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Abstract:
The Massachusetts Institute of Technology Truss Damping Group continues to

study the dynamic and vibrational characteristics of a three dimensional aluminum
truss which is based on a repeating square pyramidal pattern. The truss is a notional
model of the type of structure which will be considered for use in the future design of
submersibles and Autonomous Underwater Vehicles (AUV's) to mount machinery. A
current concern is in the ability to accurately predict the level of radiated noise which
the truss will transmit to the environment inside the submersible due to an arbitrary
vibrational loading.The noise produced could have unsatisfactory coupling effects with
the fluid surrounding the submersible and could also produce unacceptable levels of
noise inside.

The vibrational energy in the truss members as a result of arbitrary loading is
predicted using a previously developed numerical analysis technique known as the
Direct Global Stiffness Matrix (DGSM) method. These vibrational levels are then
used to calculate the radiated sound power, with the struts modeled as finite length
vibrating wires. The sound power with the addition of flat plates to the truss is also
modeled.

A truss, which was previously constructed at MIT, is vibrated at one end and the
sound power radiated, normalized to input power, is measured using an intensity
probe. The measured sound power for the bare truss is within 3 dB of the DGSM
prediction for a structural loss factor, q, of .003. The structural loss factor, q,, is the
most crucial entering argument to the DGSM prediction. A method of measuring the
total loss factor, TOT to improve the DGSM input of structural loss factor reduces the
difference between prediction and measurement to approximately 1 dB. The prediction
of the sound power with plates attached to the truss exceeds the measurement by 20 dB.
Further experimentation and analysis proves that the method of mounting the plates
to the truss resulted in poor coupling of the plates to the struts; the DGSM method
assumes strong coupling thereby leading to the erroneously high estimate.

The measured sound power for the bare truss peaks at 6 kHz, where 16 % of the
input power is transmitted as sound. When meter square aluminum plates of 2 mm
thickness are placed on the truss, the amount of input power which is radiated as
sound increases to 28 % at the same 6 kHz peak.

Thesis Supervisor: Dr. J. Robert Fricke
Title: Assistant Professor
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CHAPTER 1: Introduction

In the continuing evolution of submarine design the methods of mounting ma-

chinery have progressed from bolting attachments directly to the hull to mount-

ing vibration sources on vibration damping bedplates. The next step, which

is considered here, is mounting the machinery on a three dimensional truss

type structure. One advantage which is sought is the ability to replace whole

sections of the interior machinery by simply exchanging one loaded truss for

another by making a transverse hull cut. The relative time savings envisioned

in replacement and modernization programs is considerable. The secondary

advantage lies in the ability to reduce the noise and vibration transmitted by

the truss to the hull. Reduction of radiated noise is implemented in two ways.

The design of the truss is such that there is a torturous path for the energy to

follow in travelling from the source to the hull, and attachment points at the

hull are minimized. Since there are few attachment points, it is conceivable

that vibrational isolation mountings could be designed which could minimize

the noise transmitted directly to the hull. Secondly, the truss has the capability

to have distributed damping added to the members or discrete damping applied

at the joints; both methods would reduce transmitted energy.

A: Objective

Since 1993, Massachusetts Institute of Technology has been participating

in the study of three-dimensional trusses and in methods of damping them. As

part of this ongoing study, a scale model of a square pyramidal based truss has

been constructed [1] and is currently being analyzed. The transverse scale is

based upon roughly on a 15:1 ratio with respect to the full scale. The cylindrical

members that are the connecting legs of the truss lend themselves well to the

radiation of energy. It has also been demonstrated that due to the complex geo-

metrical nature of the truss and the many interactions at the joints, the energy
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that travels down the truss very quickly reaches an equilibrium partitioning

between flexural, compressional and torsional waves. The vibrational energy

also shows considerable attenuation when measured at points along the truss

as you move away from the drive point.

A current concern is in the amount of airborne radiated sound power pro-

duced by the truss. The truss is located in a large and semi-reverberant room

and in initial experiments airborne noise production has not been considered.

Since a truss will eventually be mounted in an enclosed cylindrical hull, the

interactions with the surrounding environment must be considered. It is possi-

ble that the sound energy produced by the truss could couple well with the hull

and cause undesirable noise transmission into the water. The objective of this

research is to analyze the noise produced by the vibration of this complicated

structure and to develop analytical tools to quantitatively predict the levels

of radiated noise for any given excitation. Since the truss will also support

horizontal deckplates, the radiation from a horizontally mounted plate is also

considered.

B: Approach

In previous analysis of the truss by Fricke and Hayner [11], a method was

formulated to predict the level of vibrational energy in the truss for a given ex-

citation. This method is known as the Direct Global Stiffness Matrix (DGSM)

Method. In chapter 2, analytically derived formnulae for the radiated sound

power are developed starting from the radiation efficiency of plates and beams

and the spatially and temporally averaged mean square velocity, (v2). In chap-

ter 3, the DGSM method is explained and then used to predict the spatially and

temporally averaged mean square velocity, (v2), at any point in the truss. The

mean square velocity is then utilized in the formulae of chapter 2 to predict the

sound power radiated. The result is a method to predict the radiated sound

power for an input excitation at any given joint of the truss. A prediction is

calculated for an input of white noise at the extreme end of the truss, both
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in the as-built condition, and with the addition of square aluminum plates to

the horizontal surfaces of the truss. A big uncertainty in the DGSM prediction

method is the level of structural damping in the truss. Initial simulations using

the DGSM program showed that the structural loss factor rs is the single most

important variable to be input to the program. Added to that uncertainty is

a lack of information in the literature on the frequency dependence of rn, and

uncertainty in the nature of the damping in the joints of the truss which was

built. Therefore, in chapter 3, a parameterization is conducted to calculate the

radiated sound power using various values of 71.

In chapter 4, the truss is excited in the same manner as the prediction,

again with and without plates mounted, and the total sound power radiated is

measured using an intensity probe.

In chapter 5, initial comparison between the parameterization and the mea-

sured sound power for the bare truss case showed reasonable agreement but

hinted that the form of q was more complicated than originally thought. There-

fore, in chapter 6, an experiment was designed to measured the total loss factor

of the bare truss 7TOT. The measured total loss factor 7TOTMEAS was compared

to the predicted total loss factor from the DGSM program r7TOTDGSM and the

comparison was used to refine the value of ?s which is an input to the DGSM

program. In chapter 6, the DGSM program was then re-run and the result

again compared to measured sound power. The refined value of iq showed

considerable improvement in predicting the radiated sound power.

For the truss with plates, initial comparison in chapter 5 finds that the

DGSM prediction is approximately 20 dB higher than the measured value. The

DGSM prediction was made assuming that the plates were hard mounted to

the struts of the truss. In reality, they were mounted using a visco-elastic epoxy

which may have prevented sufficient coupling between the struts and the plates

to justify the assumption used in the DGSM program. The difference between

the prediction and the measurement is explored in chapter 5.
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CHAPTER 2: Radiated Noise From The
Truss

A: Description of the Structure To Be Analyzed

The three-dimensional truss structure, which is being analyzed, was con-

structed by Marcus Heath, a previous graduate student at the Massachusetts

Institute of Technology [1]. The structure consists of a repeated pattern of

square based pyramidal cells, which are 54.8 cm on a side and 77.5 cm in

height. Six of the cells are upright and the remaining five are inverted. The

complete structure is pictured below as figure 2-1 and the global x, y, and z

directions are shown:

Figure 2-1: MIT Truss

14

M.I.T. Truss



The truss joints and struts are given a naming convention which allows each

strut and joint to be uniquely defined. The joints are named with a letter and

a number; the letter defines the position of the joint in the y direction and the

number defines the position in the x direction. The letters a, b, and c indicate

the bottom level of the truss, with b as the centerline and a as the negative

y direction. The letters d, e, and f indicate the upper level of the truss and

are similarly named. The numbers indicate the position of the joint along the

truss with the number 1 indicating the x = 0 position. Figure 2-2 illustrates

the convention used. The struts are named with the names of the two joints to

which they are attached. For instance strut e8f9 shown in Figure 2-2 connects

joints e8 and f9. This convention will be used for the remainder of this analysis.

Figure 2-2: Truss joint and strut naming convention

The struts comprising the majority of the truss consist of stock aluminum

tubing having the material characteristics shown in table 2-1. The plates which

will be later placed on the truss have the characteristics shown in table 2-2.
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Material:

Density p:

Young's Modulus E:

Shear Modulus G:

Poisson's ratio v:

Outside Radius ro:

Inside Radius ri:

Mean Radius rm:

Wall Thickness twau:

Cross-Sectional Area A:

Mass/unit length:

Longitudinal Sound Speed CL:

Radius of Gyration x:

6061 T6 Aluminum

2700 k

6.89 x 1010 N

2.59 x 010° N

.33

.00635 meters

.0047 meters

.005525 meters

.00165 meters

5.73 x10 - 5 meter2

.154 kgm

/= 5051.6 m
v P 2 = .00395 metsee

2r) = ro + r2 .00395 meters7r (r~-? 2 2

Table 2-1: Material characteristics of the struts

Material:

Density p:

Young's Modulus E:

Shear Modulus G:

Poisson's ratio :

Length:

Width:

Thickness:

Surface Area A:

Perimeter:

Longitudinal Sound Speed CL:

6061 T6 Aluminum

2700 k

6.89 x 010 N

2.59 x 010° N

.33

.5 meters

.5 meters

.002 meters

.25 meter 2

2 meters

/(- = 5351.4 mp2) sec

Table 2-1: Material characteristics of the plates

16
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B: The Radiated Noise From the Struts

A few preliminary points are made. The struts of the truss are considered to

be Euler-Bernoulli beams. The commonly accepted criteria for neglecting the

effects of shear and rotary inertia is that the wavelength of the flexural wave

on the beam be greater than 6 times the height of the beam. Since in this

case the beam is an annular cylinder with outer diameter of .0127 meters, the

wavelength must be greater than .0762 meters. The wavelength is given by

AB =- or AB = 2 c ; therefore,f f f e

27r(.00395 meters)5051.6 metersf < sc(2.1)
[6(.0127meters)]2 (

or f < 21592 Hz. The frequencies under consideration meet this criteria,

and thus there is justification in treating the struts as Euler-Bernoulli beams.

Additionally, it will be assumed that the struts and plates alone contribute to

the radiated noise, and that the radiation from the joints can be neglected.

This assumption was proven valid by Heath [1]. His thesis also supported

the supposition that the vibrational energy in the truss was incoherent. This

conclusion will be extended to the radiated sound power caused by the vibration

of the struts. Thus it will also be assumed that the radiated sound power from

the individual struts can be added incoherently.

