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Abstract
Wave Loads up to the third-order are predicted, based on the FNV-theory, for a
cylinder and the Draugen monotower platform exposed to long regular waves. The
first-order problem is solved using WAMIT to obtain the added mass and wave damp-
ing to be used in the prediction of the higher-order pitch motion. The principle of
superposition is used to find the pitch response due to the higher-order wave loads.

The computed results are compared to model test results of Draugen and found
to compare well. The higher-order wave effects are found to become increasingly
important for higher wavenumbers Ka.
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Chapter 1

Introduction

The analysis of wave effects on large offshore structures, such as wave loads and

corresponding responses, are of great importance to ocean engineers in the design,

and for the operational safety of offshore structures. The effects of ocean waves on

large offshore structures are usually analyzed using potential theory, assuming viscous

effects to be negligble.

The calculation of first order wave effects are now considered straightforward.

More attention has been brought to the matter of calculating higher order wave

effects. For tension leg platforms (TLPs) it has been observed that second order

wave loads can cause resonant axial deflection of the tendons. This phenomenon is

known as springing.

Recently, it has been noticed that in severe sea states, TLPs and 'monotowers' can

experience a transient resonance condition at their natural frequencies substantially

higher than the dominant wave frequency (Faltinsen et al., 1995). This phenomenon

cannot be explained by traditional first and second order theories. It appears to be

a higher-order effect which has become known as ringing. Ringing occurs as axial

deflection of the tendons of TLPs, and as structual deflection in the bending mode

for monotowers'.

The cause of ringing is not yet completely understood. It has been observed that

ringing tends to occur when the waves are steep and the wave amplitude is of the

same order as the radius of the structure. However, there are some controversies
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among researchers whether the non-linear wave kinematics or the non-linearity due

to waves interacting with the structure is the most important factor. Researchers are

going in many different directions in order to obtain the third order loads correctly

and to explain the cause of ringing. One approach has been to extend the Morison

equation, which gives good estimates for the first order wave loads in long waves,

to predict higher order wave loads (Madsen, 1986), and (Rainey, 1989). Jefferys &

Rainey (1994) have used this method to predict ringing.

Another approach has been presented by Malenica & Molin (1995). They obtain

the complete third order velocity potential for a fixed cylinder in finite depth based

on the traditional Stoke's perturbation method. The second order wave potential is

an expansion of the first order potential, and is expressed in terms of this potential.

The third order potential is obtained in a similar way. The wave loads calculated from

the third order potential are compared with experimental results, but there is a large

scatter between the results, so the comparison does not fully validate the numerical

results.

Recently, Faltinsen et al. (1995) have presented another theory known as the

FNV-theory, named after the authors initials ( Faltinsen, Newman, and Vinje). The

FNV-theory is based on the long wavelength approximation. In an inner domain close

to the body surface the wave elevation is assumed to be significantly affected by non-

linearities due to the presence of the structure causing wave diffraction and scattering.

The first order wave potential is expanded up to the third order and a correction for

the higher order scattering potential is added to the linear diffraction potential. The

computed third order wave loads are found to overlap with the results from Malenica

& Molin only for very small values of the non-dimensional wave number ka.

In order to establish a valid theory for third order wave loads, 'exact' results

from model tests or full-scale tests are needed. Unfortunately, there is not a reliable

method to distinguish third order loads from first, and second order loads when per-

forming model tests. The need of comparing numerical results to experimental results

has motivated the present study, where the third order wave loads and responses of

a monotower platform are predicted, based on the FNV-theory. The higher order
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wave effects are concentrated in a region close to the free surface, which lead to the

expectation that higher order loads for a cylinder will be comparable to those of a

monotower of slowly varying radius. The non-linearities due to interaction between

incoming waves of different frequencies are assumed to be negligible. An unidirec-

tional irregular incident wave field can than be obtained by superposition of regular

waves. The wave loads and responses can be related to the incoming velocity field

(Newman, 1994).

