

-

J
_

.

�--- . _.- !!

-

.
1

-

_ -

- f

.

w--- - ,

-

.
. .

m - - · .
.

. J

w ii

II V

·. 

I F

I



Request message to all called users. Each callee checks the desired session configuration

information included in the Request message with its own capabilities and responds with a

Requestr message, which includes either a positive or negative reply. The caller collects

all the Requestr messages and sends a Connect message to those users who have

responded positively. When each callee receives the Connect message, a Connectr mes-

sage is sent back with either a positive or negative reply depending on whether or not the

user accepts the call. In contrast to Touring Machine, the caller implements its own policy

if a negative Connectr message is received. It can either continue with the session by

starting up its media agents and sending a Status message to all remaining callees or abort

it by sending Disconnect messages. Assuming the caller chooses to continue, when each

callee receives the Status message, it starts up its own media agents. Each callee sends a

Statusr message to the caller with a response indicating the success of the media agents.

When the caller receives all the Statusr messages, there is one final round of Status/Statusr

messages to inform the callees that all media agents were started successfully before the

session is established. If at any point in the sequence, the caller encounters an error or

decides that too many callees have rejected the session--i.e., via negative Requestr, Con-

nectr, or Statusr messages--the caller sends a Disconnect message to all remaining callees

to abort the session.

Because CCP is used in a completely distributed environment, applications at the

"ends" of the network must do more work without any help from a conferencing service in

the "middle." In addition to processing protocol messages, applications must invoke and

terminate local resource management functionality and media tools that handle physical

transport--e.g., after receiving a Connect message.

4.3.3. FSM Modification Strategy--Touring Machine caller

The FSMs in Figures 3.3 and 3.4 are the basis of the FSMs used in the gateway's

MPUs. They are the key for implementing the user proxy design. With the help of the

semantic relationships in Table 1, a basic strategy can be developed for modifying the

FSMs in Figures 3.3 and 3.4 for use in the gateway's MPUs. Figure 4.3 outlines such a

strategy--employing several black-box procedures--for a Touring Machine client named

Ann:Appl successfully calling a CCP user named Bob. The gateway intercepts a session-

ActionRequest meant for Bob:Appl and instantiates a callee FSM representing him--

40



sessionActionRequest

CCP MPU
Tr - - - - - - - - - - -
I FSM-Ann

(Caller FSM representing Ann)

Connectr+
Status

(start media agents)

Tell FSM-Bob:Appl
to send
sessionActionAccepted

I

Figure 4.3. MPU FSMs for a Touring Machine client calling an MMCC user.

henceforth, called FSM-Bob:Appl--in the Touring Machine MPU.1 The normal Touring

Machine FSM in Figure 4.1 would query the user for acceptance of the session, but the

gateway cannot directly query Bob. Instead, the relationships in Table 1 are used: a Tour-

ing Machine callee receiving a sessionActionRequest message corresponds to a CCP

callee receiving either a Request or a Connect message. CCP dictates that a caller start

with a Request message, so the gateway instantiates an FSM representing Ann (FSM-

Ann) in the CCP MPU and begins the CCP session establishment process by sending a

Request message to Bob. FSM-Ann and Bob exchange CCP messages in the normal fash-

1. Since one FSM exists in the MPU per user (or client) per active session, an FSM is never actu-
ally in the Idle state. It either is instantiated and immediately transitions to the next state, or it is
deleted as it transitions back to the Idle state.

41

Touring Machine MPU

FSM-Bob:Appl
(Callee FSM representing Bob:Appl)

I

I

I

I

I

I

I

I

I

I
(B) I

I

I

I

I

I

I

-I

I

I

I

I



ion until FSM-Ann receives a positive Connectr message. FSM-Ann sends a Status to

Bob and starts its media agents as a normal CCP caller would. In addition, since a positive

Connectr message was received, the relationships in Table 1 dictate that FSM-Bob:Appl

send a sessionActionAccepted. When the sessionActionCommit message is received by

FSM-Bob:Appl, FSM-Ann should be told, since media transport has begun, to send the

second Status message to Bob.

If FSM-Ann's capabilities match is unsuccessful or if it receives a negative

Requestr or Connectr message, FSM-Bob:Appl is told to send a sessionActionDenied

instead of a sessionActionAccepted message, causing session establishment to be aborted

in both domains. If FSM-Bob receives a sessionActionAbort message, then FSM-Ann is

told to send a Disconnect instead of a Status message, also causing the call attempt to be

aborted.

The above strategy does not completely preserve the semantics of both protocols.

When Touring Machine clients receive a sessionActionCommit message, they should be

sure that there are no problems with transport resources at all. However, in Figure 4.3, it

is possible that when Ann:Appl and FSM-Bob:Appl receive a sessionActionCommit

message, trouble could have occurred either with the gateway's or Bob's media agents.

One solution is for the gateway to immediately terminate the session (in both domains)

when either its media agents fail or when a negative Statusr message is received from

Bob. This solution is simple and, it happens to optimize the common case--i.e., MMCC's

media agents usually start properly. In fact, since the common case on the Touring

Machine side is also successful session establishment, the process could be further opti-

mized by removing black-box procedure (C) in FSM-Bob:Appl. With this approach, the

gateway terminates the session if establishment fails in either domain. The result is Figure

4.4.