First consider the radiated noise from a cylinder which is in rigid translation

and is moving harmonically in a direction perpendicular to it's axis as shown

in figure 2-3 below,

with a harmonic velocity given by the real part of

v(t) = Ue t {Uoe2rft} (2.2)

In this equation U is a constant amplitude vibration of the beam. Later,

this expression will be made more general by allowing Uo to be a mode shape

superimposed on the rigid translation of the beam.
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Figure 2-3: Local coordinates to be used in the struts

The wave equation in cylindrical coordinates is given by

D2 P 0 2 1[. (9r&P 1a 2 p &02p (2.3)
at2 = Ca [r r)+ r2 2 az2 (2.3)

Assuming solutions of the type p(r, 0, z, t) = R(r)e(9)Z(z)T(t) leads to the solu-

tion

p = A [Jl(kar) + iYl(kar)] cos(O)e- i2 rft, {r > a}, (2.4)

where A again is a constant amplitude of vibration, possibly complex. The

functions J1 and Y1 are the first order Bessel functions of the first and second

kind respectively. The angle 0 is defined with respect to the plane of vibration.

The velocity for the above solution is given by

1-
v= Vp, (2.5)

iWPa

18
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with a radial velocity component of

1 [op] 1Vr = ar J
i(AJP,, -r I (2.6)

Substituting in the previous result of equation (2.4) gives

or,

A d 2t
vr =-WPa dr [J1(kar) + iYl(kar)] cos(0)e- i2 7f t, (2.7)

vr = J (kr) J 2(kar)+i [ (k)r Y2(kar) cos(O)e- 27ft. (2.8)= PaCG kar kar

Next, the boundary conditions are used to find the amplitude of A.

boundary condition on the surface of the cylinder is used; radial velocity

equal Uoe- i27ft when r = a. Therefore the value of A is

A = P(Ca Uo,

The

must

(2.9)

with ,3(a) given by,

A(a) = J(ka) - J2(ka) + i [Y (k a) Y 2(ka) (2.10)

The interest is in the far-field effects, therefore the result at kr > 1 is

important, and the near-field effects can be neglected. For the physical problem

being studied this means that

kar = C > 1 (2.11)
ca

or,
Ca 340.15

fr>>> 27r ' (2.12)

and since the lower limit of usable frequency will be shown later to be on the
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order of 1000 Hz, the radius at which the sound radiated can be considered the

far-field is when kar > 10, or

r > 10 Ca = 10 340.15 .5meters. (2.13)
27rf 27r1000

At large values of the argument, the Bessel functions can be approximated

as sinusoidal waves with decreasing amplitude

Jp(kar) r os x 4 '- (2.14)

This gives the following relations for the velocity and pressure far from the

strut (kr > 1)

P-3(a) os(0)e i(k r- 3 - 2 rft)

= Uo 2 cos(O)ei(kar24 ft) (2.16)
O/(a) -rar

The temporally averaged sound power intensity can be calculated from the

relation

R{pPoovoo} . (2.17)

Substitution of equations (2.15) and (2.16) into equation (2.17) yields

1 {ipaCaUoU* 2 21
Ir = /3(a)3(a)* rkr cos2(0) (2.18)

which reduces to
p aCaIo 2 1

I, =12 8'14¢(] )lon k s2(o). (2.19)
(a)12 rkar (1

The subscript r indicates that this is intensity in the radial direction since

the radial velocity was used. Clearly the radiated sound power can be calcu-

lated by integrating the above sound intensity over any surface enclosing each

individual strut. For simplicity a cylindrical surface is chosen. It is also noted

that there is no sound intensity coming out of the ends of the cylinder due to
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the chosen geometry and the direction of the rod's motion. Integrating over a

cylindrical surface yields the result

2F L

IRAD = L IrrdOdx (2.20)

Evaluating the integral and treating Uo12 as a constant yields

f 7 L pC.lUol
1IRAD = j A J krl) 1 2 cos2(O)rdOdx, (2.21)

or
PaclaoI 2

f~.rfL

IRAUD = pk If() 2 cos2 (0)d~dx, (2.22)
,7k, () 2fo fo

resulting in,
H1
A =PaCaIUo1

2 L = PaCaLIUo 12

IRAD = 7rk.l/3(a)12 ka(a)1 2 (2.23)

Equation (2.23) is recognized to be similar to the format which is standard for

radiated power

rIRAD = PaCaSURAD(V2), (2.24)

where S is defined to be the radiating surface area, which in this case is the

area of of the cylinder (raL), OAD is the radiation efficiency of the cylinder

and (v2) is the spatially and temporally averaged mean square velocity of the

beam. Since in the standard formulation the velocity term is the mean square

velocity, a factor of 1 must be added to convert the amplitude to a mean square

quantity. Equation (2.23) becomes

11RAD = -a2_paCaLIUo 2 S( ) (2.25)
7rakal3(a)1j2 waka O(a) 2 paCaS(v 2).

This requires that ORAD must equal

{7rkaa} { i(a)12} (2.26)

The above expression can be simplified by recognizing that expression for 
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in equation (2.10) is the same as the derivative of Hankel function of the first

kind of order one. The Hankel function of the first kind of order one is the

following

Hi(kaa) = Ji(kaa) + iYi(kaa). (2.27)

It's derivative with respect to kaa is

dH______ 1
Hi(kaa) = -H 2(kaa) + -H(ka), (2.28)

dkaa kaa

or,

Hi(kaa) Ji(kaa) .Yi(kaa) J 2(kaa) - iY 2(kaa), (2.29)
k a kaa

which is recognized to be the same as /(a) from equation (2.10). So therefore

1/0(a) 12 = -Hl(kaa)l 2 = Hi(kaa) * (Hi(kaa))*, (2.30)

and the radiation efficiency can be written as

URAD 2 1 ~~~~~~~~~(2.31)
RA r(kaa) }{IH(kaa)2 (.

The curve of the radiation efficiency is plotted as figure 2-4. For frequencies

below the coincidence frequency, where the flexural wave speed on the strut

equals the acoustic wave speed in air, the struts are not very efficient radiators

of sound, which is to be expected. Furthermore, at frequencies above the co-

incedence frequency, the radiation efficiency approaches unity. The coincidence

frequency for the struts is

Ca = C = WICL, (2.32)

or,
0a2 _ (340.15)2 meers2

2f = 2T.09.. . .ec~nds2 =923Hz. (2.33)2 7,CL - 27r(.00395 meters)5052 met 2(2

Therefore, as long as the spatially and temporally averaged mean square
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Figure 2-4: Radiation efficiency of the struts

velocity of a strut in the truss can be determined, the radiated power from that

strut can thus be predicted. As discussed previously, it will be assumed, for the

purposes of this analysis, that the radiated power from the individual struts

can be added incoherently.

The next task is to determine a formulation of the spatially and temporally

averaged mean square velocity of a beam undergoing flexural vibration. Con-

sider the vibration of the strut in the direction perpendicular to it's longitudinal

axis, about the y axis, so that the deflection is in the z direction. The governing

equation of motion for the flexural vibration of the strut is the following

EIy 04 w _ _w

pAa 4- (2.34)
pA OX
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which leads to the solution for the displacement of the beam in the z direction

as a function of distance x along the beam as,

w(x, t) = {w+eikYx + w-e-iku(x - L) + w+ek( -L) + w-e-k X}e -i t. (2.35)

The above is recognized to be comprised of two harmonic travelling waves and

two evanescent waves. The response is harmonic and the time averaged mean

square velocity can be found by using the well-known relation

(7b 2) =IR fdww}, (2.36)

and where the dot notation indicates differentiation with respect to time which

is necesary to convert from displacement to velocity. The spatial averaging can

then be completed by integration over the length of the strut.

( 2) = A (2) = R {Zbtb*}. (2.37)

Substitution of the result from equation (2.35) yields the following result for

the temporally averaged mean square velocity

(b(x, t) 2) =
+ ikB eikB(x-L) + w+ekBy(x-L) + W ekByx] (-iw)e iwt [ e ' -w-e- Fw e + w e- ]-iw)-'·

[(w+)*eikBx +(w)*eikB (x-L) + (w+)*e kB(x-L) + (We)*ekBx ieiwt 

(2.38)

Simplifying yields

(zb(x, t) 2 ) = 2 {Iw+12 + Iw-12 + Iw1+2e2kB(x- L) + ]w;]2e-2kBx} + crossterms.

(2.39)
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The cross terms in the above equation are

(b(x, t)2) = -2R

(w+ ) (w)*ei 2kB (x-L) + (W+) (W+ *eikBvx+kBu (x-L) +

(W±)(w-)*e (ikB -kB~)x + (w)(w±)*eikBL- 2ikBx+

() -(wf+*eikB(x-L)+kB(x-L) + (w-)(W,-)*e-ikY (x-L)-kBx+

(w+) (w+)* ekB (x-L)-ix + ()(W-)*ekN(x-L)+ikBy (x-L) +

(we) (we ) e FL + (w,)(w+)*eikB kBux±

(we)(w-)*eikB(x-L)-kBx + (W-)(W+)*ekBzL
e e + (2.40)

When the above cross terms are closely examined, two trends are noticed.

Many terms contain exponential functions with purely real exponents. There

are terms with exponents of-k4 L, kB (x-L), and -k x. Since the range of x is

from 0 to L, these exponents must always be negative. In fact these exponential

terms become very small even at very low frequencies. At a frequency as low

as 1000 Hz, the bending wavenumber is

27rf 27rf - r 2,Y1000k = w w if_ 2r00 =17.7meters' (2.41)
By = C- x/2rfCL - ICL (.00395)(5052) = 177meters (2.41)

which means that the exponential term dies out very quickly and will con-

tribute very little to the total mean square velocity. The second major trend to

be noticed is that all terms which do not have an exponential term have a har-

monic function dependence. There are also terms which have both a harmonic

and exponential function; the exponential term will dominate. For the purely

harmonic terms, when the real part is taken, the result will be a sinusoidal

shape. Since it has been shown that the wavenumber is relatively high for all

frequencies of interest, there will be many waves present on the strut. Thus

when the spatial averaging is performed, there will be cancellation except at

the very ends of the strut. When the non-cancelling portion is averaged across

the strut the total contribution to mean square velocity will again be small.

This discussion assumes that the wave amplitudes for all wave types is of the

25



same order of magnitude. Prior experimentation on the truss, and previous

results from the DGSM method have shown this assumption to be a valid one

[1]. To illustrate these points, consider the evaluation of the spatial averaging

of the cross terms

(b(X, t)2 ) = 2f, R

(w±) (w )*ei2 Bs (x-L) + (w+) (w+)*e ikByx +kB (x-L) +

(W+)(We )*e(ikBy -kBy)x + (W-)(W+)*eikBv L-2ikyx+

(W-)(w+)*e-ikBy(x-L)+kBu(x-L) + (W-)(We)*e ikB(x-L)-kBx+

(W+)( +) *ekB(x-L)-ikBYx + (+)(w-)*ekB(x-L)+ikB%(x-L)+

(We+)(We)*e-kByL + (We-)(W+)*e-ikBx-kBx+

(We)(W-)*eik B (x-L)-kx +- (We )(w+)*ek L
(2.42)

which yields

(w(x,t)2 ) = w2
2

f {(w+ ) (w ) } -ikBL e _ _1 }+

~ {(w+)(w-)*} {e-kL} {ekBY+kB)L-1 +

f{(W)(we+) *} { _(ikV-ick)L +} +
R{ e(+- kv }-k +,

{ ( W+)(wW)} e} { -ik }L +(k-k)L 
R {(W-)(W)*} {eikBL} { 1-e (Bu+2

kB ) } +

{(1W)(w±)*} {ekguL} 2i {eVkB)yL-1 } +
{(W-) (W+) *} {e-kByL} R { eikBYL } { e(k y- i kB Y)L1 }

{(wk)(w )*} {e-ik} + )L

{({(We)(w)*}3 {?hL -(iky+k)L ' }

R {(WJ)(W )} 3 {e } { (ik -kByL } +

{(wj)(wwl) } {e -k +L}R} {(e(W+) * }W-:* { e-kNLkZ-I
R I(w-) W+ *IR· -(ikj~ +kNz } +

{(w;)(w(-)*} W{-~'%~ le-k%,%y ~ 
e~~~ e (%%)-
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The highest order terms are those which have multipliers of the form

{ e(ikB -kBY)L _ 1 

(ik4 - kB)L 
(2.44)

Clearly, the numerator is always of order 1 or less. The denominator is of the

order of kB L which has been shown to be a large value compared to unity.

