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Abstract
The choice of network simulation techniques in parallel discrete event simulation of
multiprocessor computers can affect overall performance by an order of magnitude.
The choice can also affect the accuracy of the results of the simulation by a factor
of two or more. Accordingly, it is important for users of parallel simulators to be
aware of the available options and their implications. This thesis presents several
techniques for parallel network simulation, evaluates their performance on different
types of applications and network architectures, and provides the user with guide-
lines for trading off accuracy and performance when using hop-by-hop, analytical,
topology-dependent, and combined network models. The hop-by-hop model accu-
rately simulates the travel of messages hop by hop through a network. The analytical
model uses a mathematical model to estimate the delay a message will encounter
en route to its destination, and sends it directly to the destination. The topology-
dependent model assumes that all messages take the same amount of time to arrive
at their destinations for a particular network topology, and ignores the effects of net-
work contention. The combined network model dynamically switches between the
analytical and hop-by-hop models depending on the level of contention present in the
network. This research was performed in the context of Parallel Proteus, a parallel
simulator of message-passing multiprocessors.
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Chapter 1

Introduction

Simulation of multiprocessor computers is a popular and effective research tool for

computer scientists. Actual multiprocessors are expensive and it is rare that a re-

searcher will have access to several different ones. Also, a researcher has to invest

a lot of time and energy in learning how to use each new computer and in porting

code between them. A general-purpose retargetable simulator that can simulate the

behavior of many different types of multiprocessors is useful for cross-architectural

comparison studies. For instance, the same code can be used and the parameters

of the target machine tweaked slightly to study the performance of an algorithm

on different architectures. Simulators, with their flexible development environments

and ease of instrumentation, are also very useful for designing new architectures or

developing application programs.

Sequential simulators that run on a workstation have been used by scientists for

many years. However, workstations have limited processing power, memory, and disk

space. Many simulations would take an unreasonably long time to run to completion

on a workstation, or not be able to run at all because of the vast amounts of data

required as inputs for the simulated problem. As people desire to investigate the pos-

sibilities of ever larger computer architectures, or run ever more detailed simulations

of biological or physical systems, the limits of running on a single processor become

increasingly problematic. Having a simulator that could run in parallel on an actual

multiprocessor opens up wider areas for research.
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Parallel simulators make use of powerful host machines and their large amounts of

memory and storage capacity to simulate applications on multiprocessors. These mul-

tiprocessors can have large numbers of simulated processors, with complex networks

connecting the processors. For accurate simulations of applications, it is necessary to

simulate the interaction of the messages they send with the interprocessor connection

networks. Traditionally, it has been thought that the only way to perform accurate

simulations was through exact modeling of every step the messages traveled through

the network. This can be a very time-consuming procedure which causes the entire

simulation to run slowly.

This thesis describes several alternatives to exact network simulation that re-

duce the time required to perform network simulation without reducing its accuracy.

Many of these concepts are not new, but a study of their relative performance and

accuracy tradeoffs has not been done before. Analytical models, average delay mod-

els, topology-dependent models, and combined models have the potential to improve

simulation performance over the default hop-by-hop model, but only under certain

conditions. It is important to define what these conditions are and help users of

parallel simulators decide when to use which network simulation technique.

The following chapter explains basic terminology and concepts of parallel discrete

event simulation, and describes Proteus and Parallel Proteus, the simulators in the

context of which this research was performed. Subsequent chapters present the main

issues involved in parallel network simulation, describe the different network models

that I examined, evaluate the performance and accuracy of the network models when

used on a varied set of applications, and discuss related work.
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Chapter 2

Parallel Simulation

2.1 Proteus

Proteus is a sequential discrete-event simulator of multiprocessors that was created at

MIT as the masters' thesis work of Brewer and Dellarocas[BDC+91],[Bre92],[Del91].

It allows users to select a parallel machine architecture, run a C program that calls

special library routines to simulate interaction between processors, and collect de-

tailed timing information about the program and its behavior on that particular

architecture. It currently runs on a DECstation or SPARCstation.

The discrete-event simulation model used in Proteus assumes that the system

being simulated only changes state at discrete points in simulated time. These

state changes are characterized as timestamped events, which are executed in non-

decreasing timestamp order. This is in contrast to cycle-by-cycle simulators, which

simulate every component of a machine at every clock cycle, and typically run one or

two orders of magnitude slower than event-driven simulators.

Proteus is highly modular and easily configurable. Users can select from a wide

range of parameters for multiple-input multiple-data (MIMD) machine architectures.

It is possible to imitate most commercially available parallel computers, if the user

knows their specifications. If Proteus does not support the desired configuration, its

modular design allows users to write their own modules which will provide the correct

behavior.
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2.2 Parallel Proteus

A major limitation of Proteus is its workstation host. Due to memory and processor

speed restrictions, it is generally not feasible to run large simulations with more than

256 virtual processors, or realistic applications such as those that one would want to

run on an actual parallel machine. Therefore, Legedza developed Parallel Proteus,

a parallelization of Proteus that runs on the CM-5, as part of her master's thesis

work[Leg95].

In parallel discrete event simulation, the system being simulated is divided into

entities. The simulator consists of many logical processes (LPs), each of which sim-

ulates one or more entities. For example, in Parallel Proteus, each processor of the

simulated multiprocessor, also known as a virtual processor, corresponds to an en-

tity. In addition, there must exist some sort of interconnection network between the

processors in the simulated system, composed of switches and wires connecting the

switches. Pieces of the network can also constitute entities. Each physical processor

of the CM-5 host runs a LP that simulates one or more of these entities.

When communication occurs between entities in the simulated machine, LPs cre-

ate events that need to be executed by other LPs. The LPs do not share any global

data structures, but rather communicate via timestamped messages. Each LP main-

tains its own local clock. Saying that physical processor P is at time t means that the

LP on P has already executed all events on all its entities with timestamps smaller

than t. Saying that virtual processor pi is at time t means that the LP on its host

physical processor P is about to execute an event for pi with timestamp t.

For any given simulated architecture, the wire delay quantum refers to the number

of cycles it takes for a message to traverse the shortest wire in the network. The

message quantum refers to the minimum number of simulated cycles it takes for a

message to travel between any two processors, including all wire and switch delays.
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Chapter 3

Network Simulation Issues

Simulation of the interconnection network is a difficult problem in parallel discrete

event simulation. Depending on the simulated machine and application character-

istics, it is possible to spend over 90% of the running time on network simulation

alone. Correctness, speed, accuracy, and relevance to the user's simulation needs are

all important issues to consider when developing network modules.

