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Abstract
Magnetic bearings are selected as the physical systems because of the recent tremen-
dous research activity in their use in high performance machines. The input-output
characteristic makes such a system inherently nonlinear and unstable, so it is neces-
sary to implement a desired control to it. However, if the system dynamic behavior
and the limitations from the control system hardware as a whole are not incorpo-
rated into the electro-mechanical and the control system design, the desired system
performance may not be realizable.

This thesis treats the equations of motion of a rigid, horizontal rotor magnetic
bearing system. Through LQ feedback linearization and describing function method-
ology to approximate the saturation nonlinearity at the input level, the open-loop
system characteristic is analized. This system is then simulated to demonstrate dis-
turbance rejection properties and its robustness to parameter uncertainty and un-
modelled dynamics. Such procedure results in the information of the performance
limitation of a magnetic bearing system for the purpose of any further implementa-
tion of its control design.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Associate Professor
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Chapter 1

Introduction

The magnetic bearing setup consisting of four magnets is widely manufactured in

order to apply the non-contacting type control force to a rotor system during oper-

ation. A magnetic bearing typically consists of an even number of electromagnetics

with alternating north and south poles wrapped around the axis of a rotating shaft.

The poles are oriented facing the axis in a journal bearing and parallel to the axis in

a thrust bearing [9]. A setup generally consists of two separate systems, which are

an axial positioning system (thrust bearing), and a pair of radial positioning systems

(journal bearing). If it is necessary to protect, in event of power failure or loss of criti-

cal system, then an auxiliary bearing (catcher bearing, or backup operational bearing)

could be augmented to the system.

Journal and stator, like those of an induction motor, are stacks of ferromagnetic

lamination so thin that its eddy current effect becomes negligible. A journal is a plain

disk, while a stator is wound with magnetizing coils to form pairs of north-south poles;

each is driven by a separate power amplifier, which actively controls the current in

the coils. A rotor is suspended and stabilized within a stator. Steady state (bias)

current is induced to the magnetizing coils. The control current is superimposed on

the bias current to regulate the attractive force on the journal. The bias current is

much larger than the control current, and the total current never changes its polarity
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in a power amplifier1. If the journal excursion is relatively large in gap, then the

linearized controls are essentially uncoupled in two independent directions [3].

1.1 Advantages and Disadvantages

Magnetic bearing systems are indispensable for

1. suspending and spinning the shaft at high speed operation,

2. the ability to utilize thinner and less rigid shafts which results in reduced weight

and increased in design flexibility,

3. its frictionless nature resulting in high temperature or vacuum condition oper-

ation,

4. lubrication-free operations resulting in the savings in construction time, start-

up time (e.g. oil flushing), maintenance time and related maintenance free

operations,

5. having the adjustable damping and stiffness which mainly depend upon the

frequency,

6. permitting the active control of bearing dynamics characteristics which lead to

the foundation of an external control algorithm,

7. having the existing wide range of possible dynamic characteristics enabling the

placement of the critical operation speeds of a particular machine,

8. optimization at several different speeds by merely changing the constant system

parameters.

1Such setup satisfies the control circuitry and provides a base for a linearized control scheme.
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On the other hand, the disadvantages include

1. high initial equipment cost,

2. lack of the operating data to confirm the performance expectations,

3. unstable characteristic.

Due to their unstable nature, they require external electrical control to regulate

electromagnetic forces acting on bearings2 .

Nowadays, the magnetic bearing applications are found in some industrial, mili-

tary, and space systems. The advancement in rotor and material technology has re-

sulted in some applications such as turbines and compressors, rotating at the speeds

previously unattainable, e.g. maglev (magnetically levitated) high-speed train.

1.2 Types of magnetic bearings

Three main types of magnetic bearings [9]:

1. active magnetic journal bearings, such in turbo-machinery. Its advantages over

fluid film bearings include the low power loss, the elimination of lubrication

systems, and the control ability of the bearing forces to minimize vibration.

2. passive magnetic bearings.

3. hybrid magnetic bearings, i.e. eddy current magnetic bearings.

An active magnetic bearing generally consists of a stationary electromagnet called

stator, and a rotating ferrous material called rotor that are used to allow a shaft to

be suspended in a magnetic field. The shaft position is maintained dynamically. Such

process is done utilizing sensors that provide continuous feedback through control and

amplification system to the electromagnetic poles to suspend the shaft. One example

of its applications is a gas compressor.

2Earnshaw theorem states that stable and complete levitation cannot be achieved by solely using
permanent magnets [6].
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Based on the types of configuration (either of the two force mechanism), in con-

ventional bearing, the attractive force is generated between a magnet and a piece of

magnetic material as in fluid film, ball or rolling element devices, where load capacity

is determined by wear and heating. Such scheme is highly unstable; it requires feed-

back control to obtain a desired stiffness characteristic[4]. Another scheme is based

on the force of repulsion, which is caused by eddy current induced in a conducting but

non-magnetic rotor and some stationary magnets driven by a time-varying current.

Lately, magnetic bearings were invented where their specific load capacity is only due

to the saturation of the magnetic material.

The primary role of any bearing is to restrain the motion of the supporting ro-

tor in response to any applied loads, and also the load response to satisfy a given

set of performance constraints 3 However, no explicit load capacity requirement has

been established for stability (by the dynamic properties of the bearing itself) on the

bearings.

The rotating parts, while having the same characteristics as the stator and rotor

of an electric motor, are able to provide a long life without requirement for planned

maintenance. The bearing is not sensitive to many process fluids, or within certain

limits, to the process fluid temperature or pressure. In a submerged motor concept,

the complexity associated with gas/lubricant seals or gas buffering is eliminated. The

on-line control of the rotor allows loading, eccentricity, shaft position and vibration

to be controlled and remotely monitored for both short and long terms. The machine

vibration reduction will extend the operating life significantly and reduce cost of rou-

tine maintenance and repair. The system reliability will also be improved, and could

be enhanced further with redundant controls and power supplies. Furthermore, the

shaft speed rangle will be unlimited by circumferential speed and bearing limitations

[12].

This thesis will investigate the feasibility of electromagnet suspension of a rotating

shaft without mechanical contact. In such configuration, there are many possibilities

to implement a wide variety of modern control strategies under computer control

3 When it is achieved, the load is said to be accommodated.
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[7, 11].

Chapter two describes the dynamics analysis of a rotor system. The rotor is as-

sumed to consist of a rigid disk on a flexible shaft (Jeffcott model). Taking into

account the mass unbalance and shaft flexibility, the general fomulation is then de-

rived for this specific model of rotor. Some important dynamic features of a rotor

due to its critical speed, whirling, and asymmetric shaft are also discussed.

Chapter three describes the performance of a magnetic bearing system. The rigid

disk model derived on Chapter 2 is extended for the rigid body of a rotor to include

the gyroscopic effect motion. The inherently nonlinear system is formulated and

linearized at its equilibrium operating point. The system matrices is then set up to

analize the nominal performance.

Chapter four presents the numerical and simulation results. The LQ regulator

methodology is utilized to stabilize the open-loop system. The describing function

element to represent the current limitation at the input is then applied, and the

system is analized to determine its overall closed-loop performance.

Chapter five provides the conclusion and recommendation for further research.
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Chapter 2

Rotor Dynamics

2.1 Introduction

This chapter covers some fundamental aspects of a rotor from its static and dynamic

perspectives. Sect.2.1. illustrates the cause of static, dynamic, and flexibility im-

balances, while sect.2.2. demonstrates how to overcome such imbalance types by the

so-called balancing methods. Rotor imbalance can result in a gravity effect (sect.2.3.)

that will generate a pulsating torque on the shaft. Gyroscopic effect upon the rotor

critical speed is also determined in sect.2.4. Furthermore, the influence of asymmetry

of rotating shaft parts on the critical speeds is remarked in sect.2.5. In sect.2.6., the

flexibility of the shaft and the mount could be represented as elastic springs, while

in sect.2.7., the shaft and mount damping are represented as radial dampers. The

dynamic instability is partly determined by the shaft deflection (sect.2.8.) which de-

pends upon frequencies. More importantly, the critical speed and the rotor natural

lateral frequencies are covered in sect.2.9. Shaft whirling is mentioned in the last part

(sect.2.10.).

2.2 Imbalance

In any real system, when a disk is set on an infinitely rigid shaft, there is always an

offset distance of the center of mass from the geometric center of its concentrically
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round section due to mass imbalance. Such offset distance is called eccentricity (e)

[14].

There are three (3) types of imbalance:

1. Static imbalance, where the center of gravity is offset from the axis of rotation

while the principal axis of inertia is still oriented in the same direction as the

axis of rotation.

2. Dynamic imbalance, to describe the angular misalignment of the shaft principal

axis of inertia with respect to the axis of rotation. Both static and dynamic

imbalance are generally present due to manufacturing tolerances.

3. Flexibility imbalance due to the shaft flexibility when it is rotating near the

vicinity of its critical speeds.

Imbalance will affect the internal friction of most conventional rotors such as the

slippage between one set of contact surfaces of such as built-up rotors may not begin at

the same operating speed as between another set. Moreover, an increasing imbalance

may enact more sources of internal friction for a given operating speed [14].

In a high speed machine, any small geometric imbalance will cause a large oscil-

latory force to transmit to the supporting structure, while any large imbalance will

increase the possibility of fatigue failures in the rotating shaft or premature bearing

wear and seizure.

2.3 Balancing

2.3.1 Static Balancing

Static imbalance can be detected without acting the rotor into rotation. If a statically

imbalanced shaft with concentrically round surface is set across two perfect level, flat

and parallel supports, then the rotor will rotate until its center of the mass is at the

lowest point. The method of balancing is then to affix a mass 180 degrees away from

14
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Figure 2-1: Static balancing model

this center of mass. In practice, the rotor is propped on a balance machine and the

weights are moved around to the points where the rotor balances on a level.

The imbalanced shaft (Fig. 2-1) has the following values for the center of gravity:

xg = 0, yg = -, zg = 0 (2.1)

The center of gravity, with an additional mass affixed on the surface of the shaft

180 degrees away, is given by

M - mr
x =g= 0, Yg = +M (2.2)

where M is the original rotor mass, and m is the affixed mass. It is the interest

here that m is set at a distance equal to Me/r, so that the rotor will be statically

balanced y = 0.

2.3.2 Dynamic Balancing

In order to carry out the method of dynamic balancing [14], the rotor is mounted on

the mobile platform of a balancing machine. By a dynamometer or such, the rotor

15
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I = =..
d a Z

midstation

Figure 2-2: A rotor that is statically out of balance

is let spin up to speed and vibrate 1. The balance points are noted by computer and

the proper balance weight spots are then indicated by measuring the amplitude and

phase of platform vibration.

The components of the balancing machine include

1. mechanical platform assembly to reflect the necessary degrees of freedom of a

rotor,

2. a driving system to set a specific speed of rotation,

3. measuring devices to carefully detect the motion of the platform, and

4. an accurate device for adding and removing material at specific locations on the

rotor.

Theoretically, for a rigid rotor, the cross product of inertia must equal to zero,

that is

I. = IY = 0 (2.3)

16
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The mass products of inertia, I,, and Iy, are given by

Ixz = fv xzdm (2.4)IsZ JVldm (2.4)

·YZ = yzdm (2.5)

where dm is an elemental mass (dm = pdV) of the body. If the rotor material is

made perfectly homogeneous, then p will be constant over the volume V. The off-

diagonal quantities of I's are then equal to zero, given that the rotor is concentrically

round with respect to a normal plane to the axis of rotation.

If this is true and the x and y coordinates of the center of mass are also zero, that

is

xg = g = 0 (2.6)

then the rotor is both statically and dynamically balanced.

If the shaft center line is slightly bowed into an arc symmetrically about the

normal to the rotor midstation 2-2, then the rotor will be statically out of balance

but not dynamically 2. Any inhomogeneity would cause dynamic imbalance unless

the dynamic distribution is again symmetrical with respect to the midplane.

If a rigid rotor is dynamically out of balance, two correcting weights are affixed in

two arbitrarily positioned planes, which are called correction planes (Fig. 2-3), normal

to the axis of rotation and located at z = zl and z = z2. The correction masses are

denoted as m and m2, and located at (x, yi, zl) and (x2, Y2, z2 ) respectively. If the

original imbalanced rotor has mass M and cross products of inertia I and Izy, then

the balanced cross products of inertia (with the correction mass added), are

-newr -= Ixz + mlxlzl + m2x2z 2, (2.7)

IyneW = Iyz + mlYlZl + m2Y2Z2 (2.8)

2If there is no symmetry then there is dynamic imbalance as well.

17
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PLANE 2

Figure 2-3: Correction planes

The coordinates of the new center of mass are given by

new = Mx s + m1 + mlx + m 2 x2 (2.9)x9 M +m + m 2

new Myg - mlyl 22 (2.10)
m+M ±m 2

To have the rotor both statically and dynamically balanced, it is necessary that

xnew = 0 = mlX + m2 X2 - -M-c (2.11)

ynew = 0 m l miy 2Y2 + = -Myc (2.12)

InewZ = 0 = zI(m1 x 1) + z 2(m 2x2) = -Ix (2.13)

ynewz = 0 => Zl(mlYl) + z 2(m2 Y2 ) = -Iyz (2.14)

As implicitly shown above, the coordinates x1, x2, Yi, Y2, z1, z2 are determined by

the four equations. The implication of a mass negative quantity is that of material

18



removal. The formula proves that it is possible to balance the rotor by using two

masses, given the xc, y, I, and Iy 3.

2.3.3 Flexible Shaft Balancing

When the rotor is rotating at a speed in excess of the lowest natural frequency, it

can no longer be considered rigid, because the true position of the mass center and

its instantaneous cross products of inertia will be different for each operating speed.

In order to account for this effect, the balancing is determined according to the

particular vibration modes, assuming that the rotary inertia effects of the rotor cross

sections and the attached disks may be neglected. The drawback of this method is

that the natural vibration frequencies and mode shapes of the rotating shaft are the

same as those of the standstill shaft. The fundamental aspect of this so-called modal

balancing is to use the natural vibration modes as generalized coordinates. The modal

equations have the inherent orthogonality, making it possible to uncouple equations

and determine the necessary correction weights to balance out the reactions of the

lower modes.