For these reasons, the cross-terms will be neglected and only the terms in

brackets in equation (2.39) will be used in the spatial averaging, or

{ IWf12 + IW-1 + W+12 e2 kB,(x-L) + !w-12e2kBy} dx.

The temporally averaged mean square velocity is broken into harmonic and

evanescent components

(b(x, t) 2)H.armonic 2= 
2L GO

2LJL

{ W+ 12 + IW-12} dx

{w + 12e 2kB(x-L) +IW-12e-2kB ~ } dx

The spatial integration yields

(W (X, t) ) Harmonic =
W2 (W+12 + jW-12)

2

(tb(x, t)2 )Evanescent 
2 (IW 12 + wJ 2)

2

{1 -e- 2 k L

2k4L 

Finally the radiated power equations (equation 2.24) are

-RDari =W 2

rIRADHarmonic - PaCaSGRAD 2 (IW+12 + IW-12)

27

(w2) = 2 (2.45)

and

(_ (x, t) 2) Evanescent -

(2.46)

(2.47)

and

(2.48)

(2.49)

(2.50)



and

rIRADEvanescent = PaCaSRADW 2 (W+12 + 1We12) { e (2.51)e e 4kar 'L2.1

These equations have been deliberately expressed in terms of the displacement

amplitudes of the beam. In the next chapter the Direct Global Stiffness Matrix

will be introduced and it will be seen that the output of the method is the

displacement amplitudes of the beams in flexural vibration. It should be noted

at this point that the above equations represent only of the radiated sound

power. The beams will undergo flexural vibration in both the z and y directions.

The only difference in the above equations is in the choice of the bending wave

number kB, or kBz and the radius ofgyration y or Kz. Fortunately, the cylindrical

geometry means that the radii of gyrations and bending wavenumbers are the

same for both the x and z direction flexural vibration.

C: The Radiated Noise From the Plates

The plates are more efficient radiators of sound and they also are highly direc-

tive. The sound radiation from the plates, however, is highly dependent on the

amount of vibrational energy which is transferred to them from the beams and

thus the coupling between the beams and plates is of crucial importance to the

amount of sound radiated.

The plates were attached to the truss struts using a visco-elastic epoxy glue.

The glue was placed on the struts for the entire length that the plate was in

contact with the struts, making a continous joint. The placement of the plates

was on the bottom of the pyramidal structures as shown in figure 2-5 below.

The coupling between the struts and plates is a largely unknown quantity.

It it expected that the epoxy, because of it's inherent visco-elasticity, will not

allow strong coupling between the plates and the struts, but a quantitative

relationship is not available.
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M.I.T. Truss

Figure 2-5: Placement of aluminum plates on truss.

As a worst case, first order, estimate, the plate strut combination will be

modeled as a continuous welded line. Since bending waves are considered

the main type of energy being transferred, and the two elements are strongly

coupled, an equipartition between the modal energies of the beam and plate

can be assumed [4]. This means

EB _ EP _ MB(v2 ) _ MP(v2) (252)
nBB(w) nfp(w) nB(W) np() '

where E represents the spatially and temporally averaged mean square vi-

brational energy, n(w) represents the modal density, M is the mass, and the

subscripts B and P represent the beam and plate respectively. So the tem-

porally and spatially averaged mean square velocity of the plate can be found

by
(V2) = MBnp(w)(v) (2.53)

(va) MpnB (w) (2.53)

The masses of the beam and plate are known and the mean square velocity

of the beam was found in equations (2.48) and (2.49), using the outputs of the

DGSM program. Using the output of the DGSM program will introduce some
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errors. In the development of the DGSM program, the vibrational energy of

each strut is calculated assuming there is no coupling with adjacent systems

other than the struts which are directly connected. Such an assumption is

reasonable for the bare struts; it is not expected that there will be coupling

with the acoustic space of the room. However, the addition of these plates to

the truss, under the assumption of strong coupling with the struts, would affect

the vibrational energies in the struts. For the present, these errors will be

neglected, pending further investigation in chapter 5.

The modal densities of the beam and plate are

L
nB () = 3.38 CLBdW (2.54)

where L is the length of the beam, CLB is the longitudinal wave speed in the

beam, and d is the diameter of the beam, and

S
() 3.6CLt' (2.55)

where S is the surface area of the plate, CLP is the longitudinal wave speed of

the plate and t is the thickness of the plate.

In order to apply equation (2.24) to the plates, all that is needed is an

expression for the radiation efficiency. Fortunately, Cremer [6] provides the

following radiation efficiency for point excited, weakly damped two-dimensional

plates
UA for7r2S for < f

aRAD ~ 0.45-- forf = f , (2.56)
1 for > f

where U is the perimeter of the plate, A is the critical wavelength of the plate

(that wavelength where the bending wavespeed of the plate equals the speed of

sound in air), S is the surface area of the plate and f, is the critical frequency.
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The critical frequency of the plate is when

Ca CB = W/~KCL,

or,
- = C2 6006 Hz.

tCL 2,r=71E

The radiation efficiency of equation (2.56) is not defined as a smooth function

of f, and is therefore not the optimal input for the DGSM program. In order to

smooth the above values, they were fitted with a 13th order polynomial fit. The

upper limit of the frequency defined as f < f was taken to be of the critical

freqeuncy or 1000 Hz. The lower limit of the frequency defined as f > f was

taken as 15000 Hz. The curve is plotted below as figure 2-6.

Figure 2-6: Radiation efficiency of the plates
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D: Limits of the Analysis

For the radiated power equations (2.50) and (2

least one flexural wavelength along the beam. S

must be less than the length of the beam or,

CB -27rf P2CL / 227rfCL
f -V f2 - f

.51) to hold there must be at

o that the flexural wavelength

125.37 meters.
f meters. (2.59)

Therefore, the theory will apply when,

535.2Hz,

255.9 Hz,

191.1 Hz,

L = .484 meters

L = .700 meters

L = .810 meters J

This limitation places no real restrictions on the analysis since it is also known

that for an infinite beam to be an efficient radiator of energy, the flexural

wave speed must be greater than the speed of sound in the surrounding fluid.

The frequency of flexural vibration where the flexural wave speed equals the

acoustic wave speed is known as the coincidence frequency. For the struts of

the truss under consideration, the flexural frequency must therefore be

f > >2 =C f > 923Hz,
27IFKCL

(2.61)

which is well above the limits placed on the analysis from the condition in

equation (2.60). Another consideration that comes into effect later is that the

background noise in the laboratory was high in the low frequency bands. The

experimental measurements of chapter 4 will show that the region below 1 kHz

was unusable due to this high background noise.
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CHAPTER 3: An Analytical Model for the
Vibration of the Truss

A: The Direct Global Stiffness Matrix Method

The Direct Global Stiffness Matrix (DGSM) Method is developed by Fricke and

Hayner [11]. The DGSM method models the joints of the truss as separate

elements having six degrees of freedom. The struts of the truss are modeled

as being welded at the joints. By analyzing the wave types present in the

struts themselves, a so-called Global Stiffness Matrix is developed and then

inverted. The fact that the matrix is sparse and the that the matrix need

be inverted only once for any possible forcing combination leads to a great

savings in computation time. There is, however, one Global Stiffness Matrix

for each frequency to be studied, which leads to a large number of iterations

of the program to provide sufficient frequency coverage. For the purpose of

completeness of later anaylsis, the derivation conducted by Fricke and Hayner

is summarized here.

The following analysis considers all equations to be in the local coordinates

of the struts. The x direction consists of the direction along the strut axis

while the y and z directions are perpendicular to the x axis and are mutually

orthogonal. Therefore u, v, and w are the displacements in the x, y, and z

directions corresponding to the localized geometry and Xx, dy, and q3 are the

corresponding rotations.

The compressional waves are first studied. The governing equation for the

compressional waves is

-t2= CL aX 2 (3.1)

where CL is the longitudinal wave speed and is equal to A/. The solution is
p
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composed of a right and left going wave and may be written as

u = {u+eikLx + u-e-ikL(x-L)}eiwt (3.2)

The total force in the beam in the longitudinal direction is computed from the

stress

f = EA -. (3.3)
Ox,

From the above equations, a 2x2 system of equations is written in local coor-

dinates, which relates the beam amplitudes u+ and u- to the force fx and the

beam displacement u

p eikLX e ikL(x) u = . (3.4)
L iEAkLeikLx -iEAkLeikL(x - L) u- L x J

In a similar way the governing equation of motion for the torsional waves is

T Ox,aa0 C aaz§62, I(3.5)

where CT is the torsional wave speed of f. This equation leads to solutions

X -- {0 +ikT e-ikT(x-L)}eiwt (3.6)ox = fox e ox e le ~~~~~~(3.6)

The moment acting on the beam is now given by m = GJ, which leads

to another 2x2 matrix for the torsional excitation in the beam relating the

torsional wave amplitudes to the rotation in the x direction and the moment

about the x axis

E eikrx ekT (L) 1 [ s =p 1 ±l .7

iGJkTeikTx -iGJkTeikT(x- L) = Lx- m3x

The last major wave type of interest in the beam are the flexural waves.

As was previously postulated, these waves produce the majority of the sound
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power being radiated and they will be assumed to be the only source of sound

power being radiated. For the flexural waves, the governing equation is

Ely 04 W _ 02W (3.8)
= --- ~~~~~~~(3.8)

pA Ox4 t2

This leads to the solution,

w = {w + eikBx + w-eikB(x -L) + W+ekB(x-L) + we-kByx}eiwt. (39)

The first two terms are seen to be harmonic wave solutions to the equation.

The last two terms represent waves which exist at the boundaries of the struts

and then quickly dissipate. These so-called evanescent waves exist because the

struts have finite length. It will be shown later that they do contribute to the

root mean square velocity of the struts in flexure. The same progression as used

before is utilized with the flexural waves to find the rotation, bending moments

and shear forces associated with the wave amplitude in the z direction

O w (3.10)

O2 ,my=-EIy 2 (3.11)
Ox 3.