3.1 Correctness

A difficult problem in parallel network simulation is correctness: ensuring that the

simulated messages arrive at the receiving entity at the correct simulated time. In

sequential simulation, this is easy, because all events take place on one physical pro-

cessor and thus can be ordered exactly. On a parallel machine, the message may

have to travel across many physical processors and interact with other messages in

the network at the appropriate simulated times. In general, the more events are se-

rialized, the easier it is to achieve correctness, but the slower the simulation runs, as

the parallel speedup is lost. This is closely linked to the problem of synchronizing the

events on the different physical processors.

In the host machine, there is no guarantee that a processor will receive a message

by a particular point in time unless the sender and the recipient synchronize at that

point. One way to assure that all the processors have reached the same point, and
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therefore received all messages, is to execute a global barrier. When a global barrier

is executed every time a fixed number of simulated cycles has elapsed, that fixed time

period is known as the synchronization quantum. Periodic global barriers are very

useful, and are the most common synchronization method used in parallel simulators.

They are also the simplest known method of synchronization; other methods are more

complicated to implement and involve more overhead.

Global barriers are the default synchronization method in Parallel Proteus, and

will be the only method considered in this thesis. However, barriers are also expensive.

The time required for the communication between processors that establishes the

barrier can be substantial, depending on how well global operations are supported

in the host machine. Also, if there is significant skew in the arrival times of the

processors at the barrier, those that arrive early must waste time sitting idle while

waiting for the others. The high cost of global barriers creates a strong incentive for

network simulation to find a way to keep the synchronization quantum as long as

possible and thus execute as few barriers as possible.

3.2 Speed and Accuracy

In the world of network simulation, speed and accuracy are the two holy grails. Users

want simulators that run the most complicated programs in the shortest possible

time, and want the results to be exactly the same as if they had been run directly

on the simulated machine. Unfortunately, detailed simulations generally take longer

to run than approximations, so tradeoffs are necessary. Parallel Proteus is designed

to be a truly general-purpose simulator, so it is important to support the user who

wants speed as well as the user who wants accuracy. This is especially true if both

those users are the same person. In many instances, it is the applications with

irregular communication patterns that are most interesting to examine under different

architectures, so it should be possible to simulate all types of applications equally

accurately.

Contention is a measure of how congested a network is. If there are many messages
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all trying to travel across the same wires at the same time, some will get to use the

wires and others will have to wait. Messages arrive at their destinations later than

they would have in the absence of contention, and all these delays add to the total

simulated running time of the program. Hot spots occur when many messages contend

for one link in the network. This spot has much more traffic than the surrounding

areas, and long delays occur at this one spot even though the rest of the network may

be free of contention.

Measuring the delay due to contention for each message is the crux of the speed-

accuracy tradeoff. It is far easier to simulate a network quickly and accurately in

the absence of contention. If a program only sent one message, it would be a simple

matter to calculate the message's arrival time by counting the number of wires and

switches it must travel across to reach its destination and multiplying by the mini-

mum fall-through latency due to wire and switch delays. Since the message would

not have to interact with other messages, it could be sent directly to the receiving

processor. Unfortunately, the real world is rarely that simple; many schemes have

been proposed to track messages and their delays due to interaction, with varying

amounts of overhead.

3.3 Trends in Parallel Networks

Another goal of a good simulator is to be a useful tool. For a general-purpose simulator

like Proteus, this means being able to simulate the types of parallel machines that

most users are interested in. Even in the few years that simulators of multiprocessors

have been around, the target machines have changed substantially. New machines

tend to have ever-faster networks in which wire and switch delays are only a few clock

cycles. Machines from the 1980s like the BBN Butterfly or the Thinking Machines

CM-2 took the equivalent of tens of cycles in switch and wire delays. The CM-5, which

was first sold in 1992, has a switch delay of 8 cycles and a wire delay of 1 cycle[Eic93].

The IBM SP2, first commercially available in 1994, has a switch delay of 5 cycles and

a wire delay of 1 cycle[SSA+94]. The Cray T3D, also introduced in 1994, has a switch
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delay of 2 cycles and a wire delay of 1 cycle; in addition, changing between network

dimensions counts as an extra hop[ST94]. Current research machines which emphasize

low message overheads do better yet. The J-Machine[ND91] and Alewife[Joh94] have

combined switch and wire delays of only one clock cycle. A simulator that was written

under one set of assumptions about network behavior may perform poorly when those

assumptions change.
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Chapter 4

Network Models

This chapter describes the network and routing models that are most relevant to

sequential Proteus and Parallel Proteus. Elements common to all models, as in actual

multiprocessors, are the simulated processor, network interface/routing chip, and the

wires linking routers and processors. The links are all assumed to be bidirectional,

with one channel in each direction.

4.1 Routing Models

There are three principal routing techniques used in actual multiprocessors: store-

and-forward, wormhole, and virtual cut-through routing. Any of these may be used

in conjunction with algorithms that implement multiple virtual channels per physical

wire. Using multiple virtual channels reduces the possibility of deadlock, but does not

change the fundamental behavior of the routing techniques. Any of these techniques

may also be used with any network topology. The main differences between the

routing algorithms lie in the amount of buffer space present at each routing chip and

when messages block in the network. Each message packet is typically composed of

multiple flow control units, or flits.

Store-and-forward and wormhole routing are based on older techniques like the

circuit-switching used in telephone networks and the packet-switching pioneered by

ARPA for early data networks connecting computers. Virtual cut-through routing, a

15



more recent technique, was designed to combine the advantages of circuit and packet-

switching. There is a large literature on the subject of routing models. Interesting

reading on the subject includes [KK79], [Tan81], [Sei85], [FRU92], [RS76], [DS87],

and [RS94].

In a store-and-forward network, the entire message packet must arrive at a node

and be buffered there before any of it can continue to the next node. Buffer size must

be large, usually a small multiple of the maximum message size. Average latencies

for messages are high, since the head flit of a message will arrive at a routing chip

before the tail flit, but must wait for the tail flit to also arrive before it can continue

through the network. Many early multiprocessors used this type of network because

it was easy to build. The design of the routing switch can be fairly simple, since it is

not necessary to keep track of the different flits of a message across multiple routers.

In wormhole routing, the head flit no longer has to wait for the rest of a message

to arrive before continuing to the next router. The head flit of a message packet

establishes a path that the flits in its body also take, but the flits will be spread out

in a continuous stream along that path. As a result, at any given time, a message

may occupy space on several routing switches and wires. Buffer size is a constant, and

typically small, number of flits. Since buffer size is not proportional to message size,

when the head of a packet is blocked, the body has to remain in its current location.