A second solution, illustrated in Figure 4.5, would have FSM-Ann wait until both

the gateway's media agents have started and a positive Statusr message has been received

before telling FSM-Bob to send the sessionActionAccepted message. Thus, Touring

Machine will not send sessionActionCommit messages to its clients unless MMCC's

media agents are successfully started. This solution does not quite preserve the semantics

listed in Table 1, either--Touring Machine's sessionActionAccepted message is supposed

42



Touring Machine MPU CCP MPU

I FSM-Bob:Appl I FSM-Ann I
I

I

I

I

I

I

I

I

I

I

I

I

(B) I

I

I

I

I

I

I

I

I

I

L -… .. - - - - - ---- -
Session is terminated if media transport is

not realized in either domain.

Figure 4.4. Better version of Figure 4.3.

to indicate only callee acceptance, not media transport success, as well. However, without

modification to the conferencing systems, there is no way for CCP users to communicate

the success of their media agents directly to Touring Machine. The main problem with

Figure 4.5 is that it further lengthens the amount of time between FSM-Bob:Appl's Ring-

ing and Accepted states. This interval is already larger than what users and the conferenc-

ing system are accustomed to. Time-outs for both systems can be adjusted to

accommodate the delays introduced by adding a gateway and another domain. However,

exacerbating an already annoying problem for users in order to handle the uncommon case

is not a wise choice. Therefore, Figure 4.4's simpler design was chosen for implementa-

tion.

43

-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I

--------



Touring Machine MPU

FSM-Bob:Appl

sessionActionRequest

CCP MPU

I FSM-Ann

(successful start)
Statusr+

Tell FSM-Bob:Appl
I to send

o sessinioAtionAccepted

ironizin

J

Figure 4.5. Alternative to Figure 4.4.

4.3.3.1. Multiple Callees

The strategy described in the previous section can be extended to include multiple

callees. Suppose Ann:Appl is trying to call three other users: Bob, a CCP user named

Chris, and a Touring Machine client named Dave:Appl. The gateway does not deal

directly with Dave:Appl at all. It must only pass on session description information,

which, of course, includes Dave's involvement, to the CCP users. As Figure 4.6 shows,

the gateway will intercept a sessionActionRequest message for Chris:Appl, spawning the

creation of FSM-Chris:Appl. FSM-Chris:Appl tells FSM-Ann to send Request messages

to both Chris and Bob. FSM-Chris:Appl can do this because the sessionActionRequest

message includes information about all users who are in the proposed session. When the

gateway receives a sessionActionRequest message meant for Bob:Appl, FSM-Bob:Appl

skips to the Ringing state because FSM-Chris:Appl has already communicated with

44

-I

I

I

I

I

I

I

I

I

I

I

I

I

I

(B) I

I

I

I

I



Touring Machine MPU

FSM-Bob:Appl FSM-Chris:Appl

sessionActc

SM-A
to s
messageb

d~rs

T - - -
CCP MPU

FSM-Ann I

sessionActonRequest

I * Status
( Connected 

._ _ _ _ _ _ _ _ _ _ _ _ __Session_ isterinate mei t s -is - - -

I

I

I

I

I

I

I

I

I

I

I

I

(B)l

I

I

Session is terminated if media transport is
not realized in either domain.

Figure 4.6. Touring Machine client calling multiple callees.

FSM-Ann. Note that the result would be identical if the sessionActionRequest message

meant for Bob:Appl had arrived at the gateway first. The rest of the process is identical to

Figure 4.4. When FSM-Ann receives a positive Connectr message from a callee, it tells

the callee's associated FSM to send a sessionActionAccepted message.

Notice that it is important that Touring Machine includes all the callees in the ses-

sionActionRequest message. Otherwise, in order to execute black box (A), the gateway

would need to wait until it received a possibly unknown number of sessionActionRequest

messages before it could translate the request to the MMCC domain. The extra delay is

troublesome because of the same response-time problem explained in section 4.3.3.

Recall that FSM-Bob:Appl's black-box procedure (C) is absent in Figure 4.4

because the common case is successful transport realization by Touring Machine. In the

45

I

I

I

I

I

I

I
I

I

I

I

I

I
I

I

i

I

_



multi-party scenario, however, Touring Machine will send sessionActionCommit mes-

sages only if transport is trouble-free and if other Touring Machine callees--e.g., Dave--

accept the session. It is difficult to argue generally that positive callee responses are either

the common or the uncommon case. However, because of its relative simplicity, Figure

4.6 was still chosen for implementation.

4.3.4. FSM Modification Strategy--MMCC caller

By incorporating some of the lessons learned above, Figure 4.7 was developed for

a multi-party call initiated by an MMCC caller. The figure shows gateway activity for

Touring Machine MPU CCP MPU

I -FSM-Chris:App I FSM-Ann FSM-Dave FSM-Chris:Appl IFSM-Ann FSM-Dave

Session is terminated if media transport is
not realized in either domain.

Figure 4.7. MMCC user calling multiple Touring Machine clients.