= -EIy 93 . (3.12)

These equations are used to produce a 4x4 matrix which relates the wave

amplitudes w+, w-, w+ and w- to the displacement, rotation, shear force and

bending moment

eikBax ekB (x-L) e-ikBy (x-L) e-kBx

-ikByeikBy -kByekBy(x-L) ikye-ikBy(x-L) k -kBy x

iEIykjp3eikBsx Z EIykg~,3ekBM (X-L) -Eyi~v 3 eik~ (x-L) EIk,,e-kB^ x

EIykBy2eikByx -EIykd 2 eksy(x-L) EIyk e-ikBy(x-L) EIyk 2 e-kByx

W+ W~w+
We+ OY

w- fz

lWe MY

(3.13)
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In a similar way the equations for the bending about the z axis can also be

obtained. The only real difference in the equations is in the moment of inertia

and the wave number

eikBzx ekBz(x- L) e-ikBz (x - L) e- kB z V+ v

-ik eikB' z -kekB ( x- L) ikB e - ikBz(x-L) kBZe - kBzx zV+ 

iEIzkB eikBz -EIzk ekz (x-L) - iEIzkB e-ikBz (x-L) EIzkBe-kBzx V
(x-L -ik~~~~~z (x-ELk)f -k~zxf

EIkBseikBz -EIzkBekz (-L) EIzkB 2e- ikBz (x-L) -EIzk e -kBz V mz

(3.14)

Combining equations (3-4), (3-7),(3- 13), and (3-14) will yield a complete

set of matrix equations. For simplicity, the vector of wave amplitudes ' is

designated as

WT = [w+, w- w+ w-,v+ v- v+ v-, u+, u + 0. (3.15)~~~~e' '7 7
T7 (3.15)e e e e e, 

The coefficients of the wave amplitude vector are evaluated at x = 0 and x = L.

The coefficients corresponding to the displacements and rotations is a 6x12

matrix and is designated as D. The matrix of force and moment coeffiecients

is designated C. The displacements at the endpoints of the struts form a 6xl

matrix, which is designated U

UT = [u, v, w, x, y, z] Ix=O,L (3.16)

Likewise the forces and moments at the endpoints of the struts also form a 6xl

matrix, which is designated F

iT = [fX, fy f, mx, my, mZ]=o,,L (3.17)

Finally we can write two matrix equations which relate the displacements
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rotations, forces, and moments at the strut endpoints to the wave amplitudes

D O U
LW = [ (3.18)

DL] [zL'

or,

DW = U, (3.19)

and,

[L W = [ ](3.20)

or,

CW = F. (3.21)

These equations can be manipulated to form the equation

CD-1U KU = F. (3.22)

The matrix K is called the local stiffness matrix as it expresses the rela-

tionship between the applied forces and the displacements. The local stiffness

matrix must be converted into global coordinates so that the contributions from

each beam can be added together. This transformation is accomplished by us-

ing the two endpoints of each beam and one other point to define a local plane.

If g-i, , and are the global coordinates of the three points chosen to define

the local axes, the local x axis unit vector can be found by

x= _ ), (3.23)
(92 -91)

the two vectors (9 - i) and (9 - 1) define the plane in which all three points

lie. Therefore, the local axis unit vector is found by taking the cross product

of these two vectors
(9 - 1)X(- ) (3. 24)
1(9-2 - 91) X (93 - 921)
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The - axis unit vector follows from the cross product of z with x

= x ' (3.25)

For each beam element a transformation matrix is constructed with column

vectors, which are the local unit vectors -, , and z

T = [x ` z, (3.26)

and a 12 x 12 matrix is built to transform the local displacements, forces mo-

ments and rotations into global coordinates

T=

T 0 0 0

T O

0 T 

0 0 0 T

(3.27)

Note that since the transformation matrix is made up of the individual unit

vectors and due to the inherent orthogonality of the transformation vectors

T -' = TT, and T7T =TT- =I. (3.28)

The stiffness matrix for the ith beam can be written in global coordinates

7CiD-T17iUi - 7Ki 7T TUi = TAF, (3.29)
i ~ ~ A Ui = Fi~

thus the global stiffness for the ith beam is defined. All that remains is to

compile the Global Stiffness Matrix for all elements in the truss, which is done

by matching the boundary conditions on each strut. The joints are considered

to be welded joints, and the boundary condition is that the displacement of all

the joints which terminate at one element must be equal. Likewise, the sum of

the forces and moments at each joint due to the beams that terminate at that
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joint must equal the applied forces and moments at that joint

M

(3.30)
i=1

where Mj is the number of struts that terminate at the jth joint and ?et is the

applied external force to the jth joint. Fortunately, since the joint displacements

for all beam ends are equal, summing the stiffnesses works as well as summing

the forces. The Global Stiffness Matrix is thus assembled and then inverted

to solve for the joint displacements for any given applied force or moment

combination. From the joint displacements, the amplitudes of the waves on

any strut can be recovered using

- = D-'U = D-1-U. (3.31)

B: Evaluation of the Mean Square Velocity

A Matlab® routine developed by Fricke and Hayner[8] is utilized as the basis

for the numerical analysis that follows. The routine begins with a given set

of frequencies under consideration and a specified input force. The force used

in the prediction was chosen to be a force applied at one end of the truss, on

the centerline and in the +z direction. This force was chosen to match the

actual applied force during the experimentation. An iterative loop is set up

to utilize the above analysis by constructing the Global Stiffness Matrix for

each of the given frequencies. This matrix is inverted and the displacements

of the nodes of the truss are determined for the specified input force. The

vector of wave amplitudes W1 is also determined. As discussed in chapter 2, the

wave amplitude vector provides a more readily usable output for the purpose

of computing the mean square velocity.

After the DGSM program is complete, post-processing is used to calculate

39



the radiated power from each strut using the calculated wave amplitude vector

W. Recalling equation (2-50) and (2-51):

~2
IRADHarmonic = PaCaSTRAD2 (]w+12 + w-12) (3.32)

and,

IIRADEvanescent = PaCaSURADW2 (JW+12 + IW12) { 1 eB(3. 33)
e e 4k4 L

The resulting radiated power is normalized by the input power:

Sin = R{fv*}, (3.34)

where f is the input force and v is the velocity of the input node in the direction

of the applied force.

C: Numerical Prediction of Radiated Sound Power
for the Bare Truss

In the formulation of the DGSM analytics, no mention was made of internal

losses in the structure, and the problem was formulated strictly by applying

known wave propagation solutions. Now the structural loss will be added by

making the wave number complex. Namely,

E = pCL2(1 + imz), (3.35)

where,

CL = - (complex), (3.36)

and therefore,

kBy -- L (complex). (3.37)
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The normalized radiated sound power output from the DGSM prediction is

plotted as figure 3-1 for a nominal structural damping value of 7m = 1 x 10- 3 .

Figure 3-1: Prediction of radiated sound power from DGSM method for fre-
quency range of 100 Hz - 25600 Hz. Structural damping, ,r5 = 1 x 10 - 3 and 500
frequency points are included.

The value for the structural damping factor q, was estimated to be 1 x 1 - 3

by Heath [1]. This is a factor of 10 higher than the estimates found in the

literature. However, the truss was assembled using a two-part epoxy in the

joints so it is not unreasonable that there could be a factor of 10 difference

between the accepted values of 77s and the actual truss values. This parameter

plays an important role in determining the amount of sound being radiated; the

vibrational energy dissipated in the structure cannot contribute to the radiated
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sound field. For this structure, it is expected that the loss due to radiation of

sound will be much less than the loss due to strutural damping.

A parametric study was conducted to determine the effect of the structural

loss factor on the sound radiated by the truss. Values for rs were chosen as .01,

.001 and .0001, to bracket the value proposed by Heath. The DGSM model was

run for all three cases with 500 frequency points linearly spaced between 100

Hz and 25600 Hz. The upper limit of 25600 Hz was chosen based on the upper

frequency limit of the data analysis equipment. The raw results are plotted

as figure 3-2. These results were then averaged over octave bands, and are

plotted as figure 3-3. All results are plotted on a decibel scale, specifically

r1radNormalized Radiated Sound Power{db} = 10 log10 rIi . (3.38)

It is interesting to note that the curves appear to have the same basic shape.

As the structural damping decreases, the amount of steady-state vibrational en-

ergy in the truss members increases. Increased vibrational levels lead directly

to increased sound radiation. What is most interesting is that the curves shift

up by an amount which is directly proportional to the change in the loss factor.

However the fact that the radiated sound power exceeds the input power for

7 = .0001 points out a major failing of the DGSM prediction. Since the DGSM

program computes steady state vibration levels in the struts and assumes that

the structural losses are independent of the sound being radiated, the actual

physics of the problem are not always accurately modeled. If the structural

losses were as low as .0001, or lower, the increased radiated sound power would

take vibrational energy away from the struts and cause the mean square ve-

locity of the struts to be lower than predicted by DGSM. Radiation losses could

no longer be considered as de-coupled from structural losses. The reduced

mean square velocity would give a radiated power lower than that predicted by

DGSM, and in fact a normalized power ratio of greater than unity would never

be achieved. So the relationship between these curves follows the assumptions
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used in formulating the DGSM prediction; however, since the structural loss

factor plays such an important role in determining the radiated sound power

levels, it is crucial that this parameter be accurately determined before enter-

ing the DGSM program. The structural loss factor should also be expected to

have some dependence on frequency. Unfortunately, the literature provides few

clues as to the frequency dependence of the loss factor. The tabulated values

for aluminum are usually given as lx10 -4 . Heath [1] finds that for the given

truss the value is more on the order of lx10 - 3 , the difference being due to the

joint losses in the truss. As a first order estimate, the structural loss factor

used will be i7 = lx10 - 3 . Later chapters will compare this prediction with the

actual measured sound power and some refinements in the choice of V7 will be

suggested.
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Radiated Sound Power From DGSM, Bare Truss
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Figure 3-2: Prediction of radiated sound power from DGSM method for bare
truss and structural damping, q = .0001, .001, and .01. Frequency range is
100-25600 Hz and 500 frequency points are selected.
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Radiated Sound Power from DGSM, Third Octave Band Averaged
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Figure 3-3: Prediction of radiated sound power from DGSM method for bare
truss and structural damping, U = .0001, .001, and .01. Frequency range is
100-25600 Hz and 500 frequency points are selected. Results are averaged in
I octave bands.
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D: Numerical Prediction of Radiated Sound Power
for the Truss With Plates

The DGSM program with plate radiation added was run for the same values

of r7 as the bare truss. However the frequencies chosen consisted of only 250

points between 100 Hz and 25600 Hz, since it was felt that this would provide

sufficient frequency resolution and reduce computation time. The raw results

are plotted as figure 3-4. These results were then averaged over octave bands,

and are plotted as figure 3-5.

Again, an immediate problem is noticed. If figure 3-5 were true, the radi-

ated power would be 1000 times the input power, which is clearly ludicrous.