The blocked packet in turn stalls any other message traffic that wishes to use those

channels that it occupies. Very little buffer space is needed, so this sort of routing

chip is relatively simple to build. Message latency is very low initially, but as packet

traffic increases, this type of network saturates rapidly and performance drops.

In virtual cut-through routing, buffer space is constant in the size of the messages,

like in store-and-forward routing. However, like in wormhole routing, the head flit

of a message may continue ahead of its body. The difference is that there must be

enough buffer space on the next routing switch to contain the entire message, or else

the head will not be allowed to advance. If the head is blocked, its body will collapse

into a buffer on the same routing switch as the head, freeing the wires behind it for

other messages to pass. Because it minimizes network congestion and also gets good
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message latency, virtual cut-through routing is now a popular choice with computer

architects. Router complexity has increased to the point that a little bit more buffer

space is not a serious obstacle.

4.2 Implementation

The default routing model in Parallel Proteus simulates a virtual cut-through router

with infinite buffers. On a real multiprocessor, the buffer would be sized to hold a

constant number of message packets. This abstraction has two main effects. First,

it simplifies the task of simulating the network, thus improving overall performance.

Parallel Proteus does not have to simulate a handshake protocol between the routing

switches to determine if there is enough buffer space free to hold a potential incoming

message. Second, it creates the possibility that delays from congestion in the net-

work may be underreported. This effect is probably slight in most cases, as modern

networks tend to have large buffers on routing switches. On a real machine, if the net-

work buffers did fill up on one switch, delays would spread to its neighboring switches.

In Parallel Proteus, delays are confined to the switches on which they originate. Also,

sending processors are always able to inject messages into the network, albeit with

long delays; in the real world, they might have to resend the message later, taking a

few extra cycles which would not be accounted for in Parallel Proteus.

In the routing implementation on Parallel Proteus, the sending processor starts

by packaging the message, including its thread ID number, the current timestamp,

the sending processor's ID number, and the destination processor's II) number. The

sending processor calls a message-handling routine to actually send the packet. The

send handler blocks the sending processor for a number of cycles equivalent to the

length of the packet in flits, representing the amount of time it takes the processor to

send the packet to the router. It then sends the message to the router, scheduling its

arrival for the timestamp plus the packet length plus the switch delay. This accounts

for the amount of time it takes for the packet to arrive at the router and be ready to

go out on a wire.

17



Each processor has an associated network routing switch that in a k-ary n-cube

serves as a NxN+1 crossbar, dispatching messages between the processor and all its

neighbors. Messages from the processor and incoming from the network share the

outgoing wires equally, neither having priority over the other. The routing handler

simulates the router's behavior, selecting which wire the packet will go out on, with the

default being dimension-order routing. It then sends the packet to the router on the

other end of that wire, scheduling its arrival time for max(currenttime, wirenextfree)+

wire-delay + switchdelay. This accounts for the amount of time it takes for the head

flit of the packet to arrive at the next router and again be ready to go out on a wire.

Effectively, this creates infinite buffers on incoming wires. The routing handler also

updates the time that the outgoing wire is next free. A further assumption is that the

switch can feed all its outputs simultaneously. If a user wanted to simulate a more

restricted switch, it would be possible to write a more detailed switch simulation

module to delay outgoing messages appropriately.

If the router at the other end of the wire is the one associated with the destination

processor, the message is sent to a receive handler instead of a routing handler, with

the same arrival time. The receive handler immediately dispatches the packet to the

recipient processor.

4.3 Sequential Proteus

In sequential Proteus, there are two options for simulating a message-passing network.

There is an analytical modeled network and an exact hop-by-hop network.

The analytical model is an approximation based on Agarwal's network model[Aga91],

which is fast but can be inaccurate. A sending processor multiplies the number of

hops to a message's destination by the minimum per-hop latency, adds an estimated

figure for network contention, and sends the message directly to its destination. Every

time a message is sent, the model also updates its global view of contention, so it can

account for some slowdown due to congestion. However, since this is a network-wide

average, it does not capture the effects of hot spots or other uneven communications
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patterns in the network.

The exact network model maintains global data structures representing the states

of all of the elements of the interconnection network. As each message arrives at a

switch, an outgoing wire is selected for it, the data structures are updated, and an

event is scheduled for the time that it will arrive at the next switch in the network.

The message follows the path it would take in the simulated machine every step of the

way; thus, the name hop-by-hop. This simulates contention in a network with high

accuracy, but is on average 2-4 times slower than the modeled network[BDC+91].

4.4 Parallel Proteus

Parallelizing the network simulation adds the additional complexity of synchroniz-

ing the physical processors, dealing with separate address spaces, and the need to

have virtual processors actually communicate through messages rather than instan-

taneously scheduling events for each other. I present several different mechanisms to

consider for trading off speed and accuracy when simulating the network in Parallel

Proteus.

4.4.1 Analytical Model

It is no longer possible to maintain a global measure of contention when the entities

do not share a single global address space. One way to implement a modeled network

is to assign each physical processor copies of the contention state variables and then

update them every time the processors perform a global barrier. This method should

be fast and a reasonable approximation for rough simulations. Depending on how long

the synchronization quantums are, this will lead to some local skew, as in between

barriers each physical processor will only be receiving contention information from

the virtual processors that it is simulating. Compared to the sequential version, this

will also tend to underestimate contention. It may be possible to remedy that by

extrapolating global contention from the last period between barriers forward into

the next period.
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4.4.2 Hop-by-Hop Model

The sequential hop-by-hop model parallelizes in a straightforward manner. In a direct

network, each physical processor simulates one or more virtual processors and their

associated network interface switches. The state for the outgoing wires is kept along

with the switches; if there is a queue for a wire, packets are buffered on the sending

processor until they reach its head. Then the simulated message is packaged in a

CM-5 message and sent across the physical network to the physical processor that is

responsible for the network switch at the other end of the wire.

The main drawback of this method is that in order to guarantee correctness under

all conditions, it is necessary to set the synchronization quantum to one switch delay

plus one wire delay. Especially if one is simulating a multiprocessor with a very fast

network, this can cause overall Parallel Proteus performance to be relatively slow. In

the worst case, there will be no congestion in the network when a virtual processor a

(on physical processor A) sends a minimum-length message to a destination c (which

happens to be on physical processor C). The topology of the network is such that the

message must pass through an intermediate network routing switch b on processor B.

Now assume that the switch delay is 5 cycles and the wire delay is 1 cycle. Therefore,

there will be a barrier every 6 cycles, just before t = 0, 6, 12...