Modal Balancing

A theoretical modal balancing technique may not always overcome vibration entirely

at the required range of operating speeds, even if the gyroscopic moments are com-

pletely negligible. The generalized imbalanced force at its source, weighted by each

particular modal deflection shape, acts as the only driving function in this normal

mode analysis. If the imbalance distribution has sharp variations or if its shape is like

the deflection shape of one of the higher modes, the generalized force that excites the

higher modes may be large enough. Unless those modes are included in the balanc-

ing procedure, the dynamic bearing reactions may still be large. A modal balancing

technique using only the lower modes is sufficient only if the harmonic content of the

imbalance distribution is not too large [14].

3In practice, it is difficult to determine these predetermined constants experimentally without
already having balanced the rotor.
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Harmonics Balancing

The method of harmonics balancing, as combined methods of balancing states is

stated as follows: a massless flexible rotor holding r concentrated masses, supported

on b bearings, with an imbalance, can be entirely balanced by weights distributed in

n = r + b different planes along the rotor length. This method of complete balancing

eliminates any dynamic reaction in any bearing at any rotating speed, given that

the imbalanced masses are small compared to the whole mass of the rotor, and that

the flexure due to the imbalance is small compared to the eccentricities of the static

imbalance. For futher information in this harmonic balancing method, one may refer

to [14].

2.4 Gravity Effect

If the axis of rotation were horizontal, and the disk had imbalance, the force of

the center of gravity would become a transverse excitation source. Viewed in the

stationary frame, the force is directing downward, but in the rotating system, it is

sinusoidally varying with frequency of vibration, that is

-mg sinwt, in the j direction (2.15)

-mg coswt, in the k direction (2.16)

A different way of looking into this gravity effect on a rotating horizontal shaft is

to consider the frequency of the exciting force is zero in a fixed coordinate system,

but once-per-revolution in the rotating system. In other words, the imbalance would

initiate a once-per-revolution pulsating torque on a horizontal shaft.

2.5 Gyroscopic Effect

If the disk doesn't remain in one plane when it is rotating (particularly at higher

speeds), then the so-called gyroscopic effect must be taken into account of the rotor

20
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Figure 2-4: Balanced disk on a massless, horizontal elastic shaft

dynamics. Loewy et al. states in [14] that gyroscopic effect may increase or decrease

the critical speeds of a rotor significantly, depending upon the operating speed, size

and geometry of the gyroscopic disks, and disk location on the rotating shaft. The

gyroscopic moment is determined as proportional to the time rate of change of the

shaft's transverse angular displacement and directed 90 degrees from that of trans-

verse angular velocity. Therefore, it is necessary to consider the simultaneous bending

of the shaft in two planes, while the polar mass moment of inertia about the shaft

center line is an important parameter also.

According to Dimentberg [5], the movement can be in the direction of the rotation

of the shaft, which is called forward precession, or in the opposite direction, which

is called reverse precession. If the disk rotates with Q and deviates about the z axis

by an angle p, then the movement tends to displace the positive end of the z axis

towards the 0t axis.

Defining the disc mass as m, the equatorial and polar moments of inertia of the

21
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Figure 2-5: Gyroscopic Movement

disc mass as Ie and Ip, the displacements of the disc center along the fixed axes and

the angles of rotation as x, y, cp, and Ty, while the angular speed of the disc as ,

the projection of the force F and the moment L of the movement on the axes are

then given by Fig. 2-5,

Fx

Fy

Lx

LY

IPn

Ln

= ma

= Iex + IpQ(py

= lepy - IpQa

=0

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Equating the time derivatives to the projections and the moments of the external
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X
0

Figure 2-6: The Fixed and Rotating Coordinate Systems

forces respectively, acting on the disc or, which is the same, to the values with the

opposite sign of the projections and the moments of the inertial forces, transmitted

from the disc to the shaft, the equations for the disc movement are

mx = -Pr, (2.23)

my = -P, (2.24)

Ie4,- IpQOl = -My, (2.25)

Ie¢X + IpQy = -M. (2.26)

with -IpQo, and IpQy as the gyroscopic terms.

2.6 System Identification

Following the assumptions made in [14], the static location of the standstill rotor is

at 0, i.e. x = y = 0 or v = w = 0. During the rotor movement, the shaft axis is

considered deflected from this standstill location. The rotor is running at a constant
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angular velocity, i.e. 0 = Qt.

r = ( + )i + j (2.27)

= (x + e cosQt)x + (z + e sinQt)y (2.28)

i =v ii + bj + Qk x [(e + v)i + wj]

= ( - Qw)i + ( + v) Qbij (2.29)

Differentiating again, the above equation results in the acceleration of the rotor

mass, M. After simplification, the equation is

r = (j - Q2v - 2Qtb - 22 e)i + ( - Q2W + 2Qvi)j (2.30)

= (i - eQ2 cosQt)x + ( -_ eQ2 sinQt)y (2.31)

The elastic restoring force acting on the system is provided by the shaft stiffness

f, = -(vi + wj) (2.32)

= -(xx + yey) (2.33)

where c is the approximated linear spring constant.

The internal friction force, which is viewed as the friction associated with the

rotating coordinate system, is given by

fi =-c,(9i + bj) (2.34)

- -c[(± + Qy)x + ( Q - Qx)y] (2.35)

and the external friction force, which is viewed as the friction associated with the

fixed coordinate system, is given by

f, = -C[(0I - Qw)i + (b + Qv)j] (2.36)
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=-ce(±x + y) (2.37)

where ci and c, are the approximated internal and external friction constants, respec-

tively. In the case of rotors of magnetic bearing systems, ci and ce are zero, due to

the frictionless nature of the systems.

The relationship between (x, y) and (i, j) coordinate systems is established via

rotational transformation [8] as follows;

x cosq -sin v

[Y j sin cos w j

Since the equation of motion in each frame of reference is

mi = f + fi + fe, (2.38)

then

Fixed coordinate system

i + Ce ru cio2+ + -- + y= 2 e coSQt, (2.39)
m m m

+ Ci + - = Q2e sinQt, (2.40)
m m m

or

d
dt

x

x

y

0 1 0 0

_ - Ci+Ce _c-iQ 0
m m m

0 0 0 1

ci o 0 C+C.
m m m -

x

Y

Yl

0

cosQt

0

sinQt

Rotating coordinate system
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+ ____ + ( - ) v - 2 - w

m m mm m T/

0

-(i - Q2)
0

_-ce
m

1

C_ i+Ce
m

0

-211

0

cen
m

0

0

2Q

1

_ ci+ce
m

Using complex representations =

Fixed coordinate system

y + jz and u = v + jw, the equations become

ci + ce. iQ =
ijS ii - 3- g 2ee3at

m m m

Rotating coordinate system

u+ cU + ( - _ 2)U + 322 = e (
m m m

Then, a particular solution is obtained by setting 7 = oe3a t and u = uoe3at:

Q2 ;
710 = ( Q2 + ~ ( :

and

-Q2z= A(42e_ O)2 + ( 2f
2.7 Asymmetry Of Rotating Shaft Parts

2.43)

2.44)

2.45)

2.46)

Here is the work of Ariaratnam [1]. He analyzed the vibration of unsymmetrical

rotating shafts whose flexural rigidities are unequal in the principal directions. The

bearings are considered symmetrical in this case.
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(2.41)

(2.42)

d
dt

v

w

wb

v

w
+

0

1

0

0
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From Fig.2-6, it is understandable when the shaft is assumed to be unsymmetrical,

the equations in (y,z) will contain periodic coefficients, while those in (u,v) will not.

Obviously, the latter is easier to handle. The equations are then

ii - Q2(u + al) - 2v = (a u - ) - a(i - gv) - i - g sinQt (2.47)
EI 04

Vi _ 122(v + a2) + 2F =--a (v - vo) - a(b + Qu) - Pi - g cosQt (2.48)

where m is the constant mass per unit length of the shaft, and El 1,2 are the flex-

ural rigidities of the shaft cross section for bending in the planes of OXV, OXW,

respectively.

In deriving the above equations, it is assumed that

1. the deflection amount of u, v, u0, and v0 are assumed to be small so that the

Euler-Bernoulli theory of bending may be applicable,

2. the damping forces acting on unit length of the shaft are assumed to be viscous

and containing the external damping of magnitude (-ma) times the transverse

velocity of E relative to the fixed axis, and the internal damping of magnitude

(-m/) times the transverse velocity of the cross section relative to the rotating

axis.

By assuming Q = a = 1 = uo = vo = 0, the free, undamped, transverse linear

vibrations in the principal directions of a perfect standstill shaft of unsymmetrical

cross section are given by the equations as follows:

EI1 a4uu/i+ - =0 (2.49)
v + 4 0 (2.50)

m 194

From Eq.2.49, the solutions are of the form

u(x, t) = (x) cos (t + so) (2.51)
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The spatial function (x) satisfies the equation

d40 k40 (2.52)
dx4

where

mw 2=k - (2.53)
EIx

From Eq.2.52, the general solution is

O(x) = A cos kx + B sin kx + C cosh kx + D sinh kx (2.54)

where A, B, C, D are constants obtained from the limit conditions at the bearing

locations.

Assuming that the mass unbalance is located at (a,, a2) in the direction of (i,j),

the functions can be expanded as series in the characteristic functions as follows;

00

al(x) = E a,,iq (x) (2.55)
r=l

a2 (x) = Zar2 Or(X) (2.56)
r=l

oo

U0(X) = E erlr(X) (2.57)
r=l
oo

vo(x) = e r () (2.58)
r=l

where the Fourier coefficients anr, ar2, erl, and e2 are

ar = a(x)qr(x)dx (2.59)

ar2 = JOa 2 (x)Or(x)dx (2.60)

erl = j el(x)qr(x))d x (2.61)

er2 = e2 (x) Or(x)dx (2.62)
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The equations of motion are then obtained as follows:

i + ( + )ir + (W2 _ 2)r -2Q - Qqr
= Q2 arl + Wrerl - gIrsinQt

7r + ( + )7r + (2 2 )7 + 2Qkr + aQtr

= Q2ar2 + W2er2 - g1rcost

or in the matrix equation,

r
&7hr

(r

0

0

-(:x- )
-- al

0

0

a-2

- ( - )

0 O 0

Q2 0 

0 Q2 0

0

0

0

Wr2

arl

ar2

erl

er2

1

0

-( + 3)

-2Q

-gIr

0

1

2Q

-( + )

0

0

sinQt

cosQt

c,=&oefficients of the external and internal damping,

w,=the natural frequency of transverse vibration

JD foL Qr(x)dx, the characteristic mode.

respectively

For asymmetrical shaft, wrl wr2, and the equations have to be treated as simul-

taneous differential equations and solved by elimination of variables.

2.7.1 The Free Vibration

For the free vibration of the rotating shaft, the equations of motion are given by the

complementary functions of Eq.2.63- 2.64; the general solutions are

;r + (o + 0)&r + (21 - Q2)r - 2Qr - OiQ7nr = 0
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d
dt

(2.63)

(2.64)

+
r

jr

?r

where



7 + ( + p)1r + (ew2-)r + 2Q + ±aQ = 0

A type of possible solutions are of the form

&'(t) = PeAt, r (t) = QeAt

where A, P, and Q are constants, providing the characteristic equation

[A2±(a+ )A +(w _ Q-2)] [A2±qY-)+(w - 2)+ + + rl ) [ + ( + ±) + r2 0

+(2QA< + a!Q)2 = 

After simplification,

A4 + 2(a + )AX3 + + + 2Q 2 + (a + 5)2] A2

+ [(a ± ,+)(w21 + Wg2 - 2 2) + 4aQ2] A

+((W - Q2 )(2 - _Q2 ) + ay2Q2 = 0

(2.65)

(2.66)

(2.67)

According to Routh 's stability criterion, the solutions will be bounded at all times

if all roots of A have nonpositive real parts:

(c + )(W2, + W 2- 2Q2) + 4aQ2 > 0(~~~ + )r2 (2.68)

(wr 1 - 22)(r22 - Q2 ) + a2Q2 > 0 (2.69)

Due to the frictionless nature and vacuum operating condition of magnetic bearing

systems, both external and internal damping are absent, i.e. c =

characteristic equation (Eq. 2.67) is then reduced to

A4 + (W71 + w2 + 2Q2 )A2 + (2 1 - Q2)(W2 _ Q2) = 0

= 0, = 0.
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and the corresponding roots are

1,2 = I Lw + 2) 
2 i Q2(W21 + Wc22) + ( -w 2 (2.71)

If Q = 0, then A 2 are real and unequal. If w 12# Q :A w22, then Eq.2.67 gives four

fundamental solutions. When Q is outside the finite intervals Wrl < Q < wr2, (r =

1, 2, ...), A2 2 are both negative (all values of A are purely imaginary), and the solutions

will be bounded.

If = Wrl, w,2, (r = 1, 2,...), A = 0 is a double root of Eq.2.70, and the solutions

are of the form

&(t) = P1 + P2t, 71r(t) = Q1 + Q2t (2.72)

which are clearly unbounded due to the factor of t.

The particular solution is then obtained from [1] as follows:

E2 + W2 2 Q42
~2arl -ierl a ,. 2

C,(t= + e 2 gq)' sinft, (2.73)Wr2 _ Q2 Wr 1W2 2Q2 (WU + 2 sint (2.73)
Q2a2 + wr2er 2 -4Q 2

7r(t) = gr2 - 122-2 2(w 2 g' cos+t, (2.74)-a - Wr2 2a( +

r = 1,2, ...

2.7.2 The Forced Vibration

Recalling Eq.2.63 and Eq.2.64, i.e. the particular equations representing the forced

vibration due to unbalance, initial lack of straightness, and gravity. This forced

motion will be unbounded for some causes as follows:

1. shaft imperfections, i.e. unbalance, initial lack of straightness.

Q = wrl, 1 = W2, r = 1, 2, ...

are considered the critical speeds,
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2. effect of gravity

WrlWr2= 2+2)X r-=1, 2, ...

is considered the secondary critical speed.