Chris successfully calling Ann:Appl, Bob, and Dave:Appl. The gateway intercepts a

46

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



Request message meant for Ann and instantiates FSM-Ann in the CCP MPU. Since Table

1 shows that sending a Request message and sending a sessionCreate message both corre-

spond to how a caller initiates session establishment, FSM-Ann tells a newly-created

FSM-Chris:Appl to send a sessionCreate message. The message includes a session

description involving Ann:Appl, Bob:Appl, Chris:Appl, and Dave:Appl. As in Figure

4.6, it is important that the Request message contains a complete session description so

that black box (A) can be executed in a timely fashion. When FSM-Dave receives the

Request message from Chris, it jumps immediately to the Notified state. FSM-Dave and

FSM-Ann continue with the CCP protocol until they reach the Ringing state. They must

wait until the gateway is informed of Dave's and Ann's acceptance of the session, respec-

tively--i.e., until FSM-Chris:Appl receives a sessionActionCommit message from Tour-

ing Machine. Notice that the gateway does not deal with Bob at all.

If FSM-Chris:App receives a sessionRequestDenied or a sessionActionAbort

message, session involvement for Ann and Dave is aborted by FSM-Ann and FSM-Dave

sending negative Connectr messages. If these callee FSMs ever receive a Disconnect

message from Chris, the session must be terminated in the Touring Machine domain. This

is the same approach used in Figure 4.4--if MMCC media transport fails, the session is ter-

minated after it is started in the Touring Machine domain. Note that there is no analogous

solution to Figure 4.5. The actual callees must be queried before FSM-Dave or FSM-Ann

can transition to the Accepted state. Therefore, it is impossible for either to wait for media

agents to start before telling FSM-Chris:Appl to send the sessionCreate message.

Since Table 1 shows the sessionCreate message corresponding to both the Request

and the Connect messages, there is an alternative to Figure 4.7. Figure 4.8 shows callee

FSMs in the CCP MPU waiting until they receive a Connect message before telling FSM-

Chris:Appl to send the sessionCreate message. This choice would make sense if the gate-

way's capabilities are often mismatched with CCP callers. In such situations, a negative

Requestr message would be sent by FSM-Dave, other FSMs would never be created, and

Touring Machine would avoid unnecessary processing. However, in CCP's call model,

the Request message also serves as notification to callees that Chris attempted to contact

them. In Figure 4.8, this significant functionality of Request is lost.

Note that neither strategy can give Chris the policy choice that he normally enjoys

47



Touring Machine MPU CCP MPU

FSM-Chris:Appl FSM-Ann FSM-Dave I

Session is terminated if media transport is
not realized in either domain.

Figure 4.8. Alternative to Figure 4.7.

with MMCC callees. In cases where an CCP user calls more than one Touring Machine

user, Touring Machine's all-or-nothing policy when dealing with callee acceptance pre-

cludes implementing CCP's normal flexible policy.

4.3.4.1. Client Name Choice

There is one issue that was ignored in the previous section. When FSM-Ann sends

the sessionCreate message in Figure 407, the gateway must choose an application name to

use in order to form client names. Although inter-application operation is not ruled out

specifically by Touring Machine's API document, the ubiquity of application names in the

48

I

I

I

I

I

k)I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



control messages, the examples given in the document, and the existing Touring Machine

applications seem to show a lack of consideration for inter-application use. Because of

this, for practical use, the gateway must choose an application that is being used by all

Touring Machine callees. So, referring again to Figure 4.7, if clients Ann:Appl,

Ann:App2, Ann:App3, Dave:Appl, and Dave:App3 were registered, Chris-FSM would

have sent a sessionCreate message involving either Ann:Appl, Bob:Appl, Chris:Appl,

and Dave:Appl, or Ann:App3, Bob:App3, Chris:App3, and Dave:App3.

4.4. Session Termination

4.4.1. Touring Machine Participant Removal

Touring Machine's protocol for a client's self-removal from a session, pictured in

Figure 4.9, is very similar to its caller session establishment protocol.[6] The session-

sessionActionAbort

I- k onnectea j I
- sessionRequestDenied

r sessionChange

Q Disconnecting I-

sessionRequestReceived

F 

Disconnecting2)

sessionActionRequest

r sessionActionAccepted

-- r Afr,^t~rI

sessionActionCommit

Idle )

Figure 4.9. Touring Machine's participant removal

Change message has several uses--see section 4.5.1--only one of which is removing cli-

ents from a session. No matter what the proposed action is inside the sessionChange

message, Figure 4.9 is the process that occurs. Hence, a client must go through the two-

stage commit process just to remove itself from a session. The final sessionActionCom-

mit message is sent to all relevant clients--i.e., the sessionActionCommit notifies all other

clients of this client's removal from the session.

49

w

I

I

I

V 1--%%IWWFLWA J

I



Notice that in Figure 4.9, if an error occurs while a client is trying to remove itself

from a session--i.e., the client receives a sessionRequestDenied or sessionActionAbort

message--Touring Machine leaves the client in the session. This is the problem described

in section 3.3.2.

4.4.2. MMCC Participant Removal

In sharp contrast to Touring Machine's participant removal protocol is CCP's pro-

tocol, which is very simple.[12] A user removes himself from a session by sending a Dis-

connect message to all other users in the session. They respond with a Disconnectr

message. If any problems occur--e.g., some user is unreachable--the user transitions to the

Idle state and terminates its media agents, anyway.