The first order problem is solved using WAMIT. Added mass and wave damp-

ing obtained from WAMIT is used in the calculation of the pitch response due to

higher order wave loads. Model test results of the Draugen 'monotower' platform are

compared to the numerical results.
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Chapter 2

Theoretical Analysis

2.1 The Complete Boundary Value Problem

The diffraction potential of a body of arbritary shape, extending from the sea bottom,

piercing the free surface, can be expressed as

OD = + Os, (2.1)

where bi is the incident wave potential and s is the scattering potential, due to

wave scattering, caused by the presence of the body. For a fixed body D represents

the total wave potential. However, if the body is allowed to move, a radiation potential

due to the body motion is contributing to the velocity potential. The total velocity

potential then becomes

= D + OR, (2.2)

where OR is the radiation potential. The complete boundary value problem can

be described as

V2(> = 0, (2.3)

throughout the fluid domain.
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-- 0, (2.4)an

on the body surface. For finite water depths

a1 = 0, (2.5)
8z

at z = -h. In the case of infinite water depth

-+0, (2.6)

as h -+ -oo. The free surface boundary condition is given as

92 0(D 0a~ 1
+ 9 = -2V V -- - 2V * V(V * V@). (2.7)azt dy at 2

To complete the boundary value problem the velocity potential must satisfy the ra-

diation condition, which states that reflected waves must radiate outwards from the

body to infinity.

Solving the complete boundary value problem is rather complicated due to the

inhomogeneous free surface boundary condition. The traditional approach to handle

this problem is to use Stokes' perturbation method, transferring the free surface

boundary condition to the undisturbed plane of the free surface z = 0. However,

recently Faltinsen et al.(1995) have presented another approach, where the free surface

boundary condition is imposed on the moving plane 7ll = Asinwt. This is further

described in the next section.
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2.2 The FNV-theory

Recently O.M. Faltinsen, J.N. Newman, and T. Vinje have presented a theory for pre-

dicting nonlinear wave loads on a fixed slender vertical cylinder. The regime where

the wave amplitude A and cylinder radius a are of the same order, and both are small

compared to the wavelength is considered. The diffraction problem is divided into an

outer and an inner domain. Conventional linear analysis applies in the outer domain

far from the cylinder. However, in the inner domain significant nonlinear effects exist

associated with the free-surface boundary condition. The long wavelength approxi-

mation is justified in the inner domain when the wavelength A is much larger than

the cylinder radius a, A > a. This is essentially the same as Ka < 1, where K = 2,A

is the wavenumber. The wave amplitude A is of the same order as the cylinder radius

a, A/a = 0(1). Thus the perturbation expansion of the inhomogeneous free-surface

boundary condition is imposed on a horizontal plane which moves up and down with

the incident wave at the center of the cylinder, z = A sin wt, instead of at the plane

z = 0 as in traditional perturbation expansions.

2.2.1 Unidirectional Regular Waves

Linear Analysis

For incoming regular waves of amplitude A and wave number K, the incident velocity

potential for infinite water depth, in Cartesian coordinates (x, y, z), can be written

as

0 = Re{( ) exp(Kz - iKx + iwt)}, (2.8)w

where w is the wave frequency. Alternatively and more appropriate for the case of

a circular cylinder, the velocity potential can be expressed in cylindrical coordinates

(r, , z) as

12



R gA exp(Kz + iwt) 0o
I= Re{(gAexp(Kz +iwt) emi-m cos mOJm(Kr)), (2.9)

m=O

where e0 = 1, em = 2 for m > 0, and Jm is the Bessel function of order m.

The total diffraction potential is given to the first order as OD = qI + Os, where

Os is the scattered potential. For a fixed cylinder of radius a, and by imposing the

boundary condition ~ = 0 on the body surface, the scattered potential valid for allOn

values of ka has been given by MacCamy & Fuchs (1954) as

Os = -Re{A exp(Kz + iwt) E emi-m cos m m( ( ) } (2.10)
W m=O H)' (Ka)

where H(2) = Jm - iYm is the Hankel function of the second kind. For large Kr

this potential has a periodic form that propagates away from the body, satisfying the

radiation condition. In the inner domain, the expansion of the Hankel function of

argument Kr can be used to find an approximation for Os. The main contribution

of this expansion comes from the term m = 1 and is of order e2,

Os " -Re ig A exp(Kz + iwt) cos mO K a }. (2.11)

Adding XI and s gives the total linear diffraction potential valid for the inner region

as

a2

OD = Re{- exp(Kz + iwt)[1 - iK cos (r + )]} + 0(e3). (2.12)
W r

Faltinsen et al. present a higher order extension of (2.12) obtained from (2.10) as

gA ={ ex(a 2 1K22
O = Re{ exp(Kz + iwt)[1 - iK(r + )cos 0 - r

ow
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+ 71 2 +K2 c 2r + a4
+K2a2(log 2Kr + y + ) - 4 cos 20(r2 + ) +- O(4).