2.8 Shaft and Mount

2.8.1 Flexibility

Consider a shaft configuration which consists of a disk, a massless elastic shaft con-

strained to stationary (,y) or rotating plane motion (i,j). The bearings are placed

at the origin, and the shaft is infinitely stiff in torsion. The shaft transverse (bending)

flexibility allows translational motion of the disk in the plane of rotation, which may

lag (Fig. 2-7a), lead (Fig. 2-7b) by angle ;b, or be coincident with the shaft rotation

(Fig. 2-7c,d). Here, the effect of shaft bending flexibility could be represented as a

linear spring. If the shaft bending rigidities are not polar symmetric, then there would

be different elastic restoring forces, although the magnitude of the displacements in

the direction of the linear springs were all equal. A shaft with significant difference

in stiffness in any two directions would be subject to instabilities.

The flexibility effects due to shaft elastic properties and in the shaft bearings are

quite similar. If the shaft has polar- symmetric stiffness and the bearing spring rates

are isotropic, these two dimensional descriptions become interchangeble. The shaft

stiffness would provide a steady radial force, and the bearing springs k = k would

provide the same steady resultant radial force.

2.8.2 Damping

The structural damping of the shaft is represented as a radial damper (Fig.2-8) which

is parallel with the springs, acting as a powerful dissipative medium. These damping

forces, whether isotropic or not, act very differently from friction in the rotating shaft.
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Figure 2-7: Possible configurations for steady motion of a disk

As in the case of the shaft and mount flexibility, any constant amplitude circular whirl

would not cause oscillation in the shaft spring, but continuously cycle the springs.

2.9 Instability

A system is considered unstable, when it is not subjected to external forces and has

only free motion due to its initial conditions, but its motion develops indefinitely with

time. Consider a disk that is perfectly balanced but contains a frictionless, radial slot,

in which there is a mass m, restrained by the spring k, as shown in Fig. 2-9. The

radial equilibrium of forces on the mass could result from a balance of centrifugal and

elastic forces.

mQ2 (e + v) = kv (2.75)
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Figure 2-8: Damper and Spring

or

mQ 2e e
v = - MQ2 = kk - m 2 1in2

The elastic deflection v will be unbounded for any initial deflection e if the rota-

tional speed Qd = y- , which can be considered as critical. If the mass is rotating

about a mean position e = 0 without vibration, then the Newton's second law yields

mi) = -kv + mQ2v (2.77)

or

+ (k _ 2 )v = Om (2.78)

Viewed in the rotating system, the rotating natural frequency is

,_ - 2 = wn 1WnR = - (2.79)

It is obvious that the divergence speed Q2d occurs when the rotating natural fre-
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x

Figure 2-9: Rotating disk with a spring-restrained mass in a radial slot

quency is zero, when viewed in the rotating system. The solution of v is

v = volei w Rt + v0 2 e- ic ' r t (2.80)

which shows that if Q > d = ~, one of the two terms will diverge. Thus, fd

represents the limit of a semi-infinite region from FQ = Od to Q = co.

2.10 Critical Speed

Rotor has certain speed ranges in which vibrations of large amplitude could occur,

causing to operate harshly, transmitting large forces to the bearings and exhibiting

considerable deflections of the rotor. The critical speed vibration requires external

excitation such as provided by rotor unbalance. If the operating speed coincides with

the rotor critical speed, then the large forces on the bearings may possibly cause

bearing failure, or the resulting excessive rotor deflection may wipe out the internal

labyrinth seals causing rotor failure and affecting unit efficiency. Dunkerley theorizes

that if the rotor had any unbalance (which is generally unavoidable), then it would

excite the natural lateral frequencies, generating high vibrational amplitudes if the
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Figure 2-10: Disk on flexible mounted bearings

operating range should coincide to any of these values [13].

Fig. 2-10 above approximates a magnetically levitated horizontal shaft with mass

unbalance, where linear springs k and ky represent the magnetic bearing supports

in the direction of x and y axes, respectively. Assumably, each pair of supports for

each axis could be represented by only one linear spring. The x, y axes are fixed at

the undeflected bearing location. Letting k = ky = k, and Q = Qc = k/rn (the

undamped natural frequency as viewed in the fixed system), then, the amplitudes

will grow unbounded in the absence of damping, and the solutions will be [14]

x 2e (A + t) sin Qct + B cos Qlt, (2.81)
2

Y -Q e (A' + t) cos Qt + B' sin Qt, (2.82)
2

where A, A', B, and B' depend upon the displacements and velocities of x and

y at time t = 0. The sum resulted of the two motions is a diverging spiral, so

a, is also considered as a critical speed, and numerically equal to an undamped

natural frequency. However, if Q > Qc, then the motion will be bounded, and the

corresponding ranges will be where the instabilities predictably will occur. Thus,

only at the speed Q2 will result in a whirling divergence linearly with time, as viewed
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in the rotating system. In case of the slotted mass, whirling divergence will result

exponentially with time beyond the speed of 2d, and its rapidness will be determined

by how far the unstable range of Q > Qd is entered.

2.10.1 Coupled Critical Speed

To investigate the rotor response during transition, the rotor angular displacement of

the rotating coordinate system is considered to include a specified angular acceleration

as [14]

¢ = aot + at 2 . (2.83)

Hence,

d[l] = Q = flo + 2at, (2.84)
d2

[t2] = Q = 2. (2.85)

The angular momentum of the disk about its center of mass is equal to its polar

moment of inertia times the angular velocity of the disk. The total moment of force

acting about the center of mass is

Tk - ei x fe = (T + enw)k. (2.86)

The total moment must equal to the rate of change of the angular momentum,

which is d [L= + IpQ];

T = -New + Ip (2.87)

= ,e(x sin - y cos) + IQ (2.88)

Now, the coupled equations of motion lateral bending-torsion for an unbalanced

disk at the center of a flexible shaft is considered, where the shaft is not rotating at a
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constant speed. If the instantaneous angular rotation rate Q2 is provided by a steady

state 1o added by a small perturbation , then the linearized equations of motion

in the coordinate system affixed to the shaft will be as follow (after dropping the

multiplication terms of the first derivatives)

from Eq. 2.41 and Eq. 2.42

Ci + ie + ( - 2 - 2¢Qo)v - e (Qo + )w - 2Qmo
m m m

= (0L + 2Qo0)e, (2.89)

' + Ew + (- - 2 - 22o)w + (Qo + )v + 2Qo = °, (2.90)
m m m

and from Eq. 2.87

Ip - rc.w + r,0 = T =0, (2.91)

where the applied torque is assumed to be zero in generating these equations.

Assuming that a particular solution for the unbalance force consists of constants

for v, w, and 0. Substituting into the equations after dropping the first and second

derivatives, yields

-Q0)vo - Me{wo = n2 (2.92)m m
I- Q2)wo + eQOvo = 0, (2.93)m m

-ieWo + X0±b = 0 (2.94)

and then

K -vo _)2 + (o)2 (2.95)WV (. - _ ) 2 + ( -')2wo = - (2.96)

= --Wo. (2.97)

Assuming that ICe << 1, then wo, and consequently 4o will become very large
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if 0 = , which is the undamped natural frequency of a critical speed. It shows

that the classical critical speed is unaffected by the addition of torsional stiffness.

Morever, the presence of external damping Ce will avoid the occurence of such critical

speed.

The secondary critical speed due to gravity is unimportant, because there is no

resonance phenomenon at an operating speed near half the critical. If these conditions

are affected by the coupling of bending and torsion, then the equations of motion of

the centrally located disk on a horizontal shaft are

mx = -x, (2.98)

my = -y- mg, (2.99)

and

Ip + SAX + nCe(x sin - y cosb) = 0 (2.100)

Adding the terms of -mgsin(+Qot) and -mgcos(+Qot) on the right-hand sides

of the rotating frame equations respectively, and introducing the complex notations

u = v + 3w, and il= v - 3w, the equations of motion become

Ci + Ce (I 2 2e;(Q ~)+ m i + (m- -2o) + 32Qou + 3 (Ro + )um m m
= (Q2 + 2Qo)E - 39e-3(O+ ot), (2.101)

Ip + 3 (u - ii) + Koq = 0. (2.102)

2.11 Whirling

Whirling is defined as the angular velocity of the rotor mass center. It is considered

as a self-excited phenomenon. The exciting force for the case of shaft whirling, is

provided by the frictional force, referred to as rotating or rotary damping, generated
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between two contacting surfaces when undergoing relative sliding. When the preces-

sion rate is smaller than the rotational speed, the rotary damping force becomes a

source of excitation, causing the whirl amplitudes to increase. If the rotor centerline

is moving with the same angular velocity as the mass center, then it is considered

as synchronous precession; otherwise, it is nonsynchronous precession. It is generally

noted that whirling always occurs above the first critical speed [14].

Observing transverse shaft vibration in two mutually perpendicular planes (Fig.

2-11), the frequency and phasing at a given point along the shaft length determine a

closed curve, called Lissajous figure. It occurs both in the fixed and rotating frame.

If it happens in a rotating system and with non-zero phase, then the shaft center

will appear to rotate. Viewed from the rotating system, if the rotation is in the

same direction as that of the true rotational velocity of shaft, then it will be called

a forward, advancing, or progressive mode. Otherwise, it will be called a reverse,

backward, or retrogressive mode.

Describing the classical shaft critical speed phenomenon, forward whirl is a lim-

iting case of zero apparent rotation of the shaft center in the rotating system. Loewy

et al. in [14] states that in a more complex phenomena, the forward or backward pre-

cession, viewed from the rotating system, may occur at integer multiples of rotational

speeds.
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Figure 2-11: Lissajous figures traced by a point on a shaft at a given longitudinal
station undergoing transverse vibratory motions at the same frequency on two planes
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Chapter 3

Performance Analysis

3.1 Nonlinear System

3.1.1 Current Limitation

To eliminate the complexity by multi control inputs of Ileft and Iright, and to ensure

that power is not wasted due to unnecessary work done by the bearing, the following

relationship described in [10] between the control uy and the coil currents Ileft and

'right is used,

Case 1. When control uy is between -uo and uo, i.e. -uo < uy < uo

(3.1)Ileft = Io - 0.5uy, Iright = Io + 0.5uy

Case 2. When control uy is below -uo, i.e. uy < -uo

Ileft = -Uy, Iright = 0

Case 3. When control uy is above u0, i.e. uy > uo

Ileft = 0, Iright = U1y

(3.2)

(3.3)
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Ilower or I left

i

Iupperor

Figure 3-1: The Relationship between the Control u and the Coil Currents II and Iu

and similarly for uz with its corresponding Ilower and Iupper:

Case 1. When control u, is between -uo and uo, i.e. -uo < u < uo

Ileft = Io - 0.5uz, Iright = Io + 0.5uz (3.4)

Case 2. When control u, is below -uo, i.e. uz < -uo

Ileft = -uz, right = 0 (3.5)

Case 3. When control uz is above uo, i.e. u, > uo

Ileft = 0, Iright = uz (3.6)

Both relationships uy = Iright - Tleft and uz = Iupper - Ilower always hold among the

three cases. The consequences of the three equations relating control uz to amplifier

current is that the lower bearing does not produce unnecessary forces when the abso-

lute value of the control u is above u. If the rotor moves down from its equilibrium

value (towards the direction of gravity) then the attraction force created by the lower

magnets will pull the rotor down even further. Therefore, by making the current to
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the lower magnets go to zero, when the rotor deviates from its equilibrium value (in

the direction of gravity), the lower magnets are prevented from creating any forces to

further increase this deviation. The control current in the upper magnets will create

the necessary upward force to bring the rotor back to its equilibrium value (case 2).

The equation in case 3 will assure the same type of force creation if the rotor moves

up (against the direction of gravity) from its equilibrium value. Therefore, the three

equations will prevent the system from wasting any power. The above relationship is

graphically shown in Fig.3-1.

To consider also the effect of the permanent magnet, then the equivalent bias

current can be defined as io = I0 + ml and the equivalent nominal air gap distance

can be defined as Xo = ho + RoA

3.1.2 Magnetic Saturation

The force generated by the magnetic bearings is calculated as:

F = 1 2(3.7)
!oA oA

where 01 and 02 are the magnetic fluxes in bearing 1 and 2, respectively.

To make the analysis and synthesis general and independent of units, [20] defined

the dimensionless variables as follows:

F* = Fpo Normalized Magnetic Force (3.8)

ii* = - Normalized Control Current (3.9)
io

x* = - Normalized Displacement (3.10)
Xo

2xoBsatB* t Normalized Bias Flux Density (3.11)
n/uoio

Then, F* can be written as follows:

F* (1 + i*)2 (1 - i*)2 hen B ndB*(1*) B(1 + X*)- 1when < B * < B*
B*2(1 - *)2 B*2(1 + X*)2' 1 ;* - 1 +* -
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F* (1 + i*):
B*2 (1 - x

B'(1-F* =1- (
B*2 (1

or neither bearing is saturated,
2 1 i* 1 - i*

-1, when 1 x * < B* and + 

or lower bearing is saturated,

)i*)2 ' when 1x * > B* and <
+ X*)2 1 -X 1 + *-

or upper bearing is saturated,

F* = 0, when >B1 * > B* and >
or both* bearings are saturated.X*

or both bearings are saturated.

For the control input gain not to change its sign during the control action, d*- > 0

should always be imposed as follows

1 + x* 2 + 2x*i* > 0, if neither bearing is saturated (3.16)

(3.17)i* > -1, if lower bearing is saturated

i* < 1, if upper bearing is saturated. (3.18)

When both magnetic bearings are not saturated, utilizing the Taylor's expan-

sion with respect to x* and i*, the second order terms are cancelled out due to the

symmetry of the magnetic bearings. The linear first order term is given by

(3.19)

where i* is constrained by Eqn.3.12-3.15 and can be written as

F* 24 (x* +i*)FI*= y

-Bx* - B* + 1 < i* < B*x* + B* + 1,

-B*x* - B* + 1 < i* < -B*x* + B* - 1,

B*x* - - 1 i* < -B*x* + B* - 1,

-1if -1 <x* < 
-1 1if B <x*<B
1Bif "* <*1

The range of allowable current is approximated by limiting li* to within 1

the saturation and force degradation would not occur and to provide a good

(3.20)

(3.21)

(3.22)

so that

control
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Figure 3-2: The control current setup in the radial direction

characteristic:

lil < o, (3.23)

3.2 System Identification

In this section, the rotor model equation derived from Chapter 2 is extended. The

2-dimensional disk on flexible shaft is now a massive cylindrical rotor (infinite number

of disks) which retains the inherent flexibility of a shaft. Using Eq.2.39, and [20], the

equation of motion for one bearing in the x and y direction are given by:

d2x
mdt 2 = -Fleft + Fright + EFdx (3.24)

d2y
mdt =-Fower + Fupper + Fdy - mg (3.25)

Here, Fdx and Fdy are assumed to consist of the projected radial force (due to the

eccentricity ) and the exogenous disturbance force, Fext. Considering that Fi =

-Filzft + Firight, and Fyi = -Fio,,, + Fiuppe, (where i = 1, 2), the Newton equations
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for this two bearing setup becomes

mx = meQ2 cosQt + F,, + F,2 + Fd (3.26)

my = mei 2 sin2t + Fvy + Fy2 + Fdy - mg (3.27)

where

Fifagnetic force by the left magnet,

F,j6pagnetic force by the right magnet,

h0 =nominal bearing radial clearance,

x =deviation of the shaft from the bearing center, (x component),

y =deviation of the shaft from the bearing center, (y component),

m=rotor mass,

Faadisturbance force (x component),

Fd:disturbance force (y component),

g =gravity.