4.4.3. Touring Machine Client Leaving an Inter-domain Session

Figure 4.10 shows Ann:Appl leaving a session that included Ann:Appl, Bob, and

Chris. When the gateway receives the sessionActionCommit message announcing that

Touring Machine MPU CCP MPU
r - - - - - - - - - - - - - -

FSM-Bob:Appl FSM-Chris:Appl I FSM-Ann I
, CConnected Gnted I Connected )II -om____II l sessionActionCommit I sessionActionCommit *Disconnect

I T SM-Ann /I (D) Tell FSM-Ann (D) I

I I I.1 ~ I ,D 

I~~~~~~~~~~~~~~ l I to nnect | to send a Disconnect l
l messy | l message to Bob: |t~~~hris \land Chris 

( Idle )( Idle ) …-L… _
Figure 4.10. Ann:Appl removes itself from the session.

Ann:Appl has left the session, FSM-Ann is told to send a Disconnect message to Bob and

Chris, and FSM-Ann is deleted. Bob and Chris remain in the session, but the gateway

does not need to participate in any session that does not involve at least one user or client

from each domain. Therefore, the gateway will terminate its media agents and delete

FSM-Bob:Appl and FSM-Chris:Appl (represented by the transitions to the Idle state), as

well.

50



4.4.4. MMCC User Leaving an Inter-domain Session

Figure 4.11 shows Bob leaving the session that included Ann:Appl, Bob, and

Chris. When FSM-Ann receives the Disconnect, it responds with a Disconnectr and tells
Touring Machine MPU CCP MPUr -

FSM-Bob:Appl FSM-Chris:Appl I FSM-Ann

I 1 ( Conncted

(C

I isconnecing I

I sessionActionRequest I

I ,,sessionActionAccepted , _ . I
t, Connected ks

$essI
sessionActonCommitI

I

1)1

I

B~ ui J BL - - - - 1_ - - - - - - - - - - _ - - - - -
Figure 4.11. Bob removes himself from the session

FSM-Bob:Appl to begin the process of removing itself from the session. If this process is

successful, the gateway deletes FSM-Bob:Appl. If the process is unsuccessful, there is no

way to reconcile the situation with the MMCC domain. This is the IL3 behavior men-

tioned in section 3.3.2.

4.5. Invitation of new participants

The gateway must deal with four scenarios to provide participant invitation: a

Touring Machine client inviting a Touring Machine client, a Touring Machine client invit-

ing an MMCC user, an MMCC user inviting a Touring Machine client, and an MMCC

user inviting an MMCC user. Participation invitation protocols for each system and strat-

egies for each of the four situation are presented below.

4.5.1. Touring Machine Participant Invitation Protocol

There are three possible types of clients involved with participant invitation. The

client initiating the invitation (the inviter), the client being invited (the invitee), and other

51

I

I

I

I

I

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..

I

I

I

I

I

I

I

I

I

I

I

I



clients who are in the original session. Touring Machine asks only the permission of the

invitee, but all participants are notified when the invitation occurs.[6] The FSM for the

invitee is identical to that of the called party in Figure 4.1. Figure 4.12 shows the FSM for

the inviter. If the invitee accepts the invitation and Touring Machine can realize the trans-

_f -- . . AN _

sessionActionCommit OR
sessionActionAbort

-- ', Connected )
- sessionRequestDenied

sessionChange

( Inviting )

Invitinn9 

sessionRequestReceived
F -~~~~~

Figure 4.12. Touring Machine inviter FSM.

port, then the inviter, the invitee, and the other session participants all receive a session-

ActionCommit and transition into the Connected state. If an error occurs or if the invitee

denies the invitation, the inviter receives a sessionActionAbort and transitions back to the

Connected state. The other session participants are unaffected.

4.5.2. CCP Participant Invitation Protocol

Like Touring Machine, only the invitee is asked for permission during an invita-

tion, and the FSM for an invitee is identical the called party FSM in Figure 3.4.[12]

Figure 4.13 shows FSMs for the inviter and other session participants. If the invitee

accepts the invitation, all participants go through two rounds of Status and Statusr mes-

sages as during the session establishment protocol. If not, the inviter transitions back to

the Connected state, and the other participants are unaffected.

4.5.3. Touring Machine Client Inviting an MMCC User

This scenario can occur when the original session is either inter-domain or purely

intra-domain. The former is illustrated in Figure 4.14. The original session was between

Ann:Appl and Bob, and Ann:Appl invites Chris to the session. Figure 4.14 is based on

the strategy in Figure 4.5, not Figure 4.4. The reason is that participant invitation cannot

always be reversed as easily as session establishment. If Touring Machine returns a ses-

sionActionAbort message to FSM-Chris:Appl, the gateway cannot remove Chris from the

session after he has been added. Therefore, black box (C) is necessary to inform FSM-

52

I



Connected )

Request

Negotiating )
Requestr+

r Connect

Initiating )
Connectr+

*Status
(reconfigure

F media agents)

(. Connecting )

(successful
reconfiguration)

Status
Statusr+

Other Session
Participants

-( Connected )

Status
(reconfigure

media agents)

( Connecting )

(successful
reconfiguration)

Statusr+

-Synchroin
Figure 4.13. CCP FSMs for participant invitation.

Ann of the Touring Machine domain's success before the invitation is finalized. If either

the gateway's or Chris' media agent reconfiguration fails, the gateway can tell FSM-

Chris:Appl to remove itself from the session to keep the two domains consistent.

If the original session involved only Touring Machine clients--Ann:Appl and

Dave:Appl--and Ann:Appl invited Chris to the session, the resulting gateway activity

would be analogous to Figure 4.14. The only difference occurs when FSM-Ann transi-

tions to the Connected state after Chris is successfully invited: the Touring Machine MPU

instantiates FSM-Dave in the Connected state.