2 2 2 4 r2
(2.13)

The Higher Order Correction to D

The higher order expansion leading to the potential given in (2.13) is inconsistent in

the sense that terms of order Aa2 are included, but nonlinear terms of order A2a and

A3 are neglected. In the case when the wave amplitude A is of the same order as the

cylinder radius a, A/a = (1), these terms will all be of comparable magnitude.

The corrected potential is expressed as

41 = qD + + (,e4), (2.14)

where 4' is the nonlinear correction potential. The principal boundary conditions for

V are

r = 0 (2.15)

on r = a, and

,tt + Sgz = -2V Vt - IV- .V(V))2,

on z = 71. The free-surface elevation r is defined as

l[-1 I[t 2,
g 2

(2.16)

(2.17)
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where r7 can be expanded in the form 7 = 77l + ir2 + -.* . The two first terms in this

expansion are written as

and

1l- = A sin wt,

a2

w72 = -KA(r+ -) cos cos wt- -KA2 cos 2wt+KA2( 2 cos 20+ -
2 2 2 H)

sin2 wt. (2.19)

A full derivation of the nonlinear correction potential can be found in Faltinsen et al.

Wave Loads

Following Faltinsen et al. the expression for the force acting on the cylinder in the

x-direction is given as

cos dO (t + 2V2)r=adZ + pa cos OdO2 ~fo ";(at + IV2
2

+ gz)r=adz.

(2.20)

The first-order force component derived from (2.12) is expressed as

F(z) = pa bDt cos OdO = 2rpgKAa 2 eKz cos wt. (2.21)

The second-order force component from (2.12) is given as

1 Pg f 21
F2(z) = -pg (VqD) cos OdO = 1rpgK2a2 A 2e 2Kz sin 2wt.

2 2
(2.22)

F1 (z) and F2 (z) are the contributions between z = -h and z = 0. The force coming

15
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from the integration between z = 0 and z = r71 is given as

f27r 11 1
Fp= pa J cos dO 10 (+Dt VD - D)r=adZ

1
= rpgKa2A2 sin 2wt + -irpgK2a2A3 (coswt - cos 3wt) + O( 6). (2.23)

2

The contribution between z = ql and z = i7 is given as

27r

FP2 = pa j cos OdO j pdz = -irpgk2 a2A3 cos wt cos 2wt

10 1
=- IrpgK2a2A3(coswt + cos 3wt) + O(e6), (2.24)

2

where p = -pg(z - 7) + 0(e3). F and FP2 can be considered to be "point" forces

acting at the location of the incident wave elevation, j. The "point" force due to the

correction potential ? is given as

FP = 7rpgK2 a2A3 (co Wt - cos 3wt) + 0(E6 ). (2.25)

The total force acting on the cylinder in the x-direction is the sum of the integrated

forces F1 and F2 and the "point" forces Fp1, FP2, and FP3 .

Collecting the force components of the same harmonic give the following expres-

sions;

FH1 = [21rpgAa2 (1 - e- K h) + 7rpgK2a2A3] cos Wt, (2.26)

16



and,

FH2 = [T7rpgKa2A2(1 - eKh) + rpgKa2 A2] sin 2wt,

FH3 = -2rpgK 2 a2 A 3 cos 3wt.

(2.27)

(2.28)

The expression of the total moment will include a fourth harmonic. The moment

about z = -h gives the following expressions;

1 Kh ) 13 
MH1 = [27rpga2A(h - - + Kh + -pgKa A3 + h+rpgKa2 A3 ] coswt,

K 2
(2.29)

r1 7).2A1 1 12 3gH2 = pgKa2A(h - + e-2Kh) + hxpgKa2A2 + -rpgK a A4 ] sin 2wt,
2 2K 2K 2

(2.30)

MH3 = -[I rpgKa2A 3 + 2hrpgK2a2A3] cos 3wt,
2

(2.31)

and the contribution to the fourth harmonic from equation (2.28),

MH4 = -7rpgK2 a2A4 sin 4wt. (2.32)

The complete expression for the fourth harmonic will also include contribution from

higher-order effects than considered in this study.