As an example, message m, which is only 1 flit long, leaves a's network interface

at t = 5. It will take 1 cycle to cross the wire to b, and 5 cycles to pass through the

network circuitry on b and be ready to leave b on an outgoing wire. So at time 5 A

sends a CM-5 message to B instructing it to schedule an event to handle m at time

11. Just before t = 6 there is a barrier, so the message is guaranteed to arrive at B

by time 6, so it can be scheduled in a timely manner. At t = 11, m leaves b's network

interface. It will take 1 cycle to cross the wire to c, and 5 cycles to pass through the

network switch circuitry on c and be available for use by processor c. So at time 11 B

sends a CM-5 message to C instructing it to schedule an event to handle m at time

17. Just before t = 12 there is a barrier, so the message is guaranteed to arrive at C

by time 12, so it can be scheduled in a timely manner.
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4.4.3 Compacted Network Simulation

When simulating indirect networks like BBN's butterfly or the CM-5's fat-tree, it is

not obvious how to map intermediate network switches onto physical processors. One

possibility is to assign one or a few physical processors the exclusive responsibility

for simulating the network. If there is only one network processor, the rest of the

processors send all their messages to it, it simulates all the intermediate hops, and then

sends messages directly to their vdestinations. If there are a few network processors,

each one handles a subset of the other processors, grouped by location. The network

processors receive all the messages, pass them among each other for the intermediate

hops, and then send messages directly to their destinations.

This method could also be used for direct networks. A possible advantage is that

this method would generate fewer actual messages overall. Network processors would

be more likely to be able to process intermediate hops themselves, rather than needing

to send the message to another location. A disadvantage is that this might cause a

bottleneck as all the messages funnel into and out of one processor, but one could

experiment with varying the fraction of processors dedicated to the network.

4.4.4 Contention-Free Models

If an application does not generate much congestion in the network, one way to

attempt to improve performance is by ignoring the effects of congestion.

A variable delay model calculates the number of hops a message must travel,

multiplies by the message quantum to produce arrival time, and sends the message

directly to its destination. The processors must synchronize once every message

quantum, because a message from a processor to its nearest neighbor will get there

in only one hop.

An average delay model uses information from a previous simulation of the ap-

plication to calculate network delay. It takes the actual average of all the message

transit times in a specific application on a specific network topology, and uses that as

the delivery delay for all messages in subsequent simulations. Messages are delivered
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directly to their destinations.

A purely topology-dependent model takes the average number of hops that a

message will travel for a given network topology, multiplies by the message quantum to

produce arrival time, and sends the message directly to its destination. For example,

ill an 8-ary 2-cube (a two-dimensional mesh of 64 processors), the delivery delay for all

messages will be 8 message quantums, assuming a perfectly random communication

pattern.

A constant delay model assumes that all messages take a constant amount of time

to reach their destinations, typically 100 cycles. This approach is popular with other

parallel simulators. However, a drawback is that it completely ignores the effects

that different network architectures can have on simulated performance, which is a

common reason for using a parallel simulator in the first place.

An interesting side effect of the uniform delay network models, which assume that

all messages take the same amount of time to reach their destinations, is that the

synchronization quantum can grow much larger than one wire delay plus one switch

delay. For these models, a small savings in simulation time will come from reductions

in overhead, such as not having to calculate how long a message will take to reach its

destination. However, a much larger performance improvement is expected from not

needing to synchronize as often, eliminating many global barriers and their attendant

cost and waiting times.

4.4.5 Dynamically Combining Models

A combination of different simulation techniques may also prove useful. Some appli-

cations that alternate between communication and computation phases exhibit only

sporadic contention. To improve performance, the network simulator switches be-

tween the analytical model and the hop-by-hop model, depending on the level of

contention. Each physical processor monitors the network traffic in its local area.

When using the analytical model, a global OR of all the processors is taken at every

barrier, and if any one signals that its messages are experiencing delays of more than

a fixed percentage of their base transit time, all processors switch to the hop-by-hop

22



simulator. When using the hop-by-hop model, the reverse is true; at every barrier, a

global AND of all the processors is taken, and if none signal that their messages are

experiencing delays of less than that fixed percentage of their base transit time, all

processors switch to the modeled simulator. Any messages in transit are simply sent

to their destinations.

The exact percentages used for the threshold values should be determined through

experimentation. It; may be best to leave them as user-settable parameters. Setting

them too low may result in the simulation running unnecessarily slowly; setting them

too high may result in underreporting of congestion delays. The threshold for switch-

ing from the analytical to the hop-by-hop network should be set higher than the

threshold for switching from the hop-by-hop to the analytical network. The differ-

ence introduces some hysteresis into the simulation and prevents thrashing between

models if the congestion levels happen to be around the threshold value.

4.4.6 Other Models

There are other techniques that relax the correctness requirements of the hop-by-hop

network but still use information gained from going through all the hops to estimate

contention. These involve more overhead than the preceding techniques, and it is not

clear if their improvements in accuracy would be worth the cost.

In one such method, the sending processor would use a modeled lookahead mecha-

nism to deliver the contents of a message to the receiving processor while the message

header works its way through the network hop by hop. The information in the mes-

sage can be used at close to the correct simulated time, even though the simulation

of congestion delays may lag behind.

The Wisconsin Wind Tunnel[BW95] has the sending processor deliver timing mes-

sages to all the intermediate network switches along the path of the message. The

intermediate points separately estimate the local delay due to contention for the mes-

sage and send their estimates to the receiving processor, which sums all the estimates

to arrive at the total delay for the message. This method has the advantage of paral-

lelizing the delay computation, but it also produces much more work for the sending
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and receiving processors, and doubles the total actual message traffic in the network.
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Chapter 5

Experiments

This chapter presents and discusses performance and accuracy results for the parallel

network simulation techniques described in the previous chapter.

The overall performance of Parallel Proteus as well as the results of the simula-

tion depends strongly on the interaction of the tested application's communications

characteristics with the simulated machine parameters. What may be a light work-

load for one target architecture may be crippling for another. In general, the higher

the performance of the simulated network, the slower Parallel Proteus will run. A

network that can deliver messages every simulated clock cycle will be harder to sim-

ulate than a network that takes a minimum of 20 cycles to deliver a message between

neighboring processors. Obviously, however, the amount of data that the application

sends over the network also matters. If an application rarely sends messages, Parallel

Proteus will not have to spend much time delivering messages, no matter whether

the network is slow or fast.

Before discussing results, I provide some background to help interpret what these

results mean to the user of Parallel Proteus. I define general categories of applications,

and describe the specific applications used to test the network models.

25



5.1 Program Categorization

To simplify discussion, I classify simulation runs on Parallel Proteus into three broadly

defined groups by their communications demands on the network: low, moderate, and

heavy contention. These groups reflect how the communication patterns of a program

can affect its overall simulation time. Since Parallel Proteus currently only supports

message-passing programs, communication means explicit message exchange between

processors.