Again the DGSM prediction fails to model the physics. If the coupling be-

tween the struts and the plates were as strong as postulated in formulating the

DGSM prediction, the majority of the vibrational energy in the truss would be

transferred to the plates and then radiated most efficiently into the air, again

lowering the mean square velocity of the struts. In actuality the vibrational en-

ergy of the truss is not significantly altered by the addition of plates, which will

be shown in chapter 6. This suggests that the assumption of strong coupling is

incorrect, which is discussed in chapter 5, part B.
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Radiated Sound Power From DGSM, With Plates
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Figure 3-4: Prediction of radiated sound power from DGSM method for truss
with plates and structural damping, Us = .0001, .001, and .01. Frequency range
is 100-25600 Hz and 250 frequency points are selected.
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Radiated Sound Power from DGSM, Third Octave Band Averaged

4

g
ZUas'U0
0

r.

U 5 1U 15 2U 25
Frequency kHz

Figure 3-5: Prediction of radiated sound power by DGSM method for truss with
plates and structural damping, U7 = .0001, .001, and .01. Frequency range is
100-25600 Hz and 250 frequency points are selected. Results are averaged in
3 octave bands.
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CHAPTER 4: Experimental Procedures

A: Description of Intensity Probe Experiments

The experimentation was conducted with a Bruel and Kjeer intensity probe

using inch microphones and an 8 mm spacer. It was necesary to use an

intensity probe since the truss was located in a semi-reverberant room. The

intensity probe allows measurement of radiated sound power in a reverberant

environment since it detects sound power radiated per unit area from a specific

direction. A diagram of the intensity probe is shown below as figure 4-1.

Pressure Signal: Channel 2

Pressure Signal: Channel 1

VI
AX

In11n
I 19W 

, ",' Microphone #1
Microphone #2

8 mm spacer

Figure 4-1: Diagram of Intensity Probe

The sound intensity is the time averaged product of the pressure and the

particle velocity

I = A p(, t)i(, t)dt. (4.1)

The pressure can be readily measured with only one microphone. However, two

microphones are needed to measure the particle velocity. The linearized and

inviscid Euler equation is used to relate the pressure gradient to the particle
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velocity
ad -lVP (4.2)
at p

The vector notation can be neglected if only plane waves are being measured.

The experiment is designed so that all measurements will be taken in a direction

pointing radially inward towards the centerline of the truss; the only waves of

importance are plane waves radiating in the outward radial direction. The

experiment has also been designed so that all measurements are taken in the

far-field, as described in equation (2.13). So in one dimension (chosen as the

radial direction) the intensity equation becomes

Ir = J Ap(r,t)ur(r,t)dt. (4.3)

Likewise the one dimensional inviscid and linearized Euler equation becomes

aur. _Iap=ur 1 -P (4.4)
at p ar

Integrating to find velocity leads to the expression

Ur(t) =- 0 -0 d (4.5)iiJ#~~~~ - ~~ lap ~~(4.5)J ar

where the partial differentiation can be replaced by a finite difference

ap = (2- pi) (4.6)
ar paZr

and Ar is the distance between the microphones. Therefore the instantaneous

velocity becomes

Tiaprxmtow b(p2 - Pl) dr. ouT(t) =-A be vpa whre (4.7)

This approximation will only be valid when the spacing of the two microphones
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is small compared with the wavelength of the frequencies of interest

Ax < Ca (4.8)f.
For a nominal speed of sound in air of 340 meters and a microphone spacing of 8second

mm, the maximum usable frequency is on the order of 10000 Hz.

The instantaneous fluctuating acoustic pressure is

p - (P1 + P2) (4.9)
2 ~~~~~~~~~(4.9)2'

Substituting the instantaneous values of pressure and velocity into equation

(4-1) yields

T o { Tp 2 lo (p2- p l)d} d. (4.10)
T fo 2 p,,Ar

In practical use the pressure signal from the microphone is put through a

Fast Fourier Transform (FFT) analyser to obtain the spectrum of the signal.

The Fourier transform of the pressure and velocity become (respectively)

p() = {P(f) + P2(f)} (4.11)
2

and
1

Ur(f) = ipAr {P2(f) - Pl(f)}. (4.12)

By substitution the intensity can be expressed in terms of the imaginary part

of the cross spectra between microphones 1 and 2 [16]

Ir 2 = -h k [P12 (f)], (4.13)
27r f p, Ar

where P12 (f) is the cross-spectra between channels 1 and 2 of the intensity

probe.
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B: Calibration of Microphones and Background
Noise Determination

The microphones which were installed in the intensity probe were Bruel and

Kjeer inch microphones which had been phase matched specifically for use in

an intensity probe. These microphones had been purchased two months prior

to the conduct of the experiments and were accompanied by factory calibration

certificates. However, to ensure the correct calibration, prior to conducting the

experimental run, the two microphones were individually calibrated using a

Bruel and Kjeer type 4228 pistonphone. The pistonphone output was nominally

+124.10 dB re 20pPa at 250 Hz, and corrections were supplied with the piston-

phone for actual pressure and amplification by the power supply. With the total

corrections the expected output level measured by the microphone was +123.70

dB re 20gPa, at 250 Hz. After each microphone was tested the data acquisition

computer calculated a correction factor relating the voltage supplied by the mi-

crophone to the sound pressure. This factor was automatically used by the data

acquisition equipment and the output of all subsequent sound pressure mea-

surements was given in mean square pressure in Pa2. All experiments utilized

a frequency range of 0-25600 Hz with 3201 frequency lines, for a frequency

resolution of 8 Hz. The data acquisition equipment selected a sampling fre-

quency so as to avoid aliasing effects. Figure 4-2 shows the calibration results

for microphone #1 (channel #3 of the data acquisition equipment corresponded

to microphone #1) and figure 4-3 shows the calibration results for microphone

#2 (channel #2 of the data acquisition equipment corresponded to microphone

#2).

Also, prior to making the sound measurements a background noise level was

measured at the midpoint of the truss in the -y direction. With the vibration

source secured, the sound pressure level was measured for both channels of the

intensity probe. The sound pressure level was also measured with the vibration

source activated. The Sound Pressure Level (SPL) is calculated from the output
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Calibration #1

Figure 4-2: Calibration of microphone channel #1, which corresponds to data

Figure 4-2: Calibration of microphone channel #1, which corresponds to data
acquisition channel # 3.

mean square pressure using

SPL = 10 log10 (20Pa) 2 (4.14)

Figure 4-4 shows the SPL from the background noise and compares it to chan-

nels # 2 and #3 of the data acquisition system, which corresponds to channels

# 2 and # 1 of the intensity probe. At very low frequencies there is poor quality

of signal to noise ratio (SNR). The data acquisition equipment was located near

the truss and its internal cooling fan probably caused this low frequency noise.

In any event, data below 1000 Hz should not be given too much weight.
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Calibration #2
1

Figure 4-3: Calibration of microphone channel #2 which corresponds to data
acquisition channel # 2.

[1 -- Background Noise and Recieved SPL 

0 0.5 1 1.5 2 2.5
Frequency Hz x 

x10

Figure 4-4: Background noise level as compared to sound pressure level from
intensity probe microphones. Channel # 2 refers to microphone # 2, Channel
#3 refers to microphone channel # 1.
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C: Measurement of Sound Intensity

For the intensity experiments a cylindrical surface was used as the measure-

ment surface. The volume extended out 1 meter from the centerline of the truss

and measurements were taken at meter increments, in the x direction, at y

values of- 1 meter and + 1 meter. There were therefore 11 data runs on each

side of the truss and one at each end of the truss. The experimental configu-

ration for one side of the truss is shown as figure 4-5. For all data runs, the

microphone pointed towards the center of the truss. For runs 0 -10 the micro-

phone was pointed in the -y direction, for runs 11 through 20, the +y direction,

for run 22 the +x direction and for run 23 the -x direction. When the plates

were added, intensity probe measurements were also taken at 1 meter from

the truss directly above and below the centerline of the truss (y = 0), at meter

increments in x. Extra readings were taken with the plates to ensure that the

directional variation of the sound power radiated was adequately sampled.
I

Figure 4-5: Measurement of sound intensity on one side of the truss; numbers
indicate data run number. The opposite side was also measured with data runs
0 through 10; run number 10 was at the end where the force was applied.
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D: Measured Sound Power

The experiments consisted of exciting the truss at joint B1 using a 1 Newton,

Bruel and Kjeer type 4810 shaker which was excited by broadband white noise

in the frequency range of 0 - 25 kHz. The shaker had an internal impedance

head mounted between the shaker and the truss which was also manufactured

by Bruel and KjEer. The truss was excited in two configurations, in the as-

built condition and with meter square aluminum plates of thickness .002

meters attached in the center of each pyramidal assembly. Figure 4-6 shows

the configuration for the bare truss and figure 4-7 shows the configuration for

the truss with plates.

Figure 4-6: Configuration of radiated sound power experiment for bare truss
experiment. Force was applied at joint B1, as shown.

The data acquisition system had 48 channels available for these experiem-

nts. Only 4 were needed and they were assigned as listed in table 4-1 below.

The output consisted of a [9x3201] matrix which contained the auto-spectra

and cross-spectra of the measured signals versus frequqncy. These matrices
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Figure 4-7: Configuration of radiated sound power experiment for experiment
with plates. Force was applied at joint B1, as shown.

were saved to a file and then read into Matlab®, for processing. The column

assignment for the output is listed in table 4-2 below.

After the data was taken, the sound intensity was obtained using column

8 of the output and equation (4.13). The results for all 23 measurements (45

with plates) were multiplied by their effective area and the resulting sound

power radiated with and without plates is presented as figure 4-9 and figure 4-

8, respectively. The graphs shown are of normalized radiated power. They

are normalized by the power which is input to the truss as measured by the

mounted impedance head and calculated by

1 1
Input Power = 1{ {FV*} = Sfa} (4.15)

2 2
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The result is plotted in a deciBel scale

Normalized Power = 10 log10 { HIRAD }
IHi. }

(4.16)

Finally, the results for the bare truss and the truss with plates were also

averaged in standard one third octave bands and are shown together in figure 4-

10. The shape of the curves is essentially the same. The big difference is that

the radiated noise with plates is approximately 4 dB higher than the bare truss.

Table 4-1: Data acquisition channel assignment

Column 1:

Column 2:

Column 3:

Column 4:

Column 5:

Column 6:

Column 7:

Column 8:

Column 9:

Auto-spectra of input force Sff

Auto-spectra of pressure channel 2 S22

Auto-spectra of pressure channel 1 S1

Auto-spectra of input accleration Saa

Cross-spectra Sf2

Cross-spectra Sf1

Cross-spectra Sfa

Cross-spectra S21

Cross-spectra S2a

Table 4-2: Output data location in output matrix
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Channel 1: Input force transducer

Channel 2: Pressure channel # 2

Channel 3: Pressure channel # 1

Channel 4: Input acceleration transducer



Radiated Power Normalized to Input Power - Bare Truss
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Figure 4-8: Radiated sound power for bare truss

59

-4

4

a)0a)

a)

N

z:



Radiated Power Normalized to Input Power, with Plates
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Figure 4-9: Radiated sound power with plates
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Normalized Radiated Power Averaged over 1/3 Octave Bands
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Figure 4-10: Comparison between radiated sound power with and without
plates, averaged over octave bands.
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CHAPTER 5: Comparison of Results With
Initial Prediction

A: Comparison Between Predicted and Measured
Results for the Bare Truss

The measured sound power for the bare truss case, with the results averaged

in one third octave bands, is plotted with the predicted sound power from the

DGSM program using a constant loss factor of q8 of lx10 -4, lx10- 3 , and lx10- 2

as figure 5-1.