17



2.2.2 Unidirectional Irregular Waves

Recently, Newman (1994) has extended the FNV-theory to a more practical case of

unidirectional irregular waves. An irregular wavefield is created by the superposition

of regular waves. The forces are related to the incident wave field, and the incident

velocity potential at the cylinder axis is defined as

i,=o(Z, t) = g exp(Kz + iwt).
W

(2.33)

The velocity comonents u, w of this incident wave field on x = 0 can be expressed as

u(z, t) = Re{-K2 qb,=o} = Re{-iwA exp(Kz + iwt)},

and

w(z, t) = Re{KS,=o} = Re{wA exp(Kz + iwt)}.

The horizontal and vertical velocity gradients can be expressed as

w3A
u, (z, t) = Re(-iK 2 ,i,=o} = Re(-- exp(Kz - iwt)},

and

-iw 3A
w(z, t) = Re{-K2 0I,o = Re{ exp(Kz + iwt)). (2.37)

The linear diffraction potential (2.13) can now be expressed in terms of $I,x=o, u, and

U as

18
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bD = Re{,x=o(I+C)}+u(r+ -) cosO+u [r2+cos20(r2+ )-2a2 log(-)1+0(6)3,r 4 r a (2.38)
(2.38)

where C = l(Ka) 2(log 2Ka++ + (7) is a complex constant of order e2 log .
The potential (2.38) applies in an irregular incident wave field defined on the

cylinder axis by the time-varying functions ¢,=, u, and ut, with the exception of

the contribution from the constant C. However, in these analyses the higher-order

constant C does not contribute.

The free-surface elevation is expressed as ? = r1 + 72 ' *, where

1
r = -- ¢t,

g
(2.39)

and

1[1 2)- U2 a2 1 a4 t a2 cos 12 [ (U + . -(-jcos20 - - -(r - ) os 0. (2.40)

Wave Loads

From equation (2.20) the force contribution between z = -h and z = 0 now becomes

F1 = 2rpa 2t

F2 = 7pa2 (2ww~ + uu)

O(KA), (2.41)

O(KA)2. (2.42)

19
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Neglecting difference frequencies, the right hand side of (2.42) can be replaced by

either 7rpa2wwx or -rpa 2 uux. The force contribution between z = 0 and z = ql is

given as

Fpl = 7rpa2(2utl7 + utz7r + 2wuzr71 -UWzl). (2.43)

The first term in (2.43) is of order (KA) 2 while the three last terms are of order

(KA) 3 . The contribution between z = and z = , after neglecting difference-

frequency components, becomes

2
FP2 = rpa2rl (utzrh + WUz - -Utwt)

g
O(KA)3. (2.44)

The "point" force contribution from the nonlinear potential 0b can be written as

Fp3 = 4rpa2Ut
g

O(KA)3. (2.45)

Organizing the force components according to the different powers of KA, the first,

second, and third order force component can be expressed as;

FlSt(t) = 2rpa2u t, (2.46)

F2 nd(t) = 7rpa2 [-uux + 2ut7l], (2.47)

and

20



F3rd(t) = 7rpa2 [2wuzr7l - UWzll 2ut l - -Utwt +U t]. (2.48)
g g

21



Chapter 3

Problem Statement

3.1 Description of the Problem

The FNV-theory is applicable for a fixed circular cylinder of constant radius in in-

finite water depth. However, it can be extended to finite water depth by using the

ad hoc. assumption that, if the cylinder is deep enough, the pressure distribution on

the cylinder will not change much due to the presence of the sea bottom. In a water

depth of 252.5 m, the waves are assumed to be deep water waves. Mathematically

this is expressed as

cosh[K(h + z)] _ Kz
cosh Kh

(3.1)

For deep water waves the dispersion relation simplifies from

w2 = Kg tanh Kh

to

w2 = Kg.