The groupings are also relative to machine architecture. The same application

can run on a multiprocessor with a fast network and experience no contention, or

on one with a slow network and take double the amount of time to run, because of

contention in the network.

There are two key indicators for determining into which group an application

running on a particular machine architecture will fall. One is the percentage of the

total simulated running time that is caused by network congestion delays. For the

low contention group, that number should be below 5%, and for moderate contention,

below 20%. The second is the average length of time a message is delayed at any given

hop in its path, if it is delayed at all. For the low and moderate contention groups, this

number as a multiple of the base per-hop delay should be under 10. The boundaries

between groups are by nature imprecise, but these are useful approximations to make.

5.1.1 Low Contention

Application and machine architecture combinations that do not result in much net-

work contention fall into this category. Messages may be short or infrequent, or the

machine may have a very fast network. It does not matter if the communication

occurs in phases, is evenly distributed, or falls into some other random pattern, be-

cause overall it is still too light to significantly affect the application's total running

time. Recent multiprocessor networks tend to be overengineered relative to processor

speeds, and thus simulations using modern network characteristics combined with

most applications will fall into this category. This category yields the best opportu-
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nities for performance improvement.

5.1.2 Moderate Contention

Applications in this category exhibit moderate to heavy communication, but it is

evenly distributed. The application may also be programmed in such a way as to

hide the effects of communication latency, e.g., a communication phase, followed by

a computation phase that does not require the results of the communication (so as to

hide latency), and then finally another computation phase that does use the results

of the communication. Even though contention exists, it is evenly balanced among

the processors, which send about the same number of messages at the same times.

There are no hot spots that significantly affect overall running time. This category

presents some possibilities for performance improvement, but it may be difficult to

correctly discern which network simulation technique will be the optimal one to use.

5.1.3 Heavy Contention

Applications in this category characteristically have heavy and/or highly variable

communication. Network contention is high, as evidenced by the long delays that

messages face before being able to acquire network links. Hot spots are a significant

problem. If communication is very heavy, unless the application is very well matched

to its underlying physical network, it is highly unlikely that it can avoid having

some hot spots. This category is the most difficult to simulate accurately. It offers

little potential for performance improvement through changing network simulation

techniques.

5.2 Test Applications

I used three applications to test the different network models: radix, SOR, and test

(a synthetic application). The applications have varying computation and communi-

cation requirements, and attempt to provide a range of realistic demands on Parallel
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Proteus that will match those of other users.

5.2.1 Radix Sort

The algorithm for radix uses four distinct phases to sort numbers with d digits and

a radix of r. The phases are each repeated d times. First, each processor locally

performs a counting sort on its values. Second, the processors perform r staggered

scans up and down a binary tree to combine the proper counts for each digit. Third,

the processors send their values to the appropriate destinations, each one in a separate

message. Fourth, the processors locally update their arrays of numbers. The messages

ill the second and third phases tend to be short and their destinations randomly

distributed.

5.2.2 SOR

Successive overrelaxation of matrices, or SOR, is an iterative method of computing

an approximate solution to a system of linear equations. Each processor goes through

three phases to update each number in its assigned grid, whose value only depends

on the values of its neighbors. First, it sends a message to each of its four neighbors

containing the values on its borders. Second, while it waits to receive the messages

from its neighbors, it updates the values in the middle of its grid. Finally, after it

receives the four messages from its neighbors, it updates the numbers on its borders.

The algorithm has no explicit global synchronization. Only a small number of long

messages are sent, and those go only to each processor's nearest neighbors. The

computation phases are also very long.

5.2.3 Test Workload

It was difficult to find actual applications to test all the interesting combinations of

computation and communication, so I created a synthetic test program to measure

the performance of the network techniques under different conditions. It has two

variants.
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Testl is designed to test the effects of moderate contention in the network and

moderate hot spot activity. It consists of 10 iterations of 2 phases, alternating com-

putation and communication. The computation phase lasts for 3000 cycles, and the

total number of messages sent during each iteration varies from 4,000 to 16,000. To

generate some hot spots, as might be the case in a producer-consumer application,

only a few processors send messages. The messages are sent to random destinations.

Test2 is designed to test the effects of switching between network simulation mod-

els when levels of contention in the network vary between low, heavy, and moderate.

The overall level of contention would be considered moderate, but there are distinct

variations in contention over time. Test2 consists of 10 iterations of 3 phases. The

first phase is pure computation, and lasts for 30,000 cycles. The second is an intense

communication phase, where each virtual processor sends 500 to 2,000 messages to

random destinations. The third phase intersperses computation and communication;

each virtual processor sends one-tenth as many messages as in the previous phase to

nearby destinations, waiting 300 cycles in between sending each message.

5.3 Results

This section presents and discusses results for the various network simulation tech-

niques. I ran experiments on 32-node CM-5 partitions. Each CM-5 node is a 33-MHz

SPARC processor with 32 MB of RAM, but no virtual memory. I used the hop-by-

hop network model, which accurately measures network congestion, as the benchmark

against which the less accurate models are compared.

The first three subsections compare the accuracy and performance of the hop-by-

hop, analytical, average and topology-dependent network models in scenarios with

low, moderate, and heavy levels of network contention. The fourth subsection builds

on the knowledge learned by conducting the first three sets of experiments. It presents

the results of dynamically combining the hop-by-hop and analytical models for an

application with varying levels of contention. The fifth subsection discusses three

techniques that offer little benefit under any scenario: the variable delay model, the
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constant delay model, and compacting the network simulation.

5.3.1 Low Contention Scenarios

The fast networks found on modern multiprocessors tend to minimize the problem of

network contention, when lightly loaded. To illustrate this, I ran simulations of the

applications SOR and radix on a 16-ary 2-cube (a total of 256 virtual processors),

with a switch delay of 5 cycles and a wire delay of 1 cycle. For both applications,

delays due to network congestion accounted for less than one percent of the total

simulated running time.

During runs with the exact hop-by-hop and analytical modeled networks, the

synchronization quantum was set to 5 cycles, or switchdelay + wire.delay - 1. The

average number of hops that a message must travel from a random starting point to a

random destination in a 16-ary 2-cube is 16. So, for the topology-dependent model, I

set the synchronization quantum to 96 cycles, or 16 * (switch.delay + wire-delay). In

these applications the average number of hops that messages actually travelled was

lower: 11 for radix and 1 for SOR. I set the synchronization quantum for the average

delay model for radix to 66, and for SOR, to 5.