Figure 5-1: Comparison between measured radiated sound power and pre-
dicted radiated sound power using the DGSM program for the bare truss case.
Structural loss factor, rs = lx10-2 , lx10- 3, and lx10 4 .
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The values of the structural loss factor 7n chosen as inputs for the DGSM

program in the bare truss case have predicted a radiated sound power that falls

on either side of the measured radiated sound power. The intial postulation

that is higher than that predicted by Heath (lx10-3), appears to be correct.

Also, since the apparent value of 8 is so much higher than the intrinsic value for

aluminum (lxlO-4), it is obvious that the joints exhibit considerable loss. There

are some inconsistancies which can be seen, however. At very low frequencies,

the measured values have a very high peak. As discussed in the previous

chapter, this can be attributed to the high levels of background noise which were

present in the low frequency bands. The measured data contains a prominent

peak at approximately 6 kHz, which the DGSM prediction doesn't support.

Also, the slope of the curve after the peak is much steeper for the actual data.

The possibility raised earlier of there being a frequency dependence to the

structural loss factor appears to have been borne out.

When this data was obtained, these differences were a source of concern.

The data collection methodology and data analysis was checked and verified to

be correct. In addition, the data obtained using the intensity probe was com-

pared to data which had previously been obtained using a single microphone

and the assumption that the room was non-reverberant. The previous results

agreed with the intensity probe experiments in that the shape of the response

was correct. The single microphone response was 5 dB higher in the magni-

tude. This difference was attributed to the fact that the single microphone was

including some reverberent field contributions which the intensity probe was

able to filter out. So the measured data was determined to be correct. The

difference had to be attributed to the DGSM prediction technique.

The analytical development of the DGSM technique and the formulae for

the radiated sound power are fairly straightforward and therefore not suspect.

However, as was mentioned before, one of the most uncertain inputs to the

DSGM program was the structural loss factor. As a first order estimate it was

assumed to be constant but that estimate now appears to be too simplistic. A
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refinement of the DGSM structural loss factor is required and discussion of

that refinement is contained in the next chapter.

B: Comparison Between Predicted and Measured
Results for the Truss with Plates

The measured sound power for the truss with plates, with the results aver-

aged in one third octave bands, is plotted with the predicted sound power from

the DGSM program using a constant loss factor of Us of lx10 -4 , lx10 -3 , and

lx10- 2 as figure 5-2.

Figure 5-2: Comparison between measured radiated sound power and predicted
sound power using the DGSM program for the truss with plates. Structural
loss factor, r77 = lx10 -4 , lx10 - 3 , and lx10- 2.

Clearly the DGSM prediction grossly overestimates the amount of sound
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power radiated by the plates. The data in figure (4-10) shows approximately 4

dB difference between the case where the truss was bare and the case where

the plates were attached. This agrees with experimental observation. The

ambient noise levels in the laboratory were not significantly higher during the

runs with the plates attached.

As discussed earlier, the assumption of strong coupling between the struts

and the truss in the DGSM prediction is the source of the error; there is not

strong coupling. Experiments conducted in chapter 6, part f will show that

the vibrational energy of the truss with plates was not significantly higher

than without plates. So the DGSM prediction, in this case, should correctly

calculate the mean square velocity of the struts. Therefore, the fault must lie

in the method of computing the mean square velocity of the plates from the

mean square velocity of the struts. Clearly equation (2.53) must be revisited.

Consider a simple two element Statistical Energy Analysis (SEA) model as

shown below in figure 5-3.

Figure 5-3: Two element SEA model
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The terms in the diagram are defined as [17]

Hin = Input Power,

E = Energy,

n = Modal Density,

H1ldiss = Dissipated Power of Element 1 = wE1 r71,

H12 = Power transmitted from element 1 to element 2 = wE1712,

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

where the subscripts refer to element 1 or 2, loss factors of the form 71 refer

to the internal loss factor of element 1, and the loss factors of the form 712 are

known as coupling loss factors. Energy balance equations can be written as

Ilin = wE1 71 + wE1 7712 - wE2 7721

0 = wE2 72 + wE27 21 - wE712

(5.6)

(5.7)

The energy of element 2 can be calculated from the energy of element 1 using

equation (5.7)
E2 EP Mp(v~) 7712

E1 EB MB(V 2 ) ?72 + 721

Using a known SEA relation [17]

nl?712 = n2772 l,

(5.8)

(5.9)
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equation (5.8) can be transformed to

mpj,(,) _ 1
- (B 2 2(5.10)MB(V2) + ~

MsvB f712 n2

or,
_ ~1

( = 2 MB (5.11)
nBP np

The ratio of modal densities can be calculated from equations (2.54) and (2.55)

as
nB(W) (5.692)L (5.12)
np(w) /W

For frequencies on the order of 10000 Hz, and strut lengths on the order of 1

meter, this term is on the order of .01.

Before, it was assumed the coupling was strong (i.e. very large coupling

loss factor), or that r71p << rBp. Equation (5.11) reduces to equation (2.53) when

<.01
qBP

(2) = ()MB P (2)MB (100) (5.13)(v--~v -~ MB BP B Mp nB M

If the coupling is weak, or if T )Bp ; rjp then equation (5.11) will reduce to

(2) = (V2 )MB r/ r _ v- MB (5.14)
Mp ]p (v)Mp'

So if the coupling is weak, where DGSM assumes it is strong, then the mean

square velocity of the plate will be predicted as 20 dB higher than it should

be. It will be shown in chapter 6 that there is evidence of weak coupling. The

difference between the DGSM prediction and the measured sound power is due

to the coupling being weaker than assumed by DGSM.
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CHAPTER 6: Refinement of DGSM
Prediction for the Bare Truss

A: Measurement of Total Loss Factor
In the last chapter, the differences between the predicted and measured

sound power was discussed. The assumption of the loss factor being a constant

value is too simplistic. There are methods to measure the total loss factor

experimentally, and these methods will be exploited on the truss structure.

The truss is vibrated at a given point and the input force and acceleration

are measured using an impedance head mounted on the shaker. The analysis

equipment takes this signal and computes the cross-spectra between the force

and acceleration. The power being input to the truss is then computed with

li = 2R {FV*}. (6.1)

The spatially averaged energy of vibration of the truss is also determined by

placing accelerometers at many points on the truss. The signal from the ac-

celerometers is also processed as a Fast Fourier Transform and the resulting

output is the auto-spectra of the mean square velocity. These autospectra are

averaged and multiplied by the total mass of the truss to obtain the energy of

the truss
1 N 1 N

E=M(v2) = 2-MZVV* = 2MEAA* (6.2)
2N 1 2Nw 2 1

where A and V are the Fourier tranforms of the acceleration and velocity, N is

the total number of measurement points, a factor of w2 is inserted to convert

from acceleration to velocity, and the factor M is the total mass of the truss,

which is 16 kg.

Using the above measured input power and the total vibrational energy of

the truss, the total loss factor TOT is calculated from

77TOT = wE (6.3)
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Note that the total loss factor is specified because this measurement cannot

distinguish between the structural loss factor and the radiation loss factor. The

generally accepted formula for the total loss factor from a Statistical Energy

Analysis (SEA) viewpoint is the following [4]

nl2(f)] 21(f)
?7TOT(f) = 778(f) + RAD(f) + 77ints (f) + n2(f) + (21(f) (6.4)

772(f)+ 721(f)

Coupling

where ni, and n2 are the modal densities of the strut and the room respectively,

712 is the loss factor of the room, and 21 is the coupling loss factor between

the strut and the room. The connections between the joints are rigid and it is

reasonable to assume that the joints losses can be included in the structural loss

factor. The coupling losses can be neglected since they only become significant

if there is significant coupling from the room to the struts, and since the struts

of the truss are not thin-walled, it is not expected that the room modes will

couple well with them [4]. The equation reduces to:

7ToT (f) = 7n (f) + V7RAD(f)- (6.5)

The amount of radiated sound power can be obtained from the input power

from the following:

1 RAD = in 1JRAD - in7RAD (6.6)
7JRAD + 7s T7TOT

B: Experimental Measurement

The MIT truss was excited at joints B1, B5, and D5, in the x, y, and z

directions, for a total of nine data runs, as shown in figure 6-1. For each run, the

input force and input accelerations were measured using a Bruel and Kjaer type

4962 impedance head. The vibration measurements were taken for each data
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Figure 6-1: Configuration of total loss factor, TOT, experiment for bare truss.
Force was applied at joints B1, B5, and D5, as shown.

run by applying .5 gram accelerometers on all 13 centerline joints of the truss

in the x, y, and z directions, for a total of 39 velocity measurements. The total

energy of the truss was a result of averaging those 39 mean square velocities,

in effect performing a spatial average; the temporal averaging was computed

by the data acquisition system's FFT algorithm. This mean square velocity was

used in equation (6.3) along with the input power from the impedance head, the

total mass of the truss M, and equation (6.1) to calculate the total loss factor

WTOT. Lastly, the nine separate data run results were averaged to provide the

resulting value of 7TOT. The averaging methodology provides a good estimate of

the spatially averaged energy of the truss. Since the impedance head provides

an accurate measurement of the input power, an accurate measurement of rTOT

is the result. The results of the input power, average energy and resultant total

loss factor are presented as figure 6-2. The dashed lined surrounding the values

of input power, energy and ?TOT represent the standard deviation of the nine

separate measurements. All values are in deciBel format.
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Input Power Averaged over 9 Runs, With 1 Standard Deviation

2 4 6 8 10
frequency in kHz

Energy Averaged Over 9 Runs, With 1 Standard Deviation

12

frequency in kHz

Eta (Loss factor) = P/wE, With 1 Standard Deviation

0 2 4 6 8 10
frequency in kHz

12

Figure 6-2: Measured values of total input power, spatially averaged energy in
the truss, and total loss factor, 7TOT.
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C: Comparison of Experimental Total Loss Factor
To Predicted Total Loss Factor

The output of the DGSM program provides a method of computing the total

loss factor, in the same manner as was just described for the experimental

procedure. The DGSM program computes the displacement amplitudes of each

joint of the truss. The input force is a given quantity and the velocity at the

input point is calculated by the program. These outputs can be used to perform

the same calculation as was just measured. In effect, the total effective loss

factor can be obtained. In other words, even though the DGSM program starts

with a constant structural loss factor, which has been postulated to contain the

internal losses and the joint losses, the method it uses to compute the velocities

of the joints and struts implicitly accounts for the multiple energy flowpaths

and the partitioning of energy. So the true loss factor is different from the

intrinsic material loss factor.