(3.2)

(3.3)

A gravity based monotower platform with slowly varying radius can be approximated

22



as a circular cylinder. This approximation is obviously not good for calculation of the

first order wave load, since the first order pressure field penetrates to large depths.

However, higher order wave loads are concentrated in the free surface region, where

the radius of the platform does not change much and can be assumed constant. The

Draugen montower platform, which is considered in this study, has a part of constant

radius in this region that makes the approximation even better. Based on the above

approximations, the FNV-theory will be applied to estimate higher order wave loads

acting on Draugen. The higher order excitation forces can be used in the linear

equations of motions to predict the responses of the platform.

The first-order problem can be solved either in the frequency domain or the time

domain. WAMIT operates in the frequency domain so a comparison between WAMIT

and FNV results for a cylinder is made in this domain. The excitation force equals

the diffraction force for a moving body in the first-order problem since

aOs a,=-s -a (3.4)
an an

is correct up to the first-order. However, (3.4) is not exact for the higher-order prob-

lem due to higher-order effects in the scattering potential. For small body motions, as

in the case of this study, the equality (3.4) can be assumed to hold. The higher-order

problem must be solved in the time domain.

For monotowers ringing is seen as a transient structural resonance phenomenon

in the bending mode. Draugen has a natural period in pitch of 4.75 sec., since this is

substantially higher than the dominant wave frequency, only the first bending mode

is of significant interest associated with ringing. In the model test Draugen was

modeled as free to move in pitch (rigid body motion), with an external spring at the

moment point. If the external spring constant KEX is very large, the structure can

be approximated as clamped at the bottom. Then the motion will represent the first

bending mode of the structure. The fact that the moment point was located at 55.9

m above the bottom makes this approximation even better. Only pitch motion is

23



considered in this study.

3.2 The Draugen DMI Model Test

The Draugen Danish Maritime Institute (DMI) model test data were provided by

Shell in Houston. Figure 4.1 shows the platform configuration and Figure 3.1 shows

the DMI model basin arrangement. The tests were performed at 1:50 scale and all

data channels were sampled at 50 Hz (model scale) or 7.071 Hz (prototype scale).

The model was segmented at the base of the shaft in order to simulate the first-mode

response with a correct natural period. The "joint", which was placed at the bottom

of the shaft, was arranged with low-friction linkage elements to allow the placement

of load cells to measure shear force and overturning moment.

-- Carrlage

200 m

Figure 3-1: DMI Model Basin Arrangement

3

Depth
5.36 m
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Nine channels of data were collected and below is a description of each collected

data.

Channel Description

1 wave elevation in meters at 50 m (prototype) to the side of the model

2 wave elevation in meters at leading edge of flare to the side of the model

3 wave elevation in meters at 50 m upwave of the model

4 transverse shear force (Fy) in MN at the port side linkage

5 transverse shear force (Fy) in MN at starboard side linkage

6 overturning moment (My) in GMm at the joint

7 in-line deck displacement (Dx) in m

8 in-line deck acceleration (Ax) in 

9 in-line force (Fx) in GN at the joint

The transverse stiffness at the deck level was given to be 309 mN, which cor-

responds to a rotational stiffness at the moment point of Kt = 1.57966e13 N . Kt

includes the hydrostatic coefficient and can be expressed as

K, = KEX + C55. (3.5)

The total mass of the platform was given as m = 175,100 tonnes.
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Chapter 4

The First-Order Solution

4.1 First Order Solution from WAMIT

The first order problem is solved in the frequency domain for a circular cylinder of

constant radius and for the Draugen 'monotower' platform. A geometric description

of the body is needed in order to run WAMIT. The representation of the cylinder

is straight forward, the mesh generation of Draugen, on the other hand, is more

complicated. The platform configuration is shown in Figure 4.1.

4.1.1 Geometric Description of the Bodies

The platform is surrounded by seven stability cells at the bottom and the main shaft

starts out with constant radius from the sea bottom up to El. = 76.7 m, where El.

is the elevation measured from a reference plane at the bottom of the platform. The

radius than starts changing linearly up to El. = 240.3 m, where the shaft has a section

of constant radius before a flare section completes the structure. The water line Z=0

is at El. 252.5 m. The practical function of the flare section is to make a smooth

transition from the circular cross-section of the shaft to the square cross-section of

the platform deck. The flare starts under the mean free-surface in order to reduce

slamming effects.