Accuracy

For both radix and SOR, as shown in figures 5-1 and 5-2, the total simulated run-

ning time for the simulations that used approximate networks was within 2% of the

results for the simulations that used the exact network. There was little difference

between average delay network simulations and topology-dependent modeled simula-

tions that did not take the application characteristics into consideration. The results

show slightly more variance for radix than for SOR, reflecting the larger number of

messages sent by radix.
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Figure 5-1: Radix. Low contention network accuracy results.
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Figure 5-2: SOR. Low contention network accuracy results.
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Performance

For radix, as shown in figure 5-3, the analytical modeled network took 64-79% as

much time to run as the hop-by-hop network, reflecting the reduced amount of time

devoted to network simulation. For the largest granularity, when each virtual proces-

sor operates on 8192 elements, each virtual processor sends an average of 10,000 short

messages over the course of a simulation, so the savings can be considerable. The

performance results for uniform delay simulations were equally striking. Even though

all three took almost the same number of simulated cycles to run, the average delay

and topology-dependent simulators took only 13-28% as long to run on the CM-5 as

did the hop-by-hop simulator.

The performance improvements for SOR, shown in figure 5-4, were not nearly as

dramatic as those for radix. This is because SOR uses the network far less, creating

less room for improvement. In the case when each virtual processor operates on

4096 elements, each processor only sends 10 long messages over the course of the

entire simulation, and those go to its nearest neighbors, so the network simulator

only needs to process one hop per message. The analytical model and average delay

models both took 90-93% as long to run as the hop-by-hop network. The topology-

dependent model was the only one to achieve significant savings, running in 46-65%

of the time of the hop-by-hop network.

Discussion

Most of the time savings for the uniform delay models comes from reducing the total

number of global barriers required over the course of the simulation. For the average

delay model on radix, increasing the synchronization quantum from 5 cycles on the

hop-by-hop simulator to 66 cycles means that Parallel Proteus only needs to execute

7.6% as many global barriers. For the topology-dependent models, increasing the

synchronization quantum from 5 cycles on the hop-by-hop simulator to 96 cycles

means that Parallel Proteus only needs to execute 5.2% as many global barriers.

It initially seems surprising that the uniform delay models are so accurate, but in

low contention scenarios, very little of the simulated running time is due to conges-
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Figure 5-3: Radix. Low contention network performance results.
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Figure 5-4: SOR. Low contention network performance results.
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tion delays. Application granularity and the existence of separate communication and

computation phases seem to be relatively unimportant, as long as there are no signifi-

cant congestion delays. In these scenarios, it is clear that using uniform delay network

simulations can significantly reduce the time spent on simulating the network, and

improve overall Parallel Proteus performance without sacrificing accuracy.

5.3.2 Moderate Contention Scenarios

There exist categories of applications that exhibit moderate network congestion for

which using the analytical modeled network offers the optimal balance between speed

and accuracy. Neither SOR nor radix fell into this category, so I ran simulations

using testl. Results are shown in figures 5-5 and 5-6. In the case where 16,000

messages per iteration are sent, delays due to network congestion account for 20% of

the total simulated running time of testl.

The analytical model is almost as accurate as the hop-by-hop network simula-

tor, and takes 92-94% as long to run. The topology-dependent model only comes

within 79-85% of the simulated running time of the hop-by-hop network. Although

its relative performance is quite good, it is not nearly accurate enough for most cross-

architectural studies, in which differences of a few percent can be significant. The

average model would have produced results very similar to the topology-dependent

model, so I did not show experiments using it.

There undoubtedly are many other types of communications patterns in applica-

tions which will produce similar results, and it would be difficult to catalog them all.

This is an interesting area for further research. For the purposes of this work, it is

sufficient to note the existence of moderate contention scenarios.

5.3.3 Heavy Contention Scenarios

For applications that cause heavy contention in the network, using the hop-by-hop

simulator is the only way to get accurate results. The network tends to become

congested when either it is relatively slow, or the application sends messages that are
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Figure 5-5: Testl. Moderate contention network accuracy results.
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Figure 5-6: Testl. Moderate contention network performance results.
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numerous and/or long. I ran experiments contrasting the analytical model with the

hop-by-hop network; preliminary studies showed that the accuracy of the uniform

delay models were even worse than the analytical model, so they are not presented

here.

In one experiment, I took radix and artificially quadrupled the length of the

messages it sends, from one word to four words, while holding the switch delay fixed

at 5 cycles. In another experiment, I quadrupled the network latency to a switch

delay of 20 cycles instead of 5 cycles, while keeping message length stable at one

word. Results are shown in figures 5-7 and 5-8.

When message length was quadrupled, hot spots caused by the longer messages

slowed network throughput. The effect was most dramatic with higher granularity,

as more messages per virtual processor were sent. For the case of 8192 elements per

virtual processor, the simulated running time on the exact network nearly doubled

from a base of 3.8 to 6.0 million cycles. By comparison, the analytical network model

only recorded an increase in running time from 3.8 to 3.9 million cycles.

Quadrupling the network latency had a similar effect on radix. For the case of

8192 elements per virtual processor, simulated running time again jumped from 3.8

to 6.0 million cycles, while the analytical model only posted an increase to 3.9 million

cycles.

The performance of the analytical modeled network on radix varied significantly

with the granularity, doing best when the processors sent the fewest messages.

Similar experiments that quadrupled the network latency and message length in

SOR had very little effect on either the accuracy or performance of the analytical

modeled network, as compared to the base case. SOR simply does not have enough

message traffic to create problems with network congestion. Those experiments fell

into the low contention category.
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Figure 5-7: Radix. Analytical network model accuracy results compared to hop-by-
hop model, when either message length or network latency is quadrupled.
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Figure 5-8: Radix. Analytical network model performance results compared to hop-
by-hop model, when either message length or network latency is quadrupled.
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5.3.4 Combining the Models

Not all applications are as dichotomous as radix, with its constant barrage of com-

munication, and SOR, with its almost complete lack of communication. Applications

which alternate between periods of intense communication and low communication

can benefit from dynamically switching between the hop-by-hop and analytical net-

work modules. The profile of test2 fits this combination; the percentage of its running

time due to congestion ranged between 10-20%, and the average message delay (for

delayed messages) was over 1000 times the base delay.

Results of experiments on test2 using the combined hop-by-hop and analytical

model are shown in figures 5-9 and 5-10. I set the threshold value of per-hop con-

tention delay for switching from the analytical to the hop-by-hop model at 50% of

the base delay, and the threshold for switching in the other direction at 250%. These

thresholds keep thrashing to a minimum while still permitting dynamic switching

when the application's communication characteristics change. As expected, the com-

bined model's accuracy and performance results fall in between those of the analytical

model and the hop-by-hop model. Accuracy is quite good, ranging between 96-98%.