The torque equations are obtained from [16] as

It( - I2 = (It- Ia)rQ2sinQt - aFx1 + aFx2 + Fdx (3.28)

ItO + IaQ,' = (It - Ia)rTQ2cosQt - aFy + aFy2 - IFdy (3.29)

where

Ia=axial mass moment of inertia,

It=transverse mass moment of inertia,

Do =roll angle,

0 =yaw angle,

Q=spinning speed,

E =static unbalance,
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r =dynamic unbalance,

a =bearing set location from X'Y' plane,

1 =exogenous disturbance force location from X'Y' plane.

Defining a new set of coordinates xi, yi, i = 1, 2 which represent the displacement

of the rotor relative to the x and y bearings in each radial bearing set, respectively,

and using the following transformations:

x 1 + 2 Y1 + Y2x= 2 ' Y 2 (3.30)

x - x2 Y1 - Y2 (331
2a 2a

the equations of motion in terms of the magnetic bearing local coordinates x1, yl, x2,

and Y2 can be obtained as follows;

+e 2 cosQt + (1 - a)arQ22sinQt (3.32)

QI 1 a 2 1 2 1 at
-2'- (-: ]1 - ]2) "JF' )Flr -- ( F d2It m It m it m It

+e 2cosnt - (1 - l)aTrQ2sinQt (3.33)

QIa~ 1 a2 1 a2 1 at
v~ = 2i ( - ) + - i + ( + )FY2 + ( )Fdy

+e 2sinQt + (1 - i)ar2cos t- g (3.34)

QIa 1 a2 1 a 2 1 al
2 = 2-t (l - 2 (m- -YI- )FY2 + ( + )Fdy21t m it m t m I

+eQ2sinQt - (1 - )arQf2cost - g (3.35)
It

Using the input relationship of Fig.3-1, the magnetic forces are obtained as

Case 1. When control u is between -uo and uo, i.e. -uo < u < uo

F~, = -Fileft + Firight
IoAg N2 (Io - 0.5uxi)2 I+oAgN2 (Io + 0.5u(3)2 .36)

(ho + )2 (o - X,)2
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4.

z

Figure 3-3: A Rotor Model

Fyi =-Filower + Fiupper

poAgN2 (o - 0.5Uy)2

(ho + yi) 2 (ho -

Case 2. When control u is below -uo, i.e. u < -uo

Fxi =-Fif
- oAN 2(Io - 0.5uz,)2

oAN2(Io - 0.5ui) 2

Case 3. When control u is above uo, i.e. u > uo

i = Firight

/=oA

FYi = Fpioper

V2 (Io + 0.5u,i) 2

(ho - i)2

IoAgN 2 (Io + 0.5Uyi)2

where i = 1, 2.
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+ 0.5uy)2
(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

, oAgN 2 (1-e
Y)2



At steady state, the current in the upper magnets are positive and the current in

the lower magnets are zero, which pertains to Eq.3.36 for the x direction, and Eq.3.41

for the y direction.

Substituting the Fxi and Fy, into the equations of motion and defining the func-

tions f(.) for the right hand side of Eq.3.32-3.35, the equations of interest are then

given as follows:

fX 1(xl, x2, Yl, Y2, Ux1, u 2) = i

fJX2 (Xl, X2, Y1, Y2 U l, Ul 2 ) =2

fyl (xl, x 2, Y, Y2, Uyl uy2 ) = 1;

fY 2 (l, 2, Y1, Y2, Uyl, uy 2) = 2

(3.42)

(3.43)

(3.44)

(3.45)

where the equilibrium values of the current and states are

Ileft = Iight = I4o

Iupper = Iyo, Ilower = 0

x=y=O

(3.46)

(3.47)

(3.48)

The linearized model of the state equations are obtained by

+ flay 1 6Y2

f2+=zl a 2

aY2

afyl Yl 0]fy, ax 0

x + aflT0
Ii e o

+ af o
Ib2 

Jxl +af2 a
I aX1 0

z- Y2 +
0 920

Jxl + afy a

+ afyl Y2 + afyl
O9Y2 o a2

afz I 2
aX2 

+af,

Y2 +faUl Ul -1 U2+ 0~~0

1+ -afX2 X2+a 2

6Y2 + Ou 6u ,
au 1 0

afyl X2 +
fl 5X2 "]

6Y2 + afyl Uy

afL2 

fx2 

X2 + af, 
0 aY1 0

Jux2

652 + af2
a+ ay 0

afY Il, X20 afy, a
ax2 0o c

+ afYl u
0 Y2

Iyl 0

6yi+ a 6Vi
Ovi 0' Iay

(3.49)

3Yl + af1 &6Vi1

(3.50)

6y + af'I |05Y1+~ y 0~5v
(3.51)
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afxy 2
Yxl 0

3X1 + Y__af,2 a +
all ]o

afY2 aY2 0
-& 0

afY2 J aX2 + af 2
aX2 OY2 +

2v + afy 2
Ouy 0

:d2 + afY2
afY1 0 Yv 0

(3.52)

Defining

1 a 2

C1 -- -
m It
1 al

C3 m It'

Ia

It,C6each term of the f becomes

each term of the fl becomes

a

Dx
0

a fzlI

f l o

ax 2 0

0y fx. 

ay l 0

a fz 

ayi2 0

a fxl
a/2

1 a 2

C2 = - - -
m It'
1 al

C4 = ---
m It'

2K(Io - 0.5uz1 )2

m(ho + XI) 3

4KI,
mh3

=0

C2 2K(Io - 0.5 2 )2

2 , m(ho + x 2)3

4KIoz
= c2 mh

=0= 0

= 

C5

= O0

=-C5

2K(Io + 0.5u, )2 \ 
m(ho - X1 )3

(3.53)

(3.54)

2K(Io
m(h

+ 0.5ux2)2 \

0 -X2)3 /

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
0
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= cl K(o - 0.5uzl) +m(ho +I)2

= Cl
2KIo
mho

K(o - .5uX2 )
c2 m(ho + x 2)2

=2 mho
mho

K(Io + 0.5uxl)

m(ho - )2

(3.61)

K(Io + 0.5ul2 )
m(ho- X2)2

(3.62)

=c 2 (2K(o - 0.5ux,)2 +
2 m(ho + l) 3

4KIo2
= C2 3

mho

=0

(2K(Io 0.5UX2)2
=1 ~ m(ho + x2) 3

4KIor
= Cl

mh3

=0

=0= O

= -C5

= O0

= C5

(K(Io - 0.5u1 l)
=c 2 m(ho + XI) 2

2KIoz
= C2 mh2

mho

= C(K(Io - 0.5u2)
m(ho + X2) 2

2KIox
= C1 mh2

mho

2K(Io + 0.5u, )2

m(ho- X1 )3

(3.63)

(3.64)

+ 2K(Io + 0.5z 2) 2
m(ho-x2)3 )

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

K(Io + 0.5u 1 )
m(ho - xl) 2

(3.71)

K(Io + 0.5u 2)
m(ho-X2 )2 J

(3.72)
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au flI

afx
aux2 0

fX2 becomes

dly 0I

a~-wf~

afx

&x2
Oai2 f xi

0

0o

a

ay9fxl0

f2 1 0

a fxl
0 0afx~

au) 2 00u l



fy, becomes

ax ifyi =0 (3.73)

fyi d= -C5 (3.74)

I' fYl0 = C5 (3.76)

2Ko
0 2 mh3 (3.77)

a,agj fyh =0 (3.78)

a |y =C2K(o 0 + 05Uy 2) 2

ay2 f = cl m(ho - X2)3

2KI2 (= c mh--- (3.79)

mh3
dajy fyl = 0 (3.80)

a f = K(10 + 0.5uyl)
auy1 ~l lo C2m(ho-yi) 2

0= 02 (3.81)

a f = C K(Io + 0.5UY2)

U Y2 o m(ho - Y2) 2

= cl Klo (3.82)
mho

and, f2 becomes

,9x, fY2 0 = 0 (3.83)

ay fi d= C5 (3.84)and, fy2 becomes~~~~
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=0

=- C5

=- C

= Cl

=0

= C2

2K(Io + 0.5uyl)2

m(ho - yl)3

2KIoy

mho

2K(Io + 0.5uy2)2

m(ho - x2) 3

mh 

=0

K(Io + 0.5uy,)
= C1 m(ho - yI) 2

KIo
= c mho2

K(o + 0.5uY2)
2 m(ho - y2)2

KIoy
= c2 mh2mho

k3 = 2KIo
mh '
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a. f2 I
ax2 0

a

ayfY2 

a f y
0y 0

a fy 2

a fy 2o

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

a2 fY

a f y2

auYg l

(3.90)

a fy 2 0

(3.91)

Setting

kl = 4K10
mho 3

(3.92)

2KIox
k2 = 21

mho2

KIo
mho



the state equation form of the linearized equation can then be obtained as follows:

O 0 0 0 1 0 0 0

O 0 0 0 0 1 0 0

O 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

clkl c2 k1 0 0 0 0 C5 -c 5

c2 k1 Clk1 0 0 0 0 -C 5 C5

0 0 c2 k3 ck 3 -C 5 c5 0 0

O 0 clk 3 c2k3 c 5 -C 5 0 0

ux2 +
Ux

Uyl

U

0 0
0 0
0 0
0 0

C3 0

C4 0

0 C4

0 C3

O O 0 0

O O 0 0

O O 0 0

O 0 0 0

Clk 2 C2 k 2 0 0

c2 k2 ck 2 0 0

0 0 C2 k 4 c 1k4

0 0 c1k4 c2 k4

B L

0

0

0

0

&Q2CosQt + c6aTQ2 sinQt

eQ2CosQt -c 6aTQ2 sinQt

eQ2 sinQt + c6arQ2 cosQt - g

eQ 2sinQt - c6 aTQ2 cosQt - g

d
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X2

Yi

d Y2

dt 1

X2

Y2

-j2 

X1

X2

Yi

Y2

aii

Y2

I

x A

Fdz

Fdy

Fd



or in the compact form as

fx= Ax+Bu+LFd+d (3.93)

The matrix A can be segmentized as follows

A l l A12

A 2 1 A 2 2

where

All

A1 2

A2 1

A 22

= 0,

= I,

clk,

c2kj

0

0

0

0

C5
TO

c2k,

cl1 k

0

0

0

0

C5
TO

0

0

c2 k3

Clk3

C5

-C 5

0

0TO
TO

0

0

lk 3

C2 k 3

-C 5

C5

0

0

The matrix A 2 1 and the matrix A 22 represent the stiffness and the gyroscopic

effect of the system, respectively. They show that the total force in one axis direction

is only affected by the spring-effect forces in its own axis and the damping forces in

the other axis. The gyroscopic coupling effect appears as the constant c5 = a's in2It

the matrix A22 , due to the rotation speed Q.

The transfer function matrix from input to output is obtained by performing

Laplace transform as follows:

[sI - A]x =Bu+LFd+d
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=* x = [sI - A]-'Bu + [sI - A]-LFd + [sI - A]-ld

and in the final form,

x = G(s)u + G(s)B-'LFd + G(s)B-ld (3.94)

where G(s) = [sI - A]- ' B.

The disturbance rejection transfer function is

Td(S) = [sI - A]-' L (3.95)

having the same characteristic roots as the open-loop transfer function, but the dif-

ferent transmission zeros as depending upon the matrix L.

The characteristic equation is

(S2 - kl(c, + c2)) (S2 -k 3(C1 + c2)) [(S2- kl(c, - c 2)) ( + k3(cl + c2 ))- (2c 5)2] = 

(3.96)

First criterion of Routh-Hourwitz to determine the system stability is the require-

ment that all coefficient be positive. Here, the system is proven to be unstable,

because of the violation to

k(c + c2 ) + k3( + 2) < 0 (3.97)
1 a 2 1 a 2

C1 < c2 - + < (3.98)
m It m It

3.3 Summary

The rotor model has been extended from its simple Jeffcott assumption to take into

account its massive body dynamics. Each of the magnetic bearing attracts the body

to provide support in the x and y direction, one pair for each end. Their locations

are equidistant from the rotor geometrical center. The rotor static unbalance, and
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dynamic unbalance are also accounted into the system equation. Moreover, some

exogenous disturbance force are anticipated by also including the forces into the

formulation; their locations are assumed to be known in advance.

In order to analize the performance, the system nonlinear equation is linearized

at its equilibrium point. The system matrices are then developed for some known

constants corresponding to this equilibrium point. From the system equation, open-

loop transfer functions from every specific input type to the system can be obtained.

Due to the current saturation in each bearing, the performance is limited. This

limitation will be modeled as nonlinearity elements, and included in the system to

study how the overall system performance will deviate from the desired shape. This

subject is covered in the next section of this thesis.
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Chapter 4

Simulation and Results

4.1 Introduction

The formulation in Chap.3 is exercised using the provided physical constants of the

system at the MIT lab. The open-loop transfer function is closed utilizing LQ reg-

ulator algorithm, whose performance is nominally satisfied. The describing function

(quasi- linearization) is applied to approximate the current input limitation and the

overall performance of the closed-loop system is then analized.