4.5.4. MMCC User Inviting Another MMCC User

Since the gateway is not involved in purely intra-domain sessions, it need only

deal with this situation if the original session involves a Touring Machine client. Consider

an active session between Ann:Appl and Bob. Figure 4.15 shows gateway activity when

Bob invites Chris to the session. The gateway is first notified of the invitation when FSM-

Ann receives the Status message describing Chris's addition to the session. FSM-Ann

responds by telling FSM-Bob:Appl to begin FSM-Chris:Appl's invitation through Tour-

53

Inviter

*Statusr+

*Status

(

(

(

w

I

_�� I

I

I

. _ 1V I r



Touring Machine MPU

FSM-Bob:Appl FSI

(aI
sessionctonedComit

sessionActionCommit

i Connecting 

I
I . (successful

I 6-Statusr+ reconfiguration)
.Statusr+

I Status 

I ---- (Synchronizin

I

I

FSM-Chris:Appl removes itself from the session if MMCC's
media agent reconfiguration fails.

Figure 4.14. Ann:Appl invites Chris to her session with Bob.

ing Machine. FSM-Chris:Appl is instantiated when the gateway receives the sessionAc-

tionRequest message, and it automatically responds with the sessionActionAccepted

message because the real Chris has already agreed to the invitation. When the invitation is

committed on the Touring Machine side, FSM-Ann replies to Bob with a positive Statusr

message. At this point, an error can occur--i.e., Bob's media agents fail to reconfigure and

Bob sends a Disconnect to FSM-Ann aborting the invitation. If so, the gateway removes

FSM-Chris:Appl from the Touring Machine session.

4.5.5. MMCC User Inviting a Touring Machine Client

Figure 4.16 shows Bob inviting Dave:Appl to a session that originally had Bob

and Ann:Appl. This strategy is unlike any of the session establishment scenarios because

54

CCP MPU

- - - - - - - - -



Touring Machine MPU CCP MPU
r- - - - - - - - - - - - - - - - - - - - - -

I FSM-Bob:Appl I FSM-Ann I

FSM-Ann to I(B) I
id positive I I
tusr message I I

I IL _ .. J 
FSM-Chris:Appl removes itself from the session if MMCC's

media agent reconfiguration fails.

Figure 4.15. Bob invites Chris to his session with Ann.

of the irreversibility of adding Dave:Appl to the Touring Machine session. FSM-Dave

automatically sends a positive Connectr message without any knowledge of Dave:Appl's

acceptance of the session. This is clearly breaking the semantics of the Connectr message.

However, a failure to commit the invitation in the Touring Machine domain--either due to

Dave:Appl's disapproval or otherwise--can be reconciled by FSM-Dave removing itself

from the session. On the other hand, if FSM-Bob:Appl were to query Dave:Appl by

sending the sessionChange message earlier, Dave:Appl would be added to the session

without any way to remove him if MMCC's media agent reconfiguration fails.

4.5.6. Touring Machine Client Inviting Another Touring Machine Client

As in section 4.5.4, since the gateway is not involved in purely intra-domain ses-

1. Actually, Touring Machine's sessionChange message does allow clients to propose removal of
other clients from sessions--see section 5.1.1. However, removing Dave:Appl from the session
would require his approval, which is hardly certain in this case.

55

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

)I
I

I

I

I

I

I

I

I

I

I

I

I

I

I



Touringr- -
I FSM- -I

Machine MPU

Bob:Appl

CCP MPU

FSM-Dave FSM-Ann

Status

ITell FSM-Bob:Appl to 

FSM-Dave removes itself from the session if
FSM-Bob:Appl's efforts fail in the Touring Machine domain.

Figure 4.16. Bob invites Dave to join his session with Ann.

sions, it need only deal with this situation if the original session involves an MMCC user.

Consider an active session between Ann:Appl and Bob. Figure 4.17 shows gateway

activity when Ann:Appl invites Dave:Appl to the session. FSM-Bob:Appl receives the

sessionActionCommit messaging describing Dave's addition to the session. FSM-

Bob:Appl responds by telling FSM-Ann to notify Bob that Dave has been added to the

session. In addition, when FSM-Ann transitions back to the Connected state, the CCP

56

-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
L- - - -

-r

-



Touring Machine MPU CCP MPU

FSM-Bob:Appl I FSM-Ann FSM-Dave I
I

I

I

I

I

I

I

I

I

I

( Connec-ted I
L - - -

Figure 4.17. Ann inviting Dave to her session with Bob.

MPU instantiates FSM-Dave in the Connected state.

In this scenario, there is no way to handle an error with the gateway's media agent

reconfiguration. When the gateway is first notified of the invitation, Dave:Appl is

already a part of the session. The gateway can guarantee no better than IL3 behavior for

such cases. However, MMCC media agent reconfiguration errors are rare. Furthermore,

referring back to Figure 3.5, physical transport connections do not have to change in the

MMCC domain because the new participant's media connections were added in the Tour-

ing Machine domain. Only the media agents' user interfaces need to be updated to reflect

an extra participant.