The cells at the bottom were modeled as a block of diameter d=79.5 m. The
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Figure 4-1: Platform Configuration of Draugen.

platform is fairly deep, and the structure is not moving much in response to the wave

loads acting on it, so this is a good approximation. The surface piercing flare section,

on the other hand, must be modeled with more care since the velocity potential in

the free surface region is more sensible to the geometry of the body.

Figures 4.2 and 4.3 show the geometric description of the cylinder and Draugen,

recpectively. Three different meshes with different numbers of panels were made for

each geometry, this to ensure convergence. The coursest and finest meshes used are

shown in Figures 4.2 and 4.3. In order to compare WAMIT results with results from

the DMI model test, the moment point, which in WAMIT is taken as the origin of

the body coordinates (x, y, z), was placed at Z = -196.6, where (X, Y, Z) are the

global coordinates with Z = 0 at the mean free-surface. The geometric model of

the platform was lifted 0.1 m above the sea bottom and the bottom of the platform

was paneled. This was done to obtain the correct hydrostatic coefficient, C55 from

WAMIT. The gap between the bottom and the platform will cause minimal numer-
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ical problems in this case since the hydrodynamic disturbances at the bottom are

very small. However, introducing a gap like this is not recommended and should be

avoided if possible. The hydrostatic coefficient, C55 is expressed as

C55 = pg J js 2n3dS + p9VZb - mgzg, (4.1)
b

where V is the volume of the structure, Zg the vertical position of the center of gravity,

and Zb the vertical position of the center of bouancy defined as

Zb = - A 2dS. (4.2)

The volume used to calculate Zb is given as

V= - n3zdS. (4.3)

If no panels are defined on the bottom of the structure, the bottom surface will not

be included in the surface integral in Equation (4.3), and the calculated volume will

be wrong. The erroneous volume will cause Zb and C55 to be wrong as well. The

center of gravity of Draugen was not known and not reported in the model test at

DMI. I estimated the vertical position of the gravity to be at Zg=15.1 m, this based

on the description of the platform. The 'exact' value of Zg is not important since the

external stifness of the structure, K is dominating C55.
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Figure 4-3: Panel Discretization of the Draugen Monotower Platform
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4.1.2 First Order Wave Loads

The surge force and pitch moment are calculated for a cylinder of radius 8.2 m and

for Draugen. The excitation force and moment obtained from direct integration of

the hydrodynamic pressure is given as

Xi =-ipJP s niDdS. (4.4)

Figures 4.4-3.4 show the surge force and pitch moment for the cylinder and Draugen

obtained from WAMIT. The exitation forces are normalized as

xi
Xi- X= ,l (4.5)pgAL 

where m=2 for i=1,2,3 and m=3 for i=4,5,6.

In long waves the first order wave loads acting on Draugen are larger than those

acting on the cylinder. Figures 4.4 and 4.6 show that the maximum surge force on

Draugen is about six times that of the cylinder. However, the difference in pitch

moment is not that significant. The rather large difference in the surge force is due to

larger force contributions from the deeper part of Draugen compared to the cylinder.

The force acting on the bodies below the moment point will create a stabilizing

moment. This stabilizing moment is larger for Draugen than the cylinder which

explains why the pitch moments are more comparable than the surge forces. Another

way to put this is to argue that if the forces were concentrated in the free-surface

region, the moment arm would have been large and the pitch moment would have

been correspondingly large.
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4.1.3 Added Mass, Damping, and Pitch Response

The added moment of inertia A55 and wave damping B 55, can be found by solving

the radiation problem alone. The relation between Aij and Bij is given as

Aij - Bij =p nj0jdS. (4.6)

A 55 and B55 are nondimensionalized as

A55 = 5 (4.7)
pL 5 '

and

B55 = pLB55 (4.8)pL 5w'

Figures 4.8-4.10 show the added moment of inertia, wave damping, and the pitch re-

sponse for Draugen, respectively. The pitch response is found by solving the diffrac-

tion and radiation problem. WAMIT allows one to define external mass, external

damping, and external stifness. In order to compare results with the DMI test, exter-

nal mass, and stiffness were defined in agreement with values used in the DMI model

test. Only the natural frequency, and the stiffnes in the spring were known from the

provided method. The external mass moment of inertia, IEX, can be found from the

relation

IEX + A 55 = Kt- (4.9)

However, the added moment of inertia, A55, had to be obtained from the radiation

problem in order to find the external mass moment of inertia of Draugen.