4.2 System Parameters

The paramaters used in this study are

Input current in horizontal axis,

Input current in vertical axis,

Mass,

Air gap,

Gap surface,

Coil turns,

Permeability,

found in reference [10]:

I0, = 0.36 A

-IT = 1.25 A

m = 2.2 kg

ho = 2.5 .10 - 4 m

Ag = 9.75 .10- 5 m2

N = 100 turns

IL = 1.26 .10-6N/A2
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Transversal mass of inertia,

Axial mass of inertia,

K = poAgN2 = 1.23 .10-6Nm2/A2

It = 8.285 .10- 3 kg.m2

I,, = 1.555 .10-3kg.m2

Applying the provided constants into the system equation, the plant matrices are

then obtained as follows:

0

0

0

0

-2256

1909!

0

0

0

0

0

0

S.1 0

9 0

-13600

115130

0

0

0

0

2.3873

-0.28201

0

0

0

0

0

0

0

0

115130

-13600

0

0

0

0

-0.28201

2.3873

0

0

1

0

0

0

0

0

-70.383

70.383

0

0

0

0

0

0

-1.3600

11.513O
11.513

0

1

0

0

0

0

70.383

-70.383

0

0

0

0

0

0

11.513

-1.3600O
-1.3600

0

0

1

0

70.383

-70.383

0

0

0

0

0

1

-70.383

70.383

0

0
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0

0

0

19099

-2256.1

0
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0 0

0o 

0 0

0o 

0.65305 0

0.25604 0

0 0.25604

0 0.65305

0

0

0

0

6e22cosQt + 0.056Tr22sinQt

eQ2 cosQt - 0.056rQ2 sinQt

eQ2sinft + 0.056rQ2cosQt - 9.8

el22 sinQt - 0.056- 2cost - 9.8

The corresponding state variable of the plant equation is

= [xl x2 Y Y2 l 2 yl Y2]

where xl,2, Y1,2 are the rotor position in x and y axis coordinate, respectively, and

xi,2, Yi,2 are the rotor's velocity viewed from the x and y axis, respectively.

The corresponding input variable of the plant equation is

U =[ Uxl Ux2 Uyl UY2

where u(.) is the input current corresponding to the axis designated by (.).

The disturbance input variable is

Fd = [ Fdx Fdy ]

where Fd(.) is the disturbance input parallel to axis d(.).

The open-loop poles of the plant equation, as shown in Fig.4-1, are

8.1411 10-15 + 382.12, +129.78, +137.21, +318.64

Obviously, the plant is unstable due to some of the open-loop poles at the right
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-300 -200 -100 0 100 200 300 400
Real axis

Figure 4-1: The open-loop roots

half plane, i.e. s = 129.78, 137.21 and 318.64. There are also two unstable complex

poles, i.e. 8.1411 - 10-15 3382.12, due to the gyroscopic effect.

4.3 LQ Regulator

The special properties of ferromagnetic materials used and the unstable nature of

magnetic bearings will result in several performance limitations. Therefore, to sat-

isfy certain performance specifications including the system stiffness, bandwidth, and

rejectable disturbance, an integrated consideration on the system dynamics, control

algorithm, and hardware design is absolutely necessary.

Recalling from Eq.3.93, the plant model in state space form is

x = Ax + Bu + LFd + d (4.1)

y = Cx (4.2)

The purpose here is to devise an LQ feed-back controller that minimizes the
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r +

Figure 4-2: Linear Quadratic Regulator Design

quadratic cost function

J = lim ] [x (t)Qx(t) + u (t)Ru(t)] dt (4.3)

where

Q = Q' > , R=R' > O (4.4)

under the assumption that [A, B] is controllable.

There are model uncertainties, non-linearities, various kinds of disturbances and

possibly many constraints on realistic solutions; none of which can easily be given

a mathematical representation. Here, it is of interest in using the LQ theory as

a method for synthesizing a controller for the magnetic bearing system, with the

state weighting matrix Q and the input weighting matrix R which appear in the

problem formulation considered as tuning parameters which are to be adjusted until

a satisfactory design is considered.

For most physical devices, there is a maximum limit at which the input level

cannot increase. Hence, some large control gains may not be realizable if applied for
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the systems utilizing such devices. Therefore, the control input has to be limited,

and this is imposed by the matrix R, which is generally calculated as 1I, where p isp

an arbitrary constant. In order to avoid such saturation to occur, p can be set to be

really small (p -+ 0) i.e. the solution of a cheap control.

The solution of minimizing the cost function J is to let the control signal u be a

linear function of the state:

u(s) = -Kx(s) (4.5)

where the state-feedback matrix K is given by

K = R-1B'P (4.6)

while P satisfies the algebraic Riccati equation

A'P + PA - PBR-1B'P + Q = 0 (4.7)

and under the condition that P = P' > 0.

The matrix K exists, and the closed-loop system is internally stable, provided the

state-space [A, B] is controllable. Of the plant of interest,

rank[ B AB A2 B ... A 6B A7B]=8 (4.8)

so the assumption of controllability is satisfied here.

From Fig.4-3, defining GLQ(S) as the LQ loop transfer function, SLQ(s) as the LQ

sensitivity, and CLQ(s) as the LQ complementary sensitivity transfer function, the

LQ-based design system has the following asymptotic behavior:

lim KLQ(s)G(s) = GLQ = K((s)B (4.9)
p-4O

lim S(s) = SLQ = (I + GLQ)- 1 (4.10)
p-+O

lim C(s) = CLQ = (I + GLQ)-'GLQ (4.11)
p-O
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Figure 4-3: LQ Loop

As will be shown later, the singular values of the complementary sensitivity CLQ, and

the sensitivity SLQ, are useful in the evaluation of the robustness, tracking ability,

and disturbance attenuation of the system.

The LQR designs have built-in performance and robustness guarantees indepen-

dent of the plant and design parameters. The designed controller is similar to a

regulator where the system output follows a desired position indicated by the refer-

ence input. The procedure allows one to choose the design parameters and improve

the closed-loop dynamics to achieve the desirable performance.

For this particular LQR design, the matrix Q provides equal weight for the position
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E

Real

Figure 4-4: LQR Design: Closed-loop Poles

states and the velocity states, i.e.

10000000
01000000
00100000
00010000
00001000
0 0000100
00000010
00000001

(4.12)

and p is arbitrarily chosen to be 10- 3, i.e.

1R =-I=
P

1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

(4.13)

The designed system is stable since all of the LQ closed-loop poles are in the
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left-half plane, as shown in Fig.4-4, which are

-0.21755 3j382.12, -129.75, -129.81, -137.18, -137.24, -318.48, -318.80

The closed-loop dynamics with disturbances (Fig.4-2) is defined as

x(t) = [A - BK]x(t) + LFd(t)

y(t) = Cx(t)

Solving the

follows:

13722

2278.1

-3610.4

3610.4

algebraic Riccati equation, the optimal control matrix is obtain as

2278.1

13722

3610.4

-3610.4

-4513.0

4513.0

12848

7152.3

4513.0

-4513.0

7152.3

12848

98.410

24.877

-23.197

23.197

24.877

98.410

23.197

-23.197

4.8102

-4.8102

28.332

34.435

-4.8102

4.8102

34.435

28.332

and then

A-BK =

0

0

0

0

-13017

-3825.0

-46477

46477

0

0

0

0

-3825.0

-13017

46477

-46477

0

0

0

0

12047

-12047

-78471

-23058

0
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A plot of the singular values are shown in Fig.4-5 - 4-6. Recalling that the LQR

design controller is similar to a regulator where the system output follows a desired

position indicated by the reference input, the output of the system is able to perform

well as shown in the complementary sensitivity CLQ in Fig.4-6. The magnitude of
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CLQ equals approximately one, which shows that the closed-loop system is able to

follow the desired trajectory. The roll-off rate is -20 dB/decade, which indicates good

robustness to unmodelled high frequency dynamics. The sensitivity SLQ equals one

for all frequencies, meaning that fairly good disturbance rejection is achieved for the

class of step disturbances (but not as yet desired, as shown in another LQR design

in the next subsection). As the overall design, both of the sensitivity SLQ and CLQ

satisfy the LQ-designed system performance and robustness requirements as described

in [2]. The LQ-design disturbance-to-output frequency response has small gains of

3.9733-10 - 5 and 6.8560. 10-6 at low frequency and attenuates the disturbance input

at high frequency. The peak occurs the critical frequency of 382.12 Hz.

In order to investigate robust stability and robust performance of the proposed

control method, the simulation results for p = 10- 3 are obtained using the designed

controller matrix. In order to test the LQR-design system for any initial condition,

the rotor is brought to the farthest possible position; that is, the rotor is almost

touching the sensor, and with no initial velocity, i.e.

xo0= h -h o-h 1x4]

where ho is the maximum bearing clearance, i.e. 0.25 mm. From Fig.4-7, it shows that

the LQR-design system is somewhat able to bring the rotor into its stable position in

the x axis with a relatively smaller amplitude of continuing oscillation.

1Under the condition that the matrix R = R' > 0, diagonal, the LQR design closed-loop system
guarantees

1. system performance

amin [I + GLQ(S)] > 1 i am,, [SLQ(s)] < 1 (= OdB) (4.14)

2. system robustness

min [ + Gl 1 (s)] > amax [CLQ (S)] < 2 (= 6dB) (4.15)

Thus, it deduces from the above that the system is characterized by scalar gain margin in the range
of to oo, and phase margin in in the range of-60 to 60 degree.2 r h)ar la~rr~llI~~I arj r-v~ uu~rc
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4.3.1 LQR Design with Relative Stability

For the main purpose of reducing further the continuing oscillation from an initial

rotor condition, i.e. start-up process, the quadratic cost function is modified as

J = lim e2t [x'(t)Qx(t) + u'(t)Ru(t)] dt, b > 0 (4.16)
T-4oo

Here, -b is the right end limit of the real axis, meaning that all of the resulting

closed-loop poles will reside on the left-side area of this limit, i.e. R(s) < -b.

In order that the cost is kept minimum, J has to remain finite. Since b > 0, the

quadratic integrand has to decrease faster than e-2 bt, i.e.

x'(t)Qx(t) + u'(t)Ru(t) < Me-2bt (4.17)

where M is a positive constant.

Then, it is true that

R (A, [A - BK]) < -b (4.18)

where Ai, i=1,2,... are the characteristic roots. Thus, both the closed-loop state, x(t),

and the closed-loop control, u(t) decay faster than e-b t.

The modified algebraic Riccati equation is then

[A + bI]'P + P[A + bI] - PBR-1B'P + Q = 0 (4.19)

The similar assumption as the pervious section still applies here. For p = 10- 3 ,

and b = 100, the A matrix is now [Aplant + 100I] and

rank[B AB A A2B ... A6B A 7B]=8 (4.20)

so the assumption of controllability is satisfied.

With the similar matrix Q and matrix R as those in the previous section (Eq.4.12
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and Eq.4.13), the resulting closed-loop poles, as shown in Fig.4-9, are

-129.78, -137.21, -200.00 + 2382.12, -318.64, -329.78, -337.21, -518.64

Solving the modified algebraic Riccati equation, the optimal control matrix is

obtained as follows:

K=

26207 2122.0 -7612.4 7612.4 188.87 29.419 5.9655 -5.9655

2122.0 26207 7612.4 -7612.4 29.419 188.87 -5.9655 5.9655

-4446.7 4446.7 14561 11715 -28.769 28.769 23.801 58.665

4446.7 -4446.7 11715 14561 28.769 -28.769 58.665 23.801
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and then

A-BK =

0
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A plot of the singular values are shown in Fig.4-10 - 4-11. The loop transfer

function GLQ starts off at DC gain of 3.5556 and 0.23504 at low frequencies, and

stays constant until the frequency reaches the root at 382.12 Hz where a peak occurs.

The roll-off rate is -20 dB/decade at high frequencies. The sensitivity SLQ has DC

gains at 0.82237 and 0.38839 at low frequencies, a valley at the root frequency of

382.12 Hz. The sensitivity SLQ and Sdy are small at low frequencies which means

good disturbance rejection for the class of step disturbance. The sensitivity SLQ is

also very small at the pole frequency of 382.12 Hz, which means suppresion of the
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Figure 4-11: LQR Design: Frequency Domains, p = 10- 3 , b = 100

imbalance forces. The complementary sensitivity CLQ has DC gains at 1.6144 and

0.1905 at low frequencies (which indicates good tracking in the frequency range),

and elimination of the peak at 382.12 Hz of GLQ. Thus, the closed-loop system

has managed to avoid any possible physical damage due to the peak at 382.12 Hz

as shown in the previous LQ design closed-loop system. The roll-off rate is -20

dB/decade, which shows good robustness to unmodeled high frequency dynamics.

The system performance for disturbance rejection is good, provided that the DC

gains are considerably small, i.e. 1.5766 · 10 - 5 and 4.3408. 10-6, and rolls off at 40

dB/decade at high frequencies.

The simulation result is again obtained for this designed controller as shown in

Fig.4-12 with the initial value of

X0= ho -ho h -ho 01x4 

where ho is the maximum bearing clearance, i.e. 0.25 mm.

Then, it shows that this particular LQR-designed system is able to bring the rotor

into its stable position within a relatively short period of time, i.e. 3T = 0.03 sec,

where T is the designated time constant = 0.01 sec. The designed system has also
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Figure 4-14: LQR Design with Saturation Limit

been tested with several different configurations of initial condition, and the results

prove satisfactory.

4.4 Saturation Limit

In order to make the describing function method to work, it is necessary that the

input to the describing function be a sinusoidal with no harmonics. This is not the

case for the input in general. However, since most of the open-loop transfer functions

of any systems could be represented as low-pass filters, the necessary assumption is

satisfied.

The method of generating the closed-loop transfer function to include the effect of

a describing function is credited to [15]. Referring to Fig.4-15 with a SISO perspec-

tive, (i.e. observing the input and output as scalar numbers rather than vectors) the

method works as follows: for a selected describing function of N, transfer function of

Ir is plotted. Due to the interdependency of e and N, once the value of N is known

then also the value of e is known and constant along the curve. Since the transfer

function is the magnitude ratio of e to r, it means that for a constant e, the value

of r is changing according to the change in magnitude ratio. Once, the desired r
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with its corresponding w is located along the curve, the magnitude ratio can then be

projected to get the closed-loop curve, i.e. U. This procedure is repeated for many

different values of N for greater degree of accuracy.

Although the method was originally derived for SISO cases, it could be extended

to MIMO cases as well. The difference is that the use of singular values to generate

the frequency response plots for MIMO cases, instead of merely taking the scalar

magnitude gain of the desired transfer functions in SISO cases. The transfer function

relating uc and r is dependent upon the amplitude of E, the descriptor of an as yet e.