4.6. Inter-MPU messages

To implement black box (A) in Figure 4.3, FSM-Bob:Appl has to relay the session

description in the sessionActionRequest message so that FSM-Ann can send an analogous

description in the Request message. Similarly, black box (A) in Figure 4.7 requires FSM-

Ann to relay the session description from the Request message to FSM-Chris:Appl to use

in the sessionCreate message. All of the black box procedures labeled (A) in Figures 3.5 -

3.7 and 4.1 - 4.17 also require communication of a session description from one MPU to

the other. The CONNECT inter-MPU message is used to perform all of these tasks. In

addition to the session description, the CONNECT message contains a flag indicating

whether the session request is for a new session or for an invitation. It also contains a ses-

sion identifier All inter-domain sessions have a session identifier for each domain. The

57

I

I

I

I

I

I

I

I

I

I

I



gateway keeps track of which Touring Machine session name corresponds to which

MMCC session-identifier. Session identifiers in inter-MPU messages can be either the

Touring Machine or MMCC version.

To relay either positive or negative responses between MPUs--i.e., all black boxes

labeled (B) and (C)--the inter-MPU message REPLY is used. REPLY messages contain a

session identifier, a boolean response, and a comment string. The response is true for all

positive indications--e.g., sessionActionAccepted, sessionActionComnmit, positive Con-

nectr, and successful media agent reconfiguration--and false for all negative indications.

Finally, the DISCONNECT message, which also contains a comment string, is passed

between FSMs to implement black boxes labeled ()) in Figures 4.10 and 4.11. The com-

ment string in the REPLY and DISCONNECT messages is most useful for communicat-

ing the nature of errors that occur.

58



Chapter 5

Evaluation and Conclusions

Section 5.1 presents an evaluation of the conferencing gateway design. Section

5.2 describes general principles of conferencing systems that benefit gateway solutions.

Finally, section 5.3 discusses future work involving teleconferencing control and gate-

ways.

5.1. Gateway Design Evaluation

The user proxy approach was used to create the conferencing gateway between the

Touring Machine and MMCC systems. The representation of foreign users in each

domain and the use of cooperating FSMs to process messages from both systems resulted

in effective, though not complete, interoperability.

The user proxy approach dictates that the gateway interact with each conferencing

system at the application interface level. Working at that level seems a straightforward

decision considering the design requirement that neither systems' software be modified. It

also lets the gateway take advantage of the main purpose of conferencing systems--to han-

dle most of the complexities of session and resource management. This is most evident in

the simplicity of the gateway's inter-domain resource management. The gateway has to

handle only as much resource-related complexity as an application does. Consequently, it

has only as much control over its media transport resources as an application does. Fortu-

nately, the application's control--MMCC media agent control and Touring Machine end-

point assignment--are powerful enough for the gateway to perform its duties.

In many respects, developing the gateway resembles writing two simple applica-

tions--one for each system--that must work together well. Attempting to mesh the two

systems' session and/or resource management schemes at a lower level would be a much

more difficult--perhaps impossible--problem to solve.

5.1.1. Functionality Evaluation

The introduction of the gateway between the Touring Machine and MMCC

domains caused no functionality to be lost for intra-domain conferencing. That is, MMCC

users and Touring Machine clients have the exact same services for conferencing with

59



other users or clients in their domains as they did before the gateway was implemented. In

addition, the gateway has provided interoperability between users of the different systems

for most of the needed and popular conferencing functions.

Nonetheless, there were problems reconciling all of the policy and functionality

mismatches between the systems. Table 2 summarizes the levels of interoperability

achieved by the gateway for various conferencing functions. All of the IL3 behavior

occurs only in rare situations or for non-crucial conferencing functions.

Table 2: Interoperability Levels

Interoperability Level for Interoperability Level for
.onferenci Functio .Touring Machine clients MMCC users interacting

Conferencing Function interacting with MMCC with Touring Machine
users clients

Symmetric audio/video sessions
(multiple parties)

Basic establishment IL IL1

Callee-acceptance policy ILl IL3

Participant self-removal IL IL3

Removal of other participants N/A

Participant invitation IL3 1I

Asymmetric session establishment/ 112 N/A
modification

Data session establishment IL2 IL2

Application-level messaging IL3 N/A

Nameserver use

As directory database IL N/A

As "active user" database 1L3 N/A

Section 4.3.4 showed that the gateway solution cannot satisfy CCP's flexible

callee-acceptance policy because of Touring Machine's rigid policy. Table 2 lists this as

IL3 behavior because the MMCC caller sees behavior that is unexpected--i.e., different

than interaction with only other MMCC users. However, the severity of this IL3 behavior

is minimal. The session request is denied by all Touring Machine callees uniformly, and

the caller is free to try again.

60



IL3 behavior for MMCC participant self-removal was described in section 3.3.2.

It is unfortunate and unavoidable; however, it is rare that IL3 behavior actually occurs,

since the common case is Touring Machine successfully removing participants from ses-

sions.

IL3 behavior for Touring Machine's participant invitation was described in sec-

tions 3.3.3 and 4.5.6. It can occur only when a Touring Machine client, who is in a session

with at least one MMCC user, invites another Touring Machine client to the session. Fur-

thermore, in such situations, IL3 behavior occurs only when MMCC's media agents fail to

reconfigure properly, the infrequency of which has already been mentioned.