It can be seen from Figure 4.8 that the added moment of inertia for Draugen
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Figure 4-4: First Order Surge Force Acting on the Cylinder

Pitch Moment

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ka

Figure 4-5: First Order Pitch Moment Acting on the Cylinder

33

7

6

5

648 panels
1296 panels
2592 panels

X.... I ... * ... * .. , ,.,., I ... , , ,III

N-j
)
4?

4

3

2

1

0

150

100

50

co-j
00.
In

>x

n

I
I



Surge Force
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Figure 4-6: First Order Surge Force Acting on the Draugen

Pitch Moment
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Figure 4-7: First Order Pitch Moment Acting on Draugen
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Added Moment of Inertia in Pitch
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Figure 4-8: Added Moment of Inertia in Pitch for Draugen

converges slowly compared to the surge force and pitch moment with the same number

of panels. The reason for this is that the added moment of inertia in pitch is more

sensible to the given discretization. The pitch response has its peak at about Ka=1.5,

this corresponds to a natural frecuency of 1.3228 rad/sec, which corresponds well with

information from the DMI model test. Values of Ka larger than 0.5 do not apply to

ocean waves. In the region below Ka=0.5, the response amplitude operator is almost

constant and corresponds to a maximum horizontal displacement of the platform deck

of 0.165 m for an incident wave of A = 10m.
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Wave Damping in Pitch
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Figure 4-9: Wave Damping in Pitch for Draugen

Pitch Response
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Figure 4-10: Pitch Response of Draugen
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4.2 First-Order Solution from the FNV-Theory

The surge force, pitch moment, and pitch response of the cylinder predicted by the

FNV-theory is shown and compared with results from WAMIT in figures 4.11-4.16.

The results comare well for small values of the nondimensional wavenumber Ka,

which corresponds well with the criteria that the FNV-theory is valid in the regime

Ka < 1. It can be concluded from the figures that the FNV-theory is valid for Ka's

up to 0.5. For higher frequencies the FNV-theory fails due to the fact that the long

wave length approximation is no longer valid.

The pitch response was found from the equation of motion with added moment

of inertia and wave damping obtained from WAMIT. In that sense it is not a sur-

prise that the pitch response compares well for lower Ka numbers, since the moment

compares well in this region as well.
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Figure 4-11: First-Order Surge Force Acting on the Cylinder
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Figure 4-12: First-Order Surge Force Acting on the Cylinder, Close-Up

Pitch Moment
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Figure 4-13: First-Order Pitch Moment Acting on the Cylinder
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Pitch Moment
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Figure 4-14: First-Order Pitch Moment Acting on the Cylinder, Close-Up
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Figure 4-15: First-Order Pitch Response of the Cylinder
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Figure 4-16: First-Order Pitch Response of the Cylinder, Close-Up
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Chapter 5

The Higer-Order Solution

For regular incident waves the higer-order force components can be expressed as

harmonic time functions as described in Section 2.2.1.. The total force and moment

will be a function of first, second, and third harmonics, the moment will also include

a fourth harmonic due to the moment arm (hi + i), where hi is the distance from

the moment point to the mean free-surface, z = 0. The higher-order contributions to

the surge force and the pitch moment are due to the integrated 2nd-order force plus

the "point" forces acting at the free-surface. The total "point" force includes both

2nd and 3rd-order components. Figure 5.1 shows the total "point" force, acting on

the free surface, for different Ka values. The time axis is non-dimensionalized such

that the fundamental period equals 2 for any Ka value. Two interesting behaviors

can be seen in the figure. First, the total "point" force increases in proportion to

Ka. Or in other words, the importance of the higher-order "point" forces increases

as the waves become steeper. Second, the 2nd and 3rd-order "point" forces tend to

reinforce in the first half of the fundamental period, and to cancel during the second

half. The moment associated with the "point" forces is shown in figure 5.2. It has

the same characteristic as the total "point" force, but it includes a fourth harmonic

due to the varying moment arm (hi + 71l), where rll = A sinwt.