Performance is closer to that of the hop-by-hop model than that of the analytical

model, since during the heavy contention periods, which take the longest to simulate,

the hop-by-hop model is in use.

Using the analytical model for the low contention periods does not produce as

much of a time savings as using a uniform delay model might. It would be interesting

to look at combining the hop-by-hop with the topology-dependent model. However,

a metric for determining when to switch to the hop-by-hop model would have to

be created, since the topology-dependent model does not calculate contention in the

network.

5.3.5 Other Models

The variable delay model does not have significantly less overhead than the analytical

model, and its accuracy is consistently lower. Although its accuracy is better than the
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uniform delay models, that advantage is very slight, and it is unable to offer any of

the performance benefits of eliminating global barriers. Therefore, I did not study it

in great detail. Similarly, the constant delay model does not offer any advantages over

the topology-dependent model, unless the interconnection network has a very small

diameter. In addition, it has the downside of not accounting for the interconnection

network at all.

Compacting the network simulation onto one or a few physical processors did not

improve performance for either radix or SOR. For radix, even though the total

number of messages sent on the CM-5 network decreased, the performance of Parallel

Proteus worsened as the number of simulated messages increased. Radix sends many

messages, but has relatively little computation in between. The processors dedicated

to network simulation spend a lot of time on the overhead costs of processing mes-

sages, while the processors dedicated to simulating the virtual processors sit idle.

For SOR, it is not surprising that there was no performance benefit, since the total

number of messages sent is so small, and dedicating processors to network simulation

only means that there are fewer processors available to perform the rest of the simu-

lation. Changing the load distribution so that some physical processors had exclusive

responsibility for simulating the network, but also simulated a few virtual processors

as well, had little effect on performance. The performance of the CM-5 network does

not appear to be a limiting factor for Parallel Proteus, but this might be different on

another host machine.

5.4 Discussion

Experiments have shown that for programs that produce little congestion in the net-

work, surprisingly simple network models can produce simulation results within 1%

percent of those of exact hop-by-hop simulations, while running up to 700% faster.

These same models, under different conditions, can also produce extremely inaccu-

rate results. The challenge is therefore for a user of Parallel Proteus to be able to

correctly choose between the available models based on her needs for accuracy and
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performance.

Performing one or two simulations of an application using the hop-by-hop net-

work produces information that can help determine which network model to use in

subsequent runs of the application. In order to gain insight into an issue, users of

parallel simulators typically perform many runs of the same application under slightly

differing conditions, so this capability can prove very useful in the long term.

One key indicator is the percentage of the total simulated running time that is

caused by network congestion delays. The time due to congestion delays can be

measured by subtracting the results of a hop-by-hop simulation with the contention

measurements disabled from a standard run that produces the correct running time.

In the low contention scenarios examined here, that number was consistently below

5%. In the moderate contention scenarios, it was about 10-20%, and in the heavy

contention scenarios, it was about 30-40%. It is certainly possible to have applications

for which an even higher percentage of the simulated time is due to congestion. The

contention-free models become consistently less accurate as this percentage rises. This

is as expected, since they do not try to account for contention. Since the topology-

dependent model offers the best performance, the user can decide whether to use

it depending on how much inaccuracy she is willing to tolerate, which may in turn

depend on the magnitude of the effects she is trying to measure.

Trying to determine when to use the analytical model is more complex. It will

certainly be at least as accurate as the topology-dependent model, but in low con-

tention scenarios the topology-dependent model performs much better. Much more

exhaustive experimentation needs to be done to establish the boundaries of moderate

contention scenarios within which the analytical model does well; for example, will

it work well for most or all applications in which the percentage of running time due

to congestion delays is under 20%? In the meantime, another important indicator is

the average length of time a message is delayed due to congestion at any given hop

in its path, if it is delayed at all. In the low and moderate contention scenarios, this

number as a multiple of the base per-hop delay without congestion was under 100,

while in the heavy contention scenarios the number was over 1000. Due to the nature
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of the analytical model used to calculate network delays, it does not handle heavy

congestion well.

For applications that lie in the area between moderate and heavy contention,

having periods of heavy and light network traffic, using a dynamic combination of the

analytical and hop-by-hop networks is the best solution. Performance will be better

than the hop-by-hop if the periods of light network traffic are longer, while accuracy

will be higher than the analytical model if the periods of heavy network traffic are

longer. There is extra overhead associated with determining when to switch between

models in this technique, which is why it is better to use either the analytical or the

hop-by-hop models in isolation if the choice is clear.

As for the exact hop-by-hop network, it is the only choice for accurate simulation

when there is heavy contention in the network. According to the guidelines above, it

should definitely be used if the percentage of running time due to congestion delays

is above 30% or if the per-hop message delay is more than 1000 times the base delay.

Below those thresholds is a grayer area, where it may be desirable to use the hop-by-

hop network to assure accuracy, but to the possible detriment of overall performance.

It is always possible for the user of Parallel Proteus to just take stabs in the dark

and compare all the different models against the benchmark. It may even be desirable,

if a user wishes to use a specific model repeatedly, to compare it against the benchmark

and ensure its accuracy. This discussion is intended to forestall some of that testing

and provide a framework within which it can take place. The potential time savings

are definitely worth a little bit of preliminary comparison, since the typical user

plans to run multiple simulations. This is especially true with the amazing speed of

networks in modern multiprocessors, which permits a wide range of application and

machine architecture combinations to be considered low contention scenarios.
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Chapter 6

Related Work

Parallel and distributed simulation is an active field that has been in existence since

the late 1970s. Much of the activity involves military wargame simulation or special-

ized circuit or scientific simulators. The theoretical papers have tended to focus on

different synchronization protocols. Fujimoto presents an excellent survey of the field

in [Fuj90O]. However, little of this work is directly relevant to improving network sim-

ulation techniques, because it does not involve simulating interconnection networks.

The effects of hot spots in a parallel network have been investigated in [Dal90] and

[PN85].

Very few general-purpose multiprocessor program and architecture simulators

have been developed that run on actual parallel machines. This chapter discusses the

simulators most closely related to Parallel Proteus and how they handle network sim-

ulation. Legedza's modifications to Parallel Proteus' barrier scheduling mechanisms

have similar speed and accuracy goals, and I will discuss how my work complements

hers to improve overall simulator performance.