When session descriptions are relayed between domains, the gateway can easily

translate simple conferencing concepts between the two systems' syntax. Both systems

can specify participants and symmetric video and/or audio conferences. However, Tour-

ing Machine's sessionCreate and sessionChange messages give the application much flex-

ibility. They allow the initiator to specify the details of asymmetric connections. MMCC

does not support asymmetric conferencing. The gateway can recognize asymmetric ses-

sion requests from the Touring Machine domain in the form of sessionActionRequest

messages. The gateway denies them with a sessionActionDenied message which contains

describing a capabilities mismatch. The result is IL2 functionality for Touring Machine

clients attempting asymmetric session establishment or modification with MMCC users.

The sessionChange message also allows Touring Machine clients to initiate the

removal of other clients from the session. The client(s) to be removed are queried with a

sessionActionRequest for their approval before the action is committed. However, since

MMCC has no such functionality, the gateway provides IL2 behavior by always denying

such a request with a sessionActionDenied message.

Similarly, the gateway denies session requests from either domain that involve

data media. The reason is that the semantics of the data transmission are defined by the

application--actually, MMCC media agents control the types of data transmission, but

applications choose the media agent. The gateway can satisfy video and audio session

requests because it can assume that participants want to see video and hear audio. The

format of such media is independent of how it is used. The gateway need only insure that

the audio and video formats are properly converted between the two transport networks.

61



In the Touring Machine/MMCC case, The gateway is saved from controlling extra con-

verter equipment because MMCC media agents and workstation hardware can convert to

Touring Machine's analog transport. However, the gateway cannot make any analogous

assumptions about how different applications want to interpret data in general. If both

systems used more specific media formats of data whose interpretation is clear--audio and

video are such formats--then the gateway could conceivably translate requests involving

those media. For instance, if both systems had a "fax," "still-image," or "shared XWin-

dow" data type, it could make sense for the gateway to establish the session and allow

lower level mechanisms to reconcile format differences.

Touring Machine provides an inter-client, text message passing service.[6] The

interpretation of messages is left entirely to the application. MMCC has no analogous ser-

vice, and the existing-applications interoperation model does not support application-level

signalling. Furthermore, the gateway cannot provide IL2 behavior. If a Touring Machine

client sends an inter-client message to an MMCC user, the gateway would intercept the

message and realize that no meaningful processing can happen with the message. The

only way to notify the sender that the message delivery was unsuccessful is for Touring

Machine to use a messageSendFailure message. Unfortunately, from Touring Machine's

viewpoint, the message delivery was successful. To provide IL2 behavior, the gateway

would have to simulate a messageSendFailure message from Touring Machine to the orig-

inal sender. This kind of solution does not seem justified for a service that is not a part of

the interoperation model.

Touring Machine's directory service lets its clients access information about

MMCC users without trouble, since the information is entered into the database statically.

However, as discussed in section 4.2, the "active user" service cannot be provided for

MMCC users.

5.1.2. Performance Evaluation

Section 2.4.3 described gateway design goals only in terms of correct behavior of

conferencing functions. The speed of conferencing functions also plays a role in the

usability of gateway solutions. As might be expected, the amount of time it takes for

inter-domain session establishment is approximately the sum of the times for normal ses-

sion establishment for each domain. The same can be said for inter-domain session termi-

62



nation and participant invitation. Section 4.3.3 already mentioned that added delays for

callee acceptance can be annoying for the caller.

Nonetheless, the added delays are tolerable because the users know when they are

requesting inter-domain conferencing. Otherwise, users would experience what seemed

like erratic behavior--conferencing with some users would be much slower than with oth-

ers. In some sense, expectations of slow performance can ameliorate the annoyance of the

delays. This is true because the severity of the delays is not extreme. Also, it is important

that the speed of conferencing within each domain is unaffected by the presence of the

gateway. Undoubtedly, if some or all intra-domain conferences had added delays, some

users would prefer having faster local conferencing to having any inter-domain function-

ality.

5.2. Conferencing System Traits That Benefit Gateways

From the Touring Machine/MMCC experience, some general statements can be

made about conferencing system characteristics that lead to more successful gateway

solutions.

5.2.1. Common Conferencing Function Subset

The most important problem that gateway solutions present is the ability to pro-

vide only the common subset of conferencing functions. Thus, the first requirement for a

useful gateway solution is the availability of the desired conferencing functions in both

systems.

5.2.2. Reversibility of Session Procedures

A reliable participant self-removal protocol is key for reconciling session manage-

ment. Touring Machine's policy of leaving participants in session when errors occur

greatly handcuffs the capabilities of the gateway solution. When the gateway can initiate

reliable session termination in either domain, session establishment is possible as long as

there is some confirmation to the caller of the success of the session. Even if the mis-

match of message semantics is much worse than that in Table 2, the gateway will be able

to reverse session establishment in a domain if it is notified that session establishment was

unsuccessful in the other domain. Inter-MPU communication will still have the same

nature--i.e., CONNECT and REPLY from section 4.6 would still be used similarly.

63



In general, it is best for the gateway to have a mechanism for reversing any session

procedure. The effect of having irreversible procedures is mentioned in section 3.3.3 for

participant invitation. For such procedures, 1L3 behavior can be a possibility in some

cases. In those cases, a choice must be made to provide consistent IL2 behavior or ILl

behavior with some chance of IL3 behavior. Although IL2 behavior is clearly preferred in

general, if IL3 behavior is extremely rare and the effects of the IL3 behavior are not

severe, it may be better to choose ILl behavior with some chance of IL3 behavior.