The DGSM predicted loss factor TTOTDGSM was calculated for an input struc-

tural loss factor q, = .003. This value was chosen because the comparison

between measured sound power and predicted sound power (figure 4.10) fell al-

most midway between the predictions for 77, = lxlO - 3 and w7s = lx10 - 2 . Figure 6-3

shows the result for the two values ITOTDGSM and 7TOTMEAS. In Figure 6-4, the

same data is averaged in octave bands. It is interesting to note that even

though the structural loss factor which was input to the DGSM program was

set at 3x10-3, or a value of

I = 10 log1 0(.003) = -25 dB, (6.7)

the output calculation shows a value of-21 dB. This means that the multi-path

losses add approximately 21 times the losses due to internal losses alone. The

calculated values of rtroTDGsM and VTOTMEAS show good agreement.

72



Total Loss Factor
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Figure 6-3: Total loss factor as measured ?7TOTMEAS, and from the
diction, 7JTOTDGSM.

DGSM pre-
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Total Loss Factor averaged in third octave bands

Figure 6-4: Total loss factor as measured TOTMEAS and from the DGSM
prediction,TOTDGSM, averaged in octave bands
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D: Comparison of Structural Loss Factor to Radi-
ation Loss Factor

The results of the experimentally determined total loss factor 7TOTMEAS and

the results of the normalized radiated power can be used with equations (6.6)

and (6.5) to find the radiation loss and structural loss factors as follows:

IIRAD
27RAD -= rTOTMEAS , (6.8)

and
77s = 7TOTMEAS - 7/RAD- (6.9)

Figure 6-5 shows the results from this calculation.