6.1 LAPSE

The Large Application Parallel Simulation Environment (LAPSE)[DHN94], devel-

oped at ICASE by Dickens, Heidelberger, and Nicol, is a parallel simulator of message-

passing programs that runs on an Intel Paragon. Its performance relies on the assump-
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tion that many message-passing numerical codes have long intervals of computation

followed by short periods of communication, so that lookahead is high. Its application

code runs ahead of the simulation process and generates a timeline of message events,

which are used to schedule periodic global barriers. In the "windows" between bar-

riers, entities perform pairwise synchronization through a system of appointments.

Each appointment represents a lower bound on the arrival time of a message, and is

updated as the simulation progresses and more accurate timing information becomes

available.

There are a number of issues that limit the applicability of LAPSE's results.

First, its primary goal is to support analysis of Paragon codes, so its network simula-

tion/synchronization protocol takes advantage of the fact that the Paragon's primary

method of interprocessor communication is explicit send/receive messaging. There-

fore, it is usually possible to predict when the effects of a message will first be noticed,

as opposed to in the CM-5, where active messages can be received at any point. If

LAPSE was extended to handle a general-purpose multiprocessor, it would need to

send far more messages in the average case and therefore experience a significant

slowdown, in order to ensure that messages were received before they could affect

the results of another processor's computation. Second, if the simulated programs

communicate frequently, lowering the lookahead, performance also drops. Third,

LAPSE uses a contention-free network model, so its results will be inaccurate for

high-contention programs.

6.2 Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel (WWT) was developed at the University of Wisconsin

by Reinhardt, Hill, Larus, Lebeck, Lewis, and Wood[RHL+93]. It is a multiprocessor

simulator that, like Parallel Proteus, runs on the CM-5. In its original design, it only

simulated shared-memory architectures, and assumed that all interprocessor commu-

nication took 100 cycles, making no attempt to simulate different interconnection

network topologies or network contention.
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Burger[BW95] later implemented an exact network simulator for the WWT that

ran entirely on one physical node of the CM-5. This solved the problem of synchro-

nizing network interactions by centralizing them on one node. The drawback to this

is that it created a serialized bottleneck as well, since he synchronized at the end of

every message quantum, ran the network processor while all the others sat idle, then

synchronized again to ensure message delivery. On a 32-processor run the exact sim-

ulator was an average of 10 times slower than the original version, and this slowdown

factor would only increase with the size of the simulation.

Burger also implemented four distributed approximations: first, one that assigned

each message a constant delay based on the result of an earlier run on the exact simu-

lator; second, a variable-delay simulator that took into account network topology but

not contention; third, a variable-delay simulator that added a contention delay based

on an earlier run of the exact simulator; and fourth, one that estimated contention

separately for each wire, based on an average of past global information. Some of

these did well on average, but when simulating applications with irregular patterns

of contention, their performance degraded severely. There was a conscious decision

to emphasize speed over accuracy, under the assumption that most users of parallel

simulators would not require exact interconnection network simulation for their work.

6.3 Tango

Tango Lite[Gol93] is a discrete-event simulator developed at Stanford that runs on a

workstation and is very similar to Proteus. Goldschmidt and Herrod worked on par-

allelizing Tango Lite, porting it to the DASH shared-memory multiprocessor. They

tried using two different synchronization methods: one that relaxed the ordering of

memory references, and one that imitated the original WWT and assumed a constant-

delay communication latency of 100 cycles. However, they had a difficult time obtain-

ing speedup and abandoned the project[Her94]. Their ability to test parallel Tango

Lite was limited by the small size of DASH, which is an experimental machine. The

largest simulations they could run were 32 simulated processors on 8 physical pro-
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cessors. Using all 8 physical processors only cut in half the time it took to run the

simulation using only one processor.

6.4 Synchronization in Proteus

Legedza examined two synchronization alternatives to periodic global barriers for

Parallel Proteus, local barriers and predictive barrier scheduling[Leg95]. These meth-

ods improve speedup without sacrificing accuracy, and complement the techniques

outlined in this thesis.

Local barrier synchronization exploits the fact that it is only crucial for a proces-

sor's simulated time to stay within one message quantum of its immediate neighbors

in the simulated network. Therefore, any given host processor only needs to partic-

ipate in barriers with its neighbors, and once it has done so, it call go ahead and

simulate through the next synchronization quantum, although one of its neighbors

may still be waiting for another barrier to complete. This looser synchronization

of the processors improves performance when work is unevenly divided among the

processors in each quantum, yet averages out overall.

Predictive barrier scheduling takes advantage of the fact that sometimes there are

long periods of time during which processors do not actually communicate with each

other. Thus, it is not necessary to actually perform barriers for every synchronization

quantum. This improves performance by eliminating many of the barriers and thus

the time spent idle while waiting for them.

Any of the network simulation techniques could run at the same time as local

barrier synchronization or predictive barrier scheduling. The combined performance

improvements might not be as dramatic as the separate results, however. For instance,

network techniques that involve lengthening the synchronization quantum increase

the chances that processors will communicate during any quantum, and therefore

decrease the likelihood that predictive barrier scheduling will find any unnecessary

barriers.
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Chapter 7

Conclusions

The choice of techniques used for parallel network simulation can have a dramatic

effect on overall simulator accuracy and performance. It is possible for a user to run

a simulation in a tenth the time and still maintain 100% accuracy, ifi the conditions

are right. It is also possible for a simulation to return completely incorrect timing

information if the wrong network simulation technique is chosen under the wrong

conditions. Users of multiprocessor simulators have typically had little control over

this important decision. They may have faced a choice between a "fast, inaccurate"

OI' "slow, accurate" network simulation, but without any information about the actual

speed and accuracy tradeoffs.

In this thesis, I have presented a variety of network simulation techniques for

Parallel Proteus, and provided guidelines to help the user choose between hop-by-hop,

analytical, topology-dependent, and a combination of those network models. If the

percentage of the total simulated running time that is caused by network congestion

delays is under 5%, the topology-dependent model should be used. If that percentage

is under 20% and the average per-hop delay due to congestion is under 100 times

the base delay, the analytical model should be used. If the total contention delay is

under 20% and the per-hop delay is over 100 times, or the total delay is between 20

and 30%, the combination of the analytical and hop-by-hop models should be used.

If the total contention delay is over 30% of the running time, then the hop-by-hop

model should be used.
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There are many opportunities for refinements or extensions to this work. Much

more thorough experimentation should be done to further specify the guidelines for

choosing between the models, and provide a graph of accuracy and performance versus

contention for each network model. All of this work was also done using virtual cut-

through routing. If a user wishes to use store-and-forward or wormhole routing,

conditions would change slightly and possibly alter the optimal guidelines. For any

given application/architecture combination, store-and-forward routing would tend

to lower the congestion seen in the network, and speed up the overall simulation.

Wormhole routing would tend to increase network congestion, and slow down the

simulation.
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