5.2.3. Distributed Control

A distributed control architecture tends to make gateway design more feasible.

Distributed architectures leave more control at the "ends" of the network--i.e., where

applications and the gateway reside. An example of the benefits of distributed control is

the need for reversible session actions. Reversible session actions are not as necessary if

more control of resource actions is given to applications. For instance, Touring Machine

handles all resource-related processing centrally. As a result, IL3 behavior, as described

in section 3.3.3, can occur from a Touring Machine client inviting another Touring

Machine client. On the other hand, since MMCC needs to gather resource information

from distributed instances, the gateway can act before resource configuration is finalized

in the other participant invitation scenarios. For similar reasons, session establishment

with MMCC callees can be accomplished without session termination--see Figure 4.5.

However, there is no alternative with Touring Machine callees in Figure 4.7.

Another example of how distributed control helps the effectiveness of gateway

solutions is MMCC's multiple callee acceptance policy. Sections 4.3.3 and 4.3.4 illustrate

how MMCC's flexible policy of leaving control to the application facilitates the gateway

design, while Touring Machine's centrally controlled policy inhibits it.

5.2.4. Specification of Data Media

Data media should be specified to convey how the media will be used. Gateways

have the potential to convert between any two formats if the interpretation of the media

type can be assumed. Audio and video are popular in conferencing systems and the gate-

way can always employ some converter mechanisms between the transport networks.

Similarly, the gateway can handle different formats for still-image transfer, text, etc. For

64



instance, if Touring Machine used PICT for a still-image medium and MMCC used JPEG

for its still-image medium, the gateway's inter-domain resource management could con-

vert between the two. More session types would be feasible without affecting most of the

gateway's processing.

5.2.5. Control Message Parameters

There are characteristics of control messages that make gateway design easier. As

mentioned in section 4.1, message interception benefits from the inclusion of the recipi-

ent's identity in a control message. Also, multiple party session establishment, as

described in section 4.3.3 and 4.3.4, benefits from control messages including all the par-

ticipants' identities.

5.3. Future Work

The extensibility of the user proxy gateway design can be further explored with

experiments between different conferencing systems. Observations could be made about

the similarity of the design processes and of the effectiveness of the resulting gateway

solutions to the Touring Machine/MMCC case. Efforts--akin to those in protocol conver-

sion--could begin toward seeking general methods for gateway design.

The design of adaptors to provide conferencing functions outside the common

function subset also requires further study. In addition, strategies for handling complex

inter-domain transport scenarios will be important for general gateway solutions.

As each of these issues is examined, the potential of conferencing gateways as part

of a global strategy can be studied. As teleconferencing approaches ubiquitousness, it is

unclear if the needs of user communities can be met with gateway-based solutions, stan-

dards-based solutions, or a combination of each. Much will depend on the diversity of

computing and network environments as telecommunications infrastructure evolves.

65



66



References

[1] M. Arango, et al., "Touring Machine: A Software Platform for Distributed
Multimedia Applications," Proceedings 1992 IFIP International Conference on
Upper Layer Protocols, Vancouver, Canada, May 1992.

[2] G. Bochmann and P. Mondain-Monval, "Design Principles for Communication
Gateways," IEEE Journal on Selected Areas in Communications, vol. 8, no. 1,
January 1990.

[3] M. Chen, et al., "Software Architecture of DiCE: A Distributed Collaboration
Environment," Proceedings 4th IEEE ComSoc International Workshop on
Multimedia Communications, Monterey, CA, Apr. 1992.

[4] P. Green, Jr., "Protocol Conversion," IEEE Transactions on Communications, vol. 34,
no. 3, March 1986.

[5] W. L. Hill and A. K. Ishizaki, "A Call Model for Distributed Multimedia
Communications," HP Laboratories Technical Report, January 1993.

[6] V. Mak, et al., "The Application Programming Interface to the Touring Machine,"
Bell Communications Research, Morristown, NJ, February 1993.

[7] Minutes of the Multiparty Multimedia Session Control Working Group (MMusic),
Proceedings 31st Internet Engineering Task Force, San Jose, CA, December 1994.

[8] K. Okumura, "Generation of Proper Adapters and Converters from a Formal Service
Specification," Proceedings IEEE INFOCOM, Austin, TX, 1990, pp. 564-571.

[9] Proposed Draft of T.120, International Telecommunications Union/
Telecommunications Standards Sector, Question 10/Study Group 8, March 1995.

[10] E. M. Schooler, "Case Study: Multimedia Conference Control in a Packet-Switched
Teleconferencing System," Internetworking: Research and Experience, vol. 4, no. 3,
June 1993, pp. 99-120.

[11] E. M. Schooler, "The Connection Control Protocol: Architecture Overview,"
Version 1.0, USC/Information Sciences Institute, Marina del Rey, CA, January 1992.

[12] E. M. Schooler, "The Connection Control Protocol: Specification," Version 1.0,
USC/Information Sciences Institute, Marina del Rey, CA, January 1992.

[13] H. M. Vin, et al., "Multimedia Conferencing in the EtherPhone Environment," IEEE
Computer, vol. 24, no. 10, Oct. 1991, pp. 69-79.

67



[14] Yow-Wei Yao, et al., "A Modular Approach to Constructing Protocol Converters,"
Proceedings IEEE INFOCOM, Austin, TX, 1990, pp. 572-579.

68