Total, Radiated, and Structural Loss Factors

0 5 10
I

15
Frequency kHz

Figure 6-5: Total, structural, and radiated loss factors averaged in octave
~~~~~~~~~~~~~~~~bands.~3bands.
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As was mentioned before, the radiation loss factor is significantly lower than

the structural loss factor for the bare truss.

E: Recomputation of the DGSM Estimate using
Updated Structural Loss Factor and Comparison
to Experimental Data

The measured value of the total loss factor, T TOTMEAS , will be compared to

the predicted value of the total loss factor, )TOTDGsM, to compute a correction

to the structural loss factor which is input to the DGSM program. To obtain

TOTDGSM, the input structural loss factor was set to be a constant equal to .003.

The total loss factor which that constant value produced is known. This com-

puted loss factor can be compared to the measured total loss factor, ?7TOTMEAS, to

compute a correction factor to the DGSM program structural loss factor input,

Correction Factor = 71TOTMEAS (6.10)
T7TOTDGSM

First the measured and predicted total loss factors were averaged in 3 octave

bands as above in figure 6-4. The third octave averaged results were then

smoothed with a third order polynomial fit using MATLAB©'s polyfit routine.

The Correction Factor was then calculated and is plotted in deciBel format in

figure 6-7.

Finally the DGSM prediction was re-run using an input structural loss factor

of

U = Correction Factor(.003). (6.11)

The result of this corrected DGSM prediction and the measured sound power is

presented in figure 6-8. The corrected DGSM estimate gives a greatly improved

prediction of the radiated sound power.
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Figure 6-6: Third order polynomial fit of the measured, 7TOTMEAS , and pre-
dicted, 2]OTDGSM , total loss factors.
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Factor to be multiplied by etas =.003 in corrected DGSM Prediction
.in

Figure 6-7: Factor to be multiplied by the constant value of 7Structural to correct
the input to the DGSM program.
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Comparison Between Corrected DGSM and Measured Results

4

tE

0

0 2 4 6 8 10 12
Frequency in kHz

Figure 6-8: Normalized radiated sound power from DGSM corrected prediction
and measured data.
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F: Comparison of Vibrational Energy of the Bare
Truss and the Truss with Plates

For the bare truss and truss with plates experiments above, the vibrational

energy of the truss is calculated according to equation (6.2). The result for

the bare truss and the truss with plates is plotted as figure 6-9. The issue of

coupling between the plates and the truss has been discussed several times. If

there were strong coupling between the plates and the truss, the vibrational

energy of the struts should be much lower with the plates attached, which is

clearly not observed.

Vibrational Energy of the Truss With and Without Plates

0 2 4 6 8 10 12
Frequency kHz

Figure 6-9: Vibrational energy of the truss, with and without plates
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CHAPTER 7: Conclusions

A method has been developed to determine the radiated sound power from

a three dimensional truss. The method builds upon the development of the

Direct Global Stiffness Matrix (DGSM) method and uses analytically derived

formulae for radiation efficiency, modeling the struts as vibrating wires. The

DGSM method determines the vibrational energy of the members of the truss

and then the radiated sound power is independently calculated. This approach

may not have worked except for the fact that the structural loss factor, 7, is

much higher than the radiation loss factor, BRAD, as shown in figure 6-5. This

difference in size means that the structural energy loss is effectively decoupled

from the radiation energy loss, and so the DGSM approach is validated. In any

feasible truss which would support heavy machinery, the struts would have

to be relatively thick-walled to support the weight. It is therefore conceivable

that therefore the structural loss will always outweigh the radiation loss in a

practical truss.

The DGSM method does not allow apriori estimation of the radiated sound

power. The structural loss factor, 7, which is input to the DGSM program

determines the radiated sound power almost exclusively. The method described

in chapter 6 for determining the structural loss factor to be used as an entering

argument to the DGSM program is universally applicable to any given truss,

is reasonable easy to implement, and provides significant refinement to the

DGSM estimate.

An attempt was made to determine the radiated sound power from the plates

attached to the truss, with little success. The coupling between the struts and

plates will determine the amount ofvibrational energy that the plates have, and

thus will determine their radiated sound power. An assumption was made of

rigid coupling between the two, which grossly overestimated the radiated sound

power. Analysis and experimentation shows that for the mounting method
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chosen, there is not strong coupling. Again, in a real truss, the deckplates would

be insulated with rubber to prevent the transmission of vibrational energy from

the struts to the plates, making this a valid model of the real truss behavior.
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APPENDIX A: MATLAB® Code

% NEWETA11.m 17 April 1995

% ADAPTED from original program by M. Hayner to remove

% portions dealing with Energy analysis and ability to

% change strut charactaristics in attempt to speed up

% analysis. ALSO, I added a portion to compute radiated sound

% power directly. Calculation of wave amplitudes on truss

% is still the original work of Hayner

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10

clear all

f= linspace(100,25600,500);

etaL=.001; % Longitudunal Loss Factor

etas=.001; % Shear Loss Factor

kjmag=i*4737; % Joint Stiffness (not used)

mjmag=.120; % Joint Mass

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

load trusscon.dat % Connectivity Data

load trussgrd.dat % Grid Point Data 20

conn=trusscon; % Connectivity Matrix

node=trussgrd; % Truss Nodes Matrix

clear trusscon trussgrd

rho=2700;

E=rho*5051'2*(1+i*etaL);

G=rho*31002*(1+i*etas);

cL=sqrt(E/rho);

cs=sqrt(G/rho);

Axs=5.728e-5; 30

Ky=3.95e-3; % Radius of Gyration
Kz=Ky;
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Kx=sqrt(Ky^2+Kz^2);

norm =0;

ndpt=1; % dri

dofdpt=3; % di

Fa=rho(1)*cL(1)^2*Axs;

force=zeros(1,7);

force( [1,1+dofdpt] )=[ndpt,Fa];

dpt=6*(ndpt- 1)+dofdpt;

ive point node number

rive point dof

% applied force amplitude

40

Nelem=max(size(conn(:,1)));

Nnode=max([conn(:,3);conn(:,4)]);

Nfreq = max(size(f));

% --------------Calculate Sigma RAD-----------------

rhoc= 415

ca= 340.15;

ka= (2..*pi.*f)./ca;

a = .00635;

x = ka.*a;

ha = -besselj(2,x)-i*bessely(2,x);

hb = (1../x).*(besselj(1,x)+i*bessely(1,x));

dhank = ha+hb;

dhank2 = 1../(dhank *conj(dhank));

sigrad=(2../(pi*x)).*dhank2;

loglog(f,sigrad)

figure

global

global

global

global

global

global

lchar tchar mchar Gxfm conn norm

spwr udp ndpt Nnode Nelem dofdpt Nfreq

kL kt ky kz EA EIy EIz GJ L rhoc

A UUj VVa VVb VVj C B velrms

constr redux test sigrad PRAD PRADn

itersec totalsec
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tgmslO(node,force,rho,cL,cs,Kx,Ky,Kz,Axs,f);

70

semilogx(f, 10..*loglO(abs(PRADn)))

grid

xlabel ( 'Frequency in Hz)
ylabel('Sound Power radiated dB')

title (['I Sound Power Radiated Normalized to Input Power with ......

num2str(length(f))' points])

save newetall

80

c = date

leo = fix(clock);

time = leo(4:5)

timperiter= total sec/Nfreq

90

100
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% REVISION of the original TGMS10.m (done by Mark Hayner)

% Modifications are made to eliminate the portions which are

% not needed for our relatively simple truss so that program

% efficiency can be speeded up. Basic program structure remains

% as the same work done by Hayner.

% - - - - - - - - - - - - - - - - - - - - - - - - -

% DESCRIPTION of various parameters

%

% INPUTS: 10

% 1. Nelem = # of elements in the truss

% 2. Nnode = # of nodes in the truss

% 3. conn(Nelem x 5) = (elemnum,pidG1,G2,G3)

% * pid is property ID and allows for later on changing

% the properties of individual struts.

% * G1, G2 are the nodal endpoints of each strut

% * G3 is a reference point to allow the shift from

% local to global coordinates. G3 is the same for each

% strut. G3 is at the reference nodes.

% 4. node = ((Nnode +Nrefnode) X 4) = nodenum, x,y,z 20

% * x,y,z are in global coordinates

% * Nrefnode = the number of reference nodes used for the

% transformation to the local coordinate system.

% OUTPUTS:

% 1. A(1 X 12*Nnodes) = Wave amplitudes in the local beam

% coordinate system.

% 2. UUj(6*Nnodes x Nfreq) = Joint Displacements in Global coordinates

% 3. WVj(6*Nnodes x Nfreq) = Joint Displacements in Local coordinates

% 4. VVb(12*Nnodes x Nfreq) = Beam Displacements in Local coordinates 30

%

function[]=tgms(node,force,rho,cL,cs,Kx,Ky,Kz,Axs,f)

global lchar tchar mchar Gxfm conn norm
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global etot pwr udp ndpt dofdpt spwr

global ndpt Nnode Nelem Nfreq rhoc

global kL kt ky kz EA EIy EIz GJ L

global A UUj VVa VVb VVj C B PRAD PRADn

global constr redux test sigrad velrms 40

global iter sec total sec

timel=clock;

%------------- Non-dimensionalize --------%
tchar=l;

lchar=l;

mchar=l;

kmb=[ones(Nelem,12),zeros(Nelem,12)];

kmj=zeros(Nnode, 12);

kbc=1e20*ones(Nelem,12); % USES Welded bc 50

%------------- Precalculations --------------- %
z6=zeros(6);

w=2*pi*f;

kL=(1)./cL. *w;

kt=(1)./cs. *w;

ky=( (1)./(Ky.*cL). *w).^.5;

kz=( (1)./(Kz.*cL). *w).A.5;

EA=rho.*Axs.*cL.^2; 60

EIy=rho.*Axs.*cL.2. *Ky.'2;

EIz=rho. *Axs. *cL2. *Kz .'2;

GJ=rho *Axs. *cs.2. *Kx.2;

% ------- Size large matricies and vectors-------- %

PRADn=zeros(Nfreq,1);

PRAD=zeros(Nfreq, 1);

velrms = zeros(Nfreq, 1);

Gxfm=zeros(12,12*Nelem);

A=zeros(12*Nelem,1); 70

B=zeros(1,6*Nnode);
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if Nnode<50
C=zeros(6*Nnode);

else

C=sparse(zeros(6*Nnode));

end

Za=zeros(Nelem,12);

Zj=zeros(Nnode,6);

Zbc = kbc; 80

ZZ=zeros(12,12*Nelem);

DDinv=zeros(12,12*Nelem);

UUj=zeros(6*Nnode, 1);

VVj=zeros(12*Nelem,1);

VVb=zeros(12*Nelem,1);

VVa=zeros(12*Nelem,1);

udp=zeros(max(size(ndpt)),Nfreq); 90

redux=ones(1,Nnode*6);

if constr= [];

redux(constr)=zeros(size(constr));

end

%------- Calculate transform. matricies and load vector ------- %

gp=node(:,2:4);

for k=l:Nelem

gl=gp(conn(k,3),:);

g2=gp(conn(k,4),:); 100

g3=gp(conn(k,5),:);

L(k)=sqrt(sum((gl-g2).2));

[gxfm] =xfrml(gl,g2,g3);

Gxfm(:,(k- 1)*12+1:k*12)=gxfm;

end

for kk=l:max(size(force(:,1)));

index=(force(kk, 1)- 1)*6+[1:6];
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B(index)=force(kk,2:7);

end

110

%- ------------ Iterate over frequency ------------- %
time2=clock;

for n=l:Nfreq

nNfreq=[n,Nfreq]

C=O*C;

time3=clock;

%- Assemble global matrix, C ----------- %

for k=l:Nelem

m=conn(k,2); %property card 120

[Z,D] =impl(EA(m),EIy(m),EIz(m),GJ(m),L(k),. ..

kL(m,n),kt(m,n),ky(m,n),kz(m,n));

DDinv(:,(k- 1)*12+ [1:12]1)=inv(D);

for kk=1:12; % Zb-->Zba
Z(kk,kk)=Z(kk,kk)+Za(k,kk);

end % for kk

Z=inv(Z); % let Z=Y temporarily

Yba=Z; % need later

for kk=1:12 % Yba-->Ybabc

Z(kk,kk)=Z(kk,kk)+(1)./Zbc(k,kk); 130

end % for kk

Z=inv(Z); % Ybabc-->Z=Zbabc
ZZ(:,(k- 1)*12+ [1:12] )=Yba*Z;

G=Gxfm(:,(k- 1)*12+1:k* 12);

Z=G*Z*G. I;

mm=(conn(k,3)- 1)*6+[1:6];

nn=(conn(k,4)- 1)*6+[1:6];

C(mm,mm)=C(mm,mm)+Z(1:6,1:6);

C(mm,nn)=C(mm,nn)+Z(1:6,7:12); 140

C(nn,mm)=C(nn,mm)+Z(7:12,1:6);

C(nn,nn)=C(nn,nn)+Z(7:12,7:12);

end
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time4=clock;

rC=C(redux,redux);

rB=B(redux);

UUj(redux)=(rC\rB. );

time5=clock;

%---------- Solve for beam displacements - --- % 150

for k=l:Nelem % care for coord sys

mm=(conn(k,3)- 1)*6+ [1:6];

nn=(conn(k,4)- 1)*6+[1:6];

G=Gxfm(:,(k- 1)*12+1:k* 12);

Vj=G. *UUj([mm,nn]l);

Vb=ZZ(:,(k- 1)*12+[1:12])*Vj;

Va=Vb.*(1-(Za(k,1:12)./kmb(k,1:12)). );

WVj((k- 1)*12+[1:12],1)=Vj;

VVb((k- 1)*12+ [1:12] ,1)=Vb;

VVa((k- 1)*12+[1:12] ,1)=Va; 160

A((k- 1)*12+[1:12] )=DDinv(:,(k- 1)* 12+ [1:12] )*Vj;

end

udp(n)=UUj(6*(ndpt- 1)+dofdpt);

iter = n;

omeg =w(n);

invel= udp(n);

inforce = force(dofdpt+1);

powrad(A,iter,omeg,inforce,invel,cL,Ky);

170

end % End of Iteration over n=1:Nfreq

time6=clock;

%-- ----- Elapsed times -------------- %

etime2l=etime(time2,time 1);

etime32=etime(time3,time2);etime43=etime(time4,time3);
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etime54=etime(time5,time4);etime65=etime(time6,time5); 180

etime6l=etime(time6,timel);

iter sec=etime(time6,time2)

total sec=etime61

190

200
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% Subroutine POWRAD.M

% Computes Radiated Sound Power, Given Radiation

% Efficiency and Wave Amplitudes on each Strut.

% The Power Radiated is Normalized by the Input

% Power.

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

function [] =power(A,n,w,force,vel,CL,KY)

global lchar tchar mchar Gxfm conn norm 10

global etot pwr udp dpt dofdpt spwr

global ndpt dofdpt Nnode Nelem rhoc

global kL kt ky kz EA EIy EIz GJ L

global A UUj VVa VVb VVj C B velrms

global constr redux test sigrad PRAD PRADn

global iter sec total sec

A=A*lchar;

w = w*(1/tchar); 20

force = force*(tchar^2)/(mchar*lchar);

vel = vel*lchar;

i = sqrt(-1);

POWERIN = 5*real(force*conj(i*w*vel));

PRAD(n)=0;

velrms(n) =0;

kyl = ky(n);

kzl = kz(n); 30

for r = 0:108;

l = 12*r+1;

L1 = L(r+1);

vms = 0;
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facty = .5;

factz = 5;

factey = (1 - exp(-2*kyl*L1))/(4*kyl*L1);

factez = (1 - exp(-2*kzl*L1))/(4*kzl*L1); 40

vms = facty* (A(1)*conj(A(1)) + A(l+1)*conj(A(1+1))+....

A(1+4)*conj(A(1+4)) + A(1+5)*conj(A(1+5)) )+ .....

(A(1+2)*conj(A(1+2)) + A(1+3)*conj(A(1+3)))*factey + .....

(A(1+6)*conj(A(1+6)) + A(1+7)*conj(A(1+7)))*factez;

velrms(n)=velrms(n)+vms;

PRAD(n) = PRAD(n)+ real(rhoc*w^2*vms*sigrad(n)*pi*L(r+1)*.00635);

end;

PRADn(n) = PRAD(n)/POWERIN; 50

60
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% File TRUSSCONDAT

% This file contains the endpoints for each strut,

% and a third point which serves as a reference
% point when the local x,y,z coordinate system

% is generated.

1 1 1 2 38

2 1 1 3 38

3 1 1 437 0lo

4 1 2 3 37

5 1 2 4 37

6 1 2 5 39

7 1 2 6 36

8 1 3 4 37

9 1 3 5 39

10 1 3 7 36

11 1 4 5 37

12 1 4 6 38

13 1 4 7 38 20

14 1 5 6 37

15 1 5 7 37

16 1 5 8 38

17 1 5 9 38

18 1 5 10 37

19 1 6 7 37

20 1 6 8 36

21 1 6 10 39

22 1 7 9 36

23 1 7 10 39 30

24 1 8 9 37

25 1 8 10 37

26 1 8 11 39

27 1 8 12 36

28 1 9 10 37
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29 1 9 11 39

30 1 9 13 36

31 1 10 11 37

32 1 10 12 38

33 1 10 13 38 40

34 1 1 12 37

35 1 11 13 37

36 1 1 14 38

37 1 1 15 38

38 1 1 16 37

39 1 12 13 37

40 1 12 14 36

41 1 12 16 39

42 1 13 15 36

43 1 13 16 39 50

44 1 14 15 37

45 1 14 16 37

46 1 14 17 39

47 1 14 18 36

48 1 15 16 37

49 1 15 17 39

50 1 15 19 36

51 1 16 17 37

52 1 16 18 38

53 1 16 19 38 60

54 1 17 18 37

55 1 17 19 37

56 1 17 20 38

57 1 17 21 38

58 1 17 22 37

59 1 18 19 37

60 1 18 20 36

61 1 18 22 39

62 1 19 21 36

63 1 19 22 39 70

64 1 20 21 37
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65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

1 20

1 20

1 20

1 21

1 21

1 21

1 22

1 22

1 22

1 23

1 23

1 23

1 23

1 23

1 24

1 24

1 24

1 25

1 25

1 26

1 26

1 26

1 26

1 27

1 27

1 27

1 28

1 28

1 28

1 29

1 29

1 29

1 29

1 29

1 30

1 30

22 37

23 39

24 36

22 37

23 39

25 36

23 37

24 38

25 38

24 37

25 37

26 38

27 38

28 37

25 37

26 36

28 39

27 36

28 39

27 37

28 37

29 39

30 36

28 37

29 39

31 36

29 37

30 38

31 38

30 37

31 37

32 38

33 38

34 37

31 37

32 36
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101

102

103

104

105

106

107

108

109

1 30 34

1 31 33

1 31 34

1 32 33

1 32 34

1 32 35

1 33 34

1 33 35

1 34 35

39

36

39

37

37

39

37

39

37
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% File TRUSSGRD.DAT This file Contains the

% Locations of the Joints in Global xyz

% Coordinates.

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1.0000 0 0 0

2.0000 0.3800 0.3800 0

3.0000 0.3800 -0.3800 0

4.0000 0.3800 0 0.7600 0lo

5.0000 0.7600 0 0

6.0000 0.7600 0.3800 0.7600

7.0000 0.7600 -0.3800 0.7600

8.0000 1.1400 0.3800 0

9.0000 1.1400 -0.3800 0

10.0000 1.1400 0 0.7600

11.0000 1.5200 0 0

12.0000 1.5200 0.3800 0.7600

13.0000 1.5200 -0.3800 0.7600

14.0000 1.9000 0.3800 0 20

15.0000 1.9000 -0.3800 0

16.0000 1.9000 0 0.7600

17.0000 2.2800 0 0

18.0000 2.2800 0.3800 0.7600

19.0000 2.2800 -0.3800 0.7600

20.0000 2.6600 0.3800 0

21.0000 2.6600 -0.3800 0

22.0000 2.6600 0 0.7600

23.0000 3.0400 0 0

24.0000 3.0400 0.3800 0.7600 30

25.0000 3.0400 -0.3800 0.7600

26.0000 3.4200 0.3800 0

27.0000 3.4200 -0.3800 0

28.0000 3.4200 0 0.7600

29.0000 3.8000 0 0
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30.0000 3.8000 0.3800 0.7600

31.0000 3.8000 -0.3800 0.7600

32.0000 4.1800 0.3800 0

33.0000 4.1800 -0.3800 0

34.0000 4.1800 0 0.7600 40

35.0000 4.5600 0 0

36.0000 10 27 31

37.0000 10 27 31

38.0000 10 27 31

39.0000 10 27 31
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