In order to overcome this circular difficulty, amax and amin of Tre are generated with

e and N treated as an independent variable state vector due to their interdependency.

Since the contour of Truc for constant r is desired and the interested value of r is

known in advance, the points on the amax [Tre] and amin [Tre] curves which correspond

to this particular r could be identified. These points then are transferred to generate

Umax [TrUC] and amin [Tru] curves and connected to provide a contour for the given

input value of r. Since N is constant along any of the Umax [Tre] and amin [Tre] curves,

the value of e at the input of describing function is constant along each curve. By

knowing r and the relationship of e(s) = Tre(s)r(s), the desired e, the corresponding

N and the frequency w can be located from the Tre curves. Those value are then

transferred to True curve to plot the closed-loop transfer function with constant r.

From Fig.4-14, it is obtained that

e(s) = [I + Kb(s)BN(s)] - r(s) (4.21)

uc(s) = [I + K((s)BN(s)] - 1 [KP(s)BN(s)] r(s) (4.22)

Defining Tre(s) as the closed-loop transfer function from input reference r to

tracking error e, and Tru (s) as the closed-loop transfer function from input reference

r to uc, the two transfer function of interest can now be written as

Tre(s) = [I + KI(s)BN(s)] - 1 (4.23)

Tru (S) = [I + K4D(s)BN(s)]- 1 [KI(s)BN(s)] (4.24)
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Figure 4-15: Closed-loop System

The describing function, N(X), of a saturation function is defined as follows2 ;

N(X) = [arcsin ( + ( 1- (4.25)

where

a = limit,

k = linearity slope,

X= input amplitude.

The saturation value N will change depending upon the error e, which in turn

depending upon the reference input r. Therefore, one might expect to have different

closed-loop frequency responses for different values of r. In order to observe the

difference, plots are generated for r = 0 .34x1,0.5I4x1, and k = 1,2. Note that

because only the frequency response value which is affected by the describing function

is desired to know, the plots only show the points where the saturation limit are reached

(the nonlinear gain). Some gaps in the plots of the frequency response should not be

considered as NaN (not a number)'s nor zeros, but conform to the values as the system

2See App.A
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Figure 4-16: A saturation nonlinearity

undergoes in the linear range, i.e. no saturation limit.

4.4.1 Results

1. Fig.4-17: r = 0.5, k = 1

The maximum singular value has DC gain of 1.6844 at low frequencies, sep-

arating into three different gain branches at the frequency of approximately 4

Hz. The highest jump goes to the gain value of 3.2301; the middle branch in-

creases to the gain value of 2.2844, while the lowest gain stays the same constant

value as the DC gain. These three branch then merge at the roll-off rate of 20

dB/decade at high frequencies.

2. Fig.4-18: r = 0.5, k = 2

The DC gain of the maximum singular values is 6.4873 at low frequencies. At

the frequency of approximately 7.4057 Hz, the gain separates into two, where

the low one decreases to the gain value of 4.8240 while the high one stays the

same constant value as the DC gain. These two branches merge at the frequency

of approximately 24.6 Hz at the gain value of 4.78 and roll-off at the rate of 20

dB/decade at high frequencies.
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Figure 4-18: Closed-loop transfer function, r = 0.5, k = 2, tol = 0.03
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Figure 4-19: Closed-loop transfer function, r = 0.3, k = 1, tol = 0.01

3. Fig.4-19: r = 0.3, k 1

The frequency response has DC gain of 3.9083 at low frequencies, separating

into two gains with the high one jumps to the gain value of 5.3838 at the fre-

quency of 2.9392 Hz. Both gains then merge at the frequency of approximately

similar to the low frequency DC gain value of 3.9083.

4. Fig.4-20: r = 0.3, k = 2

The constant DC gain is 10.8243 at low frequencies. Similar to the case of

r = 0.5, k = 2, the gain divides into two at the frequency of approximately

2.5235 Hz, with the low gain decreases to a gain value of 8.0313. Both gains

then merge at this low gain at the frequency of 12.7505 Hz.

4.5 Stability: Popov method

In order to check whether the system will exhibit some self-sustained oscillations

called limit cycles, the extension of Nyquist criterion called Popov stability criterion

can be applied. Beforehand, the variables in the loop (Fig.4-15) must satisfy the
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Figure 4-20: Closed-loop transfer function, r = 0.3, k = 2, tol = 0.03

following relations as in [2, 19]

=. e(jw) = -Uc(W)

= u((w) = N(E)e(jw)

== uc(jw) = K( (w)B u(3w)

GLQ (sw)

Thus, uc(Jw) =-GLQ(Jw)N(E)u,(Jw). Because uc(Jw) =A 0, this implies

GLQ(3J)N(E) + I = 0

For MIMO cases, the stability checking is to satisfy

det [GLQ (JW)] = -det [N-1(E)]

Fig.4-21 shows that for the frequency range of from 10-2 to 106 Hz, the GLQ

curve doesn't intersect the curve of N - 1. The beginning tip of the curve GLQ has
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Figure 4-21: Stability Checking

a limit of the negative x axis, and in this particular frequency range it is found to

be -7.7760 - 2.1875 10- 3. Therefore, one may conclude that based upon Popov

stability criterion, there is no possibility that any limit cycle will occur in the system.

4.6 Stiffness

In this rotating shaft case, the system stiffness at its rotational speed is of concern.

In order to find the system stiffness at the rotor operating frequency range, the LQR

methodology is utilized with Fd synchronized with the rotor speed Q such as follows:

H(Q) = [G(Q)S(aQ)B-1L] (4.28)

Fig.4-22 shows the variation of the stiffness with frequency range from 10 - 4 to 104

Hz. Since the frequency of interest is in the range of 0 < Q < 45,000 rpm or 0 < Q <

750 Hz, a vertical dashed line is added as the upper frequency limit in the graph, to

show that only the left-hand side of the dashed line is of interest.

The overall minimum stiffness is 2.2409 N/m. At the highest operating frequency

of 750 Hz, the minimum stiffness is found to be 5.5363 N/m.
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Figure 4-22: Minimum stiffness, without any describing function element

4.6.1 Results

1. Fig.4-23: r = 0.5, k = 1

The DC gain starts at the value of 2.0988 at low frequencies. It splits at the

frequency of 4.4464 Hz, where the low one decreases to the value of 0.4845

being the minimum stiffness over the whole frequency response, the median one

decreases to 1.5165, and the high one stays the same constant value as the low-

frequency DC gain. The three gains then emerge and increase at the rate of 20

dB/decade at high frequencies.

2. Fig.4-24: r = 0.5, k = 2

The frequency response has DC gain of 0.5484 at low frequencies, being the

minimum stiffness over the whole frequency response. It splits into two at the

frequency of 1.4584 Hz, where the high one reaches the gain value of 1.0750. The

gains then emerge and increase at the rate of 20 dB/decade at high frequencies.

3. Fig.4-25: r = 0.3, k = 1

The frequency response DC gain is 1.1460 at low frequencies. The gain splits

into two at the frequency of 2.9392 Hz, where the low one decreases to the

gain value of 0.5346 being the minimum stiffness over the whole frequency re-
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Figure 4-23: Minimum stiffness, r = 0.5, k = 1, tol = 0.006
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Figure 4-24: Minimum stiffness, r = 0.5, k = 2, tol = 0.03
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Figure 4-25: Minimum stiffness, r = 0.3, k = 1, tol = 0.01

sponse. The two then merge to the gain value of 0.9483 at the frequency of

approximately 87.056 Hz.

4. Fig.4-26: r = 0.3, k = 2

The DC gain at low frequencies is 0.5793, being the minimum stiffness over the

whole frequency response. It splits at the frequency of 1.4481, where the high

one reaches to the gain value of 0.6994. This high gain splits at the frequency

of 2.5235 Hz, where the high one goes to 0.7586, which in turn, splits at the

frequency of 5.2920 Hz where the high one reaches 0.9735. The gains then merge

to the gain value of 0.8663 at the frequency of 40.555 Hz.

4.7 Disturbance

Disturbance-to-output transfer function matrix, Sdy(S)

y(s) = Sdy(s)d(s) (4.29)

Sdy(S) = C [sI - A + BN(E)K]- 1 L (4.30)
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In the rotating machine, the periodic disturbance comes from the rotor imbalance,

which is the d term in the equation of motion. This disturbance input is synchronized

with the rotational speed, Q.

4.7.1 Results

1. Fig.4-27: r = 0.5, k = 1

The frequency response has a DC value of 1.73. 10- 5 at low frequencies, splits

into three branches at the frequency of 4 Hz, with the highest gain at the value

of 1.686. 10-4, the median gain at 2.84. 10- 3, and the lowest gain stays similar

as the constant low-frequency DC value. The three gains merge and roll-off at

the rate of 20 dB/decade at high frequencies.

2. Fig.4-28: r = 0.5, k = 2

The DC constant gain is 2.988. 10- 4 at low frequencies. The gain splits into

two at the frequency of 7.4057 Hz, where the lowest gain decreases to 5.68. 10- 5,

and the highest gain stays similar with the low-frequency DC gain. The two
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Figure 4-29: Disturbance-to-output, r = 0.3, k = 1

then merge and roll-off at the rate of 20 dB/decade at high frequencies.

3. Fig.4-29: r = 0.3, k = 1, tol = 0.01

With the DC gain at the constant value of 4.91 10- 5, the frequency response

has high jump to the value of 2.544- 10- 4 and the low one stays at the same

value as the low-frequency DC gain. The two gains then merge at the frequency

of approximately 87 Hz.

4. Fig.4-30: r = 0.3, k = 2, tol = 0.03

The frequency response starts with DC gain of 4.713 10-4 at low frequencies.

The gain splits into two at the frequency of 1.4481 Hz, with the low gain de-

creases to 3.784- 10- 4 and the high gain stays the same as the low-frequency

DC gain. The low gain then splits again at the frequency of 2.5235 Hz with the

lower value goes to 2* 10- 4 . As the frequency is increased, the latter gain splits

at the frequency of 5.2920 Hz, with the lower value goes to 7.38 10- 5 .
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Figure 4-30: Disturbance-to-output, r = 0.3, k = 2

w/o DF r = 0.5 r 0.3
o1 DI k---2 1 L k-- 2

amax [Tru,] 1.6144 1.6844 6.4873 3.9083 10.8243
ama [Sdy] 1.6.10 - 5 1.73. 10- 5 2.988' 10- 4 4.91-10 - 5 4.713 10- 4

H, N/mrn 2.2409 2.0988 0.5484 1.1460 0.5793

Table 4.1: DC gains

4.8 Summary

Clearly, increasing the slope k of the saturation limit element will result in higher

gain as expected, and smaller stiffness. On the other hand, increasing the reference

point r, results in the decreased response amplitude of Tru and Sdy-

For some frequency responses that have multivalued gain, the median gains are

considered unstable due to their flexibility to switch rapidly between the high and

low gains. Although the median gains are clearly shown in the plots, they cannot be

observed experimentally.
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Chapter 5

Conclusion and Recommendation

A rotating shaft operating under suspension of magnetic bearing system is taken

into consideration. Its open-loop instability is characterized by the occurence of high

peak at the frequency of 382.12 Hz. In order to bring the rotating shaft up to the

highest attainable operating frequency of 750 Hz, the shaft has to pass the peak at the

frequency of 382.12 Hz. Since such peak might cause damage to the system due to the

considerably high gain, the frequency is considered critical. The situation might be

avoided by having a feedback for the open-loop to bring about stability, and eliminate

the high gain.

A magnetic bearing system setup by induced current is analized in its linear

operating range. The system has performance limitation primarily due to the induced

current saturation in the bearings, hence, limiting the amount of eletromagnetic force

needed to suspend the rotor. The system is synthesized using the LQR methodology

to succesfully meet the nominal performance stability. The LQR methodology allows

one to choose the bearing design parameters so that the unstable, open-loop system

has the capability to achieve performance specifications. The effect of saturation

limit is then approximated using describing function method, that provides linear

scalar values for the nonlinearity element for the purpose of performance analysis.

The existence of a saturation limit element causes the closed- loop system to be-

have in a nonlinear manner. One of the nonlinear characteristics that can be observed

here is jump resonance. As discussed in the Sect.4.4, 4.6, and 4.7, the frequency re-
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sponse plots show several multivalued responses as a result of the saturation limit and

may cause instability of the closed-loop system. Such phenomena may be avoided by

applying more damping to the system1 .

One of the shortcoming of the method proposed by [15] is that it works nicely in

SISO cases, but not quite satisfactory in MIMO cases. The singular values are seem-

ingly obtained only for greater frequency range of either the maximum or minimum

values, but not both. The reason is due to the fact that the way the method works

is to project the magnitudes of the reference point r to the tracking error e in order

to obtain the magnitudes of the closed-loop system. i.e. from the reference point r

to the output u. The magnitude ratio of e may not cross with one of the singular

value curve; hence, no intersection points exist.

The important use of prefilter should be considered in the high stiffness system

so that the magnetic bearing would not be saturated during the initial startup. In

the calculation procedure to determine the system identification, some parameters

are ignored such as the possibility of magnetic flux leakage, which would make the

bearing force capacity less than desired. In order to overcome this, a compensating

factor can be used in the design parameters.

As mentioned in the issue of balancing, the flexibility of rotor would be a problem

when the rotor spins in the viscinity of one of its critical speeds. Although the rigid

body assumption is no longer valid in this situation, the methodology presented can

still be applied. In this case, the problem only needs to be reformulated by considering

modal information such as the natural frequency, mode shapes and modal masses of

the rotor, as addressed in the method of modal balancing.

1See [17].
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Appendix A

The Describing Function of

Saturation Nonlinearity

As nonlinear systems are different than any linear counterparts, there is no possibility

of generalizing from the responses for any classes of inputs to the response of any

other input of nonlinear systems. In the absence of input, a nonlinear system has

an important variety of response characteristics. The system might respond to small

initial conditions by returning in a stable manner to rest, and it might respond to

large initial conditions by diverging in an unstable manner, or it might lead to a

continuing oscillation which does not depend upon the initial conditions.