The increasing importance of the higher-order forces with increasing Ka values

can be seen in figure 5.3 and 5.4. For Ka = 0.10, there is only a slightly difference

between the first-order force and the total force acting on the cylinder. For Ka = 0.30
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the effects of the higher-order forces can be seen to increase and shift the peak value.

Figure 5.7 and 5.8 show the increasing higher-order contribution to the total force

and moment acting on the cylinder.

In order to compare the significance of the higher-order forces acting on Draugen,

the first-order force and moment is obtained from WAMIT. Figures 5.9-5.14 show the

higher-order effects on the total force and moment acting on Draugen. One interesting

observation is shown in figure 5.13, where the total force actually decreases as Ka

increases. The explanation for this can be found by looking at figure 4.6, where

the first-order force on Draugen is shown to have a sharp peak at Ka . 0.10. The

higher-order forces are small compared to this peak value.

The excitation moment is periodic with period r = 2. Thus it can be expanded

in a Fourier series as

00 00M(t) + aj cosjwt + E bj sin jwt. (5.1)
j=1 j=1

The only coefficients considered here are al, b2, b3, and a 4. The steady state pitch

motion can be found by solving the linear equation of motion with the forcing func-

tion M(t). Using the principle of superposition, the steady state response can be

expressed as

5(t)= E Kt cos(jwt - j)
j=1,3 V/(1 - j2r2)2± (2(jr) 2

2+ / j Kt sin(jwt-alj),
j=2,4 V( -j 2 r 2 ) 2 + ((5.2) 2

(5.2)

where r = , ( is the damping ratio given as
OWn'
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B 55B= (5.3)
2(IEX + A55)Wn '(53)

and the phase angle aj is given as

aj = tan-l( j2r2 (5.4)

From equation (4.11) it can be seen that if jw = w, the amplitude of the corresponding

harmonic will be comparatively large, and will cause a large response motion. For

small values of j and ( this effect is important. However, for higher values of j

the corresponding amplitude becomes smaller and the contribution to the response

motion will tend to zero.

The steady state pitch motion in unidirectional regular waves is predicted for

Draugen. The added moment of inertia in pitch and wave damping is obtained from

WAMIT and used in equation (4.11). Figures 5.15 and 5.16 compares the total

response to the first-order response obtained from WAMIT. The results shown are for

an incident wave of amplitude A = 10m. Figures 5.17 and 5.18 show the overturning

moment at the pivot point and the in-deck motion for Draugen. The wave elevation

corresponding to figures 5.17 and 5.18 has a mean value of 8.9m, which is less than

the one used in the calculation for the predicted response and moment. However, the

peak value (at 240 sec.)in the sample space corresponds to a wave elevation of 10m

and the in-deck response value compares better with the predicted results as shown

in figures 5.15 and 5.16.
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Figure 5-4: Total Force and 1st-Order Force on the Cylinder, Ka = 0.30
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Figure 5-18: In-deck Motion from the DMI-Model Test
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Chapter 6

Conclusion

The wave loads up to the third-order are predicted for a cylinder and for the Draugen

monotower platform exposed to long waves, based on the FNV-theory. In an inner

domain close to the body surface, the wave elevation is assumed to be significantly

affected by nonlinearities due to the presence of the structure, causing wave diffraction

and scattering. The amplitude A is assumed to be of the same order as the radius a.

The higher-order wave forces are concentrated in a region close to the free-surface,

and can be thought of as "point" forces acting at the free-surface.

The first-order surge force, pitch moment, and pitch motion for a cylinder and

Draugen are obtained from WAMIT and the FNV-results are found to compare well

with the WAMIT results for Ka values less than 0.5. The total wave load on Draugen

is found by taking the first-order wave load from WAMIT and adding the integrated

2nd-order force and the "point" forces.

The principle of superposition is used to find the steady state pitch response of

Draugen from the linear equation of motion. The added moment of inertia and wave

damping are obtained from WAMIT. The predicted pitch moment and pitch response

are compared to model test results of Draugen and compare well with these results.

However, a complete comparison is difficult since only regular waves are considered

in this study. A natural next step will be to consider irregular waves.
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