For a feedback-system configuration which is of primary interest to study mag-

netic bearing systems, the signal at the input to the nonlinearity depends both on

the input to the system and the signal that is fed back within the system. The

forms which may be expected to appear at the nonlinearity input are those which

are resulting from the filtering effect of the linear part of the loop. This leads to de-

rive quasi-linear approximators for nonlinear elements, which describe approximately

the transfer function characteristics of the nonlinearity, and are termed describing

functions. This most widely used method makes possible to determine whether or

not there is danger of sustained oscillations or destructive instability and how such

behavior can be avoided.

The accuracy of this method is primarily determined (Fig.A-1) that
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X sin( (o t)
N.L.

X sin( o t) N(A, )
M sin( (o t+ 4)

Figure A-1: A nonlinear element and its describing function representation

1. the harmonics at the output can be neglected,

2. the piecewise linear approximation of the nonlinear element is valid for analysis

in the range of interest,

3. the input of the nonlinear element can be approximated as a sinusoid.

Assuming that the input to the system is sinusoidal, defined by

x(t) = X sin wt (A.1)

the describing function or sinusoidal describing function of the system is defined

to be the complex ratio of the fundamental harmonic component of the output to the

input. According to [18, 17],

N=whL e(A.2)x

where

N=describing function,
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x

8

Saturation

l

Figure A-2: A saturation nonlinearity

X=amplitude of input sinusoid,

yfamplitude of the fundamental harmonic component of output,

qbl=phase shift between the fundamental harmonic component of the output and the input,

O+rpn(-A).

Each component of the output is given by the formula for the Fourier coefficients:

yn (t)

= An cos nwt + Bn sin nwt

where

(A.3)

= Yn sin (nwt + n)

An = y(t) cos(nt) dt,

1 Bn= -
7lf 'r

(A.4)

(A.5)

(A.6)y(t) sin(nt) dt.

Referring to the characteristic curve (Fig. A-2), the gain of the linear region of
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the saturation nonlinearity is k. Since the characteristic curve is skew symmetric, the

Fourier series expansion of y(t) involves only the odd harmonics, Bn.

Therefore, yl(t) can be written as

yl(t) = Yi sin wt (A.7)

where

YT = B =- Ar
7r O

The equations of the output result are

y(t) = 
kXsinwt,

kS,

y(t) sin t dt

for 0 < t < tl

for t t< 

and

Xsin wtl = (A.9)

Putting into account the symmetry over the four quarter of a period, the output

Y1 can be obtained by integrating the equations as follows:

, l = 4 kXsin2tdt + - k5sintdt,
7 O 7r tl

2Xk
or

[ sin-l + 1 ()2]+X ~, (A.10)

The relative magnitudes of Yl and 3 are also of interest:

(A.11)

2kX
Y3 = 3X

37r

sin 2t2
2 +

sin 4t2
4

(A.12)

where is the describing function, and I 1 measures the accuracy of the describing-
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Figure A-3: Saturation; axisl = a, axis2 = Magnitude

function analysis.

The describing function N of the saturation nonlinearity and the relative third

harmonic may then be given by Fig.A-3;

N = 1 - [ arcsin( ) + 1- )2]

-2k [t2 + 2 ] (A.13)

and

y3 (1\ 2 sin2t2 + sin 4t2 (A.14)
Y = 6 2t2 + sin 2t 2

where

t2 = arcsin (Z) (A.15)

Due to the nature of this nonlinearity, the describing function is real, being a

function only of the magnitude of the sinusoidal input. Morever, the input sinusoid

x(t) = Xsinwt and the fundamental harmonic component yl(t) are in phase, i.e.
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01 = 0, because saturation does not cause the delay of the response to input.

As shown in Fig.A-3, N reduces to zero as X approaches oc. The relative ampli-

tude of the 3rd harmonic distortion to the fundamental harmonic component increases

to a maximum value of for small arcsin ( ). Both characteristics occur due to the

fact that the output of the describing function becomes a square wave of a peak-to-

peak amplitude 2k for large input amplitude X.

In this thesis, these constants are used for the saturation element:

a =0.36 A

k =1
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Appendix B

Magnetic Force for Bearings

In this appendix, the expression for the magnetic force of an electromagnet of a

magnetic bearing on the rotor is derived in terms of the electromagnetic coil current

and air gap. The numerical values are given from Chap.4.2.

In order to determine the magnetic force, the derivation begins with the energy

stored in the air gap as the electric power, which is defined by

P = vi (B.1)

where i is the coil current, and v is the coil potential from end 1 to end 2. The

coil is wound in one direction in one pole, and in reverse direction in another pole

(Fig.B-1). This pair of poles with coil wound acts as an electromagnet. The magnetic

flux density B throughout the two poles is obtained using Faraday's law,

jE.dl = - B.dA (B.2)

where dl is the infinitesimal length traversing the closed contour C, and S is defined

as the surface where the current flows through, enclosed by C.

Focusing in the coil windings only, the potential from end 1 to end 2 can be

determined from the closed-loop contour of the electric field E as shown in Fig.B-2.
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Figure B-1: Coil Windings for an Electromagnet of a Bearing
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Tracing the loop, the following is obtained:

E-dl =j E.dl+ 'E.dl (B.3)

= E. dl =-v (B.4)

Here, the dot product means that only the projected electric field on the direction

of C (shown in dashed line in Fig.B-1) is accounted for the generated potential from

end 1 to end 2. The first term of the above equation is zero since the coil is assumed

to be perfectly conducting, i.e. E = 0.

The surface area S is where the magnetic field is, and calculated to be 2NAg,

where N is the number of coil turns, and Ag is the projected surface area of the gap.

If the magnetic field density B9 is assumed uniform across the two poles, then

dB9
= -0.019 5 ta (volt) (B.6)

Assuming no power losses, the electric power is converted into the magnetic power;

P = vi = 2NAgi dB (B.7)dt

= 0.0195i dt (watt) (B.8)
dt

Using Ampere's law,

jH-dl= J dA (B.9)

where the magnetic field H is defined along the contour C in Fig.B-1 (traversing air

gap, one pole, stator, other pole, air gap, rotor). Each magnetic bearing has two poles

and each of the poles has N turns. Therefore, in every bearing the coil encircles 2N
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number of times the surface S, and the current flowing through S is 2N times i, i.e.

J J-dA
S

= 2Ni (B.10)

- 200i (ampere) (B.11)

Neglecting the iron reluctance, the magnetic field intensity along the contour C in

the rotor, stator, and poles can be ignored. If the magnetic field intensity in the air

gap is assumed to be uniform, then

J H dl
c

= 2Hglg

= 5. 10-4 Hg (ampere)

(B.12)

(B.13)

where 19 is the length of the air gap.

From Eq.B.10 and Eq.B.12, the following relationship is obtained for the current,

i

Hglgi =
N

= 2.5 10-6Hg (ampere)

(B.14)

(B.15)

Since the magnetic field intensity, Hg, is related to the magnetic flux density, Bg,

by the following relationship

Hg BgHA9 =o (B.16)

and substituting the expression for i, the power, P is given by

P =2NA( 2A )

= 2-AAlB dBg
I 9 gdt

dB9

dt

(B.17)

= dB9 (watt)= 0.0387 Bg (watt)
tt
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The energy stored in the air gap during the transition from 0 to a steady state

value, B,,, as the current changes from 0 to a steady state value, i,,, is given by

Wm = JPdt

=-Agl 9 I
Ho Jo

Bg d(Bg)

AglgB~

Io
= 0.0193 Bg2 (Joule)

(B.19)

(B.20)

Assuming no energy losses, the attractive magnetic force on the rotor due to the

electromagnet is given by

F = -

AgBg

I-o

= 77.3810 Bg (newton)

and using the relationship of Eq.B.14,

F =Ag (poNiF -- -
HLo 19

poAgN2i2

i2

= K-
9

= 19.6560 i2 (newton)

where K = oAgN2 = 1.23 10-6 Nm 2 /A 2 .

(B.21)

(B.22)

(B.23)

(B.24)
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Appendix C

Open-loop Matrices: Numerical

Results

The following are the numerical results of the open-loop transfer function matrices

used in Chap.4:

1. from u to x,

[sI-A]1=[ a a2 a3 a4 a5 a6 a7 as]

where

al =

s(s6+8603.0s 4-13645000000.02 +2.5006x 1014)
S8-10496.0S6 -13809000000.0s4 +5.989 X 1014s2-4.7010 x 1018

-1.Os (57139000.0s2 -29059000000000.0+2256.1s4)
S8 -10496.0s 6 -13809000000.0s 4 +5.989X 1014 2 -4.7010 X 1018

-239220.0s4+28319000000.0s2 -4.910 x 1014
S8 -10496.0s 6 -13809000000.0s4+5.989x 10 14 s2 -4.7010x 1018

239220.0s 4 -28319000000.0s 2 +4.910x 1014
s8-10496.0s 6 ---13809000000.0S4 +5.989 x 1014 s2 -4.7010 x 1018

19099.0s 6 +164030000.0s 4 -2.5983X 1014 s 2 +4.7010x 1018
s8 -10496.0s 6 - 13809000000.0s4 +5.989 x 1014 s2 -4.7010 x 1018

(-57139000.0s2 +29059000000000.0-2256.1s4 )s2
s8 - 10496.0s 6 - 13809000000.0s4 +5.989 x 10 14 s2 -4.7010 X 1018

-1.Os (239220.0s4 -28319000000.0s2 +4.91 X 1014)

s8 -10496.0 s 6 -13809000000.0s4 +5.989x 1014s2-4.7010x 1018

(239220.0s4-28319000000.0s2 +4.910x 1014)
s8 -10496.0s6 -13809000000.0s 4+5.989x 1014s2 -4.7010x 1018
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- 1.Os (57139000.0s2-29059000000000 .0+2256.1s 4 )
s8 -10496.0s 6 -13809000000.0s 4 +5.989 x 10 14 s 2 -4.7010x 1018

s(s6+8603.s4-13645oooooo0000.os2 +2.500oo6x 1014)
s8-10496.0s6 -13809000000.0s4 +5.989x 1014 s2-4.7010x 1018

239220.0s4 -28318000000.0s2+4.910x 1014
s8-10496.0s6-13809000000.0s 4+5.989x 101482 -4.7010x 1018

-239220.0s4+28318000000.0s2 -4.910 x 1014
s8-10496.0s 6-13809000000.0s 4+5.989x 1014 s2 -4.7010x 1018

(-57139000.0s2+29059000000000.0-2256.1s4) s2

s8-10496.0s 6 -13809000000.0s4 +5.989x 1014s2-4.7010 x 1018

164040000.0s4 -2.5984x 101 4 s2 +19099.0s 6 +4.7010x 1018
S8-10496.0s 6-- 13809000000.0s4 +5.989x 101 4 s2 -4.7010x 1018

s (239220.084 -28318000000.0s2 +4.910 X 1014)

S8 -10496 .0 s6 -13809000000.0s4 +5. 989 x 1014 s2 -4.7010 x 1018

-1.Os (239220.0s4 -28318000000.0s2 +4.910 x 1014)

s8-10496.08 6-13809000000.084 +5.989 x 1014 s2-4.7010x 1018
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a2 =

a3 =

- 1442100.0s4 + 170700000000.082 -2.4660 x 1015
s8-10496.0s 6 -13809000000.0s4 +5.989 x 101 4s2-4.7010 1018

1442100.0s4-170700000000.0s2+2.4660 x 1015
s8 -10496.0s6 - 13809000000.0s4 +5.989 x 1014 s2-4.7010 x 1018

s(s 6-24 0 96.0 s4 -193740000.0s2 +53209000000000.0)
s8 -10496.0s 6 - 13809000000.0s4 +5.989x 1014 s2 -4.7010x 1018

s (-4372300000.0s 2 +115130.0s 4 +40982000000000.0)

s8 - 10496.0s 6 -13809000000.0s 4 +5.989 x 1014 s2 -4.7010 x 1018

-1.0s (1442100.0s4 -170700000000.082 +2.4660 x 1015)

88 -10496.0s 6-13809000000.084 +5.989x 1014 s2 -4.7010 x 1018

s (1442100.0s4 -170700000000.0s 2 +2.4660x 1015)

s8 -10496.0s 6-13809000000.0s 4 +5.989 x 1014 2-4.7010 x 1018

-13600.0s6+13616000000.0s4 -5.458x 1014 s2+4.7010x 1018
s8 -10496.086 -13809000000.0s4 +5.989x 1014 s2 -4.7010x 1018

(-437230000o.0s2+115130.0s4+40982000000000.0) 2

88 -10496.0s 6-13809000000.0s4 +5.989x 10 4 s'2 -4.7010x 108



s 6 +8352.0s 4 -13615000000.0s2 +2.4962x 1014
S8-10496.08s6-13809000000.084 +5.989x 1014 s2-4.7010x 1018

-2005.1s4 -86848000.0s2+29487000000000.0
s8 -10496.0s 6 - 13809000000.0s4 +5.989x 1014 s 2 -4.7010x 1018

-1.0s(11.202s4 -1326100.0s2+19157000000.0)
s8-10496.0s6 -13809000000.0O4 +5.989x 101 4 s2 -4.7010x 1018

s(11.202S4-1326100.Os2+19157000000.0)
S8-10496.0s 6-13809000000.0s4 +5.989x 1014 s2 -4.7010x 1018

s(s6+8352.0s4-13615000000.02 +2.4962X 1014 )
S8-10496.0s6-13809000000.0s4 +5.989x 101482-4.7010x 1018

-1.s (2005.1S4+8684800.0s2 -29487000000000.0)
s8 -10496.0s 6-13809000000.0s4 +5.989x 1014 s2-4.7010x 1018

(-11.202s4+1326100.0s2-19157000000 ) s2

s8-10496.0s6-13809000000.04 +5.989x 101482 -4.7010x 1018

(11.202s4-1326100.0s2+19157000000.0) s2

s8 -10496.0s 6 -13809000000.0s4+5.989x 1014s 2 -4.7010x 1018
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1442100.0s4 - 170700000000.0s2 +2.4660 x 1015
s8-10496.0s6 -13809000000.0s4 +5.989x 101 4i 2-4.7010x 1018

-1442100.0s 4 +170700000000.0s2 -2.4660x 1015
s8-10496.06 -13809000000.0s4 +5.989x 1014 s2 -4.7010x 1018

s(-4372300000.0s2 +115130.0s4 +40982000000000.0)

s8 -10496.0s 6 -13809000000.0s4 +5.989x 1014 s2-4.7010x 1018

s (s -24096.s4 -193740000.0s2+5320900000000.0)
s8 -10496.0s 6-13809000000.0s4 +5.989x 1014s2-4.7010x 1018

s(1442100.Os4-170700000000.Os2+2.466 0 x 1015)

s8 -10496.0s 6 -13809000000.0s4 +5.989x 1014 s2-4.7010x 1018

-1.08(1442100.0s4 -170700000000.0s2 +2.4660x 1015)
s8 -10496.0s 6 -13809000000.0s4 +5.989x 1014 s2 -4.7010x 1018

(-4372300000.0s2 +115130.0s4+40982000000000.0) s2

88 -10496.0s 6 -13809000000.084+5.989x 1014 s2 -4.7010x 1018

13615000000.0s4 -13600.0s 6 -5.458x 1014 s 2 +4.7010x1018
s8 -10496.0s 6 -13809000000.0s 4 +5.989x 1014 s2 -4.7010x1018

a4 =

a5 =



-2005.1s4 -86848000.0s 2 +29487000000000.0
s8-10496.0s 6-13809000000.0s4 +5.989x 1014s2 -4.7010x 1018

s6+8352.084 -13615000000.082 +2.4962x 1014
s8-10496.0s 6-13809000000.0s4 +5.989x 1014 s2-4.7010x 1018

8 (11.20284 -1326100.0s 2 +19157000000.0)
s8-10496.0s 6 -13809000000.0s 4 +5.989x 1014 s2 -4.7010 x 1018

-1.0s (11.202s4 - 1326100.0s2 +19157000000.0)
s8- 10496.0s 6 - 13809000000.0s 4 +5.989 x 1014 s2 -4.7010 x 1018

-1.0 (2005.1s4+86848000.0s2 -2948700000000.0)
s8 -10496.0s 6-13809000000.0s4 +5.989 x 1014 s2-4.7010 x 1018

s(s6+8352.0s4 -13615000000.082 +2.4962X 1014)
s8 -10496.0s6 -13809000000.0s4 +5.989 X 10 14 s2 -4.7010 x 1018

(11.20284 -1326100.0s2+19157000000.0)s 2
,8_ 10496.0s6 -13809000000.084 +5.989x 1014 s2 -4.7010x 1018

(-11.202s4+1326100.0s2 -19157000000.0) s2
s8 -10496.0s6 -13809000000.0s4 +5.989 x 1014s2 -4.7010x 1018

8 (11.202s 4-1326100oo.s2+19157000000.0)

S8-10496.086-13809000000.0S4+5.989X 1014 s 2 -4.7010x 1018

-1.Os(11.202s4-1326100.0s2+19157000000.0)
s8 -10496.08 6 -13809000000.0s 4 +5.989x 10 1 4 s 2 -4.7010x 1018

s6-24347.084 -1640200008q248918000000000
s8-10496.086 -13809000000.084 +5.989x 1014s2 -4.7010x 1018

115380.0s 4 -4402200000.0s 2 +41411000000000.0
88 -_ 10496.0s 6 -13809000000.084 +5.989X 10 1 4 s2 -4.7010x 1018

(11.202s4 - 1326100.0 2 +19157000000.0) 82

s8 -10496.0s 6-13809000000.0s4 +5.989 x 1014S2 -4.7010 x 1018

(-11.202s4+1326100.0s2 -19157000000.0) s2
8 -_ 10496.08 6 - 13809000000.084 +5.989 x 10 14 2 -4.7010 x 1018

s (s6 -24347.0s4 -- 1640 20 000 .0 s2 +48918000 000 00. 0)

S8-10496.0 6-13809000000.0s4+5.989x 1014a 2-4.7010 x 1018

a (115380.0s4-4402200000. 0 s 2 +41411000000000.0 )

s8 - 10496.08 6 -13809000000.0, 4 +5.989X 10 14 s2 -4.7010 X 1018
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a6 =

a7 =



a8 =

-1.Os(11.20284 - 1326100.0s2+19157000000.0)
s 8 - 10496.0 6 -13809000000.084 +5.989 X 101 4 s 2 -4.7010 X 1018

s(11.202s4- 1326100.0s2 +19157000000.0)
s8 -10496.0s 6-13809000000.084 +5.989 X 1014 s2 -4.7010x 1018

115380.0s 4 -4402200000.0s2 +41411000000000.0
s8-10496.0s 6 -13809000000.0s 4 +5.989X 1014 s2 -4.7010x 1018

s6-24347.0s4 - 164020000.0s2 +4891800000000.0
s 8 -10496.0s 6 -13809000000.0s 4 +5.989 X 1014 s 2 -4.7010 X 1018

( -11.202 s4+13261 00 .0s2 -19157 0000 00.0) s2

s 8 -10496.0s 6 -13809000000.0s 4 +5.989x 1014s 2 -4.7010x 1018

(11.202s 4 -1326100.0s2 +19157000000.0) s 2

s8-10496.0s 6-13809000000.0s 4 +5.989x 1014s2 -4.7010x 1018

s (115380.0s4 -4402200000.0s2 +41411000000000.0)

s8 -10496.0s 6 -13809000000.0s4 +5.989 X 101 4 s2 -4.7010x 1018

s(s6 -24347.0s4 -164020000.0s2 +4891800000000.0)
s8-10496.0s 6-13809000000.04 +5.989 X 1014 2 -4.7010x 1018

2. from Fd to x,

[sI-A]-'B=[b b2 b3 b4 ]

where

bl =
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2.3873s6+20504.04 -32479000000.0s2 +5.8760X 1014
S8 - 10496.0s 6 -13809000000.0s 4 +5.989x 1014 s 2 -4.7 0 1 0 x 1018

0.28201s6+7142.1 4 - 3 632300000.0s2 +1000000000.0
s 8 - 10496.0S6 - 13809000000.0S 4 +5.989 X 10 14 2 -4.7010 X 1018

-2.6693s (11.202s4 -1326100.0s2 +19157000000.0)

88 -10496.0s6-13809000000.08 4 +5.989 X 1014 s2 -4.7010x 1018

2.6693s (11.20284 -1326100.0s2 +19157000000.0)

S8 -10496.0s 6 -13809000000.084 +5.989 X 1014 s2 -4.7010 1018

(2.3873s6+20504.0S4-32479000000.0s2 +5.8760x 104)s
s8-10496.086-13809000000.0s4 +5.989X 1014 S2 -4.7010x 1018

(0.28201s6+7142.184-3632300000.0s2+1000000000.0) s
S8 -10496.0s 6-13809000000.084 +5.989x 1014 s2 -4.7010x 1018

(-29.901s4+3539800.0s2 -51136000000.0) 2

s8 - 10496.06 -- 13809000000.084 +5.989 X 1014 2 -4.7010X 1018

(29.901s 4 -3539800.0s2+51136000000.0) 2

s8 -10496.0s 6 -13809000000.04 +5.989x 1014 2-4.7010 x10 18



0.28201s 6 +7142.1s4 -3632300000.0s2 +100000000.0
s 8 - 10496.0s 6 - 1380900000.084 +5.989 x101482 -4.7010 x1018

2.3873s" +20504.0s4 -32479000000.0s2 +5.8760 x 1014
s 8 -10496.0s 6 -13809000000.0s 4 +5.989 x 10 14 s2 -4.7010 x 1018

2.6693s(11.20284-1326100.0s2+191570000.0)
s 8 -10496 . 0s6 -13809000000.0s 4 +5.989x 10 14 2 -4.7010x 1018

-2.6693s (11.202s4-1326100.0s2 +1 91 57000000.0)

s8-10496.0s 6 -13809000000.0s4 +5.989X 1014s2-4.7010x 1018

(0.28201s6 +7142.1s4 -3632300000.02 +1000000000.0)s
s8 -10496.0s6 -13809000000.0s4 +5.989x 10 14 s2 -4.7010x 1018

(2.3873s6+20504.084-32479000000.0s +5.8760x104 )s
s 8 -10496.0s 6 -13809000000.084 +5.989X 10 14 s 2 -4.7010x 1018

(29.901s4-3539800.0s2 +51136000000.0)s2

s8-10496.0s8 6 -13809000000.08 4 +5.989X 101 4 s 2 -4.7010x 1018

(-29.901s4 +3539800.0s2 -51136000000.0)s2
s8-10496.0s6 -13809000000.0s4 +5.989x 1014s2 -4.7010x 1018

-12.873s(11.202s4-1326100.0s2+19157000000.0)
s8-10496.0s6 -13809000000.0s4 +5.989x 10l4s2-4.7010x 1018

12.873s(11.20284 -1326100.0s2 +19157000000.0)

s8 -10496.086 -13809000000.04 +5.989x 101482 -4.7010x 1018

_ 1.3600s6-1361500.0s4 +50460000000.02 -4.7011 1014
s8-10496.0s 6 -13809000000.0s4 +5.989x 101482 -4.7010x 1018

(11.513s4 -437230.0s2+4098600000.0) 2

s8 - 10496.06 - 13809000000.0s4 +5.989 X1014 s 2-4.7010 X 1018

(-144.20s4 +17071000.os2 -246610000000.0) S2
s8- 10496.0s6 -13809000000.0s4 +5.989 x 10 14 s 2 -4.7010 x 1018

(144.20s 4-17071000.02 +246610000000.0) s2

s8 -10496.0s 6 -13809000000.0s4 +5.989x 1014 2-4.7010x 1018

(1.3600s6-1361500.0s4+50460000000.0s2 -4.7011x1014)s
s8-10496.0s6 -13809000000.0s4 +5.989x104s 2-4.7010x 1018

(11.513s4 -437230.s 2+4098600000.0) s3

s 8 -10496.0s8 -13809000000.04 +5.989X 101482 -4.7010X 1018
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12.873s (11.202s4-1326100.0s2 +1915700000.0)
s8-10496.0s 6-13809000000.0s 4+5.989 x 1014 s2-4.7010x 1018

- 12.873s(11.202s4 - 1326100.0s2 +19157000000.0)
s 8- 10496.0s 6 - 13809000000.0s 4 +5.989 X 10 14 s 2 -4.7010 X 1018

(11.513s4 -43723 0 .0 s2 +4 0986 0 0 0 0 0 . 0 ) s2

s8 -10496.0s 6-13809000000.0 s 4 +5.989 x 1014s2-4.7010 x 1018

1.3600s 6 - 1361500.09 4 +50460000000.0s2 -4.7011 x 1014

s s8 _ 10496.0s 6 - 13809000000.08 4 +5.989 x 10 14 s2 -4.7010 x 101

(144.20s4 -17071000.0s2+246610000000.0) s 2

s8-10496.0s 6-13809000000.0 4 +5.989x 1014 s2-4.7010x 1018

(-144.20s4+17071000.0s2 -246610000000.0) s2
88 -10496.0s 6-13809000000.0s 4 +5.989X 101 4 s2 -4.7010x 1018

(11.5134 -437230.0s2+4098600000.0) 3
s8 - 10496.0s6 -13809000000.0s 4 +5.989 x 101 4 s2 -4.7010 X 1018

(1.3600s6 -1361500 .0s4+50460000000.0s2- 4.7011x 10l4)s
s8- 10496.0s6 -13809000000.0s4 +5.989 x 1014 s2 -4.7010x 101

3. from d to x,

wheresI-A L = 

where

C1 =
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0.65305s6+4940.9s4 -8913500000.0s2 +1.7056x 1014
s8 -10496.0s6 -13809000000.0s 4 +5.989x 10 14 s2 -4.7010x 1018

829.0s4 -3542700000.0s2 +83169000000000.0+0.25604s6
s8-10496.0s 6--13809000000.0s4 +5.989x 1014 2 -4.7010x 1018

-0. 3 9 701s (11.202s 4 -1 3 2 6 1 0 0 .08 2+191 5 7 00 0 0 0 0.0)

s 8 -10496.08 6 -13809000000.0s 4 +5.989x 10 1 4 s 2 -4.7010x 1018

0.39701s (11.202s4- 1326100.0s2 +19157000000.0)

88 -10496.0s 6 -13809000000.0s 4 +5.989 10 14 s 2 -4.7010x 1018

(0.65305s6+4940.9s4 -8913500000.s2 +1.7056x 1014) s
s8-10496.0s 6 -13809000000.0s4 +5.989 x 1014 s2-4.7010 x 1018

(829.0s4 -3542700000.0s2 +83169000000000.0+0.25604s6) s

88 -10496.0s6-13809000000.04 +5.989x 1014 s2 -4.7010x 1018

(-4.4473s4+526470.0s2-7605500000.0)s 2

s8-10496.0s6 -13809000000.0s4 +5.989x 1014 s2-4.701 0 x 1018

(4.4473s4 -526470.Os2+7605500000.0) S2
s8-10496.0s 6 -13809000000.0s4 +5.989x 1014s2 -4.7010x 1018

b4=



-0.39701s ( 11.202s4-1326100.082 +191570000.0)
s 8 - 10496.0s 6 - 13809000000.0s4 +5.989 x 101 4 s 2 -4.7010 x 1018

0.39701s (11.202s4-1326100.082 +19157000000.0)
s 8 -10496.08 6s-13809000000.084 +5.989 x 1014s 2 -4.7010x 1018

0.25604s6 +69115.0s4 -2916900000.0s 2 +28296000000000.0
S8 -10496.0 6 -13809000000.0s4 +5.989 x 10 1 47010x 1018

13642.0s4 - 1234200000.0s2 +13798000000000.0+0.65305s6
88-10496.0s 6-13809000000.084 +5.989 x 1014s2 -4.7010 x 1018

(-4.4473s4+526470.0s2 -7605500000.0) s2

88 -10496.08 6--13809000000.084 +5.989 x 10 1 4s 2 -4.7010 x 1018

(4.4473s4 -526470.0s2 +7605500000.0) s2
88 -10496.086 - 13809000000.0s 4 +5.989 x 10 14 s2 -4.7010 x 1018

(0.25604s6+69115.0s4 -29169 000 00 . 0s2 +28296000000000.0) s
88-10496.0s6 - 13809000000.0s4 +5.989 x 101 4s2 -4.7010 x 1018

(13642.Os 4-1234200000.Os2+13798000000000.0+0.65305s6 ) s

s 8 -10496.0s 6 -13809000000.0s 4 +5.989x 10 14 2 -4.7010x 1018
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C2 